
_____________________________________________________________________________________ 

Seismic Inversion: Theory and Applications, First Edition. Yanghua Wang. 
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd. 

 
 

1 

CHAPTER 1 
 

Basics of seismic inversion  
 
 
 
 
 
 
 
 
Seismic inversion attempts to extract spatially variable physical parameters 

from measured seismic data. These physical parameters may be 

representative of the Earth’s subsurface media, and have physical and 

geological meanings, and thus seismic inversion is a quantitative 

interpretation of seismic measurement. The inversion procedure is 

generally nonlinear, as the entire inversion engine to solve the inverse 

problem, at least partly, depends upon the solution. In practice, the inverse 

problem is often linearised, and the final nonlinear solution is obtained 

through the iterative application of linearised solvers. Therefore, this book 

will focus on the linear inverse problem.  

1.1 The linear inverse problem  

Linear seismic inversion may include at least three basic steps such as the 

following: 

1) Setting up an objective function, which describes how well a model 

estimate represents the seismic observation and meets our human 

expectation;  

2) Optimising the objective function based on a minimal variation 

principle, which leads to a linear system of equations, if the objective 

function is defined as a quadratic function;  

3) Solving this linear system, to obtain a quantitative solution.  

Data fitting is a principal part of the objective function. Seismic inversion 
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uses forward modelling to generate synthetic seismic data that will match 

the observed seismic data. Forward modelling can be presented in a linear 

form:  

dGm ,                         (1.1) 

where G  is a geophysical operator (a matrix), m  is the ‘model’ vector, 

and d  is the ‘data’ vector. Both vectors m  and d  are defined in the 

Hilbert space in which the structure (the length and angle) of an inner 

product of vectors can be measured. Row vectors and column vectors of 

matrix G  are also defined in the Hilbert space.  

For example, for a two-dimensional (2-D) velocity model defined in the 

zx  domain, we cannot straightforwardly include a fracture or a fault in 

the model parameterisation. Instead, we shall use an equivalent velocity 

model, which takes into account the effect of the fracture or the fault, so 

that the model vector m  is in the Hilbert space and can be involved in 

any inner product in seismic inversion.  

Then, we can define the data-fitting objective function as  

2||
~

|| )( Gmdm ,                     (1.2) 

where d
~

 is the observed data vector, and i ir
2T2 ),( |||| rrrrr  is the 

inner product of a single vector .r  The symbol ||||  represents the 2L  

norm of a vector. 

The optimisation working on the objective function is not necessarily a 

minimisation only. Depending on the set-up of the objective function, it 

can also be maximisation. For example, minimising the data misfit is 

equivalent to the maximisation of the probability. Minimal variation 

,/ 0m  where 0  is a null vector, can find either the minimal or 

maximal extremer of an objective function.  

In the objective function of Equation 1.2, 2||
~

|| Gmd  is the energy of 

data residuals. The least-squares solution using a minimal variation 

principle, that is, setting ,/ 0m  leads to the following linear system: 

dGGmG
~TT ,                       (1.3) 

where TG  is the transpose of the rectangular matrix ,G  and GGT  is a 

square matrix. A simplified version of Equation 1.3 is  

dGm
~

.                         (1.4) 
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Generally speaking, the inverse problem corresponds to calculating the 

inverse of the rectangular matrix G  in Equation 1.4. However, this matrix 

inverse cannot be calculated directly. The problem ultimately corresponds 

to the least-squares solution of Equation 1.3, which leads to calculating the 

inverse of the square matrix .TGG  

In practice, the matrix inverse does not always exist. It means that either 

the operator G  or GGT  are singular. Any modification to the operator is 

called regularisation, which makes the inverse mapping, from the data 

space to the model space, happen in a stable and unique way.  

For solving the linear system with a large-sized matrix, in order to avoid 

the direct calculation of the matrix inverse, an iterative method can be 

used. Each iteration can also be treated as a linear inverse problem, in 

which the objective function is defined by an error function, and the 

solution estimate is updated along the (negative) gradient direction. This is 

called a gradient-based method.  

