
1

c01.indd 1 18/02/2016 3:51 PM

 When you scale out a Spark application for the fi rst time, one of the more common

occurrences you will encounter is the application’s inability to merely succeed

and fi nish its job. The Apache Spark framework’s ability to scale is tremendous,

but it does not come out of the box with those properties. Spark was created,

fi rst and foremost, to be a framework that would be easy to get started and use.

Once you have developed an initial application, however, you will then need to

take the additional exercise of gaining deeper knowledge of Spark’s internals

and confi gurations to take the job to the next stage.

 In this chapter we lay the groundwork for getting a Spark application to

succeed. We will focus primarily on the hardware and system-level design

choices you need to set up and consider before you can work through the various

Spark-specifi c issues to move an application into production.

 We will begin by discussing the various ways you can install a production-

grade cluster for Apache Spark. We will include the scaling effi ciencies you will

need depending on a given workload, the various installation methods, and

the common setups. Next, we will take a look at the historical origins of Spark

in order to better understand its design and to allow you to best judge when

it is the right tool for your jobs. Following that, we will take a look at resource

management: how memory, CPU, and disk usage come into play when creat-

ing and executing Spark applications. Next, we will cover storage capabilities

within Spark and their external subsystems. Finally, we will conclude with a

discussion of how to instrument and monitor a Spark application.

 C H A P T E R

 1

 Finishing Your Spark Job Spark Job

CO
PYRIG

HTED
 M

ATERIA
L

2 Chapter 1 ■ Finishing Your Spark Job

c01.indd 2 18/02/2016 3:51 PM c01

Installation of the Necessary Components

Before you can begin to migrate an application written in Apache Spark you

will need an actual cluster to begin testing it on. You can download, compile,

and install Spark in a number of different ways within its system (some will be

easier than others), and we’ll cover the primary methods in this chapter.

 Let’s begin by explaining how to confi gure a native installation, meaning one

where only Apache Spark is installed, then we’ll move into the various Hadoop

distributions (Cloudera and Hortonworks), and conclude by providing a brief

explanation on how to deploy Spark on Amazon Web Services (AWS).

 Before diving too far into the various ways you can install Spark, the obvious

question that arises is, “What type of hardware should I leverage for a Spark

cluster?” We can offer various possible answers to this question, but we’d like

to focus on a few resounding truths of the Spark framework rather than neces-

sitating a given layout.

 It’s important to know that Apache Spark is an in-memory compute grid.

Therefore, for maximum effi ciency, it is highly recommended that the system, as

a whole, maintain enough memory within the framework for the largest workloadk
(or dataset) that will be conceivably consumed. We are not saying that you cannot

scale a cluster later, but it is always better to plan ahead, especially if you work

inside a larger organization where purchase orders might take weeks or months.

 On the concept of memory it is necessary to understand that when comput-

ing the amount of memory you need to understand that the computation does

not equate to a one-to-one fashion. That is to say, for a given 1TB dataset, you

will need more than 1TB of memory. This is because when you create objects

within Java from a dataset, the object is typically much larger than the original

data element. Multiply that expansion times the number of objects created for

a given dataset and you will have a much more accurate representation of the

amount of memory a system will require to perform a given task.

 To better attack this problem, Spark is, at the time of this writing, working on

what Apache has called Project Tungsten , which will greatly reduce the memory

overhead of objects by leveraging off heap memory. You don’t need to know

more about Tungsten as you continue reading this book, but this information

may apply to future Spark releases, because Tungsten is poised to become the

de facto memory management system.

 The second major component we want to highlight in this chapter is the num-

ber of CPU cores you will need per physical machine when you are determining

hardware for Apache Spark. This is a much more fragmented answer in that,

once the data load normalizes into memory, the application is typically network

or CPU bound. That said, the easiest solution is to test your Spark application on

a smaller dataset and measure its bounding case, be it either network or CPU,

and then plan accordingly from there.

