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1.1 Introduction

Many military and civilian applications require a team of agents
to coordinate with each other to perform specific tasks without
human intervention. In those systems, individual agents (e.g.,
unmanned underwater/ground/aerial vehicles) have limited
capabilities due to short sensing and communication ranges,
and small computational power. However, their collective
behavior exhibits significant advantages compared to a single
sophisticated agent, including large-scale spatial distribution,
robustness, high scalability, and low cost [1]. The deployment
of large-scale multi-agent systems with constrained costs and
smaller sizes can thus achieve tasks that are otherwise unable to
be finished by a single agent. Teams of engineered multi-agent
systems can collect and process data and perform tasks coop-
eratively [2—8]. Multi-agent systems play an important role
in a wide range of applications such as search and rescue [9],
tracking/classification [10-14], surveillance [15, 16], space
exploration [17], and radiation shielding and site clearing [18].
Multi-agent systems have also been considered and utilized
in fields such as cooperative mobile robotics [19], distributed
artificial intelligence and computing [20-22], wireless sensor
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networks [23], biology [24], social study [25], smart grids [26],
traffic management [27, 28], and supply-chain management
[29]. Therefore, the use of multi-agent system technologies
in both everyday modern society and national defense and
homeland security is bound to tremendously increase. In this
book, we aim to provide an overview of recent progresses
made in the cooperative control of multi-agent systems on both
fundamental theory development as well as applications.

In the control community, multi-agent system theory has
focused on developing vehicle motion control laws for various
tasks including consensus and formation control [2, 30-43],
coverage control [44—48], target search and tracking [3-5, 49,
50], task allocation problems [25, 51-53], sensor management
problems [14], output regulation [54, 55], optimization [56],
and estimation. Three types of control schemes for multi-agent
systems have been proposed in the open literature, that is,
centralized [57], decentralized [58], and distributed multi-agent
control [1]. The centralized control scheme assumes global
knowledge of the multi-agent system and seeks to achieve some
control objective considering all agents’ states, which inevitably
suffers from the scalability issue. The decentralized control
scheme computes control actions based only on an agent’s local
information while the more popular distributed control scheme
takes both the agent’s own information and neighboring agents’
information into account to calculate the control action. Both
the decentralized and distributed control algorithms provide
scalable solutions and can be implemented under minimal
connectivity properties. On the other hand, connectivity
preserving protocols are developed for multi-agent systems to
keep connected and hence guarantee motion stability [59, 60].
The problem has been considered in scenarios such as flocking
[61, 62], rendezvous [59, 63], and formation control [64, 65]. The
control hierarchy for multi-agent systems can be categorized
into two classes, that is, top-down and bottom-up method-
ologies [66]. The top-down scheme assigns an overarching
objective for the multi-agent system and designs control action
for each individual agent to achieve this objective. The top-down
multi-agent task decomposition is often difficult. While the
bottom-up scheme directly defines each individual agent’s
local control action and their cooperation protocol, which
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however cannot guarantee any global objective. The paper [67]
provides an overview of progresses made in the distributed
multi-agent coordination. The books [64, 68] provide an
introduction to the distributed control of multi-agent systems.
The book [1] discusses the distributed control of multi-agent
systems from four main themes, or dimensions: distributed
control and computation, adversarial interactions, uncertain
evolution, and complexity management. A special category
of multi-agent systems, multi-robot systems, has become
one of the most important areas of research in robotics [19].
Significant advance has been made in distributed control and
collaboration of multi-robot systems in control theory and
artificial intelligence [68—70]. There are a considerable amount
of works on multi-agent consensus and formation control, and
synchronization. We briefly summarize the main results as
follows.

