
WHAT’S IN THIS CHAPTER?

➤ Understanding the differences between imperative and functional
programming

➤ Learning how to think more functionally

➤ Discovering Clojure’s unique perspective on object-oriented
programming

If your mind is empty, it is always ready for anything, it is open to
everything. In the beginner’s mind there are many possibilities, but in the
expert’s mind there are few.

—Shunryu Suzuki

Over the past thirty years many popular programming languages have more in common with
each other than they have differences. In fact, you could argue that once you have learned one
language, it’s not diffi cult to learn another. You merely have to master the subtle differences
in syntax, and maybe understand a new feature that isn’t present in the language that you’re
familiar with. It’s not diffi cult to call yourself a polyglot programmer when many of the top
languages in use today are all so similar.

Clojure, on the other hand, comes from a completely different lineage than most of the popu-
lar languages in use today. Clojure belongs to the Lisp family of programming languages,
which has a very different syntax and programming style than the C-based languages you are
probably familiar with. You must leave all of your programming preconceptions behind in
order to gain the most from learning Clojure, or any Lisp language in general.

1
CO

PYRIG
HTED

 M
ATERIA

L

2 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

Forget everything you know, or think you know about programming, and instead approach it as if
you were learning your very fi rst programming language. Otherwise, you’ll just be learning a new
syntax, and your Clojure code will look more like Java/C/Ruby and less like Clojure is designed to
look. Learning Clojure/Lisp will even affect the way you write in other languages, especially with
Java 8 and Scala becoming more popular.

FUNCTIONAL THINKING

C, C++, C#, Java, Python, Ruby, and even to some extent Perl, all have very similar syntax. They
make use of the same programming constructs and have an emphasis on an imperative style of pro-
gramming. This is a style of programming well suited to the von Neumann architecture of comput-
ing that they were designed to execute in. This is probably most apparent in the C language, where
you are responsible for allocating and de-allocating memory for variables, and dealing directly with
pointers to memory locations. Other imperative languages attempt to hide this complexity with
varying degrees of success.

In computer science, imperative programming is a g programming paradigm that g
uses statements that change a program’s state.

This C-style of programming has dominated the programming scene for a very long time, because
it fi ts well within the dominant hardware architectural paradigm. Programs are able to execute
very effi ciently, and also make effi cient use of memory, which up until recently had been a very real
constraint. This effi ciency comes at the cost of having more complex semantics and syntax, and it is
increasingly more diffi cult to reason about the execution, because it is so dependent upon the state
of the memory at the time of execution. This makes doing concurrency incredibly diffi cult and error
prone. In these days of cheap memory and an ever growing number of multiple core architectures, it
is starting to show its age.

Functional programming, however, is based on mathematical concepts, rather than any given com-
puting architecture. Clojure, in the spirit of Lisp, calls itself a general-purpose language; however, it
does provide a number of functional features and supports the functional style of programming very
well. Clojure as a language not only offers simpler semantics than its imperative predecessors, but it
also has arguably a much simpler syntax. If you are not familiar with Lisp, reading and understand-
ing Clojure code is going to take some practice. Because of its heavy focus on immutability, it makes
concurrency simple and much less error prone than having to manually manage locks on memory
and having to worry about multiple threads reading values simultaneously. Not only does Clojure
provide all of these functional features, but it also performs object-oriented programming better
than its Java counterpart.

Value Oriented
Clojure promotes a style of programming commonly called “value-oriented programming.”
Clojure’s creator, Rich Hickey, isn’t the fi rst person to use that phrase to describe functional

Functional Thinking ❘ 3

programming, but he does an excellent job explaining it in a talk titled The Value of Values that he
gave at Jax Conf in 2012 (https://www.youtube.com/watch?v=-6BsiVyC1kM).

By promoting this style of value-oriented programming, we are focused more on the values than
mutable objects, which are merely abstractions of places in memory and their current state.
Mutation belongs in comic books, and has no place in programming. This is extremely powerful,
because it allows you to not have to concern yourself with worrying about who is accessing your
data and when. Since you are not worried about what code is accessing your data, concurrency now
becomes much more trivial than it ever was in any of the imperative languages.

One common practice when programming in an imperative language is to defensively make a copy
of any object passed into a method to ensure that the data does not get altered while trying to use
it. Another side effect of focusing on values and immutability is that this practice is no longer nec-
essary. Imagine the amount of code you will no longer have to maintain because you’ll be using
Clojure.

In object-oriented programming, we are largely concerned with information hiding or restrict-
ing access to an object’s data through encapsulation. Clojure removes the need for encapsulation
because of its focus on dealing with values instead of mutable objects. The data becomes semanti-
cally transparent, removing the need for strict control over data. This level of transparency allows
you to reason about the code, because you can now simplify complex functions using the substitu-
tion model for procedure application as shown in the following canonical example. Here we simplify
a function called sum-of-squares through substituting the values:

(defn square [a] (* a a))
(defn sum-of-squares [a b] (+ (square a) (square b))

; evaluate the expression (sum-of-squares 4 5)

(sum-of-squares 4 5)
(+ (square 4) (square 5))
(+ (* 4 4) (* 5 5))
(+ 16 25)
41

By favoring functions that are referentially transparent, you can take advantage of a feature called
memorization. You can tell Clojure to cache the value of some potentially expensive computation,
resulting in faster execution. To illustrate this, we’ll use the Fibonacci sequence, adapted for Clojure,
as an example taken from the classic MIT text Structure and Interpretation of Computer Programs
(SICP).

(defn fib [n]
 (cond
 (= n 0) 0
 (= n 1) 1
 :else (+ (fib (- n 1))
 (fib (- n 2)))))

4 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

If you look at the tree of execution and evaluate the function for the value of 5, you can see that
in order to calculate the fi fth Fibonacci number, you need to call (fib 4) and (fib 3). Then, to
calculate (fib 4), you need to call (fib 3) and (fib 2). That’s quite a bit of recalculating values
that you already know the answer to (see Figure 1-1).

fib 5

fib 4

fib 3
fib 2

fib 2

fib 3

fib 1

1

fib 2 fib 1 fib 1 fib 0

011fib 1

1

fib 0

0

fib 1 fib 0

1 0

FIGURE 1-1

Calculating for (fib 5) executes quickly, but when you try to calculate for (fib 42) you can see
that it takes considerably longer.