PM

Chapter 1 ■ Finishing Your Spark Job 3

c01.indd 3 18/02/2016 3:51 PM

Native Installation Using a Spark Standalone Cluster
The simplest way to install Spark is to deploy a Spark Standalone cluster. In this

mode, you deploy a Spark binary to each node in a cluster, update a small set of

confi guration fi les, and then start the appropriate processes on the master and

slave nodes. In Chapter 2 , we discuss this process in detail and present a simple

scenario covering installation, deployment, and execution of a basic Spark job.

 Because Spark is not tied to the Hadoop ecosystem, this mode does not have

any dependencies aside from the Java JDK. Spark currently recommends the

Java 1.7 JDK. If you wish to run alongside an existing Hadoop deployment, you

can launch the Spark processes on the same machines as the Hadoop instal-

lation and confi gure the Spark environment variables to include the Hadoop

confi guration.

NOTE For more on a Cloudera installation of Spark try http://www.cloudera
.com/content/www/en-us/documentation/enterprise/latest/topics/

cdh_ig_spark_installation.html . For more on the Hortonworks installation
try http://hortonworks.com/hadoop/spark/#section_6 . And for more
on an Amazon Web Services installation of Spark try http://aws.amazon.com/
articles/4926593393724923 .

The History of Distributed Computing That Led to Spark

We have introduced Spark as a distributed compute framework; however, we

haven’t really discussed what this means. Until recently, most computer sys-

tems available to both individuals and enterprises were based around single

machines. These single machines came in many shapes and sizes and differed

dramatically in terms of their performance, as they do today.

 We’re all familiar with the modern ecosystem of personal machines. At the

low-end, we have tablets and mobile phones. We can think of these as rela-

tively weak, un-networked computers. At the next level we have laptops and

desktop computers. These are more powerful machines, with more storage and

computational ability, and potentially, with one or more graphics cards (GPUs)

that support certain types of massively parallel computations. Next are those

machines that some people have networked with in their home, although gen-

erally these machines were not networked to share their computational ability,

but rather to provide shared storage—for example, to share movies or music

across a home network.

 Within most enterprises, the picture today is still much the same. Although

the machines used may be more powerful, most of the software they run, and

most of the work they do, is still executed on a single machine. This fact limits

4 Chapter 1 ■ Finishing Your Spark Job

c01.indd 4 18/02/2016 3:51 PM c01

the scale and the potential impact of the work they can do. Given this limita-

tion, a few select organizations have driven the evolution of modern parallel

computing to allow networked systems of computers to do more than just share

data, and to collaboratively utilize their resources to tackle enormous problems.

 In the public domain, you may have heard of the SETI at Home program from

Berkeley or the Folding@Home program from Stanford. Both of these programs

were early initiatives that let individuals dedicate their machines to solving

parts of a massive distributed task. In the former case, SETI has been looking

for unusual signals coming from outer space collected via radio telescope. In the

latter, the Stanford program runs a piece of a program computing permutations

of proteins—essentially building molecules—for medical research.

 Because of the size of the data being processed, no single machine, not even

the massive supercomputers available in certain universities or government

agencies, have had the capacity to solve these problems within the scope of a

project or even a lifetime. By distributing the workload to multiple machines,

the problem became potentially tractable—solvable in the allotted time.

 As these systems became more mature, and the computer science behind these

systems was further developed, many organizations created clusters of machines—

coordinated systems that could distribute the workload of a particular problem across

many machines to extend the resources available. These systems fi rst grew in research

institutions and government agencies, but quickly moved into the public domain.

Enter the Cloud
The most well-known offering in this space is of course the proverbial “cloud.”

Amazon introduced AWS (Amazon Web Services), which was later followed

by comparable offerings from Google, Microsoft, and others. The purpose of a

cloud is to provide users and organizations with scalable clusters of machines

that can be started and expanded upon on-demand.

 At about the same time, universities and certain companies were also build-

ing their own clusters in-house and continuing to develop frameworks that

focused on the challenging problem of parallelizing arbitrary types of tasks

and computations. Google was born out of its PageRank algorithm—an exten-

sion of the MapReduce framework that allowed a general class of problems to

be solved in parallel on clusters built with commodity hardware.

 This notion of building algorithms, that, while not the most effi cient, could

be massively parallelized and scaled to thousands of machines, drove the next

stage of growth in this area. The idea that you could solve massive problems by

building clusters, not of supercomputers, but of relatively weak and inexpensive

machines, democratized distributed computing.

