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1
DATA

Arguably, the most important role of the applied mathematical scientist is to model
and analyze data. While this statement may appear to be obvious, just how to proceed
given any set of data remains as much art as it does science. Should the data be cali-
brated, normalized, transformed, smoothed, filtered, separated into subclasses? These
are just a few of the approaches one can take to data before beginning any substan-
tial analysis. Therefore, this chapter will be dedicated to a select few methods: Data
visualization, data transformation, data filtering, data clustering (not to be confused
with clustered data of Chapter 4), and data quality.

1.1 DATA VISUALIZATION

Yogi Berra, the Baseball Hall of Fame catcher for the New York Yankees 1946–1965
and accidental metaphysician once remarked [2; https://en.wikipedia.org/wiki/Yogi_
Berra]

You can observe a lot by watching.

Fanciful or not, this comment takes to heart the power of modern computing and
the MATLAB software system in particular. In the Glossary of MATLAB Func-
tions written for this text, the reader will find a number of specialized visualization
M-files designed to plot data that have been processed or transformed. This includes
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principal component axes and discriminant analysis feature extraction coordinates
for multivariate data. For single variable matched-pairs data, Bland–Altman plots of
allowable total difference zones can be constructed.

More practically, the question this section will focus on is “What can be inferred
or deduced from these data?”

Consider a question raised in Chapter 5. That is, height, weight, and age data for
every 2014–2015 season active National Basketball Association (NBA) and National
Hockey League (NHL) player are available from www.nba.com and www.nhl.com,
respectively. For the sake of convenience, these data are summarized in two separate
MAT files contained in the software associated with this text. How do the heights
of the players from both leagues compare? Figures 5.1a and 5.1b of Chapter 5 pro-
vide the weighted histograms for the player height data. This is certainly one way to
examine these data. Alternately, a point-by-point plot of the data along with a means
of each collection of measurements is presented in Figure 1.1. The dots (∙) on the
upper graph represent the heights of the active 2014–2015 NHL players and the thick
line ( ) through the center of these data is the average height (indicated by the
symbol 𝜇NHL). In a similar manner, the dots (∙) on the lower portion of the graph
represent the active 2014–2015 NBA players with average height ( ) denoted by
𝜇NBA. Instinctively, the sense of the figure is that (on average) NBA players are taller
than NHL players. This is verified in Chapter 5 on hypothesis testing.

While the average player heights are statistically different (see Table 5.1 of
Chapter 5), the question of classification remains. More specifically, from the triple
of height, weight, and age, can such information be used to determine whether a par-
ticular player measurement (Ht, Wt, Age) indicates to which class (namely, NBA or

FIGURE 1.1 Professional athletes’ height data.
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FIGURE 1.2 Height, weight, age data for NBA and NHL players.

NHL) the player belongs? The answer is discussed in Chapter 4 on classification. The
raw data, obtained from www.nhl.com and www.nba.com, for the active players in
the 2014–2015 season can be viewed in Figure 1.2. What is the best approach to be
used in separating these groups? This will be the concern of the next section.

EXERCISES

1.1 Make plots of the NBA vs. NHL weight data. Do the same for the age data. Are
the differences plain from the graphs? These data are located in C:\Database\
Math_Biology\Chapter_1\Data as BasketballData.mat and Hockey
Data.mat. They are obtained via the MATLAB commands

Ddir = 'C:\Database\Math_Biology\Chapter_1\Data';
load(fullfile(Ddir,'BasketballData.mat'));
load(fullfile(Ddir,'HockeyData.mat'));

Hint: The weight data are B.Wt and D.Wt while the age data are B.Ages and
D.Ages.

1.2 DATA TRANSFORMATIONS

Once data have been recorded, how should they be treated so that the content of the
information contained therein is most plainly revealed? This question is unanswer-
able, as it presupposes there is any discriminatory information within the measure-
ments. There are, however, standard approaches that can be applied to make the data
more regular. These methods are listed sequentially.
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1.2.1 Normalization

The basic idea behind normalization is to collect a representative data set and then,
from each measurement within the set, subtract the mean and divide by the standard
deviation. If the data are multidimensional, this can be achieved by subtracting off
the mean vector and multiplying by the inverse of the associated covariance matrix.
This notion is made precise in Chapter 4, equation (4.5). As a review, suppose that
X ∈ 𝓜𝓪𝓽n× p(R) is the data matrix of n p-dimensional measurements from the same
source. For the NHL (Ht, Wt, Age) data, this means that n = 684 and p = 3. The
standard normalization of the data matrix X is

Z = (X − 1n×1 ⋅ m) ⋅ S−1. (1.1)

Here 1n×1 = [1, 1,…, 1]T is the n-dimensional column vector of 1’s, m = [m1,
m2,…, mp] is the p-dimensional row vector whose every element is the column mean
of the data matrix X. Finally, S = diag(s1, s2,…, sp) is the p × p diagonal matrix
whose nonzero entries are the column standard deviations of X (e.g., see Johnson and
Wichern [8] for details about normalization). Applying this transformation to the data
matrices for the (Ht, Wt, Age) NBA and NHL triplets results in the normalized data
displayed in Figure 1.3.

The reader can see that the normalized data provide a comparable display to the
unnormalized data.

Rather than simply normalizing the data, projecting these measurements into coor-
dinates that amplify differences is now prescribed.

FIGURE 1.3 Normalized NBA and NHL player (Ht, Wt, Age) data.
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FIGURE 1.4 Loadings for the NBA • and NHL ⬩ (Ht, Wt, Age) data.

1.2.2 Principal Components (Karhunen–Loève Transform)

In Section 4.3 (Chapter 4), the notion of principal components as an orthogonal set of
axes along the descending amounts of variation in a data matrix X is detailed. In par-
ticular, equations (4.9a)–(4.10d) present the principal component axes and projection
into PC space. The projection, defined in Chapter 4, equation (4.10d) is sometimes
referred to as the Karhunen–Loève transform. As noted in Chapter 4, the projec-
tion matrix is a product of the first 𝜌 singular values1 of the data matrix X and the
associated loading matrix. Here, 𝜌 is the desired number of principal components
(e.g., the number of PCs required to attain say 99.9% of the total data variation).
Figure 1.4 illustrates the loadings for the NBA/NHL (Ht, Wt, Age) data analysis.

To see how many PCs are required to meet a desired percentage of the total vari-
ance, a screeplot can be created. This is a depiction of the percentage of the total
variance captured by the number of principal components used as a function of the
normalized eigenvalues.

