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MATHEMATICAL PRELIMINARIES

1.1 INTRODUCTION

Free space optical systems engineering addresses how light energy is created,
manipulated, transferred, changed, processed, or any combination of these entities,
for use in atmospheric and space remote sensing and communications applications.
To understand the material in this book, some basic mathematical concepts and
relationships are needed. Because our audience is envisioned to be junior and senior
undergraduates, it is not possible to require the readers to have had exposure to these
topics at this stage of their education. Normally, they will have a working knowledge
of algebra, geometry, and differential and integral calculus by now, but little else.

In this chapter, we provide a concise, but informative, summary of the additional
mathematical concepts and relationships needed to perform optical systems engi-
neering. The vision is to form a strong foundation for understanding what follows
in subsequent chapters.

The intent is to establish the lexicon and mathematical basis of the various topics,
and what they really mean in very simple, straightforward means, establishing that
envisioned foundation.

1.2 LINEAR ALGEBRA

Imaging sensors create pictures stored as two-dimensional, discrete element arrays,
that is, matrices. It is often convenient to convert these image arrays into a vector form
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2 MATHEMATICAL PRELIMINARIES

by column (or row) scanning the matrix, and then stringing the elements together in
a long vector; that is, a lexicographic form [1]. This is called “vectorization.” This
means that the optical engineers need to be adept in linear algebra to take on prob-
lems in optical signal processing and target detection. This section reviews the nota-
tional conventions and basics of linear algebra following Bar-Shalom and Fortmann,
Appendix A [2]. A more extensive review can be found in books on linear algebra.

1.2.1 Matrices and Vectors

A matrix, A, is a two-dimensional array that can be mathematically written as

A = [aij] =
⎡⎢⎢⎣
a11 · · · a1J
⋮ ⋱ ⋮
aI1 · · · aIJ

⎤⎥⎥⎦ . (1.1)

The first index in the matrix element indicates the row number and the second
index, the column number. The dimensions of the matrix are I × J. The transpose of
the above matrix is written as

AT =
⎡⎢⎢⎣
a11 · · · a1I
⋮ ⋱ ⋮
aJ1 · · · aJI

⎤⎥⎥⎦ . (1.2)

A square matrix is said to be symmetric, which means that

A = AT , (1.3)

which means that aij = aji ∀i, j.
A vector is a one-dimensional matrix array, which is written as

a = column(ai) =
⎡⎢⎢⎣
a1
⋮
aI

⎤⎥⎥⎦ . (1.4)

The column vector has dimension I in this case. By convention, we assume all
vectors are column vectors. The transpose of a column vector is a row vector and the
transpose of Eq. (1.4) can be written as

aT = row(ai) =
[
a1 · · · aI

]
. (1.5)

Comparing Eqs. (1.4) and (1.5), it is clear that

a =
[
a1 · · · aI

]T
. (1.6)

1.2.2 Linear Operations

The addition of matrices and multiplication of a matrix by a scalar are given by the
following equation:

C = rA + sB, (1.7)
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where
cij = raij + sbij (1.8)

for {i = 1,… , I; j = 1,… , J}. Obviously, all three matrices have the same dimen-
sions.

The product of two matrices is written in general as

C = AB, (1.9)

where

cip =
J∑
j=1

aijbjp (1.10)

for {i = 1,… , I; p = 1,… ,P}. Here, A is a I × J matrix, B is a J × P matrix, and C
is a I × P matrix. In general, matrix products are not commutative, that is, AB ≠ BA.

The transpose of a product is

CT = (AB)T = BTAT . (1.11)

Equation (1.10) implies that if the matrix–vector product is written as

Ab = c, (1.12)

where A is a I × J matrix, b is a J × 1 vector, and c is a I × 1 vector, then its transpose
is equal to

cT = bTA (1.13)

with cT being a 1 × I (row) vector, bT being a 1 × J vector, and A still being a I × J
matrix.

1.2.3 Traces, Determinants, and Inverses

The trace of a I × I matrix A is defined as

tr(A) =
I∑

i=1

aii = tr(AT ), (1.14)

which implies that
tr(AB) = tr(BA). (1.15)

The determinant of a I × I matrix A is defined as

|A| = a11c11 + a12c12 + · · · + a1Ic1I = |AT |, (1.16)

where
cij = (−1)i+j|Aij|; i, j = 1,… , I. (1.17)



�

� �

�

4 MATHEMATICAL PRELIMINARIES

The parameter set {cij} are called the cofactors of A and Aij is the (I − 1) × (I − 1)
matrix formed by deleting the ith row and jth column from A. The determinant of a
scalar is defined as the scalar itself since essentially is a 1 × 1 matrix. This implies
that the determinant of a matrix multiplied by a scalar is given by

|rA| = rI|A|, (1.18)

and the determinant of a product of two matrices is written as

|AB| = |BA|. (1.19)