(time (fib 42))
"Elapsed time: 11184.49583 msecs"
267914296

You can rewrite a function to leverage memorization to see a signifi cant improvement in the execu-
tion time. The updated code is shown here:

(def memoized-fib
 (memoize (fn [n]
 (cond
 (= n 0) 0
 (= n 1) 1
 :else (+ (fib (- n 1))
 (fib (- n 2)))))))

When you fi rst run this function, you’ll see how the execution doesn’t happen any faster; however,
each subsequent execution instantaneously happens.

user> (time (memoized-fib 42))
"Elapsed time: 10586.656667 msecs"

Functional Thinking ❘ 5

267914296
user> (time (memoized-fib 42))
"Elapsed time: 0.10272 msecs"
267914296
user> (time (memoized-fib 42))
"Elapsed time: 0.066446 msecs"
267914296

This is a risky enhancement if you do this with a function that relies on a mutable shared state.
However, since our functions are focused on values, and are referentially transparent, you can lever-
age some cool features provided by the Clojure language.

Thinking Recursively
Recursion is not something that is taught much in most imperative languages. Contrast this with
most functional languages, and how they embrace recursion, and you will think more recursively. If
you are unfamiliar with recursion, or struggle to understand how to think recursively, you should
read The Little Schemer, by Daniel P. Friedman and Matthias Felleisen. It walks you through howrr
to write recursive functions using a Socratic style of teaching, where the two authors are engaged in
a conversation and you get to listen in and learn.

Let’s take a look at a trivial example of calculating a factorial. A typical example in Java might look
like the code shown below. You start by creating a local variable to store the ultimate result. Then,
loop over every number, one-by-one, until you reach the target number, multiplying the last result
by the counter variable defi ned by the for loop, and mutating the local variable.

public long factorial(int n) {
 long product = 1;
 for (int i = 1; i <= n; i++) {
 product *= i;
 }
 return product;
}

Because of Clojure’s focus on values and immutable structures, it relies on recursion for looping and
iteration. A naïve recursive defi nition of a factorial in Clojure may look like the following:

(defn factorial [n]
 (if (= n 1)
 1
 (* n (factorial (- n 1)))))

If you trace the execution of the factorial program with an input of 6, as shown next, you see that
the JVM needs to maintain each successive operation on the stack as n increases, until the factorial
reaches a point where it returns a value instead of recurring. If you’re not careful, you’ll likely end
up with a stack overfl ow. This style of recursion is often called linear recursion.

(factorial 6)
(* 6 (factorial 5))
(* 6 (* 5 (factorial 4)))

6 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

(* 6 (* 5 (* 4 (factorial 3))))
(* 6 (* 5 (* 4 (* 3 (factorial 2)))))
(* 6 (* 5 (* 4 (* 3 (* 2 (factorial 1))))))
(* 6 (* 5 (* 4 (* 3 (* 2 1)))))
(* 6 (* 5 (* 4 (* 3 2))))
(* 6 (* 5 (* 4 6)))
(* 6 (* 5 24))
(* 6 120)
720

To resolve this dilemma, rewrite your function in a tail recursive style using the special operator
called recur, which according to the documentation, “does constant-space recursive looping by
rebinding and jumping to the nearest enclosing loop or function frame.” This means that it tries to
simulate a tail call optimization, which the JVM doesn’t support. If you rewrite the preceding facto-
rial example using this style, it looks something like the following:

(defn factorial2 [n]
 (loop [count n acc 1]
 (if (zero? count)
 acc
 (recur (dec count) (* acc count)))))

In this version of the factorial function, you can defi ne an anonymous lambda expression using
the loop construct, thus providing the initial bindings for the local variables count to be the value
passed into the factorial function to start the accumulator at 1. The rest of the function merely
consists of a conditional that checks the base case and returns the current accumulator, or makes
a recursive call using recur. Notice how in the tail position of the function this program doesn’t
require the runtime to keep track of any previous state, and can simply call recur with the calcu-
lated values. You can trace the execution of this improved version of the factorial as seen here:

(factorial2 6)
(loop 6 1)
(loop 5 6)
(loop 4 30)
(loop 3 120)
(loop 2 360)
(loop 1 720)
720

The call to factorial2 take fewer instructions to fi nish, but it doesn’t need to place new calls on
the stack for each iteration, like the fi rst version of factorial did.

But what happens if you need to perform mutual recursion? Perhaps you want to create your own
version of the functions for determining if a number is odd or even. You could defi ne them in terms
of each other. A number is defi ned as being even if the decrement of itself is considered odd. This
will recursively call itself until it reaches the magic number of 0, so at that point if the number is
even it will return true. If it’s odd it will return false. The code for the mutually recursive functions
for my-odd? and my-even? are defi ned here:

(declare my-odd? my-even?)

(defn my-odd? [n]

Functional Thinking ❘ 7

 (if (= n 0)
 false
 (my-even? (dec n))))

(defn my-even? [n]
 (if (= n 0)
 true
 (my-odd? (dec n))))

This example suffers from the same issue found in the fi rst example, in that each successive recursive
call needs to store some sort of state on the stack in order to perform the calculation, resulting in
a stack overfl ow for large values. The way you avoid this problem is to use another special opera-
tor called trampoline, and modify the original code to return functions wrapping the calls to your
recursive functions, like the following example:

(declare my-odd? my-even?)

(defn my-odd? [n]
 (if (= n 0)
 false
 #(my-even? (dec n))))

(defn my-even? [n]
 (if (= n 0)
 true
 *(my-odd? (dec n))))

Notice the declare function on the fi rst line. We can call the function using the trampoline opera-
tor as shown here:

(trampoline my-even? 42)

If the call to a function, in this case my-even?, would return another function, trampoline will
continue to call the returned functions until an atomic value gets returned. This allows you to make
mutually recursive calls to functions, and not worry about blowing the stack. However, we’re still
left with one problem. If someone wishes to use the version of my-even? and my-odd?, they must
have prior knowledge to know they must call them using trampoline. To fi x that you can rewrite
the functions:

(defn my-even? [n]
 (letfn [(e? [n]
 (if (= n 0)
 true
 #(o? (dec n))))
 (o? [n]
 (if (= n 0)
 false
 #(e? (dec n))))]
 (trampoline e? n)))

(defn my-odd? [n]
 (not (my-even? n)))

We’ve effectively hidden away the knowledge of having to use trampoline from our users.

8 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

Higher Order Functions
One of the many qualities that defi ne a language as being functional is the ability to treat functions
as fi rst class objects. That means functions can not only take values as parameters and return values,
but they can also take functions as parameters as well. Clojure comes with a number of commonly
used higher order functions such as map, filter, reduce, remove and iterate, as well as providing
you with the tools to create your own.

In Java, for example, if you want to fi lter a list of customers that live in a specifi c state, you need to
create a variable to hold the list of fi ltered customers, manually iterate through the list of customers,
and manually add them to the local variable you created earlier. You have to specify not only what
you want to fi lter by, but also how to iterate through the list.

public List<Customer> filterByState(List<Customer> input, String state) {
 List<Customer> filteredCustomers = new ArrayList<>();

 for(Customer customer : input) {
 if (customer.getState().equals(state)) {
 filteredCustomers.put(customer);
 }
 }

 return filteredCustomers;
}

This Clojure example deals less with how to do the fi ltering, and is a bit more concise and declara-
tive. The syntax may look a little strange, but you are simply calling the fi lter function with an
anonymous function telling what you should fi lter on and fi nally the sequence you want to fi lter
with.

