
JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

Introduction

Let us play a little thought game. Get a pen and paper. Choose any game you know, and
think about the elements required to make it work. Write down a list of these elements.
Be as specific or indiscriminate as you want. Once you have finished, choose another
game and think about it. Try to find items in the list of the first game that correspond to
the second game and mark them. If there are features in the second game that the first
one does not have, add them to the list. Repeat this procedure for two or three more
games. Next, take the five most common items in your list and compare them to the
following list. For each corresponding item you get one point.

The key elements of a game are:
� players who are willing to participate in the game;
� rules which define the limits of the game;
� goals which the players try to achieve during the game;
� opponents or opposing forces which prevent the player from achieving the goals;
� a representation of the game in the real world.

How many points did you score?
The five components we have listed seem to be present in every game, and the rela-

tionships between them form three aspects of a game, which are illustrated in Figure 1.1
(Smed and Hakonen 2003, 2005b):

(i) Challenge. Rules define the game and, consequently, the goal of the game. When
players decide to participate in the game, they agree to follow the rules. The goal
motivates the players and drives the game forward, because achieving a goal in the
game gives the players enjoyment.

(ii) Conflict. The opponent (which can include unpredictable humans and random pro-
cesses) obstructs the players from achieving the goal. Because the players do not
have a comprehensive knowledge of the opponent, they cannot determine precisely
the opponent’s effect on the game.

(iii) Play. The rules are abstract but they correspond to real-world objects. This repre-
sentation concretizes the game to the players.

The challenge aspect alone is not enough for a definition of a game, because games
are also about conflict. For example, a crossword puzzle may be a challenge in its own
right but there is hardly any conflict in solving it – unless someone erases the letters
or changes the hints or keeps a record of the time to solve the puzzle. Obviously, the

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.

CO
PYRIG

HTED
 M

ATERIA
L

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

 Algorithms and Networking for Computer Games

m
ot
iv
at
io
n

Representation

Player

GoalRules

Opponent

CHALLENGE

CONFLICTPLAY

concretization inde
term

inism

definition

obstruction

co
rr
es
po
nd
en
ce

agreem
ent

Figure . Components, relationships, and aspects of a game.

conflict arises from the presence of an opponent, which aims to obstruct the player from
achieving the goal. The opponent does not have to be a human but it can be some ran-
dom process (e.g. throw of dice or shuffling of the deck of cards). The main feature of
the opponent is that it is non-deterministic to the player: because the player cannot
predict exactly what another human being or a random process will do, outwitting or
outguessing the opponent becomes an important part of the game.

Challenge and conflict aspects are enough for defining a game in an abstract sense.
However, in order to be played the game needs to be concretized into a representation.
This representation can be a board and plastic pieces as well as non-tactile words or
three-dimensional graphics rendered on a computer screen. Even the players themselves
can be the representation, as in the children’s game of tag. Regardless of the representa-
tion there must exist a clear correspondence to the rules of the game.

Let us take the game of poker as an example. The players agree to follow the rules,
which state (among other things) what cards there are in a deck, how many cards one
can change, and how the hands are ranked. The rules also define the goal, having as good
a hand as possible when the cards are laid on the table, which is the player’s motivation.
The other players are opponents, because they try to achieve a better hand to win –
or, at least, to give such an impression. Also, the randomness of the deck caused by
shuffling opposes the player, who cannot determine what cards will be dealt next. The
game takes a concrete form in a deck of plastic-coated cards (or pixels on the screen),
which represent the abstractions used in the rules.

One of the earliest written collection of games, Libro de los juegos (‘Book of games’),
commissioned by King Alfonso X of Castile, León and Galicia and completed in Toledo
1283, divides the games into three groups: games of skill (e.g. chess), games of chance
(e.g. dice games) and games combining skill and chance (e.g. backgammon). This divi-
sion reflects the conflict aspect and the type of the opponent.

Huizinga’s definition of play from his classical work Homo Ludens, the playful human,
captures most of the features we listed earlier:

[Play] is an activity which proceeds within certain limits of time and space, in a
visible order, according to rules freely accepted, and outside the sphere of neces-
sity or material utility. The play-mood is one of rapture and enthusiasm, and is
sacred or festive in accordance with the occasion. A feeling of exaltation and ten-
sion accompanies the action, mirth and relaxation follow. (Huizinga 1955, p. 132)

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

1 Introduction

Moreover, Huizinga’s idea of a magic circle tries to capture the complete game (or play)
experience, which resides outside ordinary life.

Caillois (2001) builds upon Huizinga’s work and divides games further into four forms:

� agon (competition) describes games where the aim is to beat the opponent and luck
does not play a significant role (e.g. chess);

� alea (chance) describes games where luck or chance is the decisive factor on the out-
come (e.g. Roulette);

� mimicry (role-play) describes games where the players go through an adventure with
their characters in a game world (e.g. Dungeons & Dragons);

� ilinx (vertigo) describes games that affect the player’s observations or movements (e.g.
Dance Dance Revolution).

Games are usually a combination of the aforementioned forms. Moreover, Caillois notes
that games form a continuum from structured, rule-governed games (ludus) to sponta-
neous, unstructured play (paidia).