 Yahoo, in a bid to compete with Google, developed, and later open-sourced

under the Apache Foundation, the Hadoop platform—an ecosystem for distrib-

uted computing that includes a fi le system (HDFS), a computation framework

PM

Chapter 1 ■ Finishing Your Spark Job 5

c01.indd 5 18/02/2016 3:51 PM

(MapReduce), and a resource manager (YARN). Hadoop made it dramatically

easier for any organization to not only create a cluster but to also create software

and execute parallelizable programs on these clusters that can process huge

amounts of distributed data on multiple machines.

 Spark has subsequently evolved as a replacement for MapReduce by build-

ing on the idea of creating a framework to simplify the diffi cult task of writing

parallelizable programs that effi ciently solve problems at scale. Spark’s primary

contribution to this space is that it provides a powerful and simple API for per-

forming complex, distributed operations on distributed data. Users can write

Spark programs as if they were writing code for a single machine, but under

the hood this work is distributed across a cluster. Secondly, Spark leverages the

memory of a cluster to reduce MapReduce’s dependency on the underlying dis-

tributed fi le system, leading to dramatic performance gains. By virtue of these

improvements, Spark has achieved a substantial amount of success and popu-

larity and has brought you here to learn more about how it accomplishes this.

 Spark is not the right tool for every job. Because Spark is fundamentally designed

around the MapReduce paradigm, its focus is on excelling at Extract, Transform,

and Load (ETL) operations. This mode of processing is typically referred to as

batch processing—processing large volumes of data effi ciently in a distributed

manner. The downside of batch processing is that it typically introduces larger

latencies for any single piece of data. Although Spark developers have been dedi-

cating a substantial amount of effort to improving the Spark Streaming mode, it

remains fundamentally limited to computations on the order of seconds. Thus,

for truly low-latency, high-throughput applications, Spark is not necessarily the

right tool for the job. For a large set of use cases, Spark nonetheless excels at

handling typical ETL workloads and provides substantial performance gains

(as much as 100 times improvement) over traditional MapReduce.

Understanding Resource Management
In the chapter on cluster management you will learn more about how the oper-

ating system handles the allocation and distribution of resources amongst the

processes on a single machine. However, in a distributed environment, the cluster

manager handles this challenge. In general, we primarily focus on three types

of resources within the Spark ecosystem. These are disk storage, CPU cores, and

memory. Other resources exist, of course, such as more advanced abstractions like

virtual memory, GPUs, and potentially different tiers of storage, but in general

we don’t need to focus on those within the context of building Spark applications.

Disk Storage

The fi rst type of resource, disk, is vital to any Spark application since it stores

persistent data, the results of intermediate computations, and system state.

6 Chapter 1 ■ Finishing Your Spark Job

c01.indd 6 18/02/2016 3:51 PM c01

When we refer to disk storage, we are referring to data stored on a hard drive

of some kind, either the traditional rotating spindle, or newer SSDs and fl ash

memory. Like any other resource, disk is fi nite. Disk storage is relatively cheap

and most systems tend to have an abundance of physical storage, but in the world

of big data, it’s actually quite common to use up even this cheap and abundant

storage! We tend to enable replication of data for the sake of durability and to

support more effi cient parallel computation. Also, you’ll usually want to persist

frequently used intermediate dataset(s) to disk to speed up long-running jobs.

Thus, it generally pays to be cognizant of disk usage, and treat it as any other

fi nite resource.

 Interaction with physical disk storage on a single machine is abstracted away

by the fi le system—a program that provides an API to read and write fi les. In a

distributed environment, where data may be spread across multiple machines,

but still needs to be accessed as a single logical entity, a distributed fi le system

fulfi lls the same role. Managing the operation of the distributed fi le system and

monitoring its state is typically the role of the cluster administrator, who tracks

usage, quotas, and re-assigns resources as necessary. Cluster managers such as

YARN or Mesos may also regulate access to the underlying fi le system to better

distribute resources between simultaneously executing applications.