1.2 Data, model and mapping  

Let us compare two linear systems presented in Equations 1.1 and 1.4, 

respectively. Equation 1.1 is a direct problem:  

DGM  data] mapping direct[) model( .          (1.5) 

Given an Earth model ,M  defined as a set of Earth parameters, and a 

mapping operator ,G  the object is to find a set of data D  containing all 

possible measurements in the data space.  

Even for this direct problem, M  and G  may not be unique for a 

practical problem. For instance, the acoustic, the elastic or the viscoelastic 

wave equations all can be used for the problem of generating synthetic 

reflection seismograms. The selection is made based on the practical 

requirements and a priori information.  

For a correctly defined physical problem, the direct problem is usually 

well-posed, which means this mathematical model that describes physical 

phenomena does have a unique solution, and the solution depends 

continuously on the model. The continuous dependency means that a 

small variation mΔ  in the model space M  causes a small perturbation 

dΔ  in the data space .D  

The inverse problem in Equation 1.4 states that, given a data set D  and 

the mapping operator ,G  to find a model :M   
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) data(] mapping direct[ model 1 DGM .          (1.6) 

The inversion theory aims to guide the study of inverse problems in order 

to extract all the information contained in data, while controlling artefacts 

introduced through the inversion. There are two main kinds of study, as 

follows:  

The first kind is the exact study with perfect data, that is, the study of 

the existence and uniqueness of solutions and constructing the exact 

inverse mapping operator. This is a beautiful exercise for classical 

mathematical analysis, by knowing the statement that the inverse problem 

is well-posed and readily solved if G  is bicontinuous and bijection 

occurred between spaces M  and .D  Bicontinuous means that a 

continuous function also has a continuous inverse function. Bijection 

means that, for every d  in ,D  there is exactly one m  in M  such that 

,)( dmG  and vice versa. However, this inverse problem is not of much 

interest to applied scientists and engineers. 

The other kind is the study of the definitions of generalised solutions and 

methods for inexact and incomplete data. For the study of this kind of 

inverse problems, which geophysicists are interested in, the following three 

remarks should be noted:  

1) The inverse mapping operator 1G  may not exist. In this case, one 

should check the definition of the Earth parameters, considering 

equivalent mapping and a priori information. 

2) The solution of an inverse problem is often not unique. Hence, the 

term solution estimate instead of solution should be used for the 

generalised inversion. 

3) Different from a direct problem, an inverse problem is usually ill-posed, 

that is, a small variation of the data leads to uncontrollable 

perturbation in the solution (Hadamard, 1902).  

Mathematically non-continuous mapping operator 1G  causes the 

problem to be ill-posed. For the linear case presented in the previous 

section, ,)( GmmG  the study will be on singularity and condition 

number of .G  Non-singularity suggests the existence of the matrix 

inverse, ,1G  and a low condition number indicates that dGm
~

 is a 

well-posed problem.  
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1.3 General solutions  

Let )(md G  be a predicted data set, and d
~

 be an observed data set; a 

solution m  may be estimated by minimising the distance between d
~

 

and .d  This type of solution is called a quasi-solution for .m   

A quadratic distance is frequently employed in seismic inversion. The 

quadratic distance between two vectors is measured as  

|||| ),(dis 2121 rrrr ,                    (1.7) 

where 1r  and 2r  are two vectors in the same space. The objective 

function of Equation 1.2 provides a quasi-solution, as it is related to errors 

in the observed data set, .)( 
~

0md G   

As an observed data set is not only inexact, but incomplete as well, an 

approximate solution, beside the quasi-solution, is also needed. An 

approximate solution is obtained by minimising the combination of the 

data-fitting quality criterion and the model choice criterion. The objective 

function is defined as  

) ,(dis))( ,
~

(dis)( refMD  mmmdm μG ,            (1.8) 

where ))( ,
~

(disD md G  is the distance defined in the data space D,  

) ,(dis refM mm  is the distance defined in the model space ,M  and μ  is a 

trade-off parameter balancing the contribution of two criteria in the 

objective function.  