Wittgenstein argues that it is impossible to define a game: ‘For how is the concept of
a game bounded? What still counts as a game and what no longer does? Can you give
the boundary? No.’ (Wittgenstein 2009, Aphorism 68). Suits responds to Wittgenstein’s
challenge directly by giving the following definition:

To play a game is to attempt to achieve a specific state of affairs [prelusory goal],
using only means permitted by rules [lusory means], where the rules prohibit use
of more efficient in favour of less efficient means [constitutive rules], and where
the rules are accepted just because they make possible such activity [lusory atti-
tude]. I also offer the following simple and, so to speak, more portable version
of the above: playing a game is the voluntary attempt to overcome unnecessary
obstacles. (Suits 2014, p. 43)

Crawford (1984, Chapter 1) defines a game as ‘a closed formal system that subjectively
represents a subset of reality’. Accordingly, a game is self-sufficient, follows a set of rules,
and has a representation in the real world. These observations are echoed by the defini-
tions of Costikyan (2002, p. 24), who sees a game as ‘an interactive structure of endoge-
nous meaning that requires players to struggle toward a goal’, and by Salen and Zimmer-
man (2004, p. 80), for whom a game is ‘a system in which players engage in an artificial
conflict, defined by rules, that results in a quantifiable outcome’. A widely known, prac-
tical definition of a game, attributed to the game designer Sid Meier, states that a game
is a series of meaningful choices (Rollings and Morris 2000, p. 38). Schell (2015, p. 47)
shares this point of view, defining a game as ‘a problem-solving activity, approached with
a playful attitude’.

Apart from formal features, the gameplay also includes subjective elements such as an
immersion in the game world, a sense of purpose, and a sense of achievement from mas-
tering the game. One could argue that the sense of purpose is essential for the immer-
sion. What immerses us in a game (as well as in a book or a film) is the sense that there
is a purpose or motive beneath the surface. In a similar fashion, the sense of achieve-
ment is essential for the sense of purpose (i.e. the purpose of a game is to achieve goals,
points, money, recognition, etc.). From a human point of view, we get satisfaction in the
process of nearing a challenging goal and finally achieving it – and then realizing that

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

 Algorithms and Networking for Computer Games

we can relive that feeling. These aspects, however, are outside the scope of our current
discussion, and we turn our focus to a subset of games, namely computer games.

. Anatomy of Computer Games

Computer games are a subset of games. To be more precise, let us define a computer
game as a game that is carried out with the help of a computer program. This definition
leaves us some leeway, since it does not imply that the whole game takes place in the
computer. For example, a game of chess can be played on the screen or on a real-world
board, regardless of whether the opponent is a computer program. Also, location-based
games (see Chapter 11) further obscure the traditional role of a computer game by incor-
porating real-world objects into the game world.

In effect, a computer program in a game can act in three roles:

(i) coordinating the game process (e.g. realizing a participant’s move in a chess game
according to the rules);

(ii) illustrating the situation (e.g. displaying the chessboard and pieces on screen); and
(iii) participating as a fellow-player.

This role division closely resembles the Model–View–Controller (MVC) architectural
pattern for computer programs. MVC was originally developed within the Smalltalk
community (Krasner and Pope 1988) and was later adopted as a basis for object-oriented
programming in general (Gamma et al. 1995). The basic idea is that the representation
of the underlying application properties (Model) should be separated from the way it is
presented to the user (View) and from the way the user interacts with it (Controller).
Figure 1.2 illustrates the MVC components and the data flow in a computer game.

The Model part includes software components which are responsible for the coordi-
nation role (e.g. evaluating the rules and upholding the game state). The rules and basic
entity information (e.g. physical laws) form the core structures. It remains unchanged
while the state instance is created and configured for each game process. The core struc-
tures need not cover all the rules, because they can be instantiated. For example, the core
structures can define the basic mechanism and properties of playing cards (e.g. suits and
values) and the instance data can provide the additional structures required for a game
of poker (e.g. ranking of the hands, staking, and resolving ties).

The View part handles the illustration role. A proto-view provides an interface into
the Model. It is used for creating a synthetic view for a synthetic player or for rendering
a view to an output device. The synthetic view can be preprocessed to suit the needs
of the synthetic player (e.g. board coordinates rather than an image of the pieces on
a board). Although rendering is often identified with visualization, it may also include
audification and other forms of sensory feedback. The rendering can have some user-
definable options (e.g. graphics resolution or sound quality).

The Controller part includes the components for the participation role. Control logic
affects the Model and keeps up the integrity (e.g. by excluding illegal moves suggested
by a player). The human player’s input is received through an input device filtered by
driver software. The configuration component provides instance data, which is used
in generating the initial state for the game. The human player participates in the data
flow by perceiving information from the output devices and performing actions through

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

1 Introduction

Driver

Input
device device

Output

Synthetic
player

action

Core structuresState instance

Proto−viewControl logic

Configuration Rendering

OptionsScriptInstance data

Human player

perception

CONTROLLER VIEW

view

MODEL

Synthetic

Figure . Model, View and Controller in a computer game.

the input devices. Although the illustration in Figure 1.2 includes only one player, nat-
urally there can be multiple players participating in the data flow, each with their own
output and input devices. Moreover, the computer game can be distributed among sev-
eral computer nodes rather than residing inside a single node. Conceptually, this is not a
problem since the components in the MVC can also be thought to be distributed (i.e. the
data flows run through the network rather than inside a single computer). In practice,
however, networked computer games provide their own challenges (see Section 1.4).

. Game Development

In the game industry, the production process of games is called game development and
the people participating in this process are collectively known as game developers. This
group is diverse and houses talents with different skills and backgrounds, but typically
the game industry recognizes seven professional disciplines (Novak 2007, pp. 302–321):
� production – managing the practical challenges of the game development process;
� marketing – raising and maintaining awareness of the game among the (potential)

players;
� testing and quality assurance – ensuring the stability and playability of the game;
� design – handling the mechanics behind the rules and play of the game;
� art – creating the visual components of the game;

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

 Algorithms and Networking for Computer Games

� audio – creating the sounds and aural environments for the game;
� programming – implementing the game in a digital form.

