
CHAPTER 1

INTRODUCTION

A hand is considered as an agent of human brain and is the most intriguing and ver-
satile appendage to the human body. Over the last several years, attempts were made
to build a prosthetic/robotic hand to replace a human hand to fully simulate the var-
ious natural/human-like operations of moving, grasping, lifting, twisting, and so on.
Replicating the human hand in all its various functions is still a challenging task due
to the extreme complexity of a human hand, which has 27 bones, controlled by about
38 muscles to provide the hand with 22 degrees of freedom (DOFs), and incorporates
about 17,000 tactile units of four different types [1, 2]. Parallels between dextrous
robot and human hands were explored by examining sensor motor integration in the
design and control of these robots through bringing together experimental psycholo-
gists, kinesiologists, computer scientists, and electrical and mechanical engineers.

In this chapter, we present introductory material on relevance to military, overview
of control strategies, fusion of hard and soft control strategies, and summary of the
remaining chapters.
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2 INTRODUCTION

Background

The proposed book is an outgrowth of the interdisciplinary Biomedical Sciences
and Engineering (BMSE) research project exemplifying The Third Revolution: The
Convergence of Life Sciences, Physical Sciences, and Engineering1 [3–6]. It is to
be noted that the book Fusion of Hard and Soft Control Strategies for the Robotic
Hand basically focuses on the robotic hand applicable to prosthetic/robotic and non-
prosthetic applications starting from industrial [7], operation in chemical and nuclear
hazardous environments [8, 9], space station building, repair and maintenance [10,
11], explosive and terrorist situations [12] to robotic surgery [13].

1.1 Relevance to Military

During the recent wars in Afghanistan and Iraq, “at least 251,102 people have been
killed and 532,715 people have been seriously wounded” [14]. Further, in the United
States, the Amputee Coalition of America (ACA) [15] reports that there are approx-
imately 1.9 million people living with limb loss, due to combat operations (such as
con icts and wars), and non-combat operations such as accidents, or birth defects.
According to a study of the 1996 National Health Interview Survey (NHIS) pub-
lished by Vital and Health Statistics [16], it is estimated that one out of every 200
people in the United States has had an amputation. That is, one in every 2,000 new
born babies will have limb de ciency and over 3,000 people lose a limb every week
in America. By the year 2050, the projected number of Americans living with limb
amputation will become 3.6 million [17].

The following documents reveal the intense interest by military in the area of
smart prosthetic/robotic hand.

1. First, according to [18], recognizing that “arm amputees rely on old devices”
and that the existing technology for arm and hand amputees was not changed
signi cantly in the past six decades, the Defense Department is embarking on a
research program to “fund prosthetics research” according to [19] to revolution-
alize upper-body prosthetics and to develop arti cial arms that will “feel, look
and perform” like a real arm guided by the central nervous system.

2. According to [20, 21], Bio-Revolution is one of the eight strategic research
thrusts that DARPA is emphasizing in response to emerging trends and national
security. In particular, the Human Assisted Neural Devices program under Bio-
Revolution will have “immediate bene t to injured veterans, who would be able
to control prosthetics...” A related area of interest in Bio-Revolution is Cell and
Tissue Engineering.

3. Next, according to Defense Science Of ce (DFO) of DARPA [22], emerging
technologies for combat casualties care with dual usage for both military and

1The First Revolution: Molecular and Cellular Biology and The Second Revolution: Genomics
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civilian medical care, focus on programs in Revolutionizing Prosthetics, Hu-
man Assisted Neural Devices, Biologically Inspired Multi-functional Dynamic
Robotics, and so on. In particular, according to [23], “today on of the most dev-
astating battle eld injuries is loss of a limb... at DARPA, the vision of a future
is to ... regain full use of that limb again...”

According to an article that appeared in IEEE Spectrum issue of June 2014, “Fifty
years out, I think we will have largely eliminated disability” — Eliza Strickland [24].
The robotic hand, in addition to using it for prosthetic applications, is highly useful
for performing various operations that a real human hand cannot perform without
reaching a fatigue stage and especially for handling of hazardous waste materials
and conditions.

Finally, an IEEE video on overview of how engineers are solutionists, poses
“What if prosthetics were stronger and more accurate than the human body?” [25]

1.2 Control Strategies

1.2.1 Prosthetic/Robotic Hands

Arti cial hands have been around for several years and have been developed by var-
ious researchers in the eld and some of the prosthetic/robotic devices developed are
given below (in chronological order) [2, 26].

1. Russian arm – [27–29]

2. Waseda hand – [30]

3. Boston arm2 – [31]

4. UNB hand (University of New Brunswick) – [32–34]

5. Hanafusa hand – [35]

6. Crossley hand – [36]

7. Okada hand – [37]

8. Utah/MIT hand (University of Utah/Massachusetts Institute of Technology) –
[38–40]

9. JPL/Stanford hand (Jet Propulsion Laboratory/Stanford University) – [41, 42]

10. Minnesota hand – [43]

11. Manus hand – [44, 45]

2The “Boston Arm,” project involved the Harvard Medical School, Massachusetts General Hospital, the
Liberty Mutual Research and Rehabilitation Centers, and MIT
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12. Kobayashi hand – [46]

13. Rovetta hand – [47]

14. UT/RAL hand – [48]

15. Dextrous gripper – [49]

16. Belgrade/USC hand (University of Belgrade/University of Southern California)
– [50]

17. Southampton hand (University of Southampton, Southampton, UK) – [51]

18. MARCUS hand (Manipulation And Reaction Control under User Supervision)
– [52]

19. Kobe hand (Kobe University, Japan) – [53]

20. Robonaut hand (NASA Johnson Space Center) – [54]

21. NTU hand (National Taiwan University) – [55]

22. Hokkaido hand – [56]

23. DLR hand (Deutschen Zentrums für Luft- und Raumfahrt-German Aerospace
Center) – [57, 58]

24. TUAT/Karlsruhe hand (Tokyo University of Agriculture and Technol-
ogy/University of Karlsruhe) – [59]

25. BUAA hand (Beijing University of Aeronautics and Astronautics) – [60]

26. TBM hand (Toronto/Bloorview MacMillan) – [61]

27. ULRG System (University of Louisiana Robotic Gripper) – [62]

28. Oxford hand – [44]

29. IOWA hand (University of Iowa) – [63]

30. MA-I hand – [64]

31. RCH-1 (ROBO CASA hand 13) – [65]

32. UB hand (University of Bologna) – [66]

33. Ottobock SUVA hand – (www.ottobock.co.uk)

34. Northwestern University system – [67]

35. SKKU Hand II (Sungkyunkwan University, Korea) – [68]

3The Italy–Japan joint laboratory for Research on Humanoid and Personal Robotics
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36. Applied Physics Laboratory (APL) at Johns Hopkins University (JHU) – [23,
69, 70]

and some of the commercial web sites for prosthetic/robotic devices are

1. Sensor Hand Speed from Ottobock (www.ottobock.co.uk),

2. VASI (Variety Ability Systems Inc.), a company of the
Otto Bock Group (http://www.vasi.on.ca/index.html),

3. Utah Arm from Motion Control (www.utaharm.com),

4. The i-LIMB Hand from Touch Bionics (www.touchbionics.com), and so on.

A very useful comparison table between several hands listed above and human hand,
adapted from [2, 26], is updated and shown in Table 1.1.