The data visualized in this graphic are taken from a four class, multivariate col-
lection of measurements in which one level of a disease is normal (no-disease) and
the remaining three are of increasingly serious levels. The screeplot in Figure 1.5
gives the following information. For levels 0–2, it is seen that 5–6 PCs provide the
vast majority of the variance information. At level 3, there are only 10 non-trivial
PCs with the bulk of the information contained in the first 5 PCs. The data have been
normalized as per (1.1).

1 For more information about linear algebra and singular values, see Appendix Section A.2.
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FIGURE 1.5 Screeplot for up to 12 PCs for multivariate data.

1.2.3 DAFE Coordinates

Discriminant analysis feature extraction (DAFE) coordinates are independent axes
along the direction of maximal discriminant information. The DAFE axes projection
mappingΠr into the first r DAFE coordinates is composed of the first r columns of the
orthogonal matrix from the singular value decomposition of the Fisher discriminant
matrix. This matrix F = C−1

pool ⋅ Cbtwn is described in equation (4.13b) of Section 4.4
(Chapter 4). The projection matrix Πr is defined via equation (4.10d) of Section 4.3
(Chapter 4). Figures 4.10 and 4.11 of Chapter 4 illustrate DAFE coordinates and the
corresponding weightings on each class projection.

The exercises will give the reader some experience in reduction of dimension via
DAFE coordinates and how such axes act to separate data classes.

EXERCISES

1.2 Figure 1.4 illustrates the PCA loadings for the NBA vs. NHL (Ht, Wt, Age) data.
Use the M-file scorecompare.m to plot the PCA scores for these data. These
data are obtained via the MATLAB commands

Ddir = 'C:\Database\Math_Biology\Chapter_1\Data';
load(fullfile(Ddir,'BasketballData.mat'));
load(fullfile(Ddir,'HockeyData.mat'));

1.3 How many DAFE coordinates are required to recover 99.9% of the discriminant
information contained in the NBA vs. NHL (Ht, Wt, Age) data? Use the M-files
dafe.m and dafeplot.m and the commands in Exercise 1.2 to project the data
into DAFE space and then plot it, respectively.
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1.3 DATA FILTERING

Data are by their very nature noisy. Indeed, data are measurements that are recorded
either via device or human beings. No machine can perfectly register a series of
measurements without some manner of error. And we humans are legendary for
our inability to accurately record and repeat measurements. It is this portion of our
humanity that motivates the design and development of machines to perform repet-
itive tasks. Consequently, any set of measurements must be viewed as inherently
imprecise.

Consider the simulated respiratory infection data from Chapter 3 (Figure 3.10b).
While these data follow what appears to be a regular sinusoidal pattern, it is evident
that there is plenty of “jitter” in the plot. One approach to filter the data is to smooth
the signal. This can be achieved in a number of ways. Two methods will be discussed:
Convolution and Fourier transforms.

1.3.1 Convolution and Smoothing

Again, referring to the respiratory infections data of Chapter 3, the question of how
to smooth this signal arises. Smoothing by convolution is one approach. If f(t) is an
integrable function, then the convolution of f with the function g is defined as

(f ⊙ g)(t) =

∞

∫
−∞

f (s) ⋅ g(t − s) ds. (1.2)

If g(t) is a “square wave” as indicated in Figure 1.6, then by convolving against
the function f, the nonzero portion of g smooths those portions of f of equal length

Square Wave

t

FIGURE 1.6 Square wave smoothing function.
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to g. Andrews and Shivamoggi [1] and Costa [3] contain discussions on convolution
and Fourier transforms (which will also be used to smooth signals).

The numerical algorithm used for smoothing a signal f(t) via a smoothing function
g(t) is presented in the next section. For the sake of simplicity, it will be assumed that
the nonzero portion of g consists of 2p points.

1.3.1.1 Convolution Smoothing Algorithm

(i) Convolve f with g via (1.2). Obtain 𝜙(t) = (f ⊙ g)(t).

(ii) Select the smoothing function g to have 2p elements. Remove the first
2p−1 − 1 and the last 2p−1 − 1 elements from the new convolution
vector 𝜙(t).

(iii) Normalize 𝜙(t) by the number of nonzero points in the smoothing func-
tion g.

Figure 1.7 illustrates the results of this smoothing approach. Observe that as
the number of elements in the smoothing vector increases so does the amount of
smoothing. As the amount of smoothing increases, however, the results exhibit two
deficiencies: Loss of amplitude and increase in “ghosting.” Ghosting or aliasing is
the artificial suppression of the smoothed data near the initial and terminal portions
of the signal. The first (loss of amplitude) is evident from the plot. At the end of the
smoothed functions, moreover, tails trail off to zero. This behavior largely ignores the
original data trend. This phenomenon is called aliasing (see, e.g., Costa [3] for more
details). The MATLAB code used to generate the smoothed functions displayed in
Figure 1.7 is presented below.

FIGURE 1.7 Smoothing for Ns = 8 (top right), 64 (lower left), and 256 (lower right)
elements.
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MATLAB Commands
(Smoothing via Convolution)

% Data directory …
Ddir = 'C:\Database\Math_Biology\Chapter_1\Data';
% … for the respiratory infection data.
data = load(fullfile(Ddir,'SEIR_Simulated_Data.mat'));
t = load(fullfile(Ddir,'SEIR_Time.mat'));
% Place the data and time into MATLAB vectors
D = data.D; T = t.T; clear data t
% Number of measurements (infected patients)
N = numel(D);
% Smoothing vectors of various lengths
s{1} = ones(1,2ˆ3); s{2} = ones(1,2ˆ6); s{3} = ones(1,2ˆ8);
% Number of elements per smoothing vector
Ns = cellfun(@numel,s);

% Convolve the data with the smoothing vectors s
for j = 1:numel(s);

% indices to be removed from the right and left portion of the convolution
iR = [1:(-1+Ns(j)/2),N-(-1+Ns(j)/2):N];
% Convolve D and s: (D ⊙ s)(t)
tmp = conv(D,s{j});
% Remove the points at the undesired indices
tmp(iR) = [];
% Normalize the convolution
Ds{j} = tmp/Ns(j);

end

1.3.2 Fourier Transform and Smoothing

Rather than using convolution to smooth a signal, the Fourier transform can be uti-
lized. Definitions for the transform and its inverse are provided in equations (1.3a)
and (1.3b). The basic idea is that the Fourier transform maps a time (or space)-based
function into frequency space. By eliminating high frequencies in the transformed
function, the inverse transform will smooth the frequency-truncated data. This is for-
malized via the algorithm and Figure 1.8.