In seismic inverse problems, refm  can be an expected solution. For 

instance, in the linear case ,)( GmmG  an objective function can be 

defined as 

2
ref

2 |||| ||
~

|| )( mmGmdm μ .             (1.9) 

The quadratic distance defined by the 2L  norm is a special case of distance 

measurement, although it is often used in seismic inversion. The distance 

can be measured in different ways, such as a weighted quadratic distance, 

frequently employed in seismic inversion. 

The objective function in Equations 1.8 or 1.9 is a constrained inverse 

problem, in which ) ,(dis refM mm  is a typical model constraint. Different 

forms of model constraints can be used. Any constraints in the objective 

function are regularisation working on the geophysical mapping operator, 

as shown in the following section.  
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1.4 Regularisation 

Regularisation means to suppress singularities that make the problems ill-

posed and will cause difficulties in computation. The approximate solution 

mentioned above is just a practical way to consider the inexact and 

incomplete data. Regularisation considers the properties of the mapping 

operator G  from the mathematical viewpoint: Whether the numerical 

instability comes from the singularity, and whether the singular operator 

can be modified to stabilise the computation. 

The stability behaviour means that a small variation in data causes a 

small perturbation in the solution estimate, and thus depends on the 

property of the mapping operator. But how strongly is it dependent? Let ε  

be the vector of the data errors, and mΔ  the perturbation in the model 

solution caused by the errors. There are three types of dependences: 

1) Linear: |||| |||| εαmΔ ; 

2) Power law: ,||||  ||||  αεAmΔ  10 α  and constant A ;  

3) Logarithmic: α
α

  
 

||||ln
||||

1
ln |||| ε

ε
mΔ . 

With a linear dependency, it is a well-posed problem. For logarithmic 

dependency, it is an ill-posed problem. In order to have a stable inversion, 

at least an operator of power-law dependency, with the exponent α  less 

than 1, should be employed. Unfortunately, the inverse operators in 

geophysical problems are usually ill-posed with a logarithmic dependency, 

and thus need to be regularised.  

Figure 1.1 displays the dependence of model perturbation |||| mΔ  on 

the data error ||,|| ε  with the three relationships: linear (solid curves), 

||;|| |||| εαmΔ  power law (dotted curves), ,||||  |||| αεmΔ  ;10 α  and 

logarithmic (dashed curves), ,||)||ln( |||| αεmΔ  in which |||| ε  can be 

treated as a pre-normalised data error (with the maximum probable error 

of 1). The three panels (left to right) are cases with α 0.3, 0.6, 0.9, 

respectively. 

Related to this stability issue in the inverse problem, there is a property 

of the operator, called the condition number. It is defined by the maximum 

value of the ratio of the relative errors in the model solution to the relative 

error in the data. If the condition number is small then the error in m  

will not be much bigger than the error in .
~
d  On the other hand, if the 
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Figure 1.1 The dependence of model perturbation |||| mΔ on the data errors 

.|||| ε  There are three types of dependence: linear (solid curves), power (dotted 
curves) and logarithmic (dashed curves). The three panels (left to right) are cases 
with ,9.0  ,6.0  ,3.0α  respectively.  

 
 
condition number is large, even a small error in data may cause a large 

error in the model solution. A problem with a low condition number is said 

to be well-conditioned, whereas a problem with a high condition number is 

said to be ill-conditioned.  

In order to stabilise the inverse problem, by reducing the condition 

number of the operator, regularisation can be realised as model constraints 

added to the objective function. It first defines a stabilising function ),(mR  

which satisfies ER )(m  for any real number ,E  and then incorporates 

)(mR  into the objective function, as 

)()()( mmm RQ μ ,                  (1.10) 

where )(mQ  is the data fit quality criterion, and )(mR  stands for the 

model regularisation term.  

To understand this stabilisation, let us see an example objective function, 

22 ||||||
~

|| )( mGmdm μ .               (1.11) 

Compared to the objective function in Equation 1.9, 0mref  is set here. 