However, about 35% of the amputees do not use their prosthetic/robotic hand
regularly according to [71] due to various reasons such as poor functionality of the
presently available prosthetic/robotic hands and psychological problems. To over-
come this problem, one has to design and develop an arti cial hand which “mimics
the human hand as closely as possible” both in functionality and appearance.

There are a number of surveys, and/or state-of-the-art articles that appeared over
the years on the subject of myoelectric prosthetic/robotic hand including the work in
USSR (Russian) given by [28] and some of them are given by references [2, 72–84].

1.2.2 Chronological Overview

An overview of the literature on prosthetic/robotic hand technology, conducted by
the authors [85, 86] is brie y summarized in the next Section 1.2.3. This overview,
focusing on recent developments and continuously being updated, is intended to sup-
plement the already existing excellent survey articles [2, 79, 81, 87, 88]. Further, this
overview is not intended to be an exhaustive survey on this topic, and any omissions
of other works are purely unintentional.

Up to 1970
Electromyographic (EMG) signal is a simple and easily obtainable source of in-

formation about the various movements to be used for arti cial/prosthetic hands. The
EMG extraction using surface electrodes is a very attractive method from the point
of view of the user compared to implants requiring surgery. Research activity in the

eld of prosthetic/robotic limbs was initiated by United States National Academy of
Sciences in response to the needs of a large number of casualties in World War II
[89]. It was rst proposed by [90, 91] the concept of EMG signals for the control
of a prosthetic/robotic hand for amputees. A proportional (open-loop) control sys-
tem, in which the amplitude of the hand motor voltage and hence its speed and force
measured from strain gauges varies in direct proportion (linearly) to the amplitude
of the EMG signal generated by the prosthetic/robotic hand, was rst reported by
[92, 93]. In addition, the system added force and velocity feedback controls, so the
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Table 1.1 Comparison of Human Hand with Arti cial Hands: Robotic and
Prosthetic/Robotic Hands: Force Indicates Power Grasp Speed Indicates the Time Required
for a Full Closing and Opening; E: Stands for External; I: Stands for Internal

Size No. of No. of No. of No. of Weight Force Speed Controls

(Norm) Fingers DOFs Sensors Actuators (gms) (N) (sec)

Human hand 1.0 5 22 17,000 38(I+E) 400 300 0.25 E

Russian arm 5 3 1 147

Waseda hand

UNB hand

Hanafusa hand

Crossley hand

Utah/MIT hand 2.0 4 16 16 32(E) - 31.8 - E

JPL/Stanford hand 1.2 3 9 - 12(E) 1100 45 - E

Minnesota hand

Kobayashi hand

Rovetta hand

UT/RAL hand

Dextrous gripper

Belgrade/USC hand 1.1 4 4 23+4 4(E) - - - E

Southampton hand 1.0 5 6 - 6(E) 400 38 5 E

MARCUS hand 1.1 3 2 3 2(I) - - - I

Kobe hand

Robonaut hand 1.5 5 12+2 43+ 14(E) - - - E

NTU hand 1 5 17 35 17(E) 1570 - - E

Hokkaido hand 1 5 17 35 17(E) 1570 - - E

DLR hand II 1 5 7 - 7(E) 125 - - E

TUAT/Karlsruhe hand 1 5 17 - 17(E) 120 12 0.1 E

BUAA hand 4 2

TBM hand

Oxford hand

IOWA hand

MA-I hand

Robo Casa hand-1 1 5 16 24 6(E+I) 350 40 0.25 E

Ottobock SUVA 1 3 1 2 1(E) 600 - - I

UB hand

Hokkaido hand 1 5 7 - 7(E) 125 - - E

Northwestern

SKKU Hand II 1.1 4 4 - 3 900

APL-JHU System
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users could feel more natural to utilize this device. An adaptive control scheme was
developed by [94] for a Southampton Hand.

1971–1979
The work reported by [32] studied the effect of sensory feedback based on semi-

conductor strain gauges on either edge of thumb of the prosthetic/robotic hand to
adjust the stimulus magnitude to target value and avoid dropping or crushing ob-
jects for control of a prosthesis and found this acceptable for patients. When the
strain gauges received the stimulus, the system ampli ed and transferred the signals
to comparator, and then the comparator modi ed the range of amplitude of stimu-
lus to the level that the users needed. However, the device with feedback is two or
three times larger than the normal hand. A hierarchical method consisting of analyt-
ical control theory such as performance-adaptive self-organizing control algorithm
and arti cial intelligence using fuzzy automaton was presented by [95] to drive a
prosthetic/robotic hand.

1980–1989
In providing a historical perspective, the contribution by [72] presented the sta-

tus of the closed-loop (feedback) control principles for the application of pros-
thetic/robotic devices, three concepts relating to supplemental sensory feedback, ar-
ti cial re exes, and feedback through control interfaces were discussed and it was
concluded that “we have not moved very far in the last 65 years in the clinical appli-
cation of these concepts.” A statistical analysis involving the study of zero crossings,
second to fth moments, and correlation functions and pattern classi cation of EMG
signals was given by [96]. A probabilistic model of the EMG pattern was formulated
in the feature space of integral absolute value (IAV) to provide the relation between
a command, represented by motion and speed variables, and the location and shape
of the pattern for real-time control of a prosthetic/robotic arm as given in [97]. Using
kinematic relationships for dynamic model of ngers, multi-variable feedback con-
trol strategies using pole assignment in frequency domain were employed by [42]
to guarantee local stability for controlling one nger of the JPL/Stanford hand. The
work in [42] produced the dynamic models of three ngers (thumb, index, and mid-
dle) and three joints rst, and then used Laplace transform to work in frequency
domain. To get a guaranteed stability of control system, the roots/poles had to be
located in the left half plane. Hence, they could get a desired steady movement of

ngers by controlling the positions of the roots. The works reported by the group
[98, 99] were one of the rst groups who investigated various aspects such as kine-
matics, prehensility, dynamics, and control of multi- ngered hands manipulating
objects of arbitrary shape in three dimensions.

1990–1999
Design, implementation, and experimental veri cation of an improved cybernetic

elbow prosthesis was presented in [100, 101] that mimics the natural limb to both
internal (voluntary) inputs from the amputee and external inputs from the environ-
ment. The work in [102] considered a dextrous hand employing a systematic ap-
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proach to achieve the object stiffness control by actuator position control, tendon
tension control, joint torque control, joint stiffness control, and Cartesian ngertip
stiffness control. The work by [75] conducted a survey of 33 patients wearing the
proportional myoelectric hand grouped into three categories based on previous ex-
perience with a terminal device: digital (on–off) myoelectric hand, body-powered
terminal device, and no terminal device. The survey resulted in that the group of pa-
tients having experience with digital hand “were most impressed with proportionally
controlled hand,” because it has the advantages: comfortable, cosmetic acceptance,
more natural, superior pinch force (11–25 lb) compared to voluntary opening (7–8
lb), a greater range of function but less energy, sensory feedback, force feedback,
and short below-elbow.