During game development, the producer and game designer play the pivotal roles. The
game designer is the one with a vision of the game, which is to be carried from inception
to conclusion. The producer is the counterpart who has to work with the realities –
schedule, budget – to enable the project to materialize. They often work in tandem, the
producer being the external link (e.g. to the customer or publisher) and the designer
the internal link (i.e. to the rest of the development team). The artists (both visual and
audio) design and create the assets that the game uses, and the programmers’ task is to
implement the game mechanics and the user interfaces. The game testers and quality
assurance provide feedback to the development team by taking care that the game is
playable, bug-free, enjoyable, and ready to be marketed to the customers.

A large commercial game project can take 2–4 years of work, throughout which the
game development involves 50–150 people, possibly in several countries and production
sites. For example, the production of Grand Theft Auto V took 5 years, involved over
300 people and cost £170 million. Requiring both technical and artistic expertise, even
smaller projects require cooperation between several specialized professionals. Never-
theless, the finished game should be a cohesive whole, which delivers the vision of the
game designer to the players.

From the game designer’s perspective the game can be divided into the basic parts
as illustrated in Figure 1.3 (Adams 2014). The three fundamental components are the
player who plays the game, the user interface that presents the game to the player, and
the core mechanics implementing the rules and the game artificial intelligence (AI). The
core mechanics generates challenges that the user interface (through a camera model)
converts to output for the player. Conversely, the player’s input is conveyed through the
user interface (based on the interaction model) and converted to actions for the core
mechanics. Gameplay is then the challenges and actions, and together with the user
interface they define the gameplay mode, of which a game can have several.

interaction
modelmodel

camera

player

inputoutput

user interface

actionschallenges

core mechanics

mode
gameplay

gameplay

Figure . Basic design parts of a game.

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

1 Introduction

1.2.1 Phases of development

Figure 1.4 illustrates the phases of a typical game development project (Novak 2007,
pp. 334–346). In the concept phase, a game idea is concretized into a concept docu-
ment, which is used (as a sales pitch) in order to raise funding for the production. If
a publisher accepts the concept, the game idea will be refined in the pre-production
phase, in which the game designer creates a game design document. This represents a

Certification

document

Idea

Game

β

1. Concept phase
(envisioning)

2. Pre-production phase
(development)

3. Production phase
(actual development)

4. Alpha phase
(ensuring playability)

5. Beta phase
(stabilization)

6. Gold phase
(code freeze)

Gold

7. Post-production phase
(maintenance)

Postmortem
documentUpdatesVersionsExpansionsPatches

α

Demo

Game design
document

Technical design
document

Art style
guide

Production
plan

Approval?

Interest?

Localization

Concept

Figure . The phases of a game development project.

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

 Algorithms and Networking for Computer Games

‘blueprint’ of the game for the production. Additionally, other documents such as a tech-
nical design document, an art style guide or a production plan can be generated during
the pre-production phase.

After the pre-production phase, the project must get approval from the publisher
before entering the production phase, where the actual game development takes place.
Once the production phase is over, the game moves first to the alpha phase, which con-
centrates on ensuring playability, and then to the beta phase, where the aim is to stabilize
the game by eliminating bugs. Finally, in the gold phase the game code and other assets
are finalized before publishing. The game might also require certification from the pub-
lisher for market acceptance. At the same time, the game can be localized to other lan-
guages so that all the versions can be published simultaneously. In order to market the
forthcoming game, playable demos can be made public before the final product is ready.

When the game has been published, it enters the post-production phase, where bugs
and design flaws can be patched and the game can be updated according to possible new
requirements. The game can be ported to other platforms or extended by creating new
material for the players. Finally, the game developers can issue a postmortem document
where they analyse the project.

Digital distribution and ideas from lean development have changed this model slightly
into a more iterative process. Once the game has been published online, the develop-
ment can revert back to production phase to include new content or even new game
mechanisms based on feedback and metric data from players (more on this in Chap-
ter 14). This means that the production process is not as heavy as in the traditional,
game-as-a-product distribution model which aims to deliver a finished game. Lean and
iterative production, which is common especially in mobile games, changes this into a
game-as-a-service distribution model, where the game is never finished but continu-
ously growing and transforming.

1.2.2 Documentation

To maintain the original vision a game development project is built upon game docu-
ments, which provide all the departments – from management to engineering and arts –
with a single vision (Rouse 2004, pp. 206–319). Therefore, the documentation serves two
purposes: it is a record of the design decisions, and it is a means of communication that
conveys the game design to all participants in the project. The documentation can have
any format suitable for the game production; for example, it can be, apart from text, a
collection of thematic images, sounds, video and other items. The purpose is to compile
and convey the business idea, product identity and value proposition of the game.

Figure 1.5 summarizes the typical documents created and used during a game devel-
opment project (Schell 2015, pp. 425–432):
� game design overview – a short summary of the game written for the company’s man-

agement;
� game design document – a detailed description of the game mechanics and interfaces;
� story overview – a description of the setting, characters, and actions that will take

place in the game;
� technical design document – a specification of the technology used, for the engineer-

ing department;
� pipeline overview – instructions on how the art assets will be integrated into the game;

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

1 Introduction

game tutorial

DesignEngineering Writing

PlayersManagementArt

game budgetart style guide

story style guidetechnical design document

script

game walkthrough

concept art
overview

production
plan

game
design
document

overview
pipeline

system
limitations

story
overview

game design
and manualoverview

Figure . The game documents created and used in a game development project.

� system limitations – a summary of the technical limitations for the design department;
� art style guide – guidelines for the arts department to create a single, consistent look

and feel;
� concept art overview – a summary of the outlook of the game;
� game budget – a spreadsheet for keeping track of costs;
� production plan – a schedule for the game project;
� story style guide – guidelines of the story-world for the writing department;
� script – dialogues for the game characters;
� game tutorial and manual – instructions on how to play the game;
� game walkthrough – a guide written by players to help other players to play the game.