CPU Cores

The central processing unit (CPU) on a machine is the processor that actually

executes all computations. Modern machines tend to have multiple CPU cores,

meaning that they can execute multiple processes in parallel. In a cluster, we have

multiple machines, each with multiple cores. On a single machine, the operat-

ing system handles communication and resource sharing between processes.

In a distributed environment, the cluster manager handles the assignment of

CPU resources (cores) to individual tasks and applications. In the chapter on

cluster management, you’ll learn specifi cally how YARN and Mesos ensure

that multiple applications running in parallel can have access to this pool of

available CPUs and share it fairly.

 When building Spark applications, it’s helpful to relate the number of CPU

cores to the parallelism of your program, or how many tasks it can execute

simultaneously. Spark is based around the resilient distributed dataset (RDD)—

an abstraction that treats a distributed dataset as a single entity consisting of

multiple partitions. In Spark, a single Spark task will processes a single partition

of an RDD on a single CPU core.

 Thus, the degree to which your data is partitioned—and the number of avail-

able cores—essentially dictates the parallelism of your program. If we consider

a hypothetical Spark job consisting of fi ve stages, each needing to run 500 tasks,

if we only have fi ve CPU cores available, this may take a long time to complete!

In contrast, if we have 100 CPU cores available, and the data is suffi ciently

PM

Chapter 1 ■ Finishing Your Spark Job 7

c01.indd 7 18/02/2016 3:51 PM

partitioned, for example into 200 partitions, Spark will be able to parallelize much

more effectively, running 100 tasks simultaneously, completing the job much

more quickly. By default, Spark only uses two cores with a single executor—

thus when launching a Spark job for the fi rst time, it may unexpectedly take a

very long time. We discuss executor and core confi guration in the next chapter.

Memory

Lastly, memory is absolutely critical to almost all Spark applications. Memory

is used for internal Spark mechanisms such as the shuffl e, and the JVM heap is

used to persist RDDs in memory, minimizing disk I/O and providing dramatic

performance gains. Spark acquires memory per executor—a worker abstrac-

tion that you’ll learn more about in the next chapter. The amount of memory

that Spark requests per executor is a confi gurable parameter and it is the job of

the cluster manager to ensure that the requested resources are provided to the

requesting application.

 Generally, cluster managers assign memory the same way that the cluster

manager assigns CPU cores as discrete resources. The total available memory

in a cluster is broken up into blocks or containers, and these containers are

assigned (or offered in the case of Mesos) to specifi c applications. In this way,

the cluster manager can act to both assign memory fairly, and schedule resource

usage to avoid starvation.

 Each assigned block of memory in Spark is further subdivided based on Spark

and cluster manager confi gurations. Spark makes tradeoffs between the memory

allocated for dynamic memory allocated during shuffl e, the memory used to

store cached RDDs, and the amount of memory available for off-heap storage.

 Most applications will require some degree of tuning to determine the appro-

priate balance of memory based on the RDD transformations executed within

the Spark program. A Spark application with improperly confi gured memory

settings may run ineffi ciently, for example, if RDDs cannot be fully persisted

in memory and instead are swapped back and forth from disk. Insuffi cient

memory allocated for the shuffl e operation can also lead to slowdown since

internal tables may be swapped to disk, if they cannot fi t entirely into memory.

 In the next chapter on cluster management, we will discuss in detail the

memory structure of a block of memory allocated to Spark. Later, when we

cover performance tuning, we’ll show how to set the parameters associated with

memory to ensure that Spark applications run effi ciently and without failures.

 In newer versions of Spark, starting with Spark 1.6, Spark introduces dynamic

automatic memory tuning. As of 1.6, Spark will automatically adjust the frac-

tion of memory allocated for shuffl e and caching, as well as the total amount of

allocated memory. This allows you to fi t larger datasets into a smaller amount

of memory, as well as to more easily create programs that execute successfully

out of the box, without extensive tuning of a multitude of memory parameters.

8 Chapter 1 ■ Finishing Your Spark Job

c01.indd 8 18/02/2016 3:51 PM c01

Using Various Formats for Storage

When solving a distributed processing problem sometimes we get tempted to

focus more on the solution, on how to get the best from the cluster resources,

or on how to improve the code to be more effi cient. All of these things are great

but they are not all we can do to improve the performance of our application.