(def customers [{:state "CA" :name "Todd"}
 {:state "MI" :name "Jeremy"}
 {:state "CA" :name "Lisa"}
 {:state "NC" :name "Rich"}])
(filter #(= "CA" (:state %)) customers)

One common design pattern that exists in object-oriented programming, the Command pattern,
exists as a way to cope with the lack of fi rst class functions and higher order functions. To imple-
ment the pattern, you fi rst defi ne an interface that defi nes a single method for executing the com-
mand, a sort of pseudo-functional object. Then you can pass this Command object to a method to
be called at the appropriate time. The downfall of this is that you need to either defi ne several con-
crete implementations to cover every possible piece of functionality you would need to execute, or
defi ne an anonymous inner class wrapping the functionality.

public void wrapInTransaction(Command c) throws Exception {
 setupDataInfrastructure();
 try {
 c.execute();
 completeTransaction();
 } catch (Exception condition) {
 rollbackTransaction();
 throw condition;
 } finally {

Functional Thinking ❘ 9

 cleanUp();
 }
}

public void addOrderFrom(final ShoppingCart cart, final String userName,
 final Order order) throws Exception {
 wrapInTransaction(new Command() {
 public void execute() {
 add(order, userKeyBasedOn(userName));
 addLineItemsFrom(cart, order.getOrderKey());
 }
 });
}

In Clojure you have the ability to pass functions around the same as any other value, or if you just
need to declare something inline you can leverage anonymous lambda expressions. You can rewrite
the previous example in Clojure to look like this code:

(defn wrapInTransaction [f]
 (do
 (startTransaction)
 (f)
 (completeTransaction)))

(wrapInTransaction #(
 (do
 (add order user)
 (addLineItemsFrom cart orderKey))))

To put it another way, with imperative languages you usually have to be more concerned with how
you do things, and in Clojure you’re able to focus more on the what you want to do. You can defi ne
abstractions at a different level than what is possible in most imperative languages.

Partials
In object-oriented programming there are many patterns for building up objects in steps by using
the Builder Pattern, or many related types of objects using the Abstract Factory Pattern. In Clojure,
since the primary method of abstraction is the function, you also have a mechanism to build new
functions out of existing ones with some of the arguments fi xed to a value by using partial.

The canonical example of how to use partial, shown here is a bit trivial.

(def add2 (partial + 2))

For a better example, we’ll take a look at the clojure.java.jdbc library. In the following listing is
an example showing a typical pattern for defi ning the connection properties for your database, and
a few simple query wrappers. Notice how every call to jdbc/query and jdbc/insert! takes the
spec as its fi rst parameter.

(ns sampledb.data
 (:require [clojure.java.jdbc :as jdbc]))

(def spec {:classname "org.postgresql.Driver"

10 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

 :subprotocol "postgresql"
 :subname "//localhost:5432/sampledb"})

(defn all-users []
 (jdbc/query spec ["select * from login order by username desc"])))

(defn find-user [username]
 (jdbc/query spec ["select * from login where username = ?" username]))

(defn create-user [username password]
 (jdbc/insert! spec :login {:username username :password password :salt
 "some_salt"}))

There is a bit too much repetition in this example, and it only contains three functions for querying
the database. Imagine how many times this occurs in a non-trivial application. You can remove this
duplication by using partial, and creating a new function with this fi rst parameter already bound
to the spec variable as shown here:

(ns sampledb.data
 (:require [clojure.java.jdbc :as jdbc]))

(def spec {:classname "org.postgresql.Driver"
 :subprotocol "postgresql"
 :subname "//localhost:5432/sampledb"})

(def query (partial jdbc/query spec))
(def insert! (partial jdbc/insert! spec))

(defn all-users []
 (query ["select * from login order by username desc"])))

(defn find-user [username]
 (query ["select * from login where username = ?" username]))

(defn create-user [username password]
 (insert! :login {:username username :password password :salt "some_salt"}))

Another useful way to use partial is for one of the higher order functions such as map, which
expects a function with exactly one argument to apply to the objects in a collection. You can use
partial to easily take a function that would normally require more than one argument and create
a new one specifying any number of them so that it now only requires one. For example, the * func-
tion used for multiplying numbers doesn’t make much sense with only one argument, but you can
use partial to specify what you want to multiply each item by as shown here:

(defn apply-sales-tax [items]
 ((map (partial * 1.06) items)))

The only real downside to partial is that you are only able to bind values to parameters in order,
meaning that the parameter order is important. If you want to bind the last parameter to a function,
you can’t leverage partial. Instead, you can defi ne another function that wraps the original func-
tion call or leverages a lambda expression.

Functional Thinking ❘ 11

Function Composition
Another useful piece of functionality is the ability to compose multiple functions together to make a
new function. Once again, Clojure shows its functional roots based in mathematics. As an example,
if you had a function called f and another called g, you could compose them together such that the
output from f is fed as the input to g, in the same way you can leverage pipes and redirects on the
Unix command line and compose several functions together. More specifi cally, if you have a func-
tion call that looks like (g (f (x)), you can rewrite it to read as ((comp g f) x).

To provide a more practical example, say you wanted to minify some JavaScript, or read in a
JavaScript fi le and remove all of the new lines and extra whitespace, so that it requires less informa-
tion to transfer from the server to the browser. You can accomplish this task by composing the com-
mon string functions provided by Clojure, str/join, str/trim, str/split-lines, as shown here:

 (defn minify [input]
 (str/join (map str/trim (str/split-lines input))))

This can then be rewritten using the comp function to look like the following:

(def minify (comp str/join (partial map str/trim) str/split-lines))

Notice how the ordering of the functions passed to comp retain their original order of the last func-
tion being applied fi rst, working your way back to the beginning of the list. Also we modifi ed it a bit
to leverage partial with the map and str/trim functions, to create a function that operates on a
collection, since str/trim only operates on a single string.m

Embracing Laziness
Clojure itself is not considered to be a lazy language in the same sense that a language like Haskell
is; however, it does provide support for creating and using lazy sequences. In fact, most of the built
in functions like map, filter, and reduce generate lazy sequences for you without you probably
even knowing it. You can see this here:

user> (def result (map (fn [i] (println ".") (inc i)) '[0 1 2 3]))
#'user/result

user> result
.
.
.
.
(1 2 3 4)

When you evaluate the fi rst expression, you don’t see any output printed to the console. Had this
been a non-lazy sequence, you would have seen the output printed to the screen immediately,
because it would have evaluated the println expression at the time of building the sequence.
Instead, the output is not printed until you ask Clojure to show you what is in the result symbol, and
it has to fully realize what’s inside the sequence. This is exceptionally useful, because the computa-
tion inside the function that you pass to map may contain some fairly expensive operation, and that

12 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

expensive operation by itself may not be an issue. Yet, when the operation is executed, the execution
of your application can be slowed by several or even hundreds of times.