The multi-agent consensus control problem ensures that a
group of mobile agents stays connected and reaches agreement
while achieving some performance objective [64]. The papers
[71, 72] provide a good survey of consensus problems in
multi-agent cooperative control. In [64], the consensus problem
is considered over dynamic interaction graphs by adding
appropriate weights to the edges in the graphs. Theoretical
results regarding consensus seeking under both time-invariant
and dynamically changing information exchange topologies
are summarized. Applications of consensus protocols to
multi-agent coordination are investigated. In [73, 74], consensus
algorithms are extended for second-order nonlinear dynamics
in a dynamic proximity network. Necessary and sufficient
conditions are given to ensure second-order consensus. In
[75], leader-following consensus algorithms are developed for
a linear multi-agent system on a switching network, where the
input of each agent is subject to saturation. In [76], multi-agent
consensus based on the opinion dynamics introduced by Krause
is studied. A new proof of convergence is given with all agents
in the same cluster holding the same opinion (represented by a
real number). Lower bounds on the inter-cluster distances at a
stable equilibrium are derived. In [33], multi-agent consensus is
considered for an active leader-tracking problem under variable
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interconnection topology. The effects of delays on multi-agent
consensus have been considered in [77].

The paper [78] provides a survey of formation control of
multi-agent systems. The existing results are categorized into
position-, displacement-, and distance-based control. The
finite-time formation control for nonlinear multi-agent systems
is investigated in [43]. A small number of agents navigate the
whole team based on the global information of the desired
formation while the other agents regulate their positions by the
local information in a distributed manner. A class of nonlinear
consensus protocols is first ensured and then applied to the
formation control. In [79], a model-independent coordination
strategy is proposed for multi-agent formation control in
combination with tracking control for a virtual leader. The
authors show that the formation error can be stabilized if the
agents can track their respective reference points perfectly
or if the tracking errors are bounded. In [80], a decentralized
cooperative controller for multi-agent formation control and
collision avoidance is developed based on the navigation func-
tion formalism. The control law is designed as the gradient of a
navigation function whose minimum corresponds to the desired
formation. Multi-agent formation control with intermittent
information exchange is considered in [81]. Energy-based
analysis is utilized to derive stability conditions. The paper [82]
investigates rotating consensus and formation control problems
of second-order multi-agent systems based on Lyapunov the-
ory. Both theoretical and experimental results are presented
in [42] on multi-agent decentralized control that achieves
leader—follower formation control and collision avoidance for
multiple nonholonomic robots.

In [83], synchronization approach is developed for trajec-
tory tracking of multiple mobile robots while maintaining
time-varying formations. In [84], synchronization algorithms
are designed in a leader—follower cooperative tracking control
problem where the agents are modeled as identical general
linear systems on a digraph containing a spanning tree. The
control framework includes full-state feedback control, observer
design, and dynamic output feedback control. In [54], a dis-
tributed control scheme is adopted for robust output regulation
in a multi-agent system where both the reference inputs and
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disturbances are generated by an exosystem. In [55], the output
regulation problem is extended to multi-agent systems where a
group of subsystems cannot access the exogenous signal. In [85],
output consensus algorithms are developed for heterogeneous
agents with parametric uncertainties. The multi-agent output
synchronization problem is also studied in [86] where the
coupling among the agents is nonlinear and there are communi-
cation delays. In [87], a general result for the robust output regu-
lation problem has been studied for linear uncertain multi-agent
systems. In [88], finite-time synchronization is proposed for
a class of second-order nonlinear homogenous multi-agent
systems with a leader—follower architecture. A finite-time
convergent observer and an observer-based finite-time output
feedback controller are developed to achieve the goal.

n [89], distributed tracking control is developed for linear
multi-agent systems and a leader whose control input is
nonzero, bounded, and not available to any follower. The paper
[90] considers multi-agent tracking of a high-dimensional
active leader, whose state not only keeps changing but also may
not be measured. A neighbor-based local state-estimator and
controller is developed for each autonomous following agent.
A collision-free target-tracking problem of multi-agent robot
system is considered in [91], where a cost function using a
semi-cooperative Stackelberg equilibrium point component
with weights tuned by a proportional-derivative (PD)-like fuzzy
controller is formulated. The distributed finite-time tracking
control of second-order multi-agent systems is considered
in [92]. Observer-based state feedback control algorithms
are designed to achieve finite-time tracking in a multi-agent
leader-follower system and extended to multiple active lead-
ers. There are also a lot of works focusing on multi-agent
target tracking. In [93], the optimal sensor placement and
motion coordination strategies for mobile sensor networks are
developed in a target-tracking application. Gradient-descent
decentralized motion planning algorithms are developed in [94]
for multiple cooperating mobile sensor agents for the tracking
of dynamic targets. The problem of target tracking and obstacle
avoidance for multi-agent systems is considered in [95]. A
potential function-based motion control algorithm is proposed
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to solve the problem where multiple agents cannot effectively
track the target while avoiding obstacles at the same time.