Minimisation by setting 0m/  yields the following equation:  
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dGmIGG
~

 ][ TT μ .                   (1.12) 

If the matrix GGT  was singular, the modified operator ][ T IGG μ  is no 

longer singular, and the solution of Equation 1.12 exists. Hence, μ  is also 

called the stabilisation factor. The solution estimate m  is unique, as well 

as continuously dependent on the averaged data, .
~TdG  Therefore, 

constraining the objective function is in fact regularising the geophysical 

mapping operator, so as to stabilise the inverse problem.  

Tikhonov regularisation (Tikhonov, 1935; Tikhonov and Arsenin, 1977; 

Tikhonov et al., 1995) is expressed as  

b

a

r

r

r
r

r
rrrR d  

)(
  )(||)(||)()(

2

2
2

1
m

mm μμ ,        (1.13) 

where r  is the spatial position, and )(1 rμ  and )(2 rμ  are positive 

weighting functions, defined within the range ]. ,[ ba  rr   

Moreover, regularisation can also be applied directly to the geophysical 

operation, for depressing any singularity. Let us see a simple example, 

differentiating a continuous function. Assume that )(rf  is a real 

continuous function, but its derivative might not exist. To subjugate this 

singularity, regularisation can be achieved by convolving )(rf  with a 

continuous and differentiable function ),(rh   

)()()(
~

rhrfrf .                     (1.14) 

This processed function )(
~

rf  is differentiable without singularities.  

In order to make )(
~

rf  a good approximation for ),(rf  the following 

conditions should be satisfied: 

1) Finite range of :h  0)(rh  for r  outside a small range;  

2) Unimodular:  

1d )( rrh ;                      (1.15) 

3) Approximation:  

ε
b

a

r

r
ab

rrfrf
rr

d |)()(
~

|
1

.                (1.16) 
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The first condition means a localised regularisation, the second condition 

requires that this process does not change the power of the original 

function, and the last condition, of course, requires the approximation 

being sufficiently close to the original function. These three conditions are 

the basic requirement of a regularisation, if the regularisation is directly 

applied to the geophysical operator.  

A demonstration is shown in Figure 1.2. The )(rf  function is defined as 

      .               , 1

, , 
2

      ,             , 2

)(

2

21
21

21

1

rr

rrr
rr

rrr

rr

rf              (1.17) 

This function is continuous, but not differentiable, since its first-order 

derivative has two singular points at 1r  and .2r  A filter is designed by a 

Gaussian function,  

2

2

2
exp

2

1
)(

σπσ
r

rh ,                 (1.18) 

where σ  is the standard deviation. Convolution produces a smooth 

function ).(
~

rf   

 

 
Figure 1.2 A function )(rf , that is not differentiable, convolved with a function 

)(rh  produces a differentiable function ).(
~

rf  The latter is differentiable without 
singularities, and the difference |)()(

~
| rfrf  is sufficiently small.  
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We can verify the numerical example of Figure 1.2 against the three 

conditions:  

1) Localisation of )(rh  depends upon the parameter .σ  In this display, 

.5.0σ   

2) The filter )(rh  is unimodular, because 1i i rh Δ , where rΔ  is the 

sampling rate, and ).( rihhi Δ   

3) The difference |)()(
~

| rfrf  is sufficiently small, as the total difference 

.00126.0ε   

In this simple example, the operator G  is the first-order differential, 

r
rG

d

d
)( .                        (1.19) 

After regularisation, the operator becomes 

)(
d

d
)(

~
rh

r
rG .                      (1.20) 

These two operators can be understood in the Fourier transform domain as 

kkG i)( ,    )(i)(
~

kkHkG ,                (1.21) 

where k  is the wavenumber, 1i  is the imaginary symbol, )(kG  

and )(
~

kG  are the Fourier transforms of )(rG  and ),(
~

rG  respectively, and 

)(kH  is the Fourier transform of ).(rh   

The essence of any inverse problems is regularisation.  

 