Another useful example of a lazy sequence in action is when representing an infi nite set of numbers.
If you have a set of all real numbers, or a set of all prime numbers, you can set all of these numbers
in the Fibonacci sequence as shown here.

(def fib-seq
 (lazy-cat [1 1] (map + (rest fib-seq) fib-seq)))

(take 10 fib-seq)
-> (1 1 2 3 5 8 13 21 34 55)

This sequence is defi ned using a lazy sequence, and next you will ask Clojure to give you the fi rst
10 numbers in a sequence. In a language that did not support this level of laziness, this type of data
modeling would simply not be possible.

Another example of how this can be useful is by infi nitely cycling through a fi nite collection. For
example, if you want to assign an ordinal value to every value in a collection for an example group
of a list of people into four groups, you can write something similar to the following:

(def names '["Christia" "Arline" "Bethann" "Keva" "Arnold" "Germaine"
 "Tanisha" "Jenny" "Erma" "Magdalen" "Carmelia" "Joana"
 "Violeta" "Gianna" "Shad" "Joe" "Justin" "Donella"
 "Raeann" "Karoline"])

user> (mapv #(vector %1 %2) (cycle '[:first :second :third :fourth]) names)
[[:first "Christia"] [:second "Arline"] [:third "Bethann"] [:fourth "Keva"]
 [:first "Arnold"] [:second "Germaine"] [:third "Tanisha"] [:fourth "Jenny"]
 [:first "Erma"] [:second "Magdalen"] [:third "Carmelia"] [:fourth "Joana"]
 [:first "Violeta"] [:second "Gianna"] [:third "Shad"] [:fourth "Joe"]
 [:first "Justin"] [:second "Donella"] [:third "Raeann"] [:fourth "Karoline"]]

If you map over multiple collections, you will apply the function provided to the fi rst item in the fi rst
collection, the fi rst item in each successive collection, and then the second and so forth, until one of
the collections is completely exhausted. So, in order to map the values :first, :second, :third,
and :fourth repeatedly over all the names, without having to know how many names exist in the
collection, you must fi nd a way to cycle over and over repeatedly through the collection. This is
what cycle and infi nite lazy collections excel at.

When You Really Do Need to Mutate
Just because Clojure favors dealing with values doesn’t mean you completely do away with mutable
state. It just means you greatly limit mutable state, and instead use quarantine in your specifi c area
of code. Clojure provides a few mechanisms to manage mutable state.

Atoms
Using Atoms is the fi rst and simplest mechanism for handling mutable state provided by Clojure.
Atoms provide you with a means to manage some shared state in a synchronous, uncoordinated,

Functional Thinking ❘ 13

or independent manner. So, if you need to only manage a single piece of mutable state at a time,
then Atoms are the tool you need.

Up to this point, we’ve primarily focused on values; however, Atoms are defi ned and used in a
different way. Since Atoms represent something that can potentially change, out of necessity they
must represent some reference to an immutable structure. An example of how to defi ne an Atom is
shown here.

user> (def app-state (atom {}))
#'user/app-state
user> app-state
#atom[{} 0x1f5b7bd9]

We’ve defi ned an Atom containing an empty map with a stored reference in app-state. As you can
see by the output in the repl, the Atom stores a memory location to the map. Right now it doesn’t
do a whole lot, so let’s associate some values into the map.

user> (swap! app-state assoc :current-user "Jeremy")
{:current-user "Jeremy"}
user> app-state
#atom[{:current-user "Jeremy"} 0x1f5b7bd9]
user> (swap! app-state assoc :session-id "some-session-id")
{:current-user "Jeremy", :session-id "some-session-id"}
user> app-state
#atom[{:current-user "Jeremy", :session-id "some-session-id"} 0x1f5b7bd9]

To modify app-state, Clojure provides you with two different functions called swap! and reset!,
both of which atomically modify the value pointed to by the app-state reference. The swap! func-
tion is designed to take a function that will operate on the value stored in the reference, and will
swap out the value with the value returned as a result of executing the function. In the preceding
example we provided swap! with the assoc function to associate a new value into the map for a
given keyword.

To simply replace the value referenced in app-state you can use the reset! function, and provide it
with a new value to store in the Atom as shown here:

user> (reset! app-state {})
{}
user> app-state
#atom[{} 0x1f5b7bd9]

You can see that the app-state now references an empty map again.

Now that you know how to store the shared state in your Atom, you may be wondering how you get
the values back out. In order to access the state stored in your Atom, use the deref/@ reader macro
as shown here:

user> (swap! app-state assoc :current-user "Jeremy" :session-id "some-session-id")
{:current-user "Jeremy", :session-id "some-session-id"}
user> (:current-user @app-state)
"Jeremy"
user> (:session-id @app-state)

14 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

"some-session-id"
user> (:foo @app-state :not-found)
:not-found

Once you de-reference your Atom using the deref/@ reader macro, you can then interact with your
app-state, just as if it were a map again.

Refs
While Atoms provide you with a means to manage some shared mutable state for a single value,
they are limited by the fact that if you need to coordinate changes between multiple objects, such
as the classic example of transferring money from one account to another, you need to use transac-
tion references or Refs for short. Transaction references operate similar to how you would expect
database transactions to use a concurrency model called Software Transactional Memory, or STM.
In fact, Refs fulfi ll the fi rst three parts required for ACID compliancy: Atomicity, Consistency, and
Isolation. Clojure does not concern itself with Durability, however, since the transactions occur in
memory.

To illustrate why you can’t just use Atoms for coordinated access, consider the following example.

user> (def savings (atom {:balance 500}))
#'user/savings
user> (def checking (atom {:balance 250}))
#'user/checking
user> (do
 (swap! checking assoc :balance 700)
 (throw (Exception. "Oops..."))
 (swap! savings assoc :balance 50))

Exception Oops... user/eval9580 (form-init1334561956148131819.clj:66)
user> (:balance @checking)
700
user> (:balance @savings)
500

Here two Atoms called savings and checking are defi ned, and we attempt to modify both of them
in a do block. We are, however, throwing an exception in between updating the two Atoms. This
causes our two accounts to get out of sync. Next, let’s look at the same example using Refs.

user> (def checking (ref {:balance 500}))
#'user/checking
user> (def savings (ref {:balance 250}))
#'user/savings
user> (dosync
 (commute checking assoc :balance 700)
 (throw (Exception. "Oops..."))
 (commute savings assoc :balance 50))

Exception Oops... user/eval9586/fn--9587 (form-init1334561956148131819.clj:6)
user> (:balance @checking)
500
user> (:balance @savings)
250

As you can see, you create Refs and read values out of them similar to how we did that with Atoms
earlier. There are a few minor differences, however, in how you update the value stored in the Ref.