The book [96] gives an overview of optimal and adaptive
control methods for multi-agent systems. In [56], a distributed
subgradient method is developed to solve a multi-agent convex
optimization problem where every agent minimizes its own
objective function while exchanging information locally with
other agents in the network over a time-varying topology. An
inverse optimality-based distributed cooperative control law is
designed in [97] to guarantee consensus and global optimality of
multi-agent systems, where the communication graph topology
interplays with the agent dynamics. The work [98] applies
stochastic optimal control theory to multi-agent systems, where
the agent dynamics evolve with Wiener noise. The goal is to
minimize some cost function of different agent—target combi-
nations so that decentralized agents are distributed optimally
over a number of targets. An optimal control framework for
persistent monitoring using multi-agent systems is developed in
[99] to design cooperative motion control laws to minimize an
uncertainty metric in a given mission space. The problem leads
to hybrid systems analysis, and an infinitesimal perturbation
analysis (IPA) is used to obtain an online solution.

Coverage control considers the problem of fully covering a
task domain using multi-agent systems. The problem can be
solved by either deploying multiple agents to optimal locations
in the domain or designing dynamic motion control laws for
the agents so as to gradually cover the entire domain. The
former solutions entail locational optimization for networked
multi-agent systems. Voronoi diagram-based approaches are
introduced in [100] to develop decentralized control laws for
multiple vehicles for optimal coverage and sensing policies.
Gradient descent—based schemes are utilized to drive a vehicle
toward the Voronoi centeriod for optimal localization. In [101],
the discrete coverage control law is developed and unified with
averaging control laws over acyclic digraphs with fixed and
controlled-switching topology. In [102], unicycle dynamics are
considered and the coverage control algorithms are analyzed
with an invariance principle for hybrid systems. The latter
solutions focus on the case when the union of the agents’ sensor
cannot cover the task domain and hence dynamic motion
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control needs to be designed so that the agents can travel and
collaboratively cover the entire domain [103]. A distributed cov-
erage control scheme is developed in [104, 105] for mobile sensor
networks, where the sensor has a limited range and is defined
by a probabilistic model. A gradient-based control algorithm is
developed to maximize the joint detection probabilities of ran-
dom events taking place. Effective coverage control is developed
to dynamically cover a given 2D region using a set of mobile sen-
sor agents [46, 106]. Awareness-based coverage control has been
proposed to dynamically cover a task domain based on the level
of awareness an agent has with respect to the domain [48]. The
paper [107] extends the awareness coverage control by defining
a density function that characterizes the importance of each
point in the domain and the desired awareness coverage level as
a nondecreasing differentiable function of the density distribu-
tion. In [108], awareness and persistence coverage control are
addressed simultaneously so that the mission domain can be
covered periodically while the desired awareness is satisfied.
Passivity-based control approaches have also been developed
to guarantee the stability of multi-agent systems [109]. Passivity
is an energy-based method and a stronger system property that
implies stability [110, 111]. A system is passive if it does not
create energy, that is, the stored energy is less than the supplied
energy. The negative feedback interconnection and parallel
interconnection of passive systems are still passive. The paper
[112] discusses the stabilization and output synchronization
for a network of interconnected nonlinear passive agents by
characterizing the information exchange structure. In [113], a
passivity-based cooperative control is developed for multi-agent
systems and the group synchronization is proved with the pro-
posed backstepping controller using the Krasovskii—LaSalle
invariance principle. The paper [114] introduces a discrete-time
asymptotic multi-unmanned aerial vehicle (UAV) formation
control that uses a passivity-based method to ensure [’ stability
in the presence of overlay network topology with delays and data
loss. Passivity-based motion coordination has also been used
in [115] for the attitude synchronization of rigid bodies in the
leader—follower case with communication delay and temporary
communication failures. The work [116] uses the multiple
Lyapunov function method for the output synchronization of a
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class of networked passive agents with switching topology. The
concept of stochastic passivity is studied for a team of agents
modeled as discrete-time Markovian jump nonlinear systems
[117]. Passivity-based approaches have also been widely used in
the bilateral teleoperation of robots and multi-agent systems. A
good amount of work has utilized the scattering wave transfor-
mation and two-port network theory to provide stability of the
teleoperation under constant communication delays for velocity
tracking. A passifying PD controller is developed in [118] for the
bilateral teleoperation of multiple mobile slave agents coupled to
a single master robot under constant, bounded communication
delays. The paper [119] extends the passivity-based architecture
to guarantee state (velocity as well as position) synchronization
of master/slave robots without using the wave scattering trans-
formation. Passivity-based control strategies are also utilized
for the bilateral teleoperation of multiple UAVs [120].