The research work in [103] developed three tests for evaluation of input–output
properties of patient control of neuroprosthetic hand grasp, which compensates or
enriches the function of a damaged peripheral nervous system: rst test for static
input–output properties of the hand grasp, second one for control of hand grasp out-
puts while tracking step and ramp functions, and nally to obtain the input–output
frequency response of the hand grasp system dynamics to estimate the transfer func-
tion using spectral analysis. Each test used visual feedback when the users controlled
the grasp force and grasp position tracking of the hand. It was shown in [104] that the
myoelectric signal (MES) is not random during the initial phase of muscle contrac-
tion thus providing a means of classifying patterns from different contraction types.
The means is to establish the 60 records of an isometric contraction of the subjects
and then produce some anisometric contraction types, like exion and extension.
This information was useful in designing a new multi-function myoelectric control
system using arti cial neural networks (ANNs) for classifying myoelectric patterns.
Additionally, the hidden layer size, segment length, and EMG electrode positions
were studied. See related works in [105–108] on multi-functional myoelectric con-
trol systems using pattern recognition methods for MES extraction and classi cation.
The control philosophy of a multi- ngered robotic hands for possible adaptation and
use in prosthetics and rehabilitation was discussed by [109–111] with respect to the
Belgrade/USC robot hand by [50], called PRESHAPE (Programmable Robotic Ex-
perimental System for Hands and Prosthetics Evaluation), which estimates a system
that translates task commands to motor commands using pressure sensors, force sen-
sors, and pressure feedback which is very useful to detect small contact forces.

Using the dynamic model of the nonlinear neuromuscular (motor servo) control
system of human nger muscles including mechanical properties (such as viscoelas-
ticity) of the muscle and stretch re ex, a surface-based myoelectrically controlled
biomimetic prosthetic/robotic hand (called Kobe hand) with three ngers—thumb,
index, and middle ngers, was developed at Kobe University, Japan, by [53] with
a system consisting of EMG signal processing unit, the dynamic model, positional
control unit, and the prosthetic/robotic device. A survey of four important proper-
ties of dexterity, equilibrium, stability, and dynamic behavior relating to autonomous
multi- ngered robotic hands was presented in [76]. An interesting aspect of this lit-
erature survey is a series of tables relating to existing multi- ngered robotic hands,
force closure, dexterity in kinematically redundant robotic hands, equilibrium, in
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robotic grasp, and stability. As reported in [112], an intelligent prosthesis control
system, developed by Animated Prosthetics, consists of two parts: the animation
control system (ACS) residing in prosthesis and a remote prosthesis con guration
unit (PCU) capable of on/off to variable speed/grip. Dynamic control of two arms
to manipulate cooperatively an object with rolling contacts was addressed by [113]
using a nonlinear feedback control methodology that decouples and linearizes the
system.

A sensory control system based on force-sensing resistor (FSR) was developed
by [114] at The National Institute for Accidents at Work (INAIL), Bologna, Italy, to
control the strength of the grip on objects for a commercial prosthetic/robotic hand
having two main functions: the automatic search for contact with the object and
the detection of the object possibly slipping the grip by involuntary feedback (force
sensors and slipping sensors). Further, automatic tuning of control parameters of
prostheses was investigated by [115] using fuzzy logic (FL) expert systems resulting
in a software package: microprocessor controlled arm auto tuning. The automatic
tuning software works as follows: the client connects the prosthesis hardware, the
program needs both sensor signals as client input, the program combines the above
qualitative and quantitative information stored in the FL database to calculate the
prosthesis parameter values, and the program enables the new parameter values to
be down-loaded into the prosthesis control system memory. Dynamic modeling of
a robotic hand was proposed in [116] using a hybrid approach with discrete event
aspect of grasping and continuous-time part with a variable structure impedance
control algorithm. A novel on-line learning method was reported by [56] for pros-
thetic/robotic hand control based on EMG measurements with a system consisting
of three units: analysis unit for generating feature vectors containing useful informa-
tion for discriminating motions from EMG signals, an adaptation unit for adapting
to the amputee’s individual variation and for discriminating motions from the fea-
ture vector and at the same time generating the necessary control commands to the
prosthetic/robotic hand, and a trainer unit for directing the adaptation unit to learn in
real time based on the amputee’s teaching signal and the feature vector. The work by
[114] built a sensory control system based on the FSR for an upper limb prosthesis
and an optical sensor for detecting movement. The prostheses produced were of the
“all or nothing” (opening or closing) and proportional control type (the relationship
between force and EMG signal is linear). For traditional control, it used voluntary
(visual) feedback, but the users had to pay good attention. This work developed an
involuntary feedback control which uses two kinds of sensors, strength and slipping
sensors. If the prosthesis hand is slipping, the control system automatically orders
the actuator of the prosthesis to increase the grip strength. On receiving the EMG
signal, the hand begins a closing action and goes on closing until the FSRs produce
a signal that is greater than or equal to a “contact threshold” value, and then it stops,
because the object has been grasped with the required strength of grip. The automatic
grip mechanism is very useful in grasping delicate objects.

The investigation by [117] showed that the proposed neuro-fuzzy classi er known
as Abe–Lan network, is able to identify correctly all the EMG signals related to
different movements of human hand. A highly anthropomorphic human hand, called
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Robonaut Hand consisting of ve ngers and 14 independent DOFs, was built at
NASA Johnson Space Center to interface with extra-vehicular activity (EVA) crew
interfaces onboard International Space Station (ISS), as reported by [54].

2000–2007
In [118], estimating muscular contraction levels of exors and extensors using

neural networks (NNs), a new impedance control technique [119] was developed
to control impedance parameters such as the moment of inertia, joint stiffness, and
viscosity of a skeletal muscle model of a prosthetic/robotic hand. An overview of
dextrous manipulation was provided by [78] with an interesting time-line chart for
the development of robotic dextrous manipulation during the period 1960–2000. An
excellent survey appears in [77] summarizing the evolution and state of the art in the
robotic hands focusing mainly on functional requirements of manipulative dexterity,
grasp robustness, and human operability. Also, the work by [120] exploited the non-
holonomic character of a pair of bodies with regular rigid surfaces rolling onto each
other, to study the constructive controllability algorithm for planning rolling motions
for dextrous robot hands. A control system architectures was proposed in [121, 122]
with a feedforward loop based on EMG measurements consisting of a low-pass lter
and NN to provide the actual torque signal and a feedback loop based on desired
angle consisting of a proportional-derivative (PD) controller to provide the desired
torque signal and the error signal between these torques drives the prosthetic/robotic
hand to achieve the desired angle while the NN learns based on feedback error.