Functional Thinking ❘ 15

We use commute rather than swap!, and all update operations must perform on the Refs within a
dosync block.

Nil Punning
If you’re at all experienced in Java, you are very familiar with the dreaded NullPointerException.
It’s probably one of the most prolifi c errors encountered when developing in Java, so much so that
the inventor of the Null reference, Tony Hoare, even gave a talk several years ago stating how big
of a mistake it was (http://www.infoq.com/presentations/Null-References-The-Billion-
Dollar-Mistake-Tony-Hoare). It seems odd that everything else, with the exception of primitive
values, is an Object, except for null. This has led to several workarounds in languages, such as
Optional in Java, null safe object navigation in Groovy, and even in Objective-C you send messages
to nil and then just happily ignore them.

Clojure, being a Lisp, adopts the philosophy of nil punning. Unlike Java, nil has a value, and it
simply means “no answer.” It can also mean different things in different contexts.

When evaluated as a Boolean expression, like many other dynamic typed languages, it will be equiv-
alent to false.

user> (if nil "true" "false")
"false"

nil can also be treated like an empty Seq. If you call first on nil, you get a returned nil, because
there is no fi rst element. If you then call last on nil, you also unsurprisingly get nil. However,
don’t assume that nil is a Seq, because when you call seq on nil you will get a false return.

user> (first nil)
nil
user> (last nil)
nil
user> (second nil)
nil
user> (seq? nil)
false

Unlike many other Lisps, Clojure does not treat empty lists, vectors, and maps as nil.

user> (if '() "true" "false")
"true"
user> (if '[] "true" "false")
"true"
user> (if '{} "true" "false")
"true"

Because nil can take on many meanings, you must be mindful to know when nil means false and
when it means nil. For example, when looking for a value in a map, the value for a key can be nil.
To determine whether or not it exists in the map, you have to return a default value.

user> (:foo {:foo nil :bar "baz"})
nil
user> (:foo {:foo nil :bar "baz"} :not-found)
nil
user> (:foo {:bar "baz"} :not-found)
:not-found

16 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

Unlike Java, nil is everywhere and for functions return nil. Most functions are/should be written
to handle a passed in nil value. “Using nil where it doesn’t make sense in Clojure code is usually
a type error, not a NullPointerException, just as using a number as a function is a type error.”
(http://www.lispcast.com/nil-punning)

The Functional Web
It’s interesting to see how web programming has evolved over the years. Many different paradigms
have come and gone, with some better than others, and yet we haven’t seen the end of this evolu-
tion. In the early days of the dynamic web back in the 1990s we saw technologies such as CGI, and
languages such as Perl, PHP, and ColdFusion come into popularity. Then, with the rise of object-
oriented programming, distributed object technologies such as CORBA and EJB rose up, along with
object-centric web service technology such as SOAP, as well as object-focused web programming
frameworks such as ASP.NET and JSF.

Recent years have seen a shift toward a more RESTful, micro-service based architecture. Nobody
uses CORBA anymore, and even SOAP is a dirty word in many circles. Instead, web programming
has started to embrace HTTP and its stateless nature and focus on values. Similar to how functional
programming has gained popularity because of the rise in number of cores in modern day computers
and the necessity of concurrent programming, the web also needs ways to deal with scaling horizon-
tally rather than just vertically.

So what qualities, if any, does web programming in recent years share with functional program-
ming? At its heart, your endpoints can be thought of as functions that take an HTTP request and
transform them into an HTTP response. The HTTP protocol itself is also stateless in nature. True,
there are things like cookies and sessions, but those merely simulate some sort of state through a
shared secret between the client and server. For the most part, the REST endpoints can be thought
of as being referentially transparent, which is why caching technologies are so prevalent.

That’s not to say there aren’t aspects of web programming that are not very functional. Obviously, it
would be very diffi cult to get anything done without modifying some state somewhere. However, it
seems like web programming shares as much if not more in common with functional programming
than it does with object-oriented programming. In fact, you may fi nd that there’s much more oppor-
tunity for composability and reuse than with the component-based technologies that have fallen out
of favor.

DOING OBJECT-ORIENTED BETTER

Object-oriented programming promised reusable components, and in many ways failed to deliver.
Functional programming delivers on this promise where object-oriented programming couldn’t. It
may surprise you, but Lisp has been doing object-oriented programming since before Java existed.
Most object-oriented languages, by defi nition, defi ne everything as being an object. The problem
is that, by forcing everything to fi t into this mold of everything being an object, you end up with

Doing Object-Oriented Better ❘ 17

objects that exist only to “escort” methods, as cleverly explained in the excerpt from Steve Yegge’s
post Execution in the Kingdom of Nouns below.

In Javaland, by King Java’s royal decree, Verbs are owned by Nouns. But they’re
not mere pets; no, Verbs in Javaland perform all the chores and manual labor in
the entire kingdom. They are, in effect, the kingdom’s slaves, or at very least the
serfs and indentured servants. The residents of Javaland are quite content with
this situation, and are indeed scarcely aware that things could be any different.

Verbs in Javaland are responsible for all the work, but as they are held in
contempt by all, no Verb is ever permitted to wander about freely. If a Verb is to
be seen in public at all, it must be escorted at all times by a Noun.

Of course “escort,” being a Verb itself, is hardly allowed to run around naked;
one must procure a VerbEscorter to facilitate the escorting. But what about
“procure” and “facilitate?” As it happens, Facilitators and Procurers are both
rather important Nouns whose job is the chaperonement of the lowly Verbs
“facilitate” and “procure,” via Facilitation and Procurement, respectively.

The King, consulting with the Sun God on the matter, has at times threatened to
banish entirely all Verbs from the Kingdom of Java. If this should ever to come
to pass, the inhabitants would surely need at least one Verb to do all the chores,
and the King, who possesses a rather cruel sense of humor, has indicated that his
choice would be most assuredly be “execute.”

The Verb “execute,” and its synonymous cousins “run,” “start,” “go,”
“justDoIt,” “makeItSo,” and the like, can perform the work of any other Verb
by replacing it with an appropriate Executioner and a call to execute(). Need
to wait? Waiter.execute(). Brush your teeth? ToothBrusher(myTeeth).go(). Take
out the garbage? TrashDisposalPlanExecutor.doIt(). No Verb is safe; all can be
replaced by a Noun on the run.

http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns

.html

At the heart of object-oriented programming is the concept of organizing your programs through
creating classes containing the interesting things about a particular object and the things your
objects can do. We call these things classes. We can then create more specialized versions of a class
through inheritance. The canonical example of this is describing a program that is responsible for
describing shapes (see Figure 1-2).