Extensive results presenting algorithms and control method-
ologies for multi-agent systems cooperation rely on continuous
communication between agents. Continuous actuation and
continuous measurement of local states may be restricted
by particular hardware limitations. A problem in many sce-
narios is given by the limited communication bandwidth
where neighboring agents are not capable of communicating
continuously but only at discrete time instants. Limitations
and constraints on inter-agent communication may affect any
multi-agent network. Consensus problems, in particular, have
been analyzed in the context of noncontinuous actuation and
noncontinuous inter-agent communication. Several techniques
are devised in order to schedule sensor and actuation updates.
The sampled-data (periodic) approach [121-123], and [124]
represents a first attempt to address these issues. The imple-
mentation of periodic communication represents a simple
and practical tool that addresses the continuous communica-
tion constraint. However, an important drawback of periodic
transmission is that it requires synchronization between the
agents in two similar aspects: sampling period and sampling
time instants, both of which are difficult to meet in practice.
First, most results available require every agent to implement
the same sampling period. This may not be achievable in
many networks of decentralized agents and it is also difficult
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to globally redefine new sampling periods. Second, not only
the agents need to implement the same sampling periods,
but also they need to transmit information all at the same
time instants. Under this situation each agent is also required
to determine the time instants at which it needs to transmit
relevant information to its neighbors. Even when agents can
adjust and implement the same sampling periods, they also
need to synchronize and transmit information at the same time
instants for the corresponding algorithms to guarantee the
desired convergence properties. Besides being a difficult task
to achieve in a decentralized way, the synchronization of time
instants is undesirable because all agents are occupying network
resources at the same time instants. In wireless networks, the
simultaneous transmission of information by each agent may
increase the likelihood of packet dropouts since agents that are
supposed to receive information from different sources may not
be able to successfully receive and process all information at the
same time.

Therefore, event-triggered and self-triggered controls for
multi-agent systems have been considered for agents with
limited resources to gather information and actuate. The
event-triggered schemes allow each agent to only send infor-
mation across the network intermittently and independently
determine the time instants when they need to communicate
[57]. The use of event-triggered control techniques for decentral-
ized control and coordination has spurred a new area of research
that relaxes previous assumptions and constraints associated
with the control of multiple agents. In event-triggered control
[125-130], a subsystem monitors its own state and transmits a
state measurement to the non-collocated controller only when it
is necessary, that is, only when a measure of the local subsystem
state error is above a specified threshold. In general, the state
error measures the difference between the current state and
the last transmitted state value. The controller transmits an
update by examining the measurement errors with respect to
some state-dependent threshold and hence requires continuous
monitoring of state error. In many instances, it is possible
to reduce communication instances using event-triggered
communication with respect to periodic implementations.
This is of great importance in applications where bandwidth
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or communication resources are scarce. Consensus problems
where all agents are described by general linear models [131,
132], have been studied assuming continuous communication
among agents. Event-triggered control and communication
methods for agents with linear dynamics were recently studied
in [133-138]. Event-triggered control methods have also been
applied to analyze consensus problems with limited actua-
tion rates. In [139], agents with single integrator dynamics
are considered and an event-triggered control technique is
implemented in order for each agent to determine the time
instants to update their control inputs. Continuous exchange
of information is assumed in [139] and the event-triggered
controller is only used to avoid continuous actuation at each
node. In general, the decentralized event-triggered consensus
problem with limited communication is a more challenging
problem than the event-triggered control for limiting actuation
updates. The main reason is that agents need to take decisions
(on when to transmit their state information) based on outdated
neighbor state updates. In this scenario, each agent has contin-
uous access to its own state; however, it only has access to the
last update transmitted by its neighbors. Several approaches for
the event-triggered consensus with limited communication are
documented in [140-145]. In this sense, event-triggered control
provides a more robust and efficient use of network bandwidth.
Its implementation in multi-agent systems also provides a
highly decentralized way to schedule transmission instants,
which does not require synchronization compared to periodic
sampled-data approaches. Different problems concerning the
transmission of information in multi-agent networks such as
communication delays and packet dropouts have been explicitly
addressed using event-triggered control methods [146]. In the
extended self-triggered control, each agent will compute its next
update time based on the available information from the last
sampled state, without the necessity to keep track of the state
error in order to determine when a future sample of the state
should be taken. In [140], an event-based scheduling is devel-
oped for multi-agent broadcasting and asymptotic convergence
to average consensus is guaranteed. This paradigm has also been
extended to distributed estimation and optimization [147].
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1.2 Chapter Summary and Contributions