 Sometimes, the way we choose to store the data we are processing, highly

impacts the execution. This subchapter proposes to bring some light on how to

decide which fi le format to choose when storing data.

 There are several aspects we must consider when loading or storing data with

Spark: What is the most suitable fi le format to choose? Is the fi le format splittable?

Meaning, can splits of this fi le be processed in parallel? Do we compress the

data and if so, which compression codec to use? How large should our fi les be?

 The fi rst thing you should be careful of is the fi le sizes your dataset is divided

into. Even if in Chapter 3 you will read about parallelism and how it affects the

performance of your application, it is important to mention how the fi le sizes

determine the level of parallelism. As you already might know, on HDFS each

fi le is stored in blocks. When reading these fi les with Spark, each HDFS block

will be mapped to one Spark partition. For each partition, a Spark task will be

launched to read and process it. A high level of parallelism is usually benefi cial

if you have the necessary resources and if the data is properly partitioned.

However, a very large number of tasks come with a scheduling overhead that

should be avoided if it is not necessary. In conclusion, the size of the fi les we are

reading causes a proportional number of tasks to be launched and a signifi cant

scheduling overhead.

 Besides the large number of tasks that are launched, reading a lot of small

fi les also brings a serious time penalty infl icted by opening them. You should

also consider the fact that all the fi le paths are handled on the driver. So if your

data consists of a huge amount of small fi les, then you risk placing memory

pressure on the driver.

 On the other hand, if the dataset is composed of a set of huge fi les, then you

must make sure the fi les are splittable. Otherwise, they will have to be handled

by single tasks resulting in very large partitions. This will highly decrease

performance.

 Most of the time, saving space is important. So, to minimize the data’s disk

footprint, we compress it. If we plan to process this data later on with Spark, we

have to be careful which compression format we choose. It is important to know

if it is splittable or not. Let’s imagine we have a 5 GB fi le stored on HDFS with

a block size of 128 MB. The fi le will be composed of 40 blocks. When we read it

with Spark, a task will be launched for each block, so there will be 40 parallel

tasks that will process the data. If this fi le would be a compressed fi le in gzip

format, then it is not supported to decompress a block independently from the

PM

Chapter 1 ■ Finishing Your Spark Job 9

c01.indd 9 18/02/2016 3:51 PM

other blocks. This means that Spark is not able to process each block in parallel,

so only one task will process the entire fi le. It is obvious that the performance

is highly impacted and we might even face memory issues.

 There are many compression codecs having different features and advantages.

When choosing between them we trade off between compression ratio and

speed. The most common ones are gzip, bzip2, lzo, lz4, and Snappy.

■ Gzip is a compression codec that uses the DEFLATE algorithm. It is a

wrapper around the Zlib compression format having the advantage of a

good compression ratio.

■ Bzip2 compression format uses the burrows wheeler transform algorithm

and it is block oriented. This codec has a higher compression ratio than gzip.

■ There are also the LZO and the LZ4 block oriented compression codecs

that both are based on the LZ77 algorithm. They have modest compression

ratios but they excel at compression and decompression speeds.

 The fastest compression and decompression speed is provided by the Snappy

compression codec. It is a block-oriented codec based on the LZ77 algorithm.

Because of its decompression speed, it is desirable to use Snappy for datasets

that are frequently used.

 If we were to separate compression codecs into splittable or not splittable

we would refer to Table 1- 1 . However, making this separation is confusing

because it strongly depends on the fi le format that they are compressing. If the

non splittable codecs are used with fi le formats that support block structure

like Sequence fi les or ORC fi les, then the compression will be applied for each

block. In this case, Spark will be able to launch in parallel tasks for each block.

So you might consider them splittable. But, on the other hand, if they are used

to compress text fi les, then the entire fi le will be compressed in a single block,

therefore only one task will be launched per fi le.

 This means that not only the compression codec is important but also the fi le’s

storage format. Spark supports a variety of input and output formats, structured

or unstructured, starting with text fi les, sequence fi les, or any other Hadoop

fi le formats. Is important to underline that making use of the hadoopRDD and

newHadoopRDD methods, you can read in Spark any existent Hadoop fi le format.