F[f (t)](𝜔) = 1√
2𝜋 ∫

∞

−∞
f (t) e−it𝜔 dt (1.3a)

F
−1[F(𝜔)](t) = 1√

2𝜋 ∫
∞

−∞
F(𝜔) eit𝜔 d𝜔 (1.3b)
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FIGURE 1.8 Smoothing via Fourier transform.

Remarks:

(1) The notation F(𝜔) is often used in place of F[f (t)](𝜔). Also, the trans-
form and its inverse are frequently defined in the alternate forms F(𝜔) =
∫∞−∞ f (t) e−2𝜋it𝜔 dt and f (t) = ∫∞−∞ F(𝜔) e2𝜋it𝜔 d𝜔.

(2) The Heaviside function is the distribution whose values are 1 on the

positive real line. That is, H(x) =
{

1 for x ≥ 0
0 otherwise

. Thus, S(x, 1) =

H(x) − H(x − 1) is a square wave. More generally, S(x, x0) =
H(x) − H(x − x0) is the rectangular wave defined over [0, x0] and
S(x, [xa, xb]) = H(x − xa) − H(x − xb) is defined over [xa, xb].

1.3.2.1 Smoothing Algorithm Fourier Transform

(i) Apply the Fourier transform to the function f(t) and obtain F(𝜔).

(ii) Multiply F(𝜔) by S(𝜔, 𝜔0) to eliminate any frequencies greater than 𝜔0.
F0(𝜔) = F(𝜔) ⋅ S(𝜔, 𝜔0).

(iii) Apply the inverse Fourier transform to F0(𝜔).

(iv) Obtain the smoothed function f0(t) = F−1[F0(𝜔)](t).

These steps are illustrated in Figure 1.8 as upper left (step i), upper right (step ii),
lower left (step iii), and lower right (step iv). Since the function f(t) is obtained as
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the vector of measurements f = [f1, f2,…, fn], the discrete Fourier transform (DFT)
is used. The DFT and its inverse are provided via equations (1.4a) and (1.4b).

DFT[ f ] =

[
n∑

j=1

fj,
n∑

j=1

fj(e
−2𝜋i⋅(j−1)),

n∑
j=1

fj(e
−2𝜋i⋅2(j−1)),⋯ ,

n∑
j=1

fj(e
−2𝜋i⋅(n−1)⋅(j−1))

]
(1.4a)

IDFT[F] = 1
n

[
n∑

j=1

Fj,
n∑

j=1

Fj(e
2𝜋i⋅(j−1)),

n∑
j=1

Fj(e
2𝜋i⋅2(j−1)),⋯ ,

n∑
j=1

Fj(e
2𝜋i⋅(n−1)⋅(j−1))

]
(1.4b)

As with the smoothing via convolution, the greater the amount of smoothing, the
smaller the amplitude envelop on the smoothed function. The Fourier method does
not appear to present the problem of aliasing. The MATLAB code below is used to
compute the smoothed vector f0.

MATLAB Commands
(Smoothing via Fourier Transform)

% Data directory …
Ddir = 'C:\Database\Math_Biology\Chapter_1\Data';
% … for the respiratory infection data.
data = load(fullfile(Ddir,'SEIR_Simulated_Data.mat'));
t = load(fullfile(Ddir,'SEIR_Time.mat'));
% Place the data and time into MATLAB vectors
D = data.D; T = t.T; clear data t
% Number of measurements (infected patients)
N = numel(D);
% Take the (discrete) Fourier of the Respiratory data
F = fft(D);
% Form the square wave by removing all but the first 200 wavelengths.
S = ones(1,N); w = T/(2*pi); wo = w(200);
ind = w > wo; S(ind) = 0;
% Compute the Fourier transform of the truncated frequency data and its inverse
transform
Fo = F.*S; fo = ifft(Fo);
% Plot the results step-by-step
figure;
% Unsmoothed function f(t)
subplot(2,2,1); plot(T,D,'b'); grid('on');
set(gca,'FontSize',16,'FontName','Times New Roman');
title('Unsmoothed \itf\rm(\itt\rm)');
axis([0,T(end),0,max(ceil(D))]);
% Discrete Fourier transform of f(t), F(𝜔)
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subplot(2,2,2); plot(w,abs(F),'b'); grid('on');
set(gca,'FontSize',16,'FontName','Times New Roman');
title('\itF\rm(\it\omega\rm)'); axis([0,w(end),0,600]);
% Truncated wavelength transform F0(𝜔)
subplot(2,2,3); plot(w,abs(Fo),'b'); grid('on');
set(gca,'FontSize',16,'FontName','Times New Roman');
title('\itF_{o}\rm(\it\omega\rm)'); axis([0,w(end),-50,600]);
% Inverse transform of F0(𝜔) ⇒ smoothed function f0(t)
subplot(2,2,4); plot(T,abs(fo),'b'); grid('on');
set(gca,'FontSize',16,'FontName','Times New Roman');
title('Smoothed \itf_{o}\rm(\itt\rm)'); axis([0,T(end),0,
max(ceil(D))]);

1.3.3 Outlier Filtering

Smoothing alters every element of the data set under consideration. What happens
if there are only a few “extraordinary” members of the collection of measurements?
How can such exceptional measurements be identified?

The first course of action is to define what “extraordinary” or “exceptional” means.
Such measurements are referred to as outliers. An outlier is a measurement that is
markedly different from all others in a sample. The notion of an outlier is simultane-
ously obvious and difficult to formalize. Indeed, outliers can best be described by a
phrase made famous by the US Supreme Court Associate Justice Potter Stewart [12].

I shall not today attempt further to define the kinds of material I understand to be
embraced within that shorthand description; and perhaps I could never succeed in doing
so. But I know it when I see it.

To enhance the presentation, let x = {x1, x2,…, xn} be a sample of a random vari-
able X. One approach to identify sample outliers is to normalize each element of the

sample by the mean and standard deviation. That is, set zj =
xj − x̄

s
for j = 1, 2,…,

n, x̄ = the sample mean, and s = the sample standard deviation. The zj comprise
the normalized sample and, in limit, follow a standard normal distribution (for more
information concerning probability distributions, see Appendix Section A.3). Conse-
quently, measurements at the extreme margins (e.g., the 0.1% or 99.9% quantiles) can
be considered outliers. If 𝜔 is the selected quantile, then I(𝜔) = [x̄ − s ⋅ 𝜔, x̄ + s ⋅ 𝜔]
is the inclusion interval. Thus, xk ∉ I(𝜔) means that xk is an outlier. This method
can be reviewed in Johnson and Wichern [8] and with limiting values suggested by
Tholen et al. [13]. For non-symmetric quantile limits (i.e., the lower limit is a 0.5%
quantile while the upper limit is the 99.99% quantile), the inclusion interval can be
generalized to I(𝝎) = [x̄ − s ⋅ 𝜔𝓁 , x̄ + s ⋅ 𝜔u], where 𝝎 = [𝜔𝓁 ,𝜔u] is the vector of the
lower and upper quantiles 𝜔𝓁 and 𝜔u, respectively.