18 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

Rectangle
length
width
area()

Shape
area()

Square
side
area()

Triangle
base
height
area()

Circle
radius
area()

FIGURE 1-2

In the diagram in Figure 1-2 you can see that a generic class of Shape is defi ned, and then several
classes that inherit from shape are created, with each defi ning their own implementation of area().
The drawing application sends a message to each of the shapes asking for the area, so at runtime the
application determines which implementation to call based on what type of shape it is. This is more
commonly known as polymorphism. The key takeaways here are that the behavior belongs to and is
defi ned by the classes themselves, and the methods are invoked on a particular object, and the spe-
cifi c implementation is then decided by the class of the object.

Polymorphic Dispatch with defmulti
Clojure, like many Lisps before it, takes a radically different approach to polymorphism by leverag-
ing a concept called generic functions. This opens up a whole world of possibilities that just were
not possible, and for the most part are still not possible, in object-oriented languages. In Clojure,
you are not limited to runtime polymorphism on types alone, but also on values, metadata, and rela-
tionships between one or more arguments and more.

To rewrite our example above you would start by defi ning a generic function for area as shown
here.

(defmulti area (fn [shape & _]
 shape))

The generic function consists of fi rst a name for the generic function, then a dispatch function to
help Clojure fi gure out which implementation to call. In this case it’s going to inspect the value of
the fi rst argument to our function. Then you can implement the various area functions for our dif-
ferent types of shapes like the following.

(defmethod area :triangle
 [_ base height]
 (/ (* base height) 2))

Doing Object-Oriented Better ❘ 19

(defmethod area :square
 [_ side]
 (* side side))

(defmethod area :rectangle
 [_ length width]
 (* length width))

(defmethod area :circle
 [_ radius]
 (* radius radius Math/PI))

Here you’ve defi ned four implementations for the area function. You do this by, instead of defi n-
ing them using defn, using the special form defmethod, followed by the name of the generic func-
tion, and the value from the dispatch function that you would like to match on. Notice how in the
parameter lists for each of these functions, you can safely ignore the fi rst parameter being passed in
because it was only used for purposes of dispatch. You can see the actual usage of these below.

user> (area :square 5)
25
user> (area :triangle 3 4)
6
user> (area :rectangle 4 6)
24
user> (area :circle 5)
78.53981633974483

So, you may be wondering how this is any better than what we already have in object-oriented
programming. Let’s take a look at another example. Suppose you were creating a function that
needed to apply a 5% surcharge if a customer lives in New York and a 4.5% surcharge if they live in
California. You could model a very simplistic invoice as shown here.

{:id 42
:issue-date 2016-01-01
:due-date 2016-02-01
:customer {:name "Foo Bar Industries"
 :address "123 Main St"
 :city "New York"
 :state "NY"
 :zipcode "10101"}
:amount-due 5000}

Writing a similar method that handles this logic in Java would look something like the following.

public BigDecimal calculateFinalInvoiceAmount(Invoice invoice) {
 if (invoice.getCustomer().getState().equals("CA")) {
 return invoice.getAmount() * 0.05;
 } else if (invoice.getCustomer.getState().equals("NY")) {
 return invoice.getAmount() * 0.045;
 } else {
 return invoice.getAmount();
 }

}

20 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

In order to add another state that is needed to add a surcharge for, you must modify this method
and add another else if conditional. If you wrote this example in Clojure, it would look like the
following.

(defmulti calculate-final-invoice-amount (fn [invoice]
 (get-in invoice [:customer :state])))

(defmethod calculate-final-invoice-amount "CA" [invoice]
 (let [amount-due (:amount-due invoice)]
 (+ amount-due (* amount-due 0.05))))

(defmethod calculate-final-invoice-amount "NY" [invoice]
 (let [amount-due (:amount-due invoice)]
 (+ amount-due (* amount-due 0.045))))

(defmethod calculate-final-invoice-amount :default [invoice]
 (:amount-due invoice))

Now, if sometime in the future you decide to add a surcharge to another state, you can simply add
another defmethod to handle the logic specifi c to that case.

Defi ning Types with deftype and defrecord
If you come from a background in object-oriented languages, you may feel compelled to immedi-
ately start defi ning a bunch of custom types to describe your objects, just as you would if you were
designing an application in an object-oriented language. Clojure strongly encourages sticking to
leveraging the built in types, but sometimes it’s benefi cial to defi ne the data type so you can lever-
age things like type-driven polymorphism. In most programs written in object-oriented languages,
the classes you defi ne generally fall into one of two categories: classes that do interesting things, and
classes that describe interesting things.

For the fi rst of these things Clojure provides you with the deftype, and for the latter you can use
defrecord. Types and records are very similar in how they’re defi ned and used, but there are some
subtle differences (see Table 1-1).

TABLE 1-1: deftypes and defrecords

DEFTYPE DEFRECORD

Supports mutable fi elds. Does not support mutable fi elds.

Provides no functionality other than
constructor.

Behaves like a PersistentMap and provides default
implementations for:

➤ Value based hashCode and equals

➤ Metadata support

➤ Associative support

➤ Keyword accessors for fi elds

Doing Object-Oriented Better ❘ 21

DEFTYPE DEFRECORD

Provides reader syntax for instanti-
ating objects using a fully qualifi ed
name and argument vector. Passes
argument vector directly to construc-
tor. For example: #my.type[1 2
"a"].

Provides additional reader syntax to instantiate objects
using a fully qualifi ed name and argument map. For
example: #my.type{:a "foo" :b "bar"}.

Provides a special function
->YourType, where YourType is
the name of your custom type, that
passes its arguments to the construc-
tor of your custom type.

Provides a special function, map->YourRecord, where
YourRecord is the name of your custom record, that
takes a map and uses it to construct a record from it.

Before looking at how to defi ne and use deftype and defrecord, you must fi rst look at protocols.

Protocols
If you’re at all familiar with Java, you can think of protocols as being very similar to interfaces.
They are a named set of functions and their arguments. In fact, Clojure will generate a correspond-
ing Java interface for each of the protocols you defi ne. The generated interface will have methods
corresponding to the functions defi ned in your protocol.

So, let’s revisit the Shapes example from earlier. If you create a protocol for Shapes, it looks some-
thing like the following.

(defprotocol Shape
 (area [this])
 (perimeter [this]))

Next, create records for Square and Rectangle that implement the protocol for Shape as shown
here.