Chapter 2 develops sensor deployment algorithms for a team
of autonomous unmanned vehicles (AUVs) for path cover-
age problem with monitoring applications in GPS-denied
environments. The approach used in this chapter tracks the
AUV position in GPS-denied environments by analyzing the
radio signals received from a suitably positioned network of
proxy landmarks. This problem is referred to as the landmark
placement problem (LPP) and it is required to use minimum
number of landmarks to cover the entire path of the AUV.
Two a-approximate (@ =13 and 5, respectively) algorithms
are proposed to solve the LPP in polynomial time and provide
solutions whose cost is at most « times from the optimum. It is
assumed that a target in a vehicle’s path is defined to be covered
by a landmark and the distance between a target and a landmark
is at most equal to R. A greedy algorithm is first proposed for
a simpler LPP where all the targets lie within a vertical strip of
width equal to \/§R and the landmarks are restricted to be on a
single, vertical line. The algorithm is then extended to a general
LPP by partitioning the plane into vertical strips of width \/§R
with approximation ratio a = 13. The second approximate
algorithm with @ = 5 is developed based on a 4-approximation
algorithm for a unit disc problem. Two phases are involved
in this algorithm: (i) identification of a subset of targets using
a simple greedy algorithm and (ii) addition of landmarks
in the vicinity of each target in the subset. Both theoretical
guarantees and numerical simulations are provided to show the
performance of the proposed approximation algorithms.
Chapter 3 proposes vision-based cooperative target tracking
control laws for two fixed-wing UAVs in measurements gath-
ering and real-time decision-making tasks. To mitigate a single
UAV’s inability to maintain close proximity to a target and hence
obtain accurate measurements for tracking purpose, multiple
UAVs are deployed for cooperative target tracking. In this
chapter, the standoff target tracking approach is used where two
UAVs orbit the target at a nominal standoft distance while
maintaining orthogonal viewing angles so as to minimize the
joint/fused geolocation error covariance. The work promotes
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a practical solution that yields robust coordination under
the following realistic conditions: unknown constant wind,
non-negligible roll dynamics with roll-angle setpoint limits,
unpredictable and evasive target motion, and the availability of
only noisy, partial information of the overall system’s states. The
motion of the individual vehicles is optimized and robust so as
to gather the best joint measurements of a given quantity, object,
or area of interest and take into account real-world conditions,
such as environmental disturbances and unmodeled dynamics.
An output-feedback control approach is deployed to achieve
the desired robustness, and a fourth-order Dubins vehicle
model with roll dynamics is considered. The tracking solution
incorporates adaptive estimates of the wind into the online
model predictive control (MPC) and moving horizon estimation
(MHE) optimization. The MPC and MHE are combined into a
single min—max optimization, that is, a desired cost function is
maximized with respect to disturbance and measurement noise
variables and minimized with respect to control input variables.
Simulations are performed using aircraft models having six
degrees of freedom and target logs taken from live tracking
experiments.