Table 1-1: Splittable Compression Codecs

COMPRESSION CODEC IS SPLITTABLE

Gzip No

Bzip2 Yes

LZO No, unless indexed

Snappy Yes

10 Chapter 1 ■ Finishing Your Spark Job

c01.indd 10 18/02/2016 3:51 PM c01

Text Files
You can easily read text fi les with Spark using the textFile method. You can

either read a single fi le or all of the fi les within a folder. Because this method will

split the documents into lines, you have to keep the lines at a reasonable size.

 As mentioned above, if the fi les are compressed, depending on the compres-

sion codec, they might not be splittable. In this case, they should have sizes

small enough to be easily processed within a single task.

 There are some special text file formats that must be mentioned: the

structured text files. CSV files, JSON files and XML files all belong to this

category.

 To easily do some analytics over data stored in CSV format you should create a

DataFrame on top of it. To do this you have two options: You can either read the

fi les with the classic textFile method or programmatically specify the schema,

or you could use one of the Databricks packages spark-csv. In the example below,

we read a csv fi le, remove the fi rst line that represents the header, and map each

row to a Car object. The resulted RDD is transformed to a DataFrame.

 import sqlContext.implicits._
 case class Pet(name: String, race : String)
 val textFileRdd = sc.textFile("file.csv")
 val schemaLine = textFileRdd.first()
 val noHeaderRdd = textFileRdd.filter(line => ↵
 !line.equals(schemaLine))
 val petRdd = noHeaderRdd.map(textLine => {
 val columns = textLine.split(",")
 Pet(columns(0), columns(1))})
 val petDF = petRdd.toDF()

 An easier way to process CSV fi les is to use the spark-csv package from

Databricks. You just read the fi le specifying the csv format:

 val df = sqlContext.read
 .format("com.databricks.spark.csv")
 .option("header", "true")
 .option("inferSchema", "true")
 .load("file.csv")

 To read and process JSON fi les, Spark SQL exposes a dedicated method. You

have the possibility to leave Spark SQL to infer the schema from the dataset or

you can specify it programmatically. If you know the schema in advance, it is

recommended to provide it. This is to avoid making Spark go through the input

once more to determine it. Another advantage of providing the schema yourself

is that you have the possibility of working only with the fi elds you need. If you

have JSON fi les with lots of fi elds that are not in your interest, you can specify

only the relevant ones and the other ones will be ignored.

PM

Chapter 1 ■ Finishing Your Spark Job 11

c01.indd 11 18/02/2016 3:51 PM

 Here is an example of how to read a JSON fi le with and without specifying

the schema of your dataset:

 val schema = new StructType(Array(
 new StructField("name", StringType, false),
 new StructField("age", IntegerType, false)))
val specifiedSchema= sqlContext.jsonFile("file.json",schema)
val inferedSchema = sqlContext.jsonFile("file.json")

 This way of handling JSON fi les assumes that you have a JSON object per

line. If there are some JSON objects that miss several fi elds then the fi elds are

replaced with nulls. In the case when we infer the schema and there are mal-

formed inputs, Spark SQL creates a new column called _corrupt_record. The

erroneous inputs will have this column populated with their data and will have

all the other columns null.

 The XML file formats are not an ideal format for distributed processing

because they usually are very verbose and don’t have an XML object per line.

Because of this they cannot be processed in parallel. Spark doesn’t have for

now a built-in library for processing these files. If you try to read an XML

file with the textFile method it is not useful because Spark will read the

file line by line. If your XML files are small enough to fit in memory, then

you could read them using the wholeTextFile method. This will output

a pair RDD that will have the file’s path as key and the entire text file as

value. Processing large files in this manner is allowed but it might cause

a bad performance.

Sequence Files
Sequence fi les are a commonly used fi le format, consisting of binary key value

pairs that must be subclasses of the Hadoop Writable interface. They are very

popular in distributed processing because they have sync markers. This allows

you to identify record boundaries, thus making it possible to parallelize the

process. Sequence fi les are an effi cient way of storing your data because they

can be effi ciently processed compressed or uncompressed.