The game design document (GDD) is the central written resource for the game design.
It is typically a 50–200-page reference guide to the whole game development process
(Novak 2007, pp. 368–370). It specifies the mechanics of the game, the rules of play,
and the theme of the outlook (Chandler 2008, pp. 252–257). A GDD is not static but
continually edited and updated by the designers and developers during the production
phase. Nevertheless, the GDD should remain up to date even after the production phase
because it will still be needed in localizing the game to new languages. If the game is
ported to a new platform, the GDD provides a source of information for the (possibly
third-party) team carrying out the conversion. Also, a GDD is a valuable asset when
designing a follow-up or an extension to the original game.

1.2.3 Other considerations

Although defining what makes a game enjoyable is subjective, we can list some features
that alluring computer games seem to have. Of course our list is far from complete and
open to debate, but we want to raise certain issues which are interesting in their own
right but which – unfortunately – fall outside the scope of this book.
� Customization. A good game has an intuitive interface that is easy to learn. Because

players have their own preferences, they should be allowed to customize the user
interface to their own liking. For example, the interface should adapt dynamically to

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

 Algorithms and Networking for Computer Games

the needs of a player so that in critical situations the player has more detailed control.
If a player can personalize her avatar (e.g. customize the characteristics to correspond
to her real-world persona), it can increase immersion in the game.

� Tutorial. The first problem a player faces is learning how the game works, which
includes both the user interface and the game world. Tutorials are a convenient
method for teaching the game mechanics to the player, where the player can learn
the game by playing it in an easier and possibly assisted mode.

� Profiles. To keep the game challenging as the player progresses, it should support dif-
ferent difficulty levels which provide new challenges. Typically, this feature is imple-
mented by increasing certain attributes of the enemies: their number, their accuracy,
and their speed. The profile can also include the player’s preferences of the type of
game (e.g. whether it should focus on action or adventure).

� Modifications. Games gather communities around them, and members of the com-
munity start providing new modifications (or ‘mods’) and add-ons to the original
game. A modification can be just a graphical enhancement (e.g. new textures) or can
enlarge the game world (e.g. new levels). Also, the original game developers them-
selves can provide extension packs, which usually include new levels, playing charac-
ters, and objects, and perhaps some improvement of the user interface.

� Replaying. Once is not enough. We take pictures and videotape our lives. The same
applies also to games. Traditionally, many games provide the option to take screen
captures, but replays are also an important feature. Replaying can be extended to cover
the whole game, and the recordings allow the players to relive and memorize the high-
lights of the game, and to share them with friends and the whole game community.

It is important to recognize beforehand what software development mechanisms are
published to the players and with what interfaces. The game developers typically imple-
ment special software for creating content for the game. These editing tools are a valu-
able surplus to the final product. If the game community can create new variations of
the original game, the longevity of the game increases. Furthermore, the inclusion of the
developing tools is an inexpensive way – since they are already implemented – to enrich
the contents of the final product.

Let us turn the discussion around and ask what makes a bad computer game. It can be
summed up in one word: limitation. Of course to some extent limitation is necessary –
we are, after all, dealing with limited resources. Moreover, the rules of the game are all
about limitation, although their main function is to impose the goals for the game. The
art of making games is to balance the means and limitations so that this equilibrium
engrosses the human player. How do limitations manifest themselves in the program
code? The answer is the lack of parameters: the more things are hard-coded, the lesser
the possibilities to add and support new features. Rather than closing down possibilities,
a good game – like any good computer program! – should be open and modifiable for
both the developer and the player.

. Synthetic Players

A synthetic player is a computer-generated actor in the game. It can be an opponent, a
non-player character which participates in some limited way (like a supporting actor), or

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

1 Introduction

a deus ex machina which can control natural forces or godly powers and thus intervene
or generate the game events.

Because everything in a computer game revolves around the human player, the game
world is anthropocentric. Regardless of the underlying method for decision-making (see
Chapter 9), the synthetic player is bound to show certain behaviour in relation to the
human player, which can range from simple reactions to general attitudes and even com-
plex intentions. As we can see in Figure 1.2, the data flow of the human player and the
synthetic player resemble each other, which allows us to project human-like features
onto the synthetic player.

We can argue that, in a sense, there should be no difference between the players
whether they are humans or computer programs; if they are to operate on the same
level, both should ideally have the same powers of observation and the same capabilities
to cope with uncertainties (see Chapter 10). Ideally, the synthetic players should be in a
similar situation to their human counterparts, but of course a computer program is no
match for human ingenuity. This is why synthetic players rarely display real autonomy
but appear to behave purposefully (e.g. in Grand Theft Auto III pedestrians walk around
without any real destination).

The more open (i.e. the less restrictive) the game world is, the more complex the syn-
thetic players are. This trade-off between the Model and the Controller software com-
ponents is obvious: if we remove restricting code from the core structures, we have to
reinstate it in the synthetic players. For example, if the players can hurt themselves by
walking into fire, the synthetic player must know how to avoid it. Conversely, if we rule
out fire as a permitted area, path finding (see Chapter 7) for a synthetic player becomes
simpler.

Let us take a look at two external features that a casual player is most likely to notice
first in a synthetic player: humanness and stance. These are also relevant to the design
of the synthetic player by providing a framework for the game developers and program-
mers.

1.3.1 Humanness

The success of networked multiplayer games can be, at least in part, explained by the
fact that the human players provide something that the synthetic ones still lack. This
missing factor is the human traits and characteristics – flaws as much as (or even more
than) strengths: fear, rage, compassion, hesitation, and emotions in general. Even minor
displays of emotion can make the synthetic player appear more human. For instance,
in Half-Life and Halo the synthetic players who have been taken by surprise do not act
with superhuman coolness but show fear and panic appropriate to the situation; actually,
the reaction time should be 0.2–0.4 seconds (Rabin 2015). We, as human beings, are
quite apt to read humanness into the decisions even when there is nothing but naı̈ve
algorithms behind them. Sometimes a game, such as NetHack, even gathers around a
community that starts to tell stories of the things that synthetic players have done and
to interpret them in human terms.