This work reported by [123] studied nger extension, external control, overhead
reach, and forearm pronation. For nger extension, they used two electrodes: one
placed between the second and third metacarpals and the other between third and
fourth metacarpals. They could provide full extension of the index, long, and ring

ngers. For external control, a new form of control was developed by using retained
voluntary wrist extension to control grasp opening and closing. Overhead reach is
provided by stimulation of the triceps muscle, so elbow position is controlled by
voluntary activation of biceps as an antagonist. As for forearm pronation, the main
issues are an increased number of stimulus channels to allow stimulation of the n-
ger intrinsic muscles, triceps, and forearm pronator, an implanted control source,
bidirectional communication between sensor and body, reduced size, and reduction
of all external cables. The work by [2] presents a review of the traditional methods
for control of arti cial hands using EMG signal, in both clinical and research areas
and points out future developments in the control strategy of the prosthetics, in par-
ticular advocating neuroprosthesis with biocompatible neural interface for providing
sensory feedback to the user leading to electroneurographic (ENG)-based control
in place of EMG control. Collaboration between University of Southampton and
University of New Brunswick (UNB) by [34] resulted in a hybrid control system
using a multilayer perceptron (MLP) ANN as a classi er of time-domain features
set (zero crossings, mean absolute value, mean absolute slope and trace length) ex-
tracted from MESs and a digital signal processor (DSP) controlling the grip pressure
of the prosthetic/robotic hand without visual feedback (voluntary feedback). Design
and development of an underactuated (the number of actuators less than the DOF)
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mechanism applicable to prosthetic/robotic hand was presented in [124] based on
dynamic model of ngers leading to adaptive grasp (i.e., being able to conform to
the shape of an object held within the hand).

Although an adaptive control scheme was developed by [94] for a Southampton
Hand, further developments were made in the research by [79] and [125] producing
their IP (Intelligent Prosthesis) according to [51]. The investigation [126] provided
an evolution of microprocessor-based control systems for prosthetics with classi-

cation into rst (based on digital systems), second (with low power), and third
generation (based on microprocessors and DSPs). The work in [44] conducted a
comparison of Oxford and Manus hand prostheses with respect to

1. hand mechanisms,

2. control electronics: EMG analog ampli ers, A/D converters, DSPs,

3. sensors: force, position and slip sensors based on Hall effect, and

4. manipulation or control schemes: Oxford hand used Southampton Adaptive
Manipulation Scheme consisting of three-level hierarchical scheme and Manus
used a two-level scheme.

The scheme suggested by [127] consisted of ve modules, including an arti cial
muscoskeletal system, position and force sensors, 3D force sensors, low-level control
loop dedicated to control slipping and grasping, and an EMG control unit. Further,
the scheme used two semiconductor strain gauges as the force sensor and glues the
sensor in SS496B by Honeywell International Inc. as the position sensor, which
is the linear slider and small magnets. Moreover, the control system receives three
signals: activation (EDG, which is used to identify whether there is a movement),
direction (SGN, which decides opening or closing), and amplitude of the movement
(AMP, which controls the seed of the movement in a proportional means). As for the
control scheme, it uses a simple proportional open-loop control.

A cylindrical grasp of a cylindrical object and a parallel force/position control
is studied by [128] to ensure the stability. The work in [129] presented a feedback
control system for hand prosthesis with elbow control. Using a concept of extended
physiological proprioception (EPP) (i.e., using natural physiological sensors), both
the works [129] and the investigation by [130] developed microprocessor-based con-
trollers for upper limb prostheses. A systematic literature review, conducted by
[131], is useful for prosthetic/robotic hand, although the survey was done for lower
limb prosthesis. This work by [128] developed a procedure to obtain maximum load
and contact force distribution for a given grasp task and a parallel force/position con-
trol to ensure stability of the grasp. The goal of this control scheme is to specify a
set of joint torque inputs so that the desired grasping forces along the constrained
directions, and the desired position trajectory along the unconstrained directions are
realized.

It was shown by [82, 132, 133] that sensory feedback signals are obtained for a
multi- ngered robot hands to perform the function of grasping an object and that
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dynamic force/torque closure is constructed without knowing object kinematic pa-
rameters and location of the mass center. Further, the convergence of motion of the
overall ngers-object system was proved using the concepts of “stability and asymp-
totic stability on a manifold.” Mechanical design and manipulation (control) issues
were addressed in [45] for a multi- ngered dextrous hand for upper limb prosthetics
using the underactuated kinematics enhancing the performance and providing four
grasping modes (cylindrical, precision, hook, and lateral) with just two actuators,
one for the thumb and one for the remaining ngers. In particular, the hierarchical
control architecture consists of a host (or master) controller for EMG management
and de nition of grasp set points (for position and torque/force) and three local (or
slave) controllers for low level implementation of stiffness control of the joints. In
[63], design and analysis was presented for a multi- ngered prosthetic/robotic hand
consisting of a thumb with three joints and the rest of the four ngers having two
joints using Haringx and element stiffness models, which enables the location of
actuators far away from the hand to a belt around the waist and further enabling ac-
tuation and control with relatively high DOF. Robotic hand MA-I was designed and
built by [64] at the Institute of Industrial and Control Engineering (IOC) at the Poly-
technic University of Catalonia (UPC) with 16 degrees of freedom and the control
system consisting of 16 position control loops, independently controlling each of the
16 DC motors. Visual hand motion capture is a multiple-dimension and multiple-
objective searching optimization problem and the work reported in [134] used pose
estimation and a motion-tracking scheme with genetic algorithms (GAs) embedded
particle lter (PF) to navigate visual hand gesture, such as virtual environment and
control of a robot arm.

The fabrication of a complaint, under-actuated prosthetic/robotic hand (both palm
and ngers) moulded as a soft polymeric single part for providing adaptive grasp was
reported by [135, 136]. Since the analysis and synthesis are “so complex and only
experimental analysis of the solution adapted validate our works.” It was shown by
[137] that an object with parallel surfaces in a horizontal plane could be controlled by
a pair of robotic ngers to achieve stable grasping, angle, and position control with-
out the need for the object parameters or object sensors such as tactile, force, or visual
sensors. At Northwester University Prosthetics Laboratory (NUPL), the researchers
[138, 139] developed multi-function prosthetic/robotic hand/arm controller system
receiving signals from as many as 16 implantable myoelectric sensors (IMES) and
a heuristic FL approach to EMG signal pattern recognition by [140, 141]. In par-
ticular, FL was explored for discriminating between multiple surface EMG control
signals and classify them to user intention. The multi-functional hand mechanism
consisted of three motor hands (one motor for driving the thumb, one motor drives
index nger, and the third motor drives middle, ring, and little nger) and two motor
wrists (one motor for wrist extension/ exion and the other motor for wrist rotation).
Further, the research by [67] demonstrated that in implementing the EPP control for
a powered prosthesis, the backlash is determined by the stiffness of the control cable
as well as mass located at the distal end of the forearm and that reduction of static
friction and backlash in the system could prevent the limit cycle.
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It was demonstrated by [142] that by implanting electrodes within individual fas-
cicles of peripheral nerve stumps, appropriate, distally referred sensory feedback
about joint position and grip force from an arti cial arm could be provided to an
amputee through stimulation of the severed peripheral nerves which also provide
appropriate signals. It is interesting to note the work of [143] on the mechanism,
design, and control system of a humanoid-type hand with human-like manipulation
capabilities as a part of development of service robots and the comparison (shown
by [144, 145]) of natural and prosthetic/robotic hands. In [146], the EMG motion
pattern classi er was developed using on parametric autoregressive (AR) model and
Levenberg–Marquardt (LM)-based NNs to identify three types of motion of thumb,
index, and middle ngers to control a ve- ngered underactuated prosthetic/robotic
hand.