 Spark offers a dedicated API for loading sequence fi les:

 val seqRdd = sc.sequenceFile("filePath", classOf[Int], classOf[String])

Avro Files
The avro fi le format is a binary data format that relies on a schema. When storing

data into an avro format, the schema is always stored with the data. This feature

makes possible for fi les in avro fi le format to be read from different applications.

12 Chapter 1 ■ Finishing Your Spark Job

c01.indd 12 18/02/2016 3:51 PM c01

 There is a Spark package to read/write avro fi les: spark-avro (https://github

.com/databricks/spark-avro). This package handles the schema conversion

from avro schema to the Spark SQL schema. To load an avro fi le is pretty straight

forward: You have to include the spark-avro package and then you read the fi le

as follows:

 import com.databricks.spark.avro._
 val avroDF = sqlContext.read.avro("pathToAvroFile")

Parquet Files
Parquet file format is a columnar file format that supports nested data

structures. Being in a columnar format makes it very good for aggregation

queries, because only the required columns are read from disk. Parquet

files support really efficient compression and encoding schemes, since they

can be specified per-column. This being said, it is clear why using this file

format gives you the advantage of decreasing the disk IO operations and

saving more storage space.

 Spark SQL provides methods for reading and writing Parquet files

maintaining the data’s schema. This file format supports schema evolution.

One can start with some columns and then add more columns. These

schema differences are automatically detected and merged. However if

you can, you should avoid schema merging, because it is an expensive

operation. Below is an example of how to read a parquet file, having the

schema merging enabled:

 val parquetDF = sqlContext.read
 .option("mergeSchema", "true")
 .parquet("parquetFolder")

 In Spark SQL, the Parquet Datasource is able to detect if data is parti-

tioned and to determine the partitions. This is an important optimiza-

tion in data analysis because during a query, only the needed partitions

are scanned based on the predicates inside the query. In the example

below, only the folder for company A will be scanned in order to serve

the requested employees.

 Folder/company=A/file1.parquet
 Folder/company=B/fileX.parquet

 SELECT employees FROM myTable WHERE company=A

 The Parquet fi le format is encouraged as a best practice for Spark SQL.

PM

Chapter 1 ■ Finishing Your Spark Job 13

c01.indd 13 18/02/2016 3:51 PM

Making Sense of Monitoring and Instrumentation

One of the most important things when running a distributing application is

monitoring. You want to identify as soon as possible anomalies and to trouble-

shoot them. You want to analyze the application’s behavior so you can determine

how to improve its performance. Knowing how your application uses the cluster

resources and how the load is distributed might make you gain some important

insights and save you a lot of time and money.

 The purpose of this section is to identify the monitoring options we have and

what we learn from the metrics we inspect.

Spark UI
Spark comes with a built-in UI that exposes useful information and metrics about

the application you are running. When you launch a Spark application, a web user

interface is launched, having the default port set on 4040. If there are multiple

Spark drivers running on the node, then an exception will be displayed reporting

the fact that the 4040 port is unavailable. In this case, the web UI will try to bind

to the next ports starting with 4040: 4041, 4042 until an available one is found.

 To access the Spark UI for your application, you will open the following page in

your web browser: http://<driver-node-ip>:<allocatedPort-default4040>.

 The default behavior is to provide access to the job execution metrics only

during the execution of your application. So, you will be able to see the Spark UI

as long as the application is still running. To continue seeing this information

in the UI even after the process fi nishes, you can change the default behavior

by setting the spark.eventLog.enabled to true.

 This feature is really useful, because you can understand better the behavior of

your Spark application. In this web user interface you can see information such as:

■ In the Jobs tab you can see the list of jobs that were executed and the job

that is still in progress with their execution timeline. It displays how many

stages and tasks were successful from the total number and information

about the duration of each job (see Figure 1-1).

Figure 1-1: The Spark UI showing job progress

14 Chapter 1 ■ Finishing Your Spark Job

c01.indd 14 18/02/2016 3:51 PM c01

■ In the Stages tab you can see the list of stages that were executed and

the one that is still active for all of the jobs (see Figure 1-2). This page

offers relevant information about how your data is being processed:

You can see the amount of data that is received as an input and its size

as an output. Also, here you can see the amount of data that is being

shuffl ed. This information is valuable since it might signal that you

are not using the right operators for processing your data or that you

might need to partition your data. In Chapter 3 there are more details

about the shuffl e phase and how it impacts the performance of your

Spark application.