(defrecord Rectangle [width length]
 Shape
 (area [this] (* (:width this) (:length this)))
 (perimeter [this] (+ (* 2 (:width this)) (* 2 (:length this)))))

(defrecord Square [side]
 Shape
 (area [this] (* (:side this) (:side this)))
 (perimeter [this] (+ (* 4 (:side this)))))

Then create and call the functions to calculate the area as shown here.

user> (def sq1 (->Square 4))
#'user/sq1
user> (area sq1)
16
user> (def rect1 (->Rectangle 4 2))

22 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

#'user/rect1
user> (area rect1)
8

Alternatively, you can also create your records using the map->Rectangle and map->Square func-
tions as shown here.

user> (def sq2 (map->Square {:side 3}))
#'user/sq2
user> (def rect2 (map->Rectangle {:width 4 :length 7}))
#'user/rect2
user> (into {} rect2)
{:width 4, :length 7}
user> rect2
#user.Rectangle{:width 4, :length 7}
user> (into {} rect2)
{:width 4, :length 7}
user> (:width rect2)
4
user> (:length rect2)
7
user> (:foo rect2 :not-found)
:not-found

Also, recall that earlier records were discussed, which are basically wrappers around
PersistentMap. This of course means that you can interact with your records as if they were maps
in Clojure. You can access the members of your Rectangle object just as if it were a map, and you
can even construct new maps from it using into.

Reify
Sometimes you want to implement a protocol without having to go through the trouble of defi ning a
custom type or record. For that, Clojure provides reify. A quick example of this can be seen here.

(def some-shape
 (reify Shape
 (area [this] "I calculate area")
 (perimeter [this] "I calculate perimeter")))

user> some-shape
#object[user$reify__8615 0x221f1bd "user$reify__8615@221f1bd"]
user> (area some-shape)
"I calculate area"
user> (perimeter some-shape)
"I calculate perimeter"

You can think of reify as the Clojure equivalent of doing anonymous inner classes in Java. In fact,
you can use reify to create anonymous objects that extend Java interfaces as well.

Persistent Data Structures ❘ 23

PERSISTENT DATA STRUCTURES

With most imperative languages, the data structures you use are destructive by nature, replacing
values in place. This becomes problematic because if you use destructive data structures, you can-
not long pass them around with the confi dence that nothing else has come along and modifi ed the
values.

For example, if you update the second index of the list L1, shown above, in a language such as Java,
you see that the value is updated in place and the list L1 is no longer the same list as before. So any-
thing that may have been using L1 for calculations will have changed as well (see Figure 1-3).

1

L1

3 4 52

1

L1'

3 4 52
42

Clojure, on the other hand, continues with its tradition of focusing on values, and implements many
of its data collections in a persistent manner, meaning that any time you do something to modify a
collection, it returns a shiny new collection that may also share some of its structure with the origi-
nal. You may be thinking to yourself that sharing elements between structures like this would be
problematic, but because the elements themselves are immutable, you don’t need to be concerned.

The example in Figure 1-4 shows a similar update using a persistent list data structure. Notice how
when you update the second index in the list L1, you instead create a new list L2, thus creating new
copies of all the nodes up to the point where we’re updating. This then shares structure with the rest
of the original list.

1

L1

3 4 52

1

L2

42

FIGURE 1-4

24 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 09/06/2017 Page 24

If you were to append a list L2 to the end of L1, it would be returned L3, which is basically a copy
of L1 with the exception of the last node that then points to the beginning of L2. This maintains the
integrity of both L1 and L2, so any function that was previously using them can continue to do so
without worrying about the data being changed out from under them.

Let’s take a look at another example (see Figure 1-5), but this time we’ll look at a simplistic binary
search tree. If you start with a tree L1 and attempt to add the value 6 to the tree, you see that copies
of all the nodes are made containing the path to where you want to add the new node. Then in the
new root node (L2), you simply point to the right sub-tree from L1.

1

L1 L2

3 4 5 62

1

L3

32

FIGURE 1-5

Next, let’s take a look at how to implement the binary tree in Clojure. Start by defi ning a protocol
called INode as shown here.

(defprotocol INode
 (entry [_])
 (left [_])
 (right [_])
 (contains-value? [_ _])
 (insert-value [_ _]))

Let’s examine a few pieces of functionality for the example. Let’s look at functions that retrieve the
left and right sub-trees, regardless of whether the value exists in our tree, with the ability to add
new values to the tree. Once you have the protocol defi ned, you can begin to implement the binary
search tree by defi ning a new type using deftype as shown below.

(deftype Node [value left-branch right-branch]
 INode
 (entry [_] value)
 (left [_] left-branch)
 (right [_] right-branch)
 (contains-value? [tree v]
 (cond
 (nil? tree) false
 (= v value) true
 (< v value) (contains-value? left-branch v)
 (> v value) (contains-value? right-branch v)))
 (insert-value [tree v]
 (cond
 (nil? tree) (Node. v nil nil)
 (= v value) tree
 (< v value) (Node. value (insert-value left-branch v) right-branch)
 (> v value) (Node. value left-branch (insert-value right-branch v)))))

Persistent Data Structures ❘ 25

So let’s try out the new code.

user> (def root (Node. 7 nil nil))
#'user/root
user> (left root)
nil
user> (right root)
nil
user> (entry root)
7
user> (contains-value? root 7)
true

So far so good. Now let’s see if the tree contains 5.

user> (contains-value? root 5)
IllegalArgumentException No implementation of method: :contains-value? of protocol:
 #'user/INode found for class: nil clojure.core/-cache-protocol-fn
 (core_deftype.clj:554)

What happened? If you investigate the error message it’s trying to tell you that nil doesn’t imple-
ment the protocol and thus it doesn’t know how to call the function contains-value? on nil. You
can fi x this by extending the protocol onto nil as shown here.

(extend-protocol INode
 nil
 (entry [_] nil)
 (left [_] nil)
 (right [_] nil)
 (contains-value? [_ _] false)
 (insert-value [_ value] (Node. value nil nil)))

This now allows you to refactor the Node type to remove the redundant checks for nil to look like
the following.

(deftype Node [value left-branch right-branch]
 INode
 (entry [_] value)
 (left [_] left-branch)
 (right [_] right-branch)
 (contains-value? [tree v]
 (cond
 (= v value) true
 (< v value) (contains-value? left-branch v)
 (> v value) (contains-value? right-branch v)))
 (insert-value [tree v]
 (cond
 (= v value) tree
 (< v value) (Node. value (insert-value left-branch v) right-branch)
 (> v value) (Node. value left-branch (insert-value right-branch v)))))

Now that we have that fi xed, let’s try this out again.

user> (contains-value? root 5)
false

26 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

Excellent. Now let’s create a tree with a few more nodes.

user> (def root (Node. 7 (Node. 5 (Node. 3 nil nil) nil) (Node. 12
 (Node. 9 nil nil) (Node. 17 nil nil))))
#'user/root

The above code should produce a tree with the same structure as L1 shown in Figure 1-6.