The work in [147] focussed on the “optimal” delay as the maximum amount of
time, which is from command to hand movement, for a prosthesis controller with
a delay of 200–400 ms as the range which is accepted by users. A bypass pros-
thesis called Prosthetic Hand for Able-Bodied Subjects (PHABS) was developed to
allow able-bodied subjects to operate a prosthetic/robotic terminal device. The con-
troller is a commercially available Myo-pulse control, which combines pulse width
modulation (PWM) and pulse period modulation (PPM) because it provides a linear
relation between motor speed and the pulse width and timing of a digital control sig-
nal. In addition, it also used a mechanical low-pass lter to smooth the pulse train
and movement. If the EMG reaches the threshold, the motor will be turned “on”; oth-
erwise, it will be turned “off.” Furthermore, the experimental controller was created
in Simulink of MATLAB and executed using Simulink Real Time and XPC Target
Toolboxes. Finally, this work summarized seven time-delay sources, including

1. the time from the intent of movement to the development of EMG,

2. the time constant of the analog lters contained in the EMG pre-ampli ers,

3. the analog-to-digital sampling period,

4. the time required to collect the EMG signal for feature extraction,

5. the time required to perform the EMG signal for feature extraction,

6. the time required to execute th pattern recognition on the extracted features, and

7. the time required to actuate the component.

In [81], a review of the traditional methods of control as well as the current state
of new control techniques was provided. A newly developed intelligent exible hand
system with 3 ngers, 10 joints, tted with a small harmonic drive gear and a high
power mini actuator, providing 12 DOFs applied to a catching task was developed by
[148]. The authors [149] developed an EMG-based (using electrodes, torque, and an-
gle sensors) prosthetic/robotic hand control system composed of a human operator,
a ve- ngered under-actuated prosthetic/robotic hand system, the prosthetic/robotic
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hand controller (with analog-to-digital converters and DSP board and stepper mo-
tors), and visual feedback. In particular, the EMG signals undergo feature extraction
and feature classi cation using NNs with parametric autoregressive (AR) model and
wavelet transforms. In an under-actuated system, there is less number of actuators
compared to the number of DOF of the system. Further in [150], a hierarchical con-
trol system was proposed with a high-level supervisory controller for implementing
the EMG signal acquisition and pattern recognition and also providing a set of com-
mands (for operations such as close, open, position, etc.) to a low-level controller. A
sensor-based hybrid control strategy (using normal feedback control based on EMG
signals from sensors and feedback to the user) was presented by [151] where a dig-
ital controller operating from prosthetic signals converts the user grasping intention
(EMG signal) into an order for the control of prosthesis.

The investigation by [68] developed a robot hand with tactile sensors (slip sensor
and force sensor), called SKKU Hand II, having two functional units: a PolyVinyli-
Dene Fluoride (PVDF)-based slip sensor designed to detect slippage and a thin exi-
ble force sensor that read the contact force of and geometrical information on the ob-
ject using a pressure variable resistor ink. A biomechatronic approach to the design
and control of an anthropomorphic arti cial hand was studied by [152] for closing
the hand nger while grasping an object using a reference trajectory and using two
different versions (joint space and slider space) of PD control system. In particular,
the arti cial hand consists of three under-actuated ngers (index, middle, and thumb)
which are actuated by three cable-driven DC motors placed in the lower part of the
arm. The work by [153] studied large controller delays created by multi-functional
prosthesis controllers. A device called PHABS was utilized to test the performance
of 20 able-bodied subjects to the Box and Block Test. To estimate and compare
the performance of prosthetic/robotic hands, a functionality index is proposed by
[147]. An underwater exible robot manipulation (called HEU Hand II) that utilized
Position-Based Neural Network Impedance Control (PBNNIC) for the force tracking
control was studied by [154].

This work from [154] developed dextrous underwater robot hand, called as HEU
Hand II. The sensor system mainly includes 12 strain gauges at different locations.
When the robot hand is under water, the control system is more complicated because
the complete dynamic model is not known exactly. Hence, the control system con-
siders the uncertainty of the robot dynamic model. The controller of the hand force
tracking is designed by PBNNIC scheme. Using biologically inspired principles for
design and control of a bionic robot arm by [155], several control approaches were
presented such as trajectory planning and optimization based on robot dynamics.

An alternate learning control strategy was proposed by [156] based on the work-
ing assumptions that both human motor commands and sensory information are
passed on in a discrete, episodic manner, quantized in time with a learning algo-
rithm called S-learning based on sequences arguing against the traditional control
approaches due to highly nonlinear robot’s dynamics and large number of DOF.

In the works by [157], the rst prototype of a ve- ngered prosthetic/robotic hand
tted with only three motors and achieving 20 DOFs was described using a new

“strings and springs” mechanism and a continuous wavelet transform (CWT) for
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extraction of EMG inputs for a feed-forward, back-propagation NN to recognize the
type of grip.

The work in [158] focuses on the control system of the hand and on the optimiza-
tion of the hand design. It proposes the control action as proportional to the super -
cial EMG signals extracted by surface electrodes applied to a couple of antagonistic
user’s residual muscles. This work rst explains designs of the hand prototype, such
as biomechatronic design approach, under-actuated arti cial hand, 3D CAD model
(by ProEngineer), and dynamic analysis (by ANSYS). Secondly, it builds the model
of control system, including the kinetics and dynamics of hand in PD control in the
joint space and slider space with elastic compensation. Thirdly, it validates and opti-
mizes the hand design in multiple objective problems (four goals). The rst two goals
are related the closed-loop control performance and the remaining two goals are part
of joint trajectories. Besides, it develops the simulation in MATLAB/Simulink. Fi-
nally, it compares the experimental results with the simulation.

The dynamic system of a nonlinear exible robot arm with a tip mass was intro-
duced by [159] and the proposed intelligent optimal controller, in which the fuzzy
neural network controller and robust controller were respectively designed to learn
a nonlinear function and compensate the approximation errors, could control the
coupling of bending vibration and torsional vibration for the periodic motion. To
overcome the traditional FL dif culties, such as large rule bases and long training
times, [160] proposed a self-learning dynamic fuzzy network (DFN) with dynamic
equality constraints to speed up the trajectory calculations for intelligent nonlinear
optimal control. For a ve- nger under-actuated prosthetic/robotic hand with ten-
don transmission, [161] presented a robust controller implemented two subsequent
and different phases, including the pre-shaping of the hand and the involved ngers
rapidly closing around the object.