A computer game comprising just synthetic players could be as interesting to watch
as a movie or television show (Charles et al. 2002). In other words, if the game world
is fascinating enough to observe, it is likely that it is also enjoyable to participate in –
which is one of the key factors in games like The Sims and Singles, where the synthetic

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

 Algorithms and Networking for Computer Games

players seem to act (more or less) with a purpose and the human player’s influence is, at
best, only indirect.

There are also computer games that do not have human players at all. Already back in
the 1980s Core War demonstrated that programming synthetic players to compete with
each other can be an interesting game itself (Dewdney 1984). Since then some games
have tried to use this approach, but, by and large, AI programming games have been only
by-products of ‘proper’ games. For example, Age of Empires II includes the possibility of
creating scripts for computer players, which allows games to be organized where pro-
grammers compete as to who creates the best AI script. The whole game is then carried
out by a computer while the humans remain as observers. Although the programmers
cannot affect the outcome during the game, they are more than just enthusiastic watch-
ers: They are the coaches and the parents, and the synthetic players are the protégés and
the children.

1.3.2 Stance

The computer-controlled player can have different stances (or attitudes) towards the
human player. Traditionally, the synthetic player has been seen only in the role of an
enemy. As an enemy the synthetic player must provide challenge and demonstrate intel-
ligent (or at least purposeful) behaviour. Although the enemies may be omniscient or
cheat when the human player cannot see them, it is important to keep the illusion that
the synthetic player is at the same level as the human player.

When the computer acts as an ally, its behaviour must adjust to the human point of
view. For example, a computer-controlled reconnaissance officer should provide intel-
ligence in a visually accessible format rather than overwhelm the player with lists of
raw variable values. In addition to accessibility, the human players require consistency,
and even incomplete information (as long as it remains consistent) can have some value
to them. The help can even be concrete operations as in Neverwinter Nights or Star
Wars: Battlefront where the computer-controlled team-mates respond to the player’s
commands.

The computer has a neutral stance when it acts as an observer (e.g. camera director or
commentator) or a referee (e.g. judging rule violations in a sports game) (Martel 2014;
Siira 2004). Here, the behaviour depends on the context and conventions of the role. In
a sports game, for example, the camera director program must heed the camera place-
ments and cuts dictated by television programme practice. Refereeing provides another
kind of challenge, because some rules can be hard to judge. Finally, synthetic players
can be used to carry on the plot, to provide atmosphere, or simply to act as extras (de
Sevin et al. 2015). Nevertheless, as we shall see next, they may have an important role
in assisting immersion in the game world and directing the gameplay.

. Multiplaying

What keeps us interested is – surprise. Humans are extremely creative at this, whereas
a synthetic player can be lacking in humanness. One easy way to limit the resources
dedicated to the development of synthetic players is to make the computer game a mul-
tiplayer game.

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

1 Introduction

The first real-time multiplayer games usually limited the number of players to two,
because the players had to share the same computer by dividing either the screen (e.g.
Pitstop II) or the playtime among the participating players (e.g. Formula One Grand
Prix). Also, the first networked real-time games connected two players over a modem
(e.g. Falcon A.T.). Although text-based networked multiplayer games started out in the
early 1980s with multi-user dungeons (Bartle 1990), real-time multiplayer games (e.g.
Quake) became common in the 1990s as local area networks (LANs) and the Internet
became more widespread. These two development lines were connected when online
game sites (e.g. Ultima Online) started to provide real-time multiplayer games for a large
number of players sharing the same game world.

On the technical level, networking in multiplayer computer games depends on achiev-
ing a balance between the consistency and responsiveness of a distributed game world
(see Chapter 12). The problems are due to the inherent technical limitations (see Chap-
ter 11). As the number of simultaneous players increases, scalability of the chosen
network architecture become critical. Although related research work on interactive
real-time networking has been done in military simulations and networked virtual envi-
ronments (Smed et al. 2002, 2003b), the prevention of cheating is a unique problem for
computer games due to the conflicting motivations and interests of the participants (see
Chapter 13).

Nowadays, commercially published computer games are expected to offer a multi-
player option, and, at the same time, online game sites are expected to support an ever
increasing number of users. Similarly, the new game console releases rely heavily on the
appeal of online gaming, and a whole new branch of mobile entertainment has emerged
with the intention to develop distributed multiplayer games for wireless applications.

The possibility of having multiple players enriches the game experience – and com-
plicates the software design process – because of the interaction between the players,
both synthetic and human. Moreover, the players do not have to be opponents but they
can cooperate. Although more common in single-player computer games, it is possible
to include a story-like plot in a multiplayer game, where the players are cooperatively
solving the story (e.g. No One Lives Forever 2 and Neverwinter Nights).

In the design of massively multiplayer online games, the two main game design
approaches are called theme-park and playground – or, alternatively, rollercoaster and
sandbox. A theme-park (or rollercoaster), such as World of Warcraft, provides the play-
ers with top-down generated challenges. The set-up and goal of a challenge are precon-
ceived by the game designers, but there is much leeway as to how the players actually
reach the goal. In contrast, a playground (or sandbox), such as Eve Online, relies on the
emergence of player-originated stories and the social media connecting the game com-
munity. The game world is like a playground allowing all kinds of plays and events to
unfold. The stories are then told by the community (retrospectively) the same way as
reporters and historians do in the real world. Let us next look at storytelling from a
broader perspective.