Example 1.1

(a) The determinant of a 2× 2 matrix is given by

||||a11 a12
a21 a22

|||| = a11a22 − a21a12. (1.20)

(b) The determinant of a 3× 3 matrix is given by

||||||
a11 a12 a13
a21 a22 a23
a31 a32 a33

|||||| = a11

||||a22 a23
a32 a33

|||| − a12

||||a21 a23
a31 a33

|||| + a13

||||a21 a22
a31 a32

|||| (1.21)

= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31).
(1.22)

Example 1.2 Let us now look at the solution for Eq. (1.12), where matrixA is a 3 × 3
matrix. Multiplying Eq. (1.12) out, we have three simultaneous equations:

a11x + a12y + a13z = u,

a21x + a22y + a23z = v,

a31x + a32y + a33z = w. (1.23)

The solutions to these equations are:

x =

||||||
u a12 a13
v a22 a23
w a32 a33

||||||||||||
a11 a12 a13
a21 a22 a23
a31 a32 a33

||||||
, (1.24)
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y =

||||||
a11 u a13
a21 v a23
a31 w a33

||||||||||||
a11 a12 a13
a21 a22 a23
a31 a32 a33

||||||
, (1.25)

and

z =

||||||
a11 a12 u
a21 a22 v
a31 a32 w

||||||||||||
a11 a12 a13
a21 a22 a23
a31 a32 a33

||||||
, (1.26)

assuming the determinant of matrix A is not zero.

The inverse A−1 of a I × I matrix A (if it exists) can be expressed as

A−1A = AA−1 =
⎡⎢⎢⎣
1 · · · 0
⋮ ⋱ ⋮
0 · · · 1

⎤⎥⎥⎦ = I. (1.27)

In Eq. (1.20), the I × I matrix I is called the identity matrix, which has 1’s down
the diagonal and 0’s everywhere else. The inverse is given by the equation

A−1 = 1|A|CT , (1.28)

where C are the cofactors of A. The matrix CT is called the adjugate of A. A matrix
is considered invertible or nonsingular if and only if its determinant is nonzero; oth-
erwise, it is said to be singular. Let us discuss these points a little more.

The inverse of a matrix exists if and only if the columns of the matrix (or its rows)
are linearly independent. This means that

m∑
i=1

riai = 𝟎 → ri = 0 for i = 1,… ,m, (1.29)

where 𝟎 is the zero vector.
A general m × m matrix can be inverted using methods such as the Cayley–

Hamilton (CH) method, Gauss–Jordan elimination, Gaussian elimination, or LU
decomposition.

Example 1.3 The cofactor equation given in Eq. (1.17) gives the following expres-
sion for the inverse of a 2× 2 matrix:[

a11 a12
a21 a22

]−1

= 1||||a11 a12
a21 a22

||||
[
a22 −a21
−a12 a11

]
. (1.30)
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The CH method gives the solution

A−1 = 1|A| [(tr(A) I − A)]. (1.31)

Example 1.4 The inverse of a 3 × 3 matrix is given by

A−1 =
⎡⎢⎢⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎥⎥⎦
−1

= 1|A| ⎡⎢⎢⎣
d11 d12 d13
d21 d22 d23
d31 d32 d33

⎤⎥⎥⎦
T

= 1|A| ⎡⎢⎢⎣
d11 d21 d31
d12 d22 d32
d13 d23 d33

⎤⎥⎥⎦ , (1.32)

where

d11 = a22a33 − a23a32 d12 = −(a21a33 − a23a31) d13 = (a21a32 − a22a31)
d21 = −(a12a33 − a13a32) d22 = −(a11a33 − a13a31) d23 = −(a11a32 − a12a31)
d31 = a12a23 − a13a22 d32 = −(a11a23 − a13a21) d33 = (a21a22 − a12a21)

.