Chapter 4 discusses how to find the convergence rate of
continuous-time consensus algorithms for multi-UAV simul-
taneous arrival problem. The requirement is that the UAVs
must achieve consensus on the expected time-to-arrival (ETA)
before any actual arrivals. Assume that a team of agents are
required to simultaneously visit some prespecified targets
and the path for each individual agent to follow has been
precomputed. To arrive at their targets at the same time,
agents have to adjust their velocities during the motion,
based on the information communicated with their neigh-
bors. Real-time planning schemes need to be developed to
overcome the uncertainties due to UAVs flying in dynamical
environments. This chapter considers the consensus-based
simultaneous arrival problem with fixed velocity constraints
under a connected and undirected communication graph. It
is challenging to analyze the stability and the convergence
rate of the consensus algorithms. Each UAV estimates its own
ETA and communicates it with its neighbors in real-time so
that they can reach consensus on the ETA. A continuous-time
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projection operator is introduced to ensure smoothness of the
state and input trajectories, when saturation happens due to
the velocity constraints. The projection-based operator is used
to enforce the constraints on the velocity. The convergence of
the resulting closed-loop system is proved. The aforementioned
consensus algorithm shows asymptotic property, and hence
simultaneous arrival will be reached in an infinite amount of
time. In practice, the length of the paths is always finite, and the
agents are required to achieve consensus in finite amount of
time. Hence, the e-consensus approach is further investigated
for practical consideration. An upper bound on the convergence
rate is derived when e-consensus can be achieved. A sufficient
condition in terms of the path length and UAVs’ minimal and
maximal velocity is presented to guarantee feasibility of the
simultaneous arrival problem.

Chapter 5 addresses the weapon—target assignment (WTA)
problem, that is, how to assign defensive weapons to intersect
the aimed targets to minimize the damage of assets or maximize
the probability of destroying the target and hence the damage of
targets. This work particularly focuses on time-dependent WTA
(TSWTA) problems that seek to find the optimal launching
time of a weapon to maximize the sum of asset values after
defensive weapons are assigned to corresponding targets. The
TSWTA problem is formulated as a mixed-integer nonlinear
program (MINLP), under the assumption that target—assets
engagements are independent of weapon—target engagement.
It is shown that the TSWTA exhibits the monotonically non-
decreasing property similar to other WTA problems. Based on
this property, the TSWTA can be formulated as the problem
that maximizes the nondecreasing objective function under a
partition matroid constraint. A provable suboptimality lower
bound of the value achieved by a greedy heuristic maximiza-
tion algorithm is obtained. Computational experiments are
also conducted to demonstrate good performance achieved
by the proposed heuristic algorithms for this combinatorial
optimization problem.

Chapter 6 presents a cooperative decision problem in which
a group of UAVs is tasked to eliminate a set of targets while
minimizing different cost terms during the duration of the
mission. The environment where the mission is performed
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contains a set of threats representing radar sites that are able
to identify and potentially harm the UAVs. The radar sites are
more effective in identifying a given UAV if the UAV travels near
the threat position. In a first instance of the problem, each UAV
needs to independently compute its own optimal path in order
to reach the destination point where a main target is located.
The optimal path is the one that minimizes a combined cost
that captures path length and threat risks. In order to minimize
threat risk, the approach followed in Chapter 6 is to design a
Voronoi diagram using the threat positions. This means that
the UAVs minimize exposure to threats when traveling along
the edges of the Voronoi diagram. The optimal trajectory to
reach a main target is transformed into a graph search where
the weights of each edge are determined by two factors: the
length of the edge and the threat risk that the UAV is exposed
to by traveling along that edge. The problem is further extended
by endowing the UAVs with extra munitions that can be used to
eliminate a subset of threats. A problem of distributed assign-
ment of threats is then formulated and solved by identifying
individual optimal decisions and by implementing a distributed
consensus-based auction algorithm. The assignment of threats
to eliminate is performed sequentially in order for UAVs to take
advantage of other UAVs decisions and assignments. In this
way, cooperation among UAVs is induced since the cost of the
new optimal path of each UAV can be significantly improved
not only by its own decisions but also by traveling along paths
where previous threats have already been eliminated by other
UAVs. The timing constraints associated with the distributed
decisions and assignments of threats is explicitly considered in
Chapter 6. In addition, the existence of multiple main targets
is considered and different approaches to assign UAVs to main
targets are proposed.