L1

7

5

3 9

12

17

FIGURE 1-6

You can validate that assumption with the following commands.

user> (left root)
#object[user.Node 0x5cedcfe8 "user.Node@5cedcfe8"]
user> (entry (left root))
5
user> (entry (left (left root)))
3
user> (entry (right root))
12
user> (entry (right (right root)))
17

As you can see, when you ask for the value of the left sub-tree from root, you get the value 5, and
when you ask for the left of that sub-tree, you get the value 3. Now, let’s take a look at the identity
value for the left and right sub-trees from root respectively.

user> (identity (left root))
#object[user.Node 0x5cedcfe8 "user.Node@5cedcfe8"]
user> (identity (right root))
#object[user.Node 0x124ee325 "user.Node@124ee325"]

Your values may differ slightly from above, but they should look similar. Next, let’s add a new value
of 6 to the tree, which should be inserted to the right of the 5 node. After you insert the new value,
take a look at the identity values again from the root node of the new tree you just created.

user> (def l (insert-value root 6))
#'user/l

Shaping the Language ❘ 27

user> (identity (left l))
#object[user.Node 0x167286ec "user.Node@167286ec"]
user> (identity (right l))
#object[user.Node 0x124ee325 "user.Node@124ee325"]

You should see that a new Node for the left sub-tree of our tree is created, but the new list is point-
ing at the same instance of the right sub-tree as the original tree did. The result of the inserts should
now produce the structure shown in Figure 1-7. With the original list still intact, the new list shares
some structure with the original.

L1

7 7

5

5

6

9 17

12

3

L2

FIGURE 1-7

If you want to read more about the way that Clojure implements some of its persistent
data structures, there are a pair of great articles explaining the implementation details found
at http://blog.higher-order.net/2009/02/01/understanding-clojures-persis
tentvector-implementation and http://blog.higher-order.net/2009/09/08/

understanding-clojures-persistenthashmap-deftwice.

SHAPING THE LANGUAGE

You may have heard at one point in time Lisp being described as a “programmable programming
language,” and that Lisp is homoiconic, or even how “code is data, data is code.” What does this
really mean for you as a programmer though? If you have a background in C, you may be familiar
with the term “macro”; however, as stated earlier in this chapter, forget everything you think you
know about macros. Macros in Clojure are a much more powerful construct than what is available
in any imperative language. This is so powerful that entire books have been written on macros alone
(see Let Over Lambda and Mastering Clojure Macros).

Macros in Clojure allow you to rewrite the normal syntax rules of Clojure in order to shape the
language to fi t your problem domain. While some languages offer some sort of mechanism to do
metaprogramming, and the ability to modify default behavior, none of them exhibit quite the power
of Clojure’s macro system. Many frameworks in other languages seem to abuse this power, and this

28 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

often leads to tricky to fi nd bugs and confusion about where certain functionality comes from. So,
you must exercise caution when deciding whether or not to use a macro.

So, what exactly constitutes a good use of macros and what doesn’t? One exemplary example of
how you can leverage macros to create a powerful and expressive DSL is the routes library in the
Compojure framework. The routes library defi nes macros for creating ring handler mappings using
a grammar that make perfect sense in this context. We see an example of the defroutes macro
coupled with the various macros that map to the HTTP verbs:

(defroutes app-routes
 (GET "/" [] (index))
 (GET "/books" [] (get-books))
 (GET "/books/:id" [id] (find-book id))
 (POST "/books" [title author] (add-book title author))

By leveraging macros, Compojure is able to change the semantics of how the language works.
It allows you to defi ne the mapping between URL and handler in a more natural fashion. The
defroutes macro allows you to create a named set of routes, in this case called app-routes. Then
a list of routes is provided that is evaluated by Ring until it fi nds one that matches. The routes them-
selves are defi ned using a macro that allows you to specify the HTTP verb, followed by the route,
with the ability to defi ne path variable bindings. Next we list any variables that will be bound.
These can come from URL parameters, or in the case of the POST route, from the form parameters
in the request. Finally, you are able to either defi ne the actual handler inline, if it’s simple enough, or
have the route dispatch to a function defi ned elsewhere.

Another fi ne example of the power of macros and how you can build a natural fl uent API is the
Honey SQL library found at https://github.com/jkk/honeysql. It allows you to defi ne SQL
queries using Clojure’s built in data structures and then provides a multitude of functions and mac-
ros that transform them into clojure.java.jdbc, and compatible parameterized SQL that you
can then pass directly to jdbc/query, jdbc/insert!, and the like. Let’s take a look at one of the
examples from their documentation.

(def sqlmap {:select [:a :b :c]
 :from [:foo]
 :where [:= :f.a "baz"]})
(sql/format sqlmap)

=> ["SELECT a, b, c FROM foo WHERE (f.a = ?)" "baz"]

Honey SQL even defi nes a helper function called build that helps you defi ne these map objects as
shown below.

(sql/build :select :*
 :from :foo
 :where [:= :f.a "baz"])

=> {:where [:= :f.a "baz"], :from [:foo], :select [:*]}

Leveraging the build function allows you to still use the same style of specifying the query; however,
it doesn’t require all of the extra brackets as before, making it just that much more concise.

Summary ❘ 29

Clojure also offers some really nice metaprogramming abilities through defprotocol. Protocols are
similar to Java interfaces in that they defi ne a specifi c set of functions and their signatures, and even
generate a corresponding interface that you can use in Java, which we’ll cover later. The other thing
you can do with protocols, though, is extend existing types, including fi nal classes in Java. This
means that you can add new methods to things like Java’s String class as shown here.

(defprotocol Palindrome (is-palindrome? [object]))

(extend-type java.lang.String
 Palindrome
 (is-palindrome? [s]
 (= s (apply str (reverse s)))))

(is-palindrome? "tacocat")

=> true

You can see how to defi ne a protocol called Palindrome, and defi ne it as having a single function
called is-palindrome?. Next, extend the java.lang.String class to add functionality to Java’s
built-in String class. Then, show it in action by calling is-palindrome? with the value "tacocat".

As mentioned before, this level of modifying the language and types should be carefully considered
before you decide to use it. It often leads to the same problems mentioned before with overuse of
metaprogramming facilities and a lack of clarity about where things may be defi ned, especially when
you can get by with just defi ning a regular function.

Clojure offers some very powerful ways to shape the language to the way you want to work. How
you decide to use it is mostly a matter of personal preference.

SUMMARY

 In this chapter you have seen how Clojure is different than most other mainstream languages in use
today. As defi ned at the beginning of the chapter, if you don’t come at it with a clear mind and learn
how to do things the Clojure way, you’ll simply be writing the same old code in a different syntax.
Enlightenment will not come overnight; however, if you do approach it with an open mind it will
likely fundamentally change the way you think about programming in general. As stated by Eric
Raymond, “Lisp is worth learning for the profound enlightenment experience you will have when
you fi nally get it; that experience will make you a better programmer for the rest of your days, even
if you never actually use Lisp itself a lot.”

		2017-09-14T14:15:28-0400
	Certified PDF 2 Signature