This section will provide a different method for identifying outliers. The details
of this development can be viewed in Costa [4].
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Rather than normalizing the sample as above, replace the minimum and maxi-
mum of the sample by its nearest neighbor. Specifically, let xorder = {x(1), x(2),…,
x(n)} be the ordered values of x. That is, min

1≤j≤n
{xj} ≡ x(1) ≤ x(2) ≤ x(3) ≤ ⋯ ≤ x(n) ≡

max
1≤j≤n

{xj}. Next remove x(1) and x(n) from the sample and replace them by x(2) and

x(n−1), respectively. The truncated sample xT = {x(2), x(2), x(3), x(4),…, x(n−1), x(n−1)}
is then used to normalize the sample via the truncated mean x̄T and standard devia-
tion sT.

zj =
xj − x̄T

sT
(1.5a)

x̄T = 1
n

(
x(2) +

n−1∑
j=2

x(j) + x(n−1)

)
(1.5b)

sT =

√√√√√ 1
n − 1

(
(x(2) − x̄T )2 +

n−1∑
j=2

(x(j) − x̄T )2 + (x(n−1) − x̄T )2

)
(1.5c)

For a selected quantile 𝜔 the truncated inclusion interval is

IT (𝜔) = [x̄T − sT ⋅ 𝜔, x̄T + sT ⋅ 𝜔] (1.5d)

If xk ∉ IT (𝜔), then xk is an outlier with respect to the truncated outlier filtering
method. To see how the truncated outlier filter contrasts with conventional outlier
identification, consider a sample formed by selecting 100 draws from a uniform dis-
tribution over [0, 1] and two draws from U [0, 10]. That is, x = {x1, x2, x3,…, x102}
where xi1

, xi2
,… , xi100

i.i.d∼ U[0, 1] and xi101
, xi102

i.i.d∼ U[0, 10] for some set of indices

{i1, i2,…, i102} ⊂ {1, 2,…, 102}. The conventional outlier detection method normal-
izes the data with respect to the sample mean and sample standard deviation taken
with respect to the entire data set. The inclusion interval is then calculated with respect
to a selected quantile 𝜔. The truncated outlier filter uses equations (1.5a)–(1.5d) to
calculate the inclusion interval. Figure 1.9 provides an illustration of conventional
versus truncated outlier filtering. As can be seen, the conventional method identifies
only one of the samples from U[0, 10] as an outlier while the truncated method indi-
cates that both samples from U [0, 10] are outliers. Moreover, the inclusion interval
produced by the conventional method (illustrated along the y-axis) is considerably
wider than the truncated filter method.

Among the virtues of the truncated outlier filter is its extensibility to higher dimen-
sions. Indeed, rather than n one-dimensional samples x = {x1, x2,…, xn}, suppose
there are n p-dimensional samples contained in the data matrix X.

X =
⎡⎢⎢⎢⎣

x1,1 x1,2 ⋯ x1,p
x2,1 x2,2 ⋯ x2,p
⋮ ⋮ ⋱ ⋮

xn,1 xn,2 ⋯ xn,p

⎤⎥⎥⎥⎦ ≡
⎡⎢⎢⎢⎣

x1
x2
⋮
xn

⎤⎥⎥⎥⎦ (1.6)
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FIGURE 1.9 Outliers identified via conventional and truncated filter methods.

Now, order the data matrix column-wise to obtain

Xorder =

⎡⎢⎢⎢⎢⎣
x(1),1 x(1),2 ⋯ x(1),p

x(2),1 x(2),2 ⋯ x(2),p

⋮ ⋮ ⋱ ⋮
x(n),1 x(n),2 ⋯ x(n),p

⎤⎥⎥⎥⎥⎦
(1.7)

where x(1), j ≤ x(2), j ≤ x(3), j ≤ ⋯ ≤ x(n), j are the order statistics of the jth column of
X. In each column, the minimum x(1), j is replaced by the second smallest value x(2), j.
Similarly, the maximum in each column x(n), j is replaced by the penultimate order
statistic x(n − 1),j. The result is the ordered, truncated sample matrix.

XT ,order =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(2),1 x(2),2 ⋯ x(2),p

x(2),1 x(2),2 ⋯ x(2),p

x(3),1 x(3),2 ⋯ x(3),p

⋮ ⋮ ⋱ ⋮
x(k),1 x(k),2 ⋯ x(k),p

⋮ ⋮ ⋱ ⋮
x(n−2),1 x(n−2),2 ⋯ x(n−2),p

x(n−1),1 x(n−1),2 ⋯ x(n−1),p

x(n−1),1 x(n−1),2 ⋯ x(n−1),p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.8)
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From this matrix, compute the truncated sample mean vector x̄T and the truncated
sample standard deviation matrix ΣT.

x̄T = [x̄T ,1, x̄T ,2,… , x̄T ,p] ∈ R
p

x̄T ,𝓁 = 1
n

(
x(2),𝓁 + x(n−1),𝓁 +

n−1∑
j=2

x(j),𝓁

)
, 𝓁 = 1, 2,… , p

⎫⎪⎪⎬⎪⎪⎭
(1.9)

ΣT =

⎡⎢⎢⎢⎢⎣
s2

T ,1 0 ⋯ 0
0 s2

T ,2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ s2

T ,p

⎤⎥⎥⎥⎥⎦
s2

T ,𝓁 = 1
n − 1

(
(x(2),𝓁 − x̄T ,𝓁)2 + (x(n−1),𝓁 − x̄T ,𝓁)2 +

n−1∑
j=2

(x(j),𝓁 − x̄T ,𝓁)2

)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(1.10)

The metric used to determine the utility of a measurement is the Mahalanobis
distance with respect to a weighting matrix M.

d2
M(xk, x̄T ) =

(
xk − x̄T

)
⋅ M−1 ⋅

(
xk − x̄T

)T
(1.11)

If the number of samples n is sufficiently large (e.g., n ≥ 2 + 1/2 p(p + 1)), then
the sample truncated covariance matrix cov(XT) of (1.12) can be used in place of the
weighting matrix M in (1.11).

cov(XT ) = 1
n − 3

(XT − 1n×1 ⋅ x̄T )T (XT − 1n×1 ⋅ x̄T ) (1.12)

Otherwise, set M = ΣT. Observe that the normalization factor in the covariance
matrix formula (1.12) is 1/(n − 3) rather than the usual 1/(n − 1) since the first and
last rows of XT are duplicates of rows 2 and n − 1. Thus, rather than n independent
measurements, there are only n − 2.