Chapter 7 studies event-triggered control and communication
techniques for multi-agent systems coordination. This work
provides an overview of several event-triggered control tech-
niques to achieve multi-agent coordination. The focus of the
chapter is on the problem of average consensus, where a group
of agents seek to agree on the average of their initial states. An
introduction is provided for event-triggered control strategies
applied to consensus problems. Centralized event-triggered
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control, decentralized event-triggered communication and
control, periodic event-triggered coordination are introduced
in detail. A detailed comparison among different techniques
is presented. Several aspects associated with the use of these
techniques such as decentralization, type of event threshold
employed, and continuous sensing of local states are analyzed.
The chapter provides formal analysis of several controllers and
event—threshold implementations. The conditions necessary
to achieve average consensus are also studied. Finally, open
problems within this important area of research are addressed.
Chapter 8 solves network topology design (NTD) and
identification problems. For the NTD problem, a limited
number of edges are considered, and these edges and the
associated edge weights are optimally allocated among multiple
agents to improve certain network performance. While the
network topology identification (NTI) problem is to satisfy
the response between specified input and observed output.
Solving both problems involves determining binary variables
and the combination of them is exponentially increasing. The
cardinality constraint on the edge set for the NTD problem is
handled as a rank constraint on the to-be-determined matrix,
and the NTD problem is formulated as a rank-constrained
optimization problem. The approach for solving NTI problem
handles unknown binary variables as continuous variables
by adding a quadratic constraint on each binary variable and
then reformulates the problem as a quadratically constrained
quadratic programming (QCQP) problem, which can be equiv-
alently transformed into a rank-one constrained optimization
problem. Then for both NTD and NTI problems, an iterative
rank minimization algorithm is proposed to solve the uniformly
formulated rank-constrained optimization problems, where
each iteration is formulated as a convex optimization problem.
Chapter 9 considers stochastic interaction among groups
of agents and presents relevant results about the probabilities
to achieve coordination on variables of interest. The results
presented in the chapter are roughly divided into two parts. The
first part is concerned with fixed interaction communication
graphs. In this case, the agents select the static undirected
communication links and, therefore, the fixed communica-
tion graph, from a set of available candidates. In terms of
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communication graphs, the set of candidate graphs considered
is the set of all possible undirected graphs. For each interaction
graph, only one adjacency (or Laplacian) matrix is associated
with it in order to uniquely define the interaction among
agents. A lower bound on the probability of coordination is
determined under this scenario. In addition, it is shown that
the probability of coordination is strictly increasing as the
number of agents increase. In the second part of Chapter 9,
the probability of coordination is analyzed for the case where
the directed interaction graph is switching. In this case, the
communication links are not static. Instead, directed links
between any two agents appear and disappear as time evolves.
Under this scenario, it is demonstrated that coordination with
probability 1, coordination in probability, and coordination in
the rth mean are equivalent.

Chapter 10 develops distributed motion control algorithms
of heterogeneous multi-agent systems for the coverage control
of unknown and large-scale (i.e., the union of sensor regions
cannot cover the entire domain) environments. To achieve full
coverage of an unknown domain, the coverage task is decom-
posed into two distinct, however closely related, subtasks, that
is, domain boundary tracking and coverage control. This work
considers UAVs with down-facing board view cameras for the
boundary tracking task and wheeled mobile robots (WMRs)
for the coverage control task. The UAVs can move quickly and
maintain a minimum altitude; however, it cannot lift a heavy
payload and has to delegate the analysis of its sensor data to
an oftf-board computer. Meanwhile, the WMRs move relatively
slow but can carry more sensors and perform onboard computa-
tion. Nonholonomic constraints of the robots and nonisotropic
sensor models are considered in the control law development
for practical applications. A complete communication strategy
between the UAVs and WMRs is discussed for information
exchange. The inner (autopilot) and outer (wall follower motion
control) loop feedback control strategy is adopted for the UAVs.
Awareness-based coverage control law is developed for the
WMRs based on dynamic awareness dynamics, 2D Leibniz rule,
and practical consideration of actuation saturation. The state
of awareness represents how aware each coverage robot is of
the event occurring at the domain. Intermittent state updates
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between neighboring robots are considered for distributed
multi-agent systems for the mapped part of the task domain.
The awareness coverage error metrics are defined and proved to
converge to zero under the proposed motion control strategies
using Lyapunov-like analysis. A perturbation control law is
deployed if the robot is trapped in a local minimum.
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