1.2.3 Overview of Main Control Techniques Since 2007

Hard Computing strategies:

1. PD Controller: Rong et al. [162] presented one kind of PD controller with
feed-forward control based on adaptive theory for two DOFs direct driven robot
with uncertain parameters.

2. Adaptive Controller: Cai et al. [163] developed an observer back-stepping
adaptive control scheme for two-link manipulator under unmeasured velocity
and uncertain environment and the adaptive velocity observer was designed in-
dependently from the state-feedback controller in order to compensate the esti-
mation errors. Seo and Akella [164] derived the novel adaptive control solution
involving a new lter design for the regressor matrix for -DOF robot manipu-
lator systems. By developing the Fourier series expansion from input reference
signals of every joint, Liuzzo and Tomei [165] designed a global, output error
feedback, adaptive learning control for two-DOF planar robot with uncertain
dynamics. To achieve the tracking control objective, Chen et al. [166] proposed
an adaptive sliding-mode dynamic controller for wheeled mobile robots with
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system uncertainties and disturbances to make the real velocity of the wheeled
mobile robot reach the desired velocity command.

3. Robust Controller: Because of the visco-elastic properties of manipulator
links, Torabi and Jahed [167] utilized the loop-shaping method which de-
creases the order of the robust control model of a single-link manipulator ex-
amined in time and frequency domains. To enhance control of powered pros-
thetic/robotic hands, Engeberg and Meek [168–171] proposed robust sliding
mode, back-stepping, and hybrid sliding mode-back-stepping (HSMBS) paral-
lel force–velocity controllers which enabled the humans to more easily control
a ne object by 10 able-bodied test subjects. Ziaei et al. [172] developed the
modeling, system identi cation adopting generalized orthonormal basis func-
tions (GOBFs), and robust position and force controllers for a single exible
link (SFL) manipulators required to operate the contact motion. Jiang and Ge
[173] transformed the nonlinear kinematic models of three-DOF mobile robot
with uncertain disturbance into linear control systems through an approximate
linearization algorithm and then designed a partial feedback robust con-
troller through linear matrix inequality (LMI).

4. Optimal Controller: Vitiello et al. [174] synthesized the position controller
and the Kalman lter to perform the planar movements, such as reaching and
catching, of the NEURARM hydraulic piston actuation with nonlinear springs
connected on the cable. Vrabie et al. [175] designed an online method via a bio-
logical inspired Actor/Critic structure to solve the adaptive optimal continuous-
time control problem by the solution of the algebraic Riccati equation without
using knowledge of the system internal dynamics. To minimize the position-
ing time (traveling between two speci c points) of an under-actuated two-DOF
robot manipulator restricted to the input constraint and the structural parameter
constraint, Cruz-Villar et al. [176] developed a concurrent structure-control re-
design method which combined the structural parameters and a bang–bang con-
trol law. Duchaine et al. [177] derived the position tracking and velocity con-
trol, the dynamic model of the robot, the prediction and control horizons, and
the constraints by a general predictive control law and also derived an analyti-
cal solution for the optimal control by a computationally ef cient model-based
predictive control scheme for a six-DOF cable-driven parallel manipulator.

5. Hierarchical Controller: Fainekos et al. [178] proposed a hierarchical control
law addressing the temporal logic motion planning problem for mobile robots
modeled by second-order dynamics to track a simpler kinematic model with a
globally bounded error and then the new robust temporal logic path planning
problem for the kinematic model using automata theory and simple local vector

elds were solved.

Soft Computing strategies:

1. Fuzzy Logic: According to human anatomy, Arslan et al. [179] developed the
biomechanical model with a tendon con guration of the three-DOF index nger
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of the human hand and the fuzzy sliding mode controller in which a FL unit
tuned the slope of the sliding surface was introduced to generate the required
tendon forces during closing and opening motion.

2. Artificial Neural Networks: Onozato and Maeda [180] utilized two NNs learn-
ing inverse kinematic and inverse dynamic to control the positions of two-DOF
SCARA robot. Aggarwal et al. [181] obtained the neural recordings from rhe-
sus monkeys with three different movements, the exion/extension of each n-
ger, the rotation of wrist and dextrous grasps and designed the separate decod-
ing lters for each movement by using multilayer feed-forward ANN in order to
be implemented in real-time MATLAB/Simulink. An online decentralized NN
control design without deriving the dynamic model for a class of large-scale
uncertain robot manipulator systems was proposed by Tan et al. [182]. Kato
et al. [183] expressed the reaction of brains to the adaptable prosthetic/robotic
system for a 13-DOF EMG signal controlled prosthetic/robotic hand with an
EMG pattern recognition learning by ANNs. In addition, functional magnetic
resonance imaging (f-MRI) was used to analyze the reciprocal adaptation be-
tween the human brain and the prosthetic/robotic hand by the plasticity of the
motor and sensory cortex area in brains based on the variations in the phantom
upper limb.

3. Genetic Algorithm: Marcos et al. [184] proposed the closed-loop pseudo-
inverse method with genetic algorithms (CLGA) to minimize the largest joint
displacement between two adjacent con gurations, the total level of joint veloc-
ities, the joint accelerations, the total joint torque, and the total joint power con-
sumption for the trajectory planning of three-DOF redundant robots. Kamikawa
and Maeno [185] used GA to optimize locations of pivots and grasping force
and designed one ultrasonic motor to move 15 compliant joints for an under-
actuated ve- nger prosthetic/robotic hand.

4. Particle Swarm Optimization: Khushaba et al. [186] developed a PSO-based
method for myoelectrically controlled prosthetic/robotic devices. However, the
arti cial hands had limitation on precision grasping, such as grasping a screw or
needle. To overcome the limitation, the accuracy and effectiveness of ngertip
trajectory and control systems need to be optimized.

Fusion of Soft and Hard Computing strategies:

1. PID Controller and Robust Controller: Dieulot and Colas [187] presented a
case study of the design of robust parametric methods for exible axes and an
heuristic initial tuning of the proportional-integral-derivative (PID) controller
from additional pole placement constraints on the rigid mode.

2. Adaptive Controller and Robust Controller: To implement the trajectory
tracking mission under the in uence of unknown friction and uncertainty, Chen
et al. [188] utilized a composite tracking scheme, including the adaptive friction
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estimation to determine Coulomb friction, viscous friction, and the Stribeck ef-
fect and a robust controller to enhance the overall stability and robustness, for a
two-DOF planar robot manipulator.

3. Robust Controller and Optimal Controller: Huang et al. [189] designed the
robust control systems with some uncertainties, including the unknown payload
and unknown modeling of objects and the unknown dynamic parameters, as the
performance index that was optimized by the optimal control method for the
space robot to capture unknown objects.

4. Robust Controller and Fuzzy Logic: Tootoonchi et al. [190] combined a
robust quantitative feedback theory (QFT) designed to follow the desired tra-
jectory tracking with the fuzzy logic controller (FLC) designed to reduce the
complexities of the system dynamics for two-DOF arm manipulator. The con-
trol gain of the sliding mode controller tuned according to error states of the
system by a fuzzy controller and a moving sliding surface whose the slope is
dynamically changed by a FL algorithm for a three-DOF spatial robot were
presented by Yagiz and Hacioglu [191].

5. Robust Controller and Artificial Neural Networks: Siqueira and Terra [192]
developed a neural-network-based controller which approximated the un-
certain factors of an actual under-actuated cooperative manipulator and robustly
controlled the position and squeeze force errors between the manipulator end-
effectors and the object, although one joint was not actuated.

6. Sliding Mode Controller and Genetic Algorithm: Chen and Chang [193]
utilized the multiple crossover GA to estimate the unknown system parameters
and the sliding mode control method to overcome the uncertainty for a two-link
robot control, respectively.

7. Sliding Mode Controller and Particle Swarm Optimization: Salehi et al.
[194] used an online particle swarm optimization (PSO) to tune the parameters
of sliding mode control at the contact moments of end-effector and unknown
environments for the two-DOF planar manipulator.

8. Fuzzy Logic and Artificial Neural Networks: Subudhi and Morris [195] pro-
posed a hybrid fuzzy neural control (HFNC) scheme containing a FLC and a
NN controller to balance the coupling effects for the multi-link exible manip-
ulator with both rigid and exible motions.

9. Artificial Neural Networks and PSO: Wen et al. [196] addressed the hybrid
particle swarm optimization neural network (HPSONN) to compute the pseudo-
inverse Jacobian of two-DOF planar manipulator inverse kinematic control.

1.2.4 Revolutionary Prosthesis

In 2009 (see the press releases [23, 69], the Applied Physics Laboratory (APL) of
Johns Hopkins University (JHU), in Baltimore, MD received funding for the Rev-
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Figure 1.1 Schematic Diagram of Prosthetic/Robotic Hand Technology

olutionary Prosthesis 2009 program from DARPA (Defense Advanced Research
Projects Agency), the U.S. Department of Defense, to “develop a next-generation
mechanical arm that mimics the properties and sensory perception of the real thing.”
The APL leads an international team of about 30 organizations from Austria, Canada,
Germany, Italy, Sweden, and USA. The APL team delivered rst DARPA Limb Proto
1 (see [70], which “is a complete limb system that also includes a virtual environ-
ment used for patient training, clinical con guration, and to record limb movements
and control signals during clinical investigations.”

1.3 Fusion of Intelligent Control Strategies

Here we present the recent research activities on fusion control strategies for a smart
prosthetic/robotic hand. The schematic diagram of the work is shown in Figure 1.1
(see the works of [34, 149, 151]). The overall system, in brief, consists of EMG sig-
nal acquisition from user arm for surface or implanted electrodes (in the implanted
case we focus on biocompatibility based on nano-materials research). The EMG
signal is then processed for feature extraction and classi cation or identi cation of
EMG signal to correspond to different motions of the prosthetic/robotic hand. The
classi ed signal is then used to control the prosthetic/robotic hand using actuators
and driving mechanisms. It is to be noted that the EMG signal extraction and identi-

cation and the control algorithm are investigated using the fusion of soft computing
(SC) and hard computing/control (HC) strategies.

1.3.1 Fusion of Hard and Soft Computing/Control Strategies

HC strategies are used at lower-level control for accuracy, precision, stability, and
robustness and comprise PD control [197], PID control [198, 199], optimal control
[199–202], adaptive control [203–206], etc. with speci c applications to robotic
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hand devices. The authors conducted an overview of control strategies for robotic
and prosthetic/robotic hands [85, 86]. However, our previous works [197–199, 207]
for a robotic hand showed that PID controller resulted in undesirable feature of over-
shooting and oscillation, which were also demonstrated by Subudhi and Morris [195]
in a two-link exible robot manipulator and Liu and Chen [208] in a 6-DOF under-
water robot (autonomous underwater vehicle).

The term SC or computational intelligence (CI) has been already used by L. A.
Zadeh in 1994 and he de ned SC as “a collection of methodologies that aim to
exploit the tolerance for imprecision, uncertainty, partial truth, and approximation
to achieve tractability, robustness, low solution cost and better rapport with reality”
[209]. The fundamental concepts of SC have been in uenced by Zadeh’s earlier
publications [210–212]. Since 1994, many researchers and engineers have worked
on different methods using SC.

Unlike HC, SC strategies are meant to adapt to an environment under impreci-
sion, uncertainty, partial truth, and approximation [209]. The review paper of L.
Magdalena has analyzed, compared, and discussed some de nitions of SC found in
the literature [213]. Unlike the lower-level control of HC, SC is used at high-level
control of the overall mission where human involvement and decision making is of
primary importance. SC is an emerging eld based on synergy and seamless inte-
gration of NN, FL, and optimization methods, such as GA and PSO [197, 209, 213–
220]. The previous works on robotic/prosthetic hand used NN by [33, 34, 221],
FL by [140, 141, 222], GA by [223], etc. mostly for EMG signal classi cation for
various movements or functions of the robotic hand.

The brain analogy corresponds to the fusion of HC and SC strategies. We there-
fore propose hybrid intelligent control strategies with the integrated structure by
blending [215, 216] the upper-level control of SC strategies and lower-level con-
trol of conventional HC strategies. Fusion of SC and HC methodologies can solve
problems that cannot be solved satisfactorily by using either HC or SC methodol-
ogy alone and can lead to high performance, robust, autonomous, and cost-effective
missions, such as accuracy and effectiveness of ngertip trajectory and control sys-
tems [215, 216]. The hybrid intelligent control strategies for a robotic hand can be
also applied to robotics for hazardous environments, surgery, etc. and clinical pros-
thetic/robotic hands [224–226].

The integration of SC and HC strategies shown in Figure 1.2 has the following
attractive features [215, 216]:

1. The methodology based on SC is used, in particular with FL, at upper levels
of the overall mission where human involvement and decision making is of pri-
mary importance, whereas the HC is used at lower levels for accuracy, precision,
stability, and robustness.

2. In another situation using hybrid scheme, a NN of the SC is used to supplement
the control provided by a linear, xed gain controller for a missile autopilot.
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Figure 1.2 Fusion of Soft Computing and Hard Control Strategies

3. Further, the SC-based GA is used to tune the parameters of the PID controller
and to achieve good performance and robustness for a wide range of operating
conditions.

4. The SC and HC are potentially complementary methodologies.

5. The fusion could solve problems that cannot be solved satisfactorily by using
either methodology alone.

6. Novel synergetic combinations of SC and HC lead to high performance, robust,
autonomous, and cost-effective missions.

Our research focuses on developing intelligent autonomous strategies for EMG
signal, extraction, analysis, and control of prosthetics by fusion of SC strategies
comprising NN, FL, and GA (see [216, 227]) and HC strategies. The proposal takes
advantage of our in-house research experience with problems in prosthetics as shown
in [228, 229], in particular, and with problems in biomedical engineering as reported
in [230, 231], in general.

An overview of nine papers using the strategies in industrial and engineering ap-
plications was presented by [232]. For the fusion strategies, the work by [233] de-
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scribed a multidimensional categorization scheme in ve aspects: the degree of inter-
connection of soft and hard computing components (fusion grade), the topology of
fusion skills (fusion structure), the time when fusion happens (fusion time), the layer
of a system architecture (fusion level), and the motivation for the application (fusion
incentive). Further, [234] classi ed the fusion strategies to 12 main categories and 6
supplementary categories.

1.4 Overview of Our Research

A chronological overview of our research is provided below.
A short review by Lai et al. [235] notes the importance of the biological interfaces

that robotic implants and other prosthetic/robotic devices and notes an interdisci-
plinary team of biomedical and tissue engineers, and biomaterial and biomedical
scientists is needed to work together holistically and synergistically.

In addressing the PSO technique, a set of operators for a PSO-based optimization
algorithm is investigated for the purpose of nding optimal values for some of the
classical benchmark problems. Particle swarm algorithms are implemented as math-
ematical operators inspired by the social behaviors of bird ocks and sh schools.
In addition, particle swarm algorithms utilize a small number of relatively less com-
plicated rules in response to complex behaviors, such that they are computationally
inexpensive in terms of memory requirements and processing time. In particle swarm
algorithms, particles in a continuous variable space are linked with neighbors, there-
fore the updated velocity of particles in uences the simulation results. The work
presents a statistical investigation on the velocity update rule for continuous variable
PS algorithm. In particular, the probability density function in uencing the parti-
cle velocity update is investigated along with the components used to construct the
updated velocity vector of each particle within a ock. The simulation results of sev-
eral numerical benchmark examples indicate that small amount of negative velocity
is necessary to obtain good optimal values near global optimality [219].

A chronological overview of the applications of control theory to pros-
thetic/robotic hand is presented focusing on HC strategies such as multi-variable
feedback, optimal, nonlinear, adaptive, and robust and SC strategies such as arti cial
intelligence, NN, FL, GA, PSO, and on the fusion of hard and soft control strate-
gies [85]. The work [197] presents the PSO algorithm for identifying the rupture
force for leukocyte adhesion molecules and the problem of nding the correct con-
trol parameters of a robotic hand. Another work by the group at ISU presents the
fusion of SC technique of GA and HC technique of PID control with application
to prosthetic/robotic hand. In particular, an adaptive neuro-fuzzy inference system
(ANFIS) is used for inverse kinematics of the three-link index nger, and feedback
linearization is used for the dynamics of the hand and the GA is used to nd the
optimal parameters of the PID controller [198]. An adaptive PSO (APSO) approach
based on altering the maximum velocity at each iteration for two 30-dimensional
benchmark problems is used [220].
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A hybrid of a SC technique of ANFIS and a HC technique of adaptive control for
a two-dimensional movement of a prosthetic/robotic hand with a thumb and index

nger is investigated [205]. The dynamics of the prosthetic/robotic hand is derived
and feedback linearization technique is used to obtain linear tracking error dynamics.
Then the adaptive controller was designed to minimize the tracking error. The results
of this hybrid controller show enhanced performance when compared with the PID
controller. The adaptive control strategy is extended for the 14-DOF, ve- ngered
smart prosthetic/robotic hand with unknown mass and inertia of all the ngers [206].
The simulation results show that the ve- ngered prosthetic/robotic hand with the
proposed adaptive controller can grasp an object without overshooting and oscilla-
tion [236].

A novel condensed hybrid optimization (CHO) algorithm using enhanced con-
tinuous tabu search (ECTS) and the PSO was examined [207]. The proposed CHO
algorithm combines the respective strengths of ECTS and the PSO. In particular, the
ECTS is utilized to de ne smaller search spaces, which are used in a second stage
by the basic PSO to nd the respective local optimum. The ECTS covers the global
search space by using a TS concept called diversi cation and then selects the most
promising areas in the search space. Once the promising regions in the search space
are de ned, the proposed CHO algorithm employs another TS concept called in-
tensi cation in order to search the promising area thoroughly. The proposed CHO
algorithm is tested with the multi-dimensional hyperbolic and Rosenbrock problems.
Compared to the other four algorithms, the results indicate that the accuracy and ef-
fectiveness of the proposed CHO algorithm was enhanced. Another hybrid of a SC
technique using the ANFIS and a HC technique using nite-time linear quadratic
optimal control for a two- ngered (thumb and index) prosthetic/robotic hand was
investigated [201, 237, 238]. In particular, the ANFIS is used for inverse kinemat-
ics, and the optimal control is used to minimize tracking error utilizing feedback
linearized dynamics. The simulations of this hybrid controller, when compared with
the PID controller showed enhanced performance. This work was extended to a

ve- ngered, three-dimensional prosthetic/robotic hand [199]. To make the optimal
controller fast acting and improve the accuracy, the performance index is modi ed
by including an exponential term [202, 239]. Simulations show that the proposed
technique provides fast action with high accuracy and 30-fold faster than ANFIS- or
GA-based trajectory planning [201, 239, 240].

1.5 Developments in Neuroprosthetics

It is worth noting some of the developments in neuroprosthesis reported in [241–
244].

An interesting study was made by [245] on implanted neuroprostheses employ-
ing functional electric simulation (FES) to provide grasp and release to individuals
with tetraplegia and comparing three control methods for shoulder position, wrist
position, and myoelectric wrist extensors. To improve the control of grasp strength,
forearm pronation, and elbow extension to the people with spinal cord injury at C5
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and C6, the investigation by [123] developed an advanced neuroprosthesis that in-
cludes implanted components, including 10-channel stimulator, leads and electrodes,
and a joint angle transducer, and external components, such as a control unit and
transmitter–receiver coil.

In particular, it was reported in [246–248] that Jesse Sullivan, who lost both arms
in an electric accident, could move his bionic arm with his brain—basically rewiring
the severed live nerves that control arm and hand movements by redirecting the
nerves to pectoral muscles in his chest. Electrodes attached to the chest muscles pro-
duce an electrical signal which controls the robotic arm depending upon the nature
of muscle movement which in itself is characterized by “thinking” in the brain what
is to be done with arms. However, the demonstrated bionic arm is only a “prototype
and for research only.”

Another interesting news appeared in [249, 250] regarding implantation of an
electronic chip into the brain of a quadripledge man to use a computer to operate a
robotic arm.

An article that appeared in IEEE Spectrum issue of September 2014 [251], de-
scribes about “an epilepsy patient ... controlling the mechanical limb with her brain
waves.”

1.6 Chapter Summary

This book is composed of seven chapters. Chapter 2 presents kinematics and tra-
jectory planning and Chapter 3 presents dynamics for the robotic hand. The SC
strategies such as FL, NN, ANFIS, GA, and PSO are addressed in Chapter 4. Chap-
ters 5 and 6 present the fusion of soft and hard control strategies for each nger of
the robotic hand and all the ve ngers. Finally, conclusions and some thoughts on
future work are given in Chapter 7.
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