. Interactive Storytelling

Storytelling is one of the oldest human activities. We learn from a very young age to use
stories and narratives to communicate ideas and to think about possibilities. In the oral

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

 Algorithms and Networking for Computer Games

tradition of storytelling, a bard would adapt a story depending on the audience – even
the structure of the story could vary within a certain confines. Only with the advent of
the written media did storytelling become ‘petrified’ and come to mean the process of an
author crafting a reproducible composition. ‘Interactive storytelling’ has taken the orig-
inal meaning emphasizing the reactive and performative aspects of storytelling, where
the aim is to generate dramatically compelling stories based on the user’s input (Smed
2014).

Research on interactive digital storytelling (IDS) began in the 1980s with the seminal
work of Brenda Laurel (1991). She took ideas from the world of theatre and applied them
to computer interfaces in general and to IDS in particular. Formally put, an IDS applica-
tion is ‘designed for users (interactors) to take part in a concrete interactive experience,
structured as a story represented in a computer’ (Peinado and Gervás 2007).

The core question at the heart of interactive storytelling is the narrative paradox, in
which the ‘pre-authored plot structure conflicts with the freedom of action and inter-
action characteristics of the medium of real-time interactive graphical environment’
(Aylett and Louchart 2007), causing a tension between the interactor’s freedom and
well-formed stories (Adams 2013). Simply put, the more freedom the interactor has,
the less control the author has, and vice versa.

1.5.1 Approaches

The research on IDS has revolved around two distinct approaches. The author-centric
approach likens IDS to theatre, where the author sets up the story-world and a
computer-controlled drama manager directs its characters. A drama manager modifies
how the computer-controlled characters react and tries to lead the story in a direction
that the author has intended. It tries to change the situation so that the user is going
in the direction of the intended story. This can be realized, for example, by limiting the
stage and possible actions in the story-world such as in Façade where story happens in
an apartment during a soirée involving an interactor and two characters having domes-
tic problems (Mateas 2002).

The character-centric approach to IDS believes in emergence by allowing the charac-
ters in the story-world to be autonomous. Therefore, the key question is to model the
mental factors that affect on how the characters act. The author’s influence is limited
in creating and setting up the story-world. After that, the story-world runs without the
author’s influence, and the story – hopefully – emerges from the interaction between
the computer-controlled characters and the human interactor.

To compare the two approaches Riedl (2004, p.12–14) proposes two measures:
� plot coherence – the perception that the main events of a story are causally relevant

to the outcome of the story;
� character believability – the perception that the events of a story are reasonably moti-

vated by the beliefs, desires and goals of the characters.

Clearly, the author-centric approach allows us to have strong plot coherence, because of
the drama manager’s influence. The downside is, however, that character believability is
weakened if the actions of the characters seem to be compelled to follow the author’s will.
The problem is then finding subtlety so that the influence does not feel too forced upon
the user. In implementation, the main concern is that an IDS system must observe the

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

1 Introduction

reactions of the user as well as the situation in the story-world to recognize what pattern
fits the current situation: is the story getting boring and should there be a surprise twist
in the plot, or has there been too much action and the user would like to have a moment
of peace to rest and regroup? Since we aim to tell a story to the human users, we must
ensure that the world around them remains purposeful.

Conversely, the character-centric approach has (and requires) strong character believ-
ability. This means that plot coherence is weaker, because the story emerges from the
bottom up from the characters’ aspirations. Although the idea of emergent narrative of
the character-centric approach seems to solve the narrative paradox, it is unlikely that it
is enough for implementing a satisfying IDS system. Realistic actions are not necessarily
dramatically interesting, if the characters have no dramatic intelligence. Therefore, the
argument is that the author’s presence is necessary, because without the author’s artistic
control we would end up having the chaos of everyday life.

Recently, the discussion has evolved to include a hybrid approach, where the charac-
ters are autonomous but they can communicate with one another outside of the story-
world (Swartjes et al. 2008). These two modes of the character are called in-character
(IC) and out-of-character (OOC). They are used, for example, in live action role-playing
where the participants can act IC (i.e. within the role they are playing) or drop to OOC
when they are being themselves. Also, in improvisational theatre the actors can convey
OOC information using indirect communication (e.g. an actor can say ‘Hello, son!’, cuing
the other actor to assume the role of son). For example, Weallans et al. (2012) present a
hybrid approach called distributed drama management, where the characters act on an
IC level and reflect on their actions on an OOC level. A character proposes a set of pos-
sible actions to a drama manager, which selects dramatically the best alternative. Here,
the drama manager is no longer pushing the characters to follow its lead but supports
their decision-making through OOC communication.

1.5.2 Storytelling in games

The International Game Developers Association (2004) says that ‘[a]ny game featuring
both characters and a story in which one or more narrative aspects changes interac-
tively can be considered an interactive story.’ The simplest narrative aspect that can be
interactive is the plot, which can vary in response to the player’s actions. Another pos-
sibility is that the player’s actions affect and change the non-player character’s attitude
and personality (e.g. if the player acts in a friendly manner, the non-player character also
becomes more friendly and helpful towards the player). A third possibility is to have a
varying theme, where the player’s behaviour in the story-world trims the theme, making
the story, for example, more romantic, thrilling or violent.