Figure 1-2: Spark UI job execution information

■ In the task metrics stage, you can analyze metrics about the tasks that

were executed. You can see reports about their duration, about garbage

collection, memory, and the size of the data that is being processed (see

Figure 1-3). The information about the duration of the running tasks might

signal that your data is not uniformly distributed. If the maximum task

duration is a lot larger than the medium duration it means that you have

a task on which the load is much higher than on the others.

Figure 1-3: Spark UI task metrics

■ The DAG schedules stages for a certain job (see Figure 1-4). This informa-

tion is important for you to understand the way your job is scheduled

for running. You can identify the operations that trigger shuffl es and

are stage boundaries. Chapter 3 goes into more detail about the Spark

Execution Engine.

PM

Chapter 1 ■ Finishing Your Spark Job 15

c01.indd 15 18/02/2016 3:51 PM

■ Information about the execution environment: In the Environment tab

you can see all the confi guration parameters used when starting your

Spark context and the JARs used.

■ Logs gathered from each executor are also important.

DAG Visualization

Stage 0 Stage 1

hadoopRDD

map

treeAggregate

treeAggregate

mapPartitions

 Figure 1-4: The DAG stage scheduling

Spark Standalone UI
When running Spark in standalone mode, you have another build in the web

user interface that exposes information about clusters and about the executed

jobs and detailed logs. You can access this UI at the following address: http://

<master-ip>:<defaultPort: 8080>.

16 Chapter 1 ■ Finishing Your Spark Job

c01.indd 16 18/02/2016 3:51 PM c01

 If you are running Spark on top of YARN or Mesos cluster managers, you

can start a history server that allows you to see the UI for applications that

fi nished executing. To start the server use the following command: ./sbin/

start-history-server.sh.

 The history server is available at the following address: http://

<server-url>:18080.

Metrics REST API
Spark also provides REST APIs for retrieving metrics about your application

for you to use programmatically or to build your own visualizations based on

them. The information is provided in JSON format for running applications

and for apps from history.

 The API endpoints are :

 http://<server-url>:18080/api/v1
 http://<driver-node-ip>:<allocatedPort-default4040>
 /api/v1

 You can fi nd more information about the available APIs at http://spark

.apache.org/docs/latest/monitoring.html#rest-api .

Metrics System
A useful Spark component is the Metrics System. This system is available on the

driver and on each executor and can expose information about several Spark

components to different syncs. In this way you can obtain metrics sent by the

master process, by your application, by worker processes, and by the driver

and executors.

 Spark offers the freedom to monitor your application using a different set of

third-party tools using this Metrics System.

External Monitoring Tools
There are several external Spark monitoring applications used for profi ling. A

widely used open source tool for displaying time series data is Graphite. The

Spark Metrics System has a built-in Graphite sink that sends metrics about your

application to a Graphite node.

 You could also use Ganglia, a scalable distributed monitoring system to

keep an eye on your application. Among other metrics' syncs, Spark supports

a Ganglia sync that sends the metrics to a Ganglia node or to a multicast

group. Because of licensing reasons this sync is not included in the default

Spark build.

PM

Chapter 1 ■ Finishing Your Spark Job 17

c01.indd 17 18/02/2016 3:51 PM

 Another performance monitoring tool for Spark is SPM. This tool collects

all the metrics from your Spark application and provides monitoring charts.

Summary

In this chapter we detailed the ways that you can install a production-grade

cluster for Apache Spark. We also covered a bit about scaling effi ciencies, along

with installation and setup. You should now have a good idea about how Spark

handles resource management and its various storage capabilities and exter-

nal subsystems. And, we showed you how to instrument and monitor a Spark

application. Now, in Chapter 2 you will learn all about cluster management,

Spark’s physical processes and how they are managed by components inside

the Spark engine.

c01.indd 18 18/02/2016 3:51 PM