The Mahalanobis distance is distributed as a 𝜒2-random variable with p degrees of
freedom regardless of choice of weighting matrix. If 𝜒2

p (𝛾) is the 𝛾⋅100% quantile of

a 𝜒2
p distribution, then any measurement xk whose Mahalanobis distance exceeds the

value of 𝜒2
p (𝛾) is characterized as an outlier. That is, d2

M(xk, x̄T ) > 𝜒2
p (𝛾) implies that

xk is an outlier. In parallel to the example illustrated in Figure 1.9, an independent
identically distributed (i.i.d.) sample of 100 taken from  (0, 1) along with two i.i.d.
samples taken from  (0, 100) are collected as the vector x. Similarly, an additional
i.i.d. sample of 100 taken from  (0, 1) along with two i.i.d. samples taken from
 (0, 100) are collected as the vector y. These data are examined for outliers using the
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Outlier
1

Outlier
2

Outlier

Mahalanobis Inclusion Truncated Inclusion

Zone Zone

y y

x x

Conventional Method Truncated Filter

FIGURE 1.10 Two-dimensional outliers identified via conventional and truncated filter
methods.

conventional and truncated filter methods. The conventional outlier method calculates
the Mahalanobis distance (1.11) using the entire data matrix X to form either the
covariance matrix (1.12) or diagonal matrix (1.10). The conventional method is only
able to identify one of the two distinct measurements while the truncated filter method
identifies both  (0, 100) samples as outliers. Moreover, the (Mahalanobis) inclusion
zone IM(𝛾) = {x ∈ R

P|d2
M(x, x̄T ) ≤ 𝜒2

2 (𝛾)} is more compact for the truncated filter
than it is for the conventional method. In this case, 𝛾 = 0.999. The results are presented
in Figure 1.10.

MATLAB Commands
(Two-Dimensional Outliers)

% Data directory
Ddir = 'C:\Database\Math_Biology\Chapter_1\Data';
% Load the 2–dimensional outlier data
load(fullfile(Ddir,'X_2D_Outlier.mat'));
load(fullfile(Ddir,'Y_2D_Outlier.mat'));
% Compute the data covariance matrix M and mean vector m
A = [x,y]; M = cov(A); m = mean(A);
% 𝜒2–quantile
c = chi2inv(0.999,2);
% Mahalanobis distance
d = mahalanobis(A,m,M);
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% Indices …
ii = (d.ˆ2 > c);
% … and list of (conventional) outliers
A(ii,:) =

-2.2761 14.1121
% Compute the truncated filter outliers
[Aout,iOut,S] = toutlier2(A,c);
A(iOut,:) =

-2.8610 3.3224
-2.2761 14.1121

EXERCISES

1.4 Use the data contained in the MAT-files X_2D_Outlier.mat and
Y_2D_Outlier.mat along with the MATLAB commands contained in
the table above to determine the outliers for the two-dimensional data set [x, y]
using different quantiles. Do the computations above for 𝜒2

2 (𝛾) with 𝛾 = 0.9,
0.975, and 0.99. How does this choice of quantile affect the outlier selection
for the conventional and truncated filter method? These data are obtained via
the MATLAB commands

Ddir = 'C:\Database\Math_Biology\Chapter_1\Data';
load(fullfile(Ddir,'X_2D_Outlier.mat'));
load(fullfile(Ddir,'Y_2D_Outlier.mat'));

1.4 DATA CLUSTERING

There are collections of measurements from a particular class of objects that can be
separated into two or more distinct subclasses. For example, the large (and impre-
cise) class of automobiles can be separated into sedans, station wagons, sport utility
vehicles, and crossover vehicles. Each subclass, in turn, can be further refined via
brand (e.g., Ford, VW, Toyota, etc.). This class distillation is particularly prominent
in biology. Disease states, viral strains, and common food crops are often lumped into
large and ill-defined categories. For the purposes of automated identification, more
precise and well-defined subclasses can produce better classification.

Thus, this section will be concerned with the mathematical approach used to sep-
arate multivariate data of a single class into distinct subclasses.

Suppose a measurement v0 ∈ R
2 is compared against two classes Class1 and

Class2 as represented by the data matrices X and Y and illustrated in Figure 1.11. If
the Mahalanobis distance (see equations (1.11) and (4.4) of Chapter 4) is the metric
of proximity with weight matrix M equal to the class covariance, then the vector v0
is closer to Class1 (dots ∙) than it is to Class2 (diamonds ⬩) since its Mahalanobis
distance to Class1 is smaller than the comparable distance to Class2. An examination
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x1

x 2

Two Data Classes

Class2 Class1

dC1
= 3.1

dC2
= 3.2

FIGURE 1.11 Mahalanobis distances for two distinct data classes.

of Figure 1.11, however, suggests that Class2 has two concentrations or clusters of
data within the error ellipse. If a mathematical process known as data clustering is
applied to that data matrix Y for Class2, it is seen that two distinct subclasses Class2,1
(diamonds ⬩) and Class2,2 (stars ∗) arise. Moreover, these classes form a different
partition of the classification space so that v0 has a smaller Mahalanobis distance to
Class2,1 than to either Class2,2 or Class1. Figure 1.12 demonstrates these remarks.

x1

x 2

Three Data Classes

Class2,1

Class2,2
Class1

dC1
= 3.1

dC2,1
= 3

dC2,2
= 6

FIGURE 1.12 Mahalanobis distances for three distinct data classes.
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What is this process of data clustering and how can it be applied to data matrices?
The answer to this question is the focus of the remainder of this section.

1.4.1 Distances

The first step is to define the notion of a distance. Plainly the usual Euclidean dis-
tance from the selected point v0 appears closest to the Class1 center. For a non-
identity weighting matrix M, the Mahalanobis distance dM can produce a different
class assignment. Thus, the selection of a distance metric is critical to the classifica-
tion process.

Definition 1.1 A distance d is a function mapping p-dimensional vectors onto the
positive real line R

+ so that

(i) d : R
p ⊗ R

p → R
+

(ii) d(x, y) ≥ 0 for all x, y ∈ R
p (non-negativity)

(iii) d(x, y) = 0 ⇔ x = y (reflexivity)

(iv) d(x, y) = d(y, x) (commutivity)

(v) d(x, y) ≤ d(x, z) + d(z, y) for any x, y, z ∈ R
p. (triangle inequality)

The following are examples of popular distances.

Euclidean: d(x, y) =

√
p∑

j=1
(xj − yj)2

City Block (also called the Manhattan distance): d(x, y) =
p∑

j=1
|xj − yj|

Minkowski (or 𝓁q-norm): dq(x, y) =

(
p∑

j=1
|xj − yj|q)1∕q

Mahalanobis: dM(x, y) =
√

(x − y) ⋅ M−1 ⋅ (x − y)T

Maximum (or Chebyshev): d(x, y) = max
1≤j≤p

|xj − yj|
If two measurements have a “small” distance with respect to a data class, they can

be thought of as similar. As with distance this notion can be formalized.

Definition 1.2 A similarity measure s is a metric that gauges the proximity of two
measurements with respect to a distance d. Such a metric has the following properties.

(i) s: R
p ⊗ R

p → [0, 1]

(ii) 0 ≤ s(x, y) ≤ 1 for all x, y ∈ R
p

(iii) s(x, x) = 1 and s(x, y) = s(y, x)
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This formalism is a way to codify the idea that the smaller the distance in-between
two measurements, the more “similar” they are. That is, d(x, y) = 0 should imply
s(x, y)= 1. The connection in-between distance and similarity measure is summarized
in the following results.

Theorem 1.1 If d is any distance metric, then s(x, y) =
|1 − d(x, y)|
1 + d2(x, y)

is a similarity

measure.

Proof: Since d is a distance, then s(x, y) =
|1 − d (x, y)|
1 + d2 (x, y)

=
|1 − d (y, x)|
1 + d2 (y, x)

= s(x, y).

Also, s(x, x) = |1 − d (x, x)|
1 + d2 (x, x)

= |1 + 0|
1 + 02

= 1. Thus, condition iii of Definition 1.2 is

satisfied. Clearly, s(x, y) ≥ 0 as it is defined as the ratio of a non-negative numerator
and a positive denominator. Therefore, to show conditions i and ii of the definition,
it remains to show that s(x, y) ≤ 1 for any x, y ∈ R

p. There are two cases to consider.

Case 1. d(x, y) ≥ 1. In this case, |1 − d(x, y)| = d(x, y) − 1 so that 0 ≤ |1 − d(x, y)|
1 + d2(x, y)

=

d(x, y) − 1

1 + d2(x, y)
=

1 − 1∕d(x, y)

d(x, y) + 1∕d(x, y)
. But this is the ratio of a number that is less than

1 (namely, 1 − 1/d(x, y)) and a number larger than 1 (d(x, y) + 1/d(x, y)). Hence,
the ratio is less than 1 and therefore, s(x, y) ≤ 1.

Case 2. d(x, y) < 1. In this case, 0 ≤ |1 − d(x, y)|
1 + d2(x, y)

=
1 − d(x, y)

1 + d2(x, y)
<

1
1 + d2(x, y)

≤ 1.

In either case, 0 ≤ s(x, y) ≤ 1 for any x, y ∈ R
p so that conditions i and ii are

satisfied.

Remarks:

1. If d(x, y) < 𝜀 ≪ 10−n for “large” n, then s(x, y) ≈ 1 − 𝜀

1 + 𝜀2
≈ 1. Thus, small

distances indicate a similarity near 1.

2. If d(x, y) > N ≫ 1, then s(x, y) ≈ N
1 + N2

≈ 1
N

→ 0 as N → +∞. Hence, large

distances indicate a similarity near 0.

The next example combines the ideas of distance and similarity metrics to asso-
ciate a measurement with a set of data classes.

Example 1.1: Suppose v0 = [−0.65, 1] is a measurement, X is the data class matrix
from Class1, and Y is the data matrix from Class2 of Figure 1.11. Table 1.1 sum-
marizes the distances and similarity measures from v0 to each class with respect to
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TABLE 1.1 Distance and similarity measures for Figure 1.11

Metric Class1 Class2 Measure Association

d(v, Class) 0.34 0.64
Euclidean

1

s(v, Class) 0.59 0.254 1

d(v, Class) 3.12 3.20
Mahalanobis

1

s(v, Class) 0.1975 0.1001 1

d(v, Class) 0.298 0.51
Maximum

1

s(v, Class) 0.6445 0.39 1

d(v, Class) 0.4238 0.8992
City Block

1

s(v, Class) 0.4885 0.0557 1

several of the distances presented at the beginning of this section. Notice that, in each
case, the distance from v0 to the Class1 data matrix X is smallest (simultaneously,
the similarity of v0 to X is greatest) so that v0 would be associated with Class1. Once
a clustering method is applied to Class2, however, the association will be reversed.
This will be detailed in the next section.

1.4.2 The K-Means Method

Figures 1.11 and 1.12 illustrate the idea of taking a single data class and “splitting” it
into two distinct subclasses. In the example mentioned earlier, the data from Class2
were divided into the subclasses Class2,1 and Class2,2. How is this division achieved?

Suppose X =
⎡⎢⎢⎢⎣

x1,1 x1,2 ⋯ x1,p
x2,1 x2,2 ⋯ x2,p
⋮ ⋮ ⋱ ⋮

xn,1 xn,2 ⋯ xn,p

⎤⎥⎥⎥⎦ is the data matrix for a particular class of

objects. If xk = [xk,1, xk,2,…, xk,p] represents the kth row of X, then the data matrix can
be viewed as a set of p-dimensional measurements: X = {x1, x2,…, xp}. A partition
of X is a collection of distinct subsets whose union is X. More precisely, P = {P1,
P2,…, PK} is a partition of X provided:

(i) Pk ⊂ X for each k = 1, 2,…, K

(ii) X =
K⋃

k=1
Pk

(iii) Pj ∩ Pk = ∅ for any j ≠ k.

Let 𝜈k = |Pk| be the cardinality of the set Pk; that is, 𝜈k is the number of elements
in the set Pk. The attractor zk for the kth member of a partition Pk is the “average” of
the elements within the partition element.

zk = 1
𝜈k

∑
x∈Pk

x (1.13)
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The K-means clustering method requires the construction of a set of K attractors
Z = {z1, z2,…, zK} ⊂ X so that the associated partition P = {P1, P2,…, PK} provides
the maximum separation in-between the subclasses Pk with respect to a distance d.
Therefore, the K-means algorithm is implemented to minimize the function

E(X) =
K∑

k=1

∑
x∈Pk

d(x, zk) (1.14)

with respect to a given partition P of X. Thus, if PX is the collection of all partitions
of X, the K-means method is to find the partition P so that E(X) is minimized.

min
P∈PX

E(X) = min
P∈PX

K∑
k=1

∑
x∈Pk

d(x, zk) (1.15)

Example 1.1 (Continued): After splitting Class2 into two subclasses Class2,1 and
Class2,2, calculate the distance of v0 = [−0.65, 1] to these data classes along with
the original Class1. Now the choice of distance metric is crucial as v0 is closer to
Class2,1 than either Class2,2 or Class1 with respect to the Mahalanobis distance.
Otherwise, v0 is associated with Class1. Table 1.2 summarizes the computations.

The selection of distance metric is crucial to object classification. It also plays
a crucial role in data clustering. This is the art of applied mathematics: The selec-
tion of methods and techniques that best respond to the data at hand. The general
rule of thumb for classification is to use the Mahalanobis distance provided the
weight matrix M is well conditioned. The Euclidean distance, whose weight matrix
is the identity I, is recommended for the K-means clustering algorithm. For a well-
conditioned weight matrix M, the Mahalanobis distance will separate classes along
the eigenvectors of M. The Euclidean metric separates classes along the standard
basis in which the data operates (Rp). Care then should be taken in understanding

TABLE 1.2 Distance and similarity measures for Figure 1.12

Metric Class1 Class2,1 Class2,2 Measure Association

d(v, Class) 0.34 0.64 2.81
Euclidean

1

s(v, Class) 0.59 0.254 0.204 1

d(v,Class) 3.12 3.045 5.985
Mahalanobis

2

s(v, Class) 0.1975 0.199 0.135 2

d(v, Class) 0.298 0.5086 2.62
Maximum

1

s(v, Class) 0.6445 0.39 0.206 1

d(v, Class) 0.424 0.8992 3.4
City Block

1

s(v, Class) 0.4885 0.0557 0.191 1
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how the data are to be classified/clustered so that the end goal of providing the best
categorization of the data is achieved. This requires some understanding of the under-
lying biological phenomenon being studied.

The example illustrated in Figures 1.11 and 1.12 is produced via the MATLAB
commands shown below. In particular, kmeans.m (from the Statistics Toolbox) and
kcluster.m are the MATLAB functions that perform the clustering via the K-means
method.

MATLAB Commands
(K-Means Clustering)

% Data directory
Ddir = 'C:\PJC\Math_Biology\Chapter_1\Data';
% Retrieve the two-dimensional clustered data classes
load(fullfile(Ddir,'Clustered_Data_Classes1_2.mat'));
X = C{1}; Y = C{2};

% Split Class2 into two subclasses
S = kcluster(Y,2);
% Identify the split classes as Z1 and Z2
Z1 = S.C{1}; Z2 = S.C{2};

1.4.3 Number of Clusters

As seen previously, the K-means clustering algorithm partitions a single data class
into a specified number (K) of subclasses. What is the optimal number of subclasses?
That is, is there a “best” K? This question is generally approached by way of cluster
validity indices. These indices are a measure of how effective the cluster size is in
reorganizing the data. There are many validity indices and the reader is referred to
Gan et al. [7] for a thorough presentation of this topic. Instead, two indices with
relatively straightforward interpretation are described and implemented on the data
listed in the table “MATLAB Commands” from Section 1.4.2.

Before these indices are described, however, some notation must be estab-
lished. The data class matrix X ∈ 𝓜𝓪𝓽n×p(R) will be treated as a collection of
p-dimensional vectors {x1, x2,… , xn}, xk ∈ R

p. The partition P= {P1, P2,…, PK} of
X with each Pj ∈ 𝓜𝓪𝓽nj×p(R) and

∑K
k=1 nk = n is a K-partition cluster with centroid

element 𝝁k = 1
nk

∑
x∈Pk

x ∈ R
p. Observe that 𝝁k = [𝜇k,1,𝜇k,2,… ,𝜇k,p] implying the

mean of the centroid is 𝝁̄k = 1
nk

∑nk
𝓁=1

𝜇k,𝓁 . Finally, the mean center of the data matrix

X is defined to be X̄ = [x̄1, x̄2,… , x̄p] with x̄k = 1
n

∑n
j=1 xj,k ≡ the column mean for

k = 1, 2,…, p.
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1.4.3.1 The RMSSTD Validity Index The root mean square standard deviation
(RMSSTD) index measures the variance of elements of a data class collection from
its centroid elements. The optimal partition of the class collection occurs at the value
j0 at which the plot of the points (j, RMSstd(j)) attains a “knee,” j = 1, 2,…, K (see
Gan et al. [7, p. 310]. For any given partition P = {P1, P2,…, PK} of X, let Πk = Pk −
1nk×1⋅𝜇k where 1nk×1 = [1, 1,…, 1]T is the column vector of nk ones. Then Πk ∈

𝓜𝓪𝓽nk×p(R) for each k, 𝜋(k)
i,j = p(k)

i,k − 𝜇k,j, and

Πk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜋
(k)
1,1 𝜋

(k)
1,2 ⋯ 𝜋

(k)
1,p

𝜋
(k)
2,1 𝜋

(k)
2,2 ⋯ 𝜋

(k)
2,p

⋮ ⋮ ⋱ ⋮

𝜋
(k)
nk ,1 𝜋

(k)
nk ,2 ⋯ 𝜋

(k)
nk ,p

⎤⎥⎥⎥⎥⎥⎥⎥⎦
for each member of the partition.

RMSstd =

√√√√√√ K∑
k=1

nk∑
i=1

p∑
j=1

(
𝜋

(k)
i,j

)2

p(n − K)
(1.16)

As is indicated in Figure 1.13, the “knee” of the validity curve for the RMSstd index
occurs at K = 2.
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FIGURE 1.13 Validity curves for RMSstd and Calinski–Harabasz indices.
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1.4.3.2 The Calinski–Harabasz Index This index is the ratio of the traces of the
in-between-cluster scatter matrix and the within-cluster scatter matrix. The Calinski–
Harabasz or CH index provides an optimal partition P = {P1, P2,…, PK} of the data
set X at the maximum value of the index.

CH =
(n − K)

K∑
k=1

nk(𝝁k − X̄)(𝝁k − X̄)T

(K − 1)
K∑

k=1

∑
x∈Pk

(x − 𝝁k)(x − 𝝁k)T

(1.17)

An inspection of Figure 1.13 reveals that the maximum value of the CH index
occurs at K = 2. Therefore, using either the CH or RMSstd indices, splitting Class2
into two subclasses provides the optimal clustering effect.