The CH method gives the solution

A−1 = 1|A| [1
2
[(tr(A))2 − tr(A2)] I − A tr(A) + A2

]
. (1.33)

Example 1.5 With increasing dimensions, expressions for A−1 becomes compli-
cated. However, for m = 4, the CH method yields

A−1 = 1|A|
[ 1

6
[(tr(A))3 − 3tr(A)tr(A2) + tr(A3)]

I − 1
2
A[(tr(A))2 − tr(A2)] − A2 tr(A) − A3

]
. (1.34)

Example 1.6 The inverse of a (nonsingular) partitioned I × I matrix also can be
shown to be given by [

A B
C D

]−1

=
[
E F
G M

]
, (1.35)

where A is a I1 × I1 matrix, B is a I1 × I2 matrix, C is a I2 × I1 matrix, D is a I2 × I2
matrix, and I1 + I2 = I. In the above,

E = A−1 + A−1BMCA−1 = (A − BD−1C)−1 (1.36)

F = A−1BM = −EBD−1 (1.37)

G = −MCA−1 = −D−1CE (1.38)

and
M = (D − CA−1B)−1 = D−1 + D−1CEBD−1. (1.39)
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If R = −A, P = D−1, and H = B = CT , then the following matrix equation

(P−1 +HTR−1H)T = P − PHT (HPHT + R)−1HP (1.40)

can be rewritten as

(R +HTPH)T = R−1 − R−1H(P−1 +HTR−1H + R)−1HTR−1. (1.41)

The above is known as matrix inversion formula.

It is easy to show that
(AB)−1 = B−1A−1. (1.42)

1.2.4 Inner Products, Norms, and Orthogonality

The inner product of two arbitrary vectors of the same dimension is given by

aTb =
I∑

i=1

aibi. (1.43)

If a = b, then we write

aTa = a2 =
I∑

i=1

a2
i . (1.44)

Equation (1.44) is called the squared norm of the vector a. The Schwartz inequality
states that |aTb| ≤ ab. (1.45)

Two vectors are defined to be orthogonal (a ⟂ b) if

aTb = 𝟎. (1.46)

The orthogonal projection of the vector a onto b is

Πb(a) =
aTb

b2
b, (1.47)

and the difference between it and the original vector a is orthogonal to b. That is, we
have

[a − Πb(a)] ⟂ b. (1.48)

Finally, the outer product of the vectors a and b is the matrix C, that is,

abT = C. (1.49)
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1.2.5 Eigenvalues, Eigenvectors, and Rank

The eigenvalues of a square matrix are the scalars 𝜆i such that

Axi = 𝜆ixi, (1.50)

where the vectors xi are the corresponding eigenvectors. Equation (1.50) has the fol-
lowing properties:

• A matrix A is nonsingular if and only if all its eigenvalues are nonzero.
• The rank of the matrix A is equal to the number of its nonzero eigenvalues. A

nonsingular matrix is said to be of full rank.
• The eigenvalues of a real matrix can be either real or complex, but a symmetric

matrix only has eigenvalues that are real.
• The trace of a matrix A is equal to the sum of its eigenvalues.
• The determinant of a matrix A is equal to the product of its eigenvalues.

1.2.6 Quadratic Forms and Positive Definite Matrices

The scalar equation
q(x) = xAx (1.51)

is called a quadratic form. This relationship is true when the matrix A is symmetric.
The equation of this form is called positive definite if

q(x) = xAx > 𝟎 ∀ x ≠ 𝟎. (1.52)

The matrix A also is called positive definite, which we denote by A > 𝟎. It goes
without saying that a matrix is positive definite if and only if its eigenvalues are posi-
tive. If the inequality in Eq. (1.52) is nonnegative rather than positive, then the matrix
is referred to as positive semidefinite or nonnegative definite.

The quadratic equation given in Eq. (1.51) is the squared weighted norm of the
vector x where the weighting is in accordance with the matrix A.

1.2.7 Gradients, Jacobians, and Hessians

The gradient operator is written as

∇x =

⎡⎢⎢⎢⎢⎣
𝜕
𝜕x1
⋮
𝜕
𝜕xI

⎤⎥⎥⎥⎥⎦
, (1.53)

with the properties
∇xx

T = I (1.54)
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and
∇x(xTAx) = 2Ax. (1.55)

The gradient of a vector-valued function, say f (x), is equal to

∇x f
T (x) =

⎡⎢⎢⎢⎢⎣
𝜕
𝜕x1
⋮
𝜕
𝜕xI

⎤⎥⎥⎥⎥⎦
{
f1(x) · · · fI(x)

}
=

⎡⎢⎢⎢⎢⎣
𝜕f1(x)
𝜕x1

· · ·
𝜕fI(x)
𝜕x1

⋮ ⋱ ⋮
𝜕f1(x)
𝜕xI

· · ·
𝜕fI(x)
𝜕xI

⎤⎥⎥⎥⎥⎦
. (1.56)

The transpose of Eq. (1.56) is called the Jacobian and is defined as

f x(x) =
𝜕f (x)
𝜕x

= [∇x f
T (x)]T . (1.57)

The Hessian of the scalar function f (x) is defined to be given by

f xx(x) =
𝜕2f (x)
𝜕x2

= ∇x ