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ABSTRACT 

The article provides a selective review on strength of glass and glass fiber, covering effects 
of surface flaw and surface hydrolysis on the usable strength of glass (USG). Application of 
Griffith-Inglis-Orowan theory on fracture of solids is demonstrated, elucidating importance of 
stress-assisted hydrolytic effect on glass USG and associated change in glass surface energy. The 
fundamental understanding of glass fracture supports critical needs for development of new glasses 
and new durable and/or resin compatible hydrophobic coatings to significantly improve USG of 
glass and fiberglass products, respectively.  

1. FRACTURE OF GLASS AND GLASS FIBERS 

1.1 Fundamental of Solid Fracture 

Theoretical tensile strength of solids, according to Orowan [1], is proportional to Young’s 
modulus (E) and surface energy ( o) of the material as 

th = (E o/ro)1/2        (1) 

where ro is the equilibrium distance between atomic centers. Experimental measurements, however, 
report that glasses typically have tensile strengths much lower than the theoretical values by as 
much as one order of magnitude. Unlike crystalline materials, for which grain boundaries serve as 
one type of defect, glass defects mostly come from surface “damage” or surface flaw as one of the 
key factors of lowering the usable strength of glass (USG) from its expected theoretical level. 

Surface flaws of a given size (c) serve as a stress concentrator when glass is subject to an 
applied tensile load; these weak spots cause glass to fail at a tensile stress level well below the 
theoretical expectation.  By the Griffith energy-balance criterion, apparent or measured strength 
( m) of a solid is defined by [2, 3]: 

m = (2E o/ c)1/2  (plane tensile stress)    (2a) 

m = [2E o/ (1- 2)c]1/2 (plane tensile strain)    (2b) 

Inglis further demonstrated [4] that tip geometry of the flaw, in terms of its size c and radius, tip, 
can significantly magnify the stress applied onto the material, which affects m, according to 

m = (E o/ r tip c)1/2       (3a) 

or m = th/2 tip c)1/2       (3b) 

Equation 3b implies that the maximum measured strength of “flaw-free” samples will be 
approximately 50% of its theoretical strength and the same size of a critical surface flaw with a 
sharper crack tip (or lower radius at the crack tip) will further reduce the material strength [5]. 
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It becomes clear that experimentally measured glass strength is not an intrinsic property of 
the material. Besides composition, atomic structures of glass are affected by their thermal history 
in terms of melting temperature, cooling rate, degree of annealing, degree of aging under 
conditions under which they are stored before application, and fatigue in terms of test or 
application conditions, including temperature, humidity, and cleanness of laboratory, and sample 
strain rate [6-9]. Furthermore, it is expected that the glass “surface defects” can be generated from 
“contact damage” even from finger contact during sample handling.   

When developing new glass and glass fiber compositions, keeping in mind the multiple 
factors that affect USG, it is critical to test all samples that are made by the same method under 
the same laboratory conditions in order to screen composition effect on glass strength.   

In reporting and comparing glass strength, “pristine” strength refers to testing samples 
made under controlled humidity, not being “damaged” by any physical contacts in handling, and 
tested under the same humidity environment within a very short period of time after the samples 
are made. “Inert” strength means that the samples are tested in liquid nitrogen to minimize any 
moisture interaction with glass or glass fiber surface under an applied force. In this case, the 
samples can be tested after aging under specific conditions or as its “pristine” form without any 
treatment. “Inert” strength of the “pristine” glass is significantly higher than that of “pristine” glass 
and hence, closer to the glass intrinsic property.  

1.2 Glass Fracture from Microscopic Defects 

One of the most detrimental factors impacting glass strength is glass surface attack by 
corrosive media in the form of liquid or vapor, including water, acid, and base [10-14]. Figure 1 
illustrates the effect of fiber surface flaw geometry on silica fiber “inert” tensile strength as the 
fibers treated in hydrofluoric acid vapor over time [5].  Prediction from the data set suggests that 
for the silica fibers with very sharp surface flaws, i.e. tip c, its strength is approximately 35 - 
40% of its theoretically predicted value of � 17 GPa.  

Figure 2 shows fiber failure strain of boron-free E-CR fibers with and without aging up to 
270 days at 50oC under 80% relative humidity (RH) [15]. The tests were conducted by using the 
two-point bending method [16] at room temperature (RT) under 50 %RH and in liquid nitrogen 
(LN), respectively. Several characteristics can be summarized from the results as follows: First, at 
semi-logarithmic scale, the two sets of data can be reasonably fit by using linear aggression least 
square method.  The total reduction in fiber failure strain is about 12.5% for fibers tested at RT – 
50%RH and 13% for fiber tested in liquid nitrogen, respectively. Therefore, it is reasonable to 
conclude that fiber aging under stress-free conditions results in approximately 13% deterioration 
in terms of failure strain. Secondly, in terms of absolute failure strain comparing the two test 
conditions, f (LN) is significantly higher than f (RT-50%RH); the ratio of the average values for 
the same aging durations between the two cases is between 2.2 and 2.3, supporting that fiber failure 
at much higher load or applied stress once moisture of water is minimized or eliminated under 
which the samples are tested. 
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Figure 1. Silica Glass Fiber Tensile Strength as a Function of Fiber Surface Defect Geometry 
Characterized by the Ratio of Tip Radius ( tip) of the Surface Flaw over the Flaw size (c) (solid 
line is determined by using least square linear regression analysis; the plot is constructed based on 
[5]). 

 

Figure 2. Fiber Failure Strain of E-CR Fibers Measured at Room Temperature under 50% RH and 
in Liquid Nitrogen as a Function of Fiber Aging under 50oC - 80% RH Conditions (open circle 
and triangle represent individual measurements; filled diamond and triangle represent average 
values; error bars represent one standard deviation; solid lines are obtained by using linear 
regression method fitting average values of the data sets; 20 measurements were performed per 
data set) [15]. 
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Combining the aging test results, for E-CR glass with low alkali contents and free from 
boron and fluoride, the study demonstrated that moisture water interaction with the surfaces of 
fibers being under tensile strain or tensile stress plays a dominant role on its failure over hydration 
or aging treatment of the fibers without being stressed. It follows that the kinetics of stress-assisted 
hydrolysis on the fiber surfaces should not be significantly affected by the preexisting “layer” of 
hydration created from the aging treatment. In turn, one can reason that the hydroxyl groups (Si-
OH) formed on the fiber surfaces during aging should be immobile during the growth of crack 
under the applied stress or strain and hence, newly generated Si-OH groups at the front of surface 
flaws, i.e., stress-assisted hydrolysis, should dominate the fiber failure strain or failure stress. The 
mechanism of glass fatigue in a humid environment was proposed and experimentally 
demonstrated by Hillig & Charles [17] and Wiederhorn [18, 19]. 

The stress-assisted hydrolysis of the glass near the tip of surface flaws can result in 
significant glass surface energy ( ) reduction; literature data shows that quartz crystals change in 
surface energy with and without hydration by as much as 10 times [20-23]. Structure of crystalline 
quartz and fused quartz glass is very different; in dry liquid nitrogen their perspective ratio is about 
0.43 (2.0 J/m2 for crystalline quartz over 4.6 J/m2 for fused quartz glass) [24]. However, their 
perspective changes in surface energy to hydration are expected to follow the same trend [25]. 
Therefore, the glass fibers tested should become much weaker under ambient conditions over 
liquid nitrogen. Our estimation on the surface energy ratio, (LN)/ (RT-50%RH), derived from 
the study [15] was close to 3.4 + 0.2 for fibers aged up to 180 days. The surface energy ratio can 
be derived from Eq. 3a, in which fiber modulus is considered as a strain-dependent variable, i.e., 
Secant Modulus, according to Gupta and Kurkjian [26]. 

1.3 Glass Fracture from Macroscopic Defects 

As the size of glass surface flaws becomes larger, glasses fail at lower applied stresses, i.e., 
lower USG, as illustrated in Figure 3 [27].  Within each flaw size range, instantaneous strength 
represents the samples without any aging effect, and endurance limit represents the samples 
experienced some levels of aging event before or during the mechanical tests. In product design, 
one should consider the use of the endurance limit of the glass that has been tested under a relevant 
application environment to ensure the maximum safety of the products to be used.  

Fracture of glass and glass fibers under an applied tensile load initiates at a point of its 
weakest point according to the Weibull statistical theory [28], which has been widely used to study 
distribution of glass stress at breakage in relationship to change of glass chemistry or glass thermal 
history or test conditions. According to the Weibull method, an accumulative probability of failure 
(Pf) of a solid at an applied tensile stress, f, follows 

Pf = 1 – exp[-( f/ o) ]        (4a) 

or    ln[-ln(1-Pf)] = ln( f) – ln( o)       (4b) 

where  and o are the statistical linear regression fitting parameters, which are often called 
Weibull modulus (or shape parameter) and characteristic stress, respectively.   
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Figure 3. Effect of Surface Flaw Size on Glass Tensile Strength (redraw after Mould [27]) 

Figure 4 illustrates a Weibull plot of pristine tensile strength distributions of S-Glass, R-Glass, and 
E-Glass fibers. Under the same sample preparation and test conditions, the average fiber tensile 
strength ranks in an order S-Glass (5500+133 MPa) > R-Glass (4135+280 MPa) > E-Glass 
(3215+198 MPa). The Weibull modulus ( -value) of the S-Glass is substantially higher than both 
R-Glass and E-Glass [29].  In this case, to minimize the size effect on the fiber strength [6,7], the 
fiber gage length of all samples was kept the same (1 inch) and the diameter of the fibers was 
controlled at 10+0.5 m; the size can be attributed to the change in the defect population as fiber 
gage length and/or diameter varies.  
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Figure 4.  Weibull Plot of Representative Glass Fibers used for Plastic Reinforcement, E-Glass, R-
Glass, and S-Glass [29]. 

2. YOUNG’S MODULUS OF GLASS AND GLASS FIBERS 

The strength of glass is a function of Young’s modulus (Eq.1 & 2). For oxide glasses, Sun’s 
binding energy approach [30] has been adopted to calculate Young’s modulus by Makishima and 
Mackenzie [31]. The model was later modified by Zou and Toratani [32].  In both models Young’s 
modulus of glass is approximated by a linear combination of contributions from individual glass 
constituents. Similar approaches to predicting the Young’s modulus of complex glass systems can 
be also found elsewhere [33, 34]. A general presentation of a linear composition model is 
illustrated in Figure 5, which provides a simplified view of the listed oxide contributions to glass 
Young’s modulus.   
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Figure 5.  Oxide Effects on Silicate Glass Young’s Modulus [29] 

In practice, significant deviations between the measured and the model-derived values have 
been reported, especially in complex multi-component glass systems [35]. There are many key 
factors contributing to the discrepancies reported.  First, local structure or surrounding oxygen 
environments of glass network formers (SiO2, B2O3) and conditional network formers (Al2O3) vary 
depending on concentrations of alkalis (Li2O, Na2O, K2O), alkaline earth (MgO, CaO, SrO), and 
their relative proportions [36-41]. The linear composition models cannot account for the structural 
variations or speciation of the network formers, such as SiO2, B2O3, and Al2O3. 

Secondly, glass density or molar volume is affected by fictive temperature or thermal 
history of the samples in terms of glass structure relaxation [42-44]. In turn, annealed glass has 
lower fictive temperature, higher density, and hence, higher Young’s modulus as compared to the 
quenched form of the same glass composition. Figure 6 compares the measured fiber glass 
modulus as obtained by using a sonic method comparing with the calculated modulus.  In general, 
a parallel downshift correlation line can be drawn relative to the ideal 1:1 line, which likely results 
primarily from thermal effect. The glass models of Young’s modulus found in literature are built 
from experimental data generated from testing annealed bulk glass samples [32-34] and the 
measured values shown in Figure 6 were collected from measuring fast quenching fibers without 
annealing. The thermally induced change of glass Young’s modulus has been reported to vary 
between 10% and 20% [43, 44]. 
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Figure 6. Comparison between Measured Young’s Modulus of Glass Fiber and Model Calculated 
Modulus, Suggesting Thermal Effect. 

3. IMPROVEMENT OF USABLE STRENGTH OF GLASS AND GLASS FIBERS

The detrimental effect of surface contact damage on USG has been well understood as 
reviewed previously, surface protection on glass and glass fibers are important to raise USG. For 
example, by applying protective sizing on glass fiber, the fiber surface flaw distributions can be 
altered, resulting in USG improvement [7]. The second critical damage mechanism is glass surface 
hydrolysis under the applied load. The hydrolysis involves interaction of moisture water or other 
corrosive media with surfaces of glass or glass fibers. For alkali-free glasses, the adverse effect of 
hydrolysis on USG is mostly pronounced when the glass object is stressed as comparing with the 
glass object aged under the stress-free conditions (cf. Fig 2).  

Realizing the importance of stress-assisted glass hydrolysis effect, it becomes clear that it 
will be advantageous by applying a hydrophobic coating on bulk glass [45] or more hydrophobic, 
resin compatible sizing on glass fibers [48, 49], which will prevent water molecules access to 
surface defects or surfaces of glass or glass fibers while the objects are under applied load. 
Prevention and/or slowing down molecular water reaction with glass surface defects in application 
can be significant in boosting USG according to the glass fatigue mechanism [17-19]. For example, 
hermetic coating has been long recognized as an important technology and applied to optical silica 
fibers in telecommunication, which prevents the optical fibers from aging in field applications [48]. 

Besides thermal tempering [49], improvement of USG can be realized by using various 
chemical tempering processes, introducing a compressive layer on surfaces of glass and/or glass 
fibers depending on specific compositions of the glasses commonly containing appreciable amount 
of sodium. Two methods have been commonly used in commercial glass productions are glass 
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surface de-alkalization and ion exchange [50-53]. Table 1 summarizes improvement of glass 
strength after surface treatments with various chemical methods [50].  

It should be noted that most of the aforementioned methods, besides the use of sizing, are 
technically feasible on bulk glasses in form of plate, tubing, and containers; but not feasible in 
production of continuous fibers. 

Table 1. Improvement of Average Impact Resistance (N·cm) of Glasses Treated by using 
Various Chemical Tempering Processes (De-alkalization, Ion-exchange, and Combined 

Methods) [50] 

De-alkalization Agent As-received De-alkalization Ion-Exchange* Combined# 
SO2 76 93 (22% ) 105.5 (39% ) 144 (89% ) 
NH4Cl 76 96 (26% ) 105.5 (39% )   152 (100% ) 
(NH4)2SO4 76 92 (21% ) 105.5 (39% ) 135 (78% ) 
AlCl3 76 88 (16% ) 105.5 (39% ) 120 (58% ) 
(NH4)2SO4+AlCl3 (10:1) 76 88 (16% ) 105.5 (39% ) 130 (71% ) 
NH4Cl+AlCl3 (10:1) 76 96 (26% ) 105.5 (39% ) 129 (70% ) 
NH4Cl+(NH4)2SO4 (1:1) 76 98 (29% ) 105.5(39% ) 132 (74% ) 

* Ion-exchange process: soak container in 70oC - 200 ml water solution containing 34g KNO3 - 69g KCl -
8.5g K2SO4 and followed by heat-treatment at 500oC. # De-alkalization first and followed by ion-exchange 
treatment 

4. SUMMARY

A selective literature review on strength of glass and glass fiber was made covering effects 
of surface flaw and surface hydrolysis on USG. Based on fracture mechanism of Griffith-Inglis-
Orowan theory, specific examples are provided to elucidate importance of stress-assist hydrolytic 
effect on USG, which highlights more pronounced detrimental impact of stress-assisted glass 
surface hydrolysis over the effect of stress-free hydrolysis.  Although it is important to develop 
new glass chemistry for greater pristine strength as shown in the review, in commercial 
applications, development of new coating materials for bulk glass or sizing for fiber glass is equally 
important to raise USG. Especially the latter offers the improvement of USG for existing glass or 
fiber glass products with minimum or without changing of existing processes, i.e., glass melting 
and product forming. 
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