EXERCISES

1.5 Try computing the SD and SDbw indices via the MATLAB functions
sdindex.m and sdbwindex.m using the Mahalanobis distance options (see
Gan et al. [7] for more details). Plot the results. What conclusions can be drawn
from these indices? These data are obtained via the MATLAB commands

Ddir = 'C:\Data\Math_Biology\Chapter_1\Data';
load(fullfile(Ddir,'Clustered_Data_Classes1_2.mat'));
X = C{1}; Y = C{2};

1.6 Using the clustered data class contained in the MAT-file sited in the command
table at the end of 1.4.2 (Clustered_Data_Classes1_2.mat), compute the
distance and similarity metrics of the Minkowski measure using q = 1, 3, and
4. The commands listed in Exercise 1.5 will yield the desired data.

1.5 DATA QUALITY AND DATA CLEANING2

Data quality is the most significant and uncontrolled matter the data analyst/
mathematical modeller must address. What is data quality? First, data quality refers
to the state of the data under consideration. How were the data recorded? Were the
data reviewed? What are the sources for data entry error? Can the data be edited and
corrected for errant entries? These are some of the questions that the quality control
specialist confronts. Hence, data quality should be thought of as a process in which
the integrity of data can be ensured and safeguarded.

The issues that arise with respect to data quality vary considerably depending on
the sources and kinds of measurements made. A significant portion of current interest

2 The author wishes to thank Dr. William J. Satzer who inspired and co-wrote this section.
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is focused on data mining, and thus often very large databases. There have been cases
of passengers improperly flagged on “no-fly” lists due to spelling or transcription
errors. If “John Doe” is a notorious terrorist while “Jon Dough” is an amiable pastry
salesman, how can screening officials clearly identify friend from foe? And what to do
with “J. Doe,” “John B. Doe,” and “John Deo?” With such a large list of names from
which to flag an “undesirable” passenger, the accuracy of the data entry is crucial.
Data quality problems can also arise, however, in other smaller scale settings. These
need to be addressed in a systematic fashion.

Most students encounter only well managed or artificial data sets. Too often,
textbooks or instructors provide “cleaned data” so that readers can apply various
mathematical/statistical techniques to replicate examples. These data are close to per-
fect and do not represent the kinds of information that data modellers will actually
encounter. No data are missing, no values are obvious typographical errors, and all
the data are in one tidy file.

Indeed, one feature of this book is that, whenever possible, data sets are drawn
from actual reports, studies, or genuine measurements.

The focus of the quality control specialist is to ensure data quality by data clean-
ing. This includes, but is not limited to, verifying data sources, reviewing data entry
procedures, correcting misspellings, inversions, or inaccurate entries, missing infor-
mation, invalid measurements, and identifying unlikely values. For example, if the
heights and weights of dancers are presented as a data set, does the entry Zoë
Ballerina, height 7′ 2′′, weight 97 pounds make any sense?

Data cleaning aims to detect and remove errors and inconsistencies from data
in order to improve its quality and prevent problems in subsequent data analyses.
Sometimes data corruption occurs because of human error in data recording, and
other times because of software or instrument error. When multiple data sources need
to be integrated, the need for data cleaning is even more significant. In situations
like this, data can be redundant, contradictory, and have multiple and inconsistent
representations.

So far there is no science of data cleaning, only a collection of methods
selected to meet needs of a particular environment. Dasu and Johnson [5], McCal-
lum [10], Osborne [11], and Maydanchik [9] provide guidelines and insights into
data cleaning. Eldén [6] examines the mathematics of data mining. A set of basic
tenets for data extraction software is listed below. That is, when writing software
that reads data from a set of measurements, the following recommendations are
offered:

(i) Flag/identify any missing entry. If there is a vacant or missing data entry,
replace the empty “value” with a NaN (an IEEE arithmetic representation for
an object which is not a number).

(ii) Collect heading identifiers and indicate duplications. For example, if Ht.,
Height, H, and Hght are column headers used to describe height measure-
ments, note this naming disparity. Select a single column identifier and
replace all “synonyms” with the representative.
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(iii) Ensure consistent units. Again, if one column of data specified by Height
provides measurements in meters while another column H lists measurements
in feet, select a single unit and convert feet to meters (or vice versa).

(iv) Write code that verifies the data file being read and from which data are
extracted. If there are two files, DataFile1 and DataFile2, be certain that
the extraction program is reading in the file that contains the requisite mea-
surements. If reading data from Excel spreadsheets, check that the sheet name
(i.e., the particular sheet/lower tab of the entire spreadsheet which contains
data) is the one containing the desired information.

(v) Flag any column/heading that should be present in the data file but is not
located via the extraction code.

(vi) Check for inconsistent information. If one column of data contains color
information (e.g., red, green, or blue) and a second column contains RGB
coordinates ([1, 0, 0] → red, [0, 1, 0] → green, and [0, 0, 1] → blue), check
that the color (red) and coordinate ([1, 0, 0]) are consistent. If the (color,
coordinate) pair is (green, [0, 0, 1]), then the measurement is inconsistent.

No exhaustive list of recommendations/guidelines can be given. The intention here
is only to draw attention to the issue, identify some approaches, and offer select ref-
erences to the developing literature in the area. The most important message of this
section is the need to recognize that data cleaning needs to precede data analysis.
No matter how insightful or complete is the model, the application of mathematics to
poorly gathered data will result in nonsense or worse.

Data cleaning is variously known as “data scrubbing,” “data wrangling,” “data
janitor work,” as well as several other disparaging terms. It is regarded as a thankless
job, yet interviews and expert estimates suggest that data cleaning can consume 50–
80% of a data analyst’s time. While considerable effort is being devoted to developing
software that automates part of the task, much of it is essentially manual labor.

The aforementioned represent a few key ideas. They merit repetition:

(i) Inspect the data carefully before performing any analysis.

(ii) When possible, perform a visual inspection of the data files. To that end,
this book provides a set of data visualization plotting functions (written in
MATLAB).

(iii) Review the data (plotted or otherwise) to uncover anomalies such as miss-
ing data, mismatched data types, obvious outliers, data out-of-time sequence,
and perhaps inconsistent scaling or mismatched measurement units within the
data.

(iv) Document each data cleaning operation along the way.

This is the second crucial message of this section. Document everything: Merged
files, obvious irregularities, dropped values, data transformations, and any new data
derived from more raw forms. Further, always retain previous versions of data files;
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never discard the original information. Otherwise, an error in data cleaning could
effectively destroy the original data.

These recommendations listed are forged from many years of (often bitter) expe-
rience. They are offered in the hope that the reader will adopt a healthy skepticism
toward data files and their processing. Caveat emptor.
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