According to Costikyan (2002), a game is not a story: while a story progresses linearly,
a game must provide an illusion of free will. Obviously, the player must have a range
of actions to choose from at each stage. More formally, let us consider the story in a
game as a directed graph where the episodes (or levels) are vertices and the possible
transitions edges (Figure 1.6). This means that the greater the fan-out of a vertex is,
the more freedom the player has in the story-world. The simplest game stories use a
linear structure, where the story unfolds as an episodic sequence. A game may offer
only a little room for the story to deviate – as in Dragon’s Lair where, at each stage, the
players can choose from several alternative actions of which all but one lead to certain

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

 Algorithms and Networking for Computer Games

7

1 e2 e3 e4 e5

e1

e2

e3

e4

e5

e8

e9

e11

e12

13e

e14

e15

e10

e7

e6

e1

e2

e3

e4

e9
e5

e8

(a)

(b)

(c)

e6

e

e

Figure . The story structure can be illustrated as a graph, where episodes (or levels) are represented
as vertices and transitions as directed edges. (a) In a linear structure, the story always unfolds the same
way. (b) In a branching structure, each transition leads to a unique episode. (c) In parallel paths,
although the episodes can branch, they can also conjoin, limiting the number of episodes.

death. Nevertheless, this is the most commonly used structure to tell a story in computer
games: An episode has a fixed starting point and ending point (e.g. a ‘boss monster’ at
the end of the level) between which the player can proceed freely. For instance, in Max
Payne or Diablo II the plot lines of the previous chapter are concluded at the transition
point, and new alternatives are introduced for the next one. The episodes follow one
another linearly in a pre-authored order, and they are linked, for example, by cut-scenes.
Linear story structure is the cheapest to produce, which is why it is popular even today.
The obvious drawback is that the player has no influence on how the story unfolds and
the story can feel like it has been pasted over the game. In the worst case, the elaborate
cut-scene videos and complex plot twists only bore the player who skips them in order
to get right into the action.

In theory, branching structure would be optimal for IDS, because each decision has a
unique outcome. However, combinatorial explosion prevents us from using it in prac-
tice. The only way to make it feasible is to have conjoining edges that bring two or more
vertices (i.e. episodes) together, leading to a structure called parallel paths. The story
is again presented in an episodic manner, but at the transition point, where the story
of the previous episode is concluded, the player gets to choose from alternative paths
for the next episode. Although the paths can take players to different routes, eventually

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

1 Introduction

they conjoin in a major story point. For example, given a task, a player can choose to
fight to achieve his aims or to take a diplomatic path avoiding violence altogether. An
early example of this is Indiana Jones and the Fate of Atlantis, where in mid-game the
player has to choose one of three possible paths – team, wits or fists – which converge
before the end. Although the paths could lead to the same outcome, the episodes leading
there can be totally different. This of course means that the game will have content that
a player cannot see in one play. For a game publisher this means that it seemingly gets
less value for its investment, which is why there is a pressure for the game designers to
limit the amount of parallel paths in a game. However, there are commercially successful
games such as Heavy Rain and The Walking Dead as well as critically acclaimed games
such as 80 Days and Her Story using this approach.

. Outline of the Book

The intention of our book is to look at the algorithmic and networking problems present
in commercial computer games from the perspective of a computer scientist. As the
title implies, this book divides into two parts: algorithms and networking. This empha-
sis in topic selection leaves out components of Figure 1.2 which are connected to the
human-in-the-loop. Most noticeably we omit topics concerning graphics and human
interaction – which is not to say that they are in any way less important or less interest-
ing than the current selection of topics. Also, game design as well as ludological aspects
of computer games fall outside the scope of this book.

The topics of the book are based on the usual problems that we have seen game devel-
opers encountering in game programming. We review the theoretical background of
each problem and review the existing methods for solving them. The given algorithmic
solutions are not provided in any specific programming language but in pseudocode
format, which can be easily rewritten in any programming language and – more impor-
tantly – which emphasizes the algorithmic idea behind the solution. The algorithmic
notation used is described in detail in Appendix A. We also present a practical approach
to vectors and matrices in Appendix B.

We have also included examples from real-world computer games to clarify different
uses for the theoretical methods. In addition, each chapter is followed by a set of exer-
cises which go over the main points of the chapter and extend the topics by introducing
new perspectives.

1.6.1 Algorithms

Part I of this book concentrates on typical algorithmic problems in computer games and
presents solution methods. The chapters address the following questions:

� Chapter 2, ‘Random Numbers’: How can we achieve the indeterminism required by
games using deterministic algorithms?

� Chapter 3, ‘Noise’: How can we make computation based on mathematics look more
life-like?

� Chapter 4, ‘Procedural Generation’: How can we create game content using algo-
rithms?

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

 Algorithms and Networking for Computer Games

� Chapter 5, ‘Tournaments’: How we can form a tournament to decide a ranking for a
set of contestants?

� Chapter 6, ‘Game Trees’: How can we build a synthetic player for perfect information
games?

� Chapter 7, ‘Path Finding’: How can we find a route in a (possibly continuous) game
world?

� Chapter 8, ‘Group Movement’: How can we steer a group of entities through the game
world?

� Chapter 9, ‘Decision-Making’: How can we make a synthetic player act intelligently
in the game world?

� Chapter 10, ‘Modelling Uncertainty: How can we model the uncertainties present in
decision-making?

1.6.2 Networking

Part II turns our attention to networking. Our aim is to describe the ideas behind dif-
ferent approaches rather than get too entangled in the technical details. The chapters
address the following questions:
� Chapter 11, ‘Communication Layers’: What are the technical limitations behind net-

working?
� Chapter 12, ‘Compensating Resource Limitations’: How can we cope with the inherent

communication delays and divide the network resources among multiple players?
� Chapter 13, ‘Cheating Prevention’: Can we guarantee a fair playing field for all players?
� Chapter 14, ‘Online Metrics’: What can we measure from the online player’s

behaviour?

. Summary

All games have a common basic structure comprising players, rules, goals, opponents
and representation. They form the challenge, play and conflict aspects of a game, which
are reflected, for instance, in the Model–View–Controller software architecture pattern.
The computer can participate in the game as a synthetic player, which can act in the
role of an opponent or a team-mate or have a neutral stance. For example, the synthetic
player must take the role of a story-teller, if we want to incorporate story-like features
into the game. Multiplaying allows other human players to participate in the same game
using networked computers.

Game development has matured from its humble beginnings and now resembles any
other industrialized software project. Widely accepted software construction practices
have been adopted in game development, and, at the same time, off-the-shelf com-
ponents (e.g. 3D engines and animation tools) have removed the burden to develop
all software components in-house. Moreover, modern game development tools such
as CryEngine, Unity and Unreal Engine have democratized the development process
and made it possible for people who are not so competent in programming to make
games. This maturity, however, does not mean that there is no room for artistic creativity
and technical innovations. There must be channels for bringing out novel and possibly

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

1 Introduction

radically different games, and, as in music and film industry, independent game pub-
lishing can act as a counterbalance to the mainstream. One could even argue that this
liberation of the game industry has brought about a fresh evolution pool of ways to make
business, already affecting the entertainment industry in the large.

Nevertheless, behind computer games are computer programs propelled by algo-
rithms and networking. Let us see what they have in store for us.

Exercises

- Take any simple computer game (e.g. Pac-Man) and discern what forms its chal-
lenge aspect (i.e. player, rules and goal), conflict aspect and play aspect.

- A crossword puzzle is not a game (or is it?). What can you do to make it more
game-like?

- Why do we need a proto-view component in the MVC decomposition?

- What kind of special skills and knowledge should game programmers have when
they are programming
(a) the Model part of the software components,
(b) the View part of the software components, or
(c) the Controller part of the software components?

- Let us look at a first-person shooter game (e.g. Doom or Quake). Discern the
required software components by using the MVC. What kind of modelling does
it require? What kind of View-specific considerations should be observed? How
about the Controller part?

- Deus ex machina (from Latin ‘god from the machine’) derives from ancient the-
atre, where the effect of the god’s appearing in the sky, to solve a crisis by divine
intervention, was achieved by means of a crane. If a synthetic player participates
the game as a deus ex machina, what kind of role will it have?

- What does ‘anthropocentrism’ mean? Are there non-anthropocentric games?

- The Sims includes an option of free will. By turning it off, the synthetic players do
nothing unless the player explicitly issues a command. Otherwise, they show their
own initiative and follow, for example, their urges and needs. How much free will
should a synthetic player have? Where it would serve best (e.g. in choosing a path
or choosing an action)?

- In the movie Stranger Than Fiction (2006), the protagonist realizes that his life
is happening in a fictional novel, and when he refuses to obey the voiceover, the
world tries to force him to follow the intended story. Does this represent an author-
centric or character-centric approach to interactive storytelling?

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

 Algorithms and Networking for Computer Games

- Take your favourite game and decompose its storytelling. Does it always tell
the same story or does it vary from one play instance to another? If the story
does not respond to the player’s actions, what could be done to make it more
interactive?

- Game development includes people with different talents (e.g. artists, program-
mers, designers and marketing people). What kind of communication problems
might arise when they work together on the same game project? What is the role
of a game programmer in a game project?

- Consider the differences and similarities of Figures 1.4 and 1.5 for a triple-A game
developed by hundreds of persons and an indie game developed by one person.

- Because game documents are living documents that change on almost a daily
basis, the biggest debate within the game industry is about the effectiveness of
creating extensive game documentation during the pre-production phase. Usually
many elements of the game change drastically during the production phase, and
the documents cannot keep up with the pace of change. The problems encoun-
tered in game documentation can be classified into five categories: (Rouse 2004,
pp. 374–379):
� Lack of content: The document does not provide enough reference material for

the production phase.
� Misplaced focus: The document provides data (e.g. backstory) that is irrelevant

to the production phase.
� Overspecification: The document goes too deeply into details, which will

become clear only in the production phase.
� Infeasible content: The document contains design decisions that are impossible

to realize in the game.
� Fossilization: The document is out of date and, subsequently, abandoned during

production.
Game documentation often does not support but hinders the work, because there
are no computer-aided tools for maintaining it. Instead, it comprises a bundle of
text documents without a clear maintenance scheme. To complicate matters fur-
ther, game documents – unlike, for example, film scripts – have no pre-defined for-
mats (Rouse 2004, pp. 355–359). Although there are document templates, many
game designers state that documents are different for every game and for every
team. For example, Schell (2015, p. 426) says outright that a ‘magic template [for
game documents] does not exist’.

How could this problem be solved? Think about game documentation in terms
of maintainability, accessibility and communicativeness. Also, take the concept
of ‘document medium’ as sufficiently wide to cover, for example, a whiteboard or
even an oral discussion.

- Many games are variations of the same structure. Consider Pac-Man and Snake.
Discern their common features and design a generic game which can be parame-
terized to be both games.

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

1 Introduction

- Judging rules can be difficult, even for an objective computer program. In football
(or soccer as some people call it) the official rules say that the referee can allow
play to continue if the team against which an offence has been committed has a
chance of an immediate, promising attack (i.e. advantage), and penalize the orig-
inal offence if the anticipated advantage does not ensue at that time (Fédération
Internationale de Football Association 2016). How would you implement this rule?
What difficulties are involved in it?

- The progression in the lattice of mission groups in Wing Commander resembles
the story structure shown in Figure 1.6(c). The player’s performance in the mis-
sions branches in the story, and piling failures drive the player further away from
the hope of a victory. However, with later successes it is still possible to get back
to the path of victory.

With such second chances in mind, analyse the aspects of failure and failing in
general in computer games. For example, in games like Super Meat Boy and Dwarf
Fortress losing is an integral part of the game experience but, on the other hand,
in NetHack death is permanent and the game feels intentionally brutally lost. How
does the presence of failing define and complement the other features of a game?

JWST828-c01 JWST828-Smed May 22, 2017 15:11 Printer Name: Trim: 244mm × 170mm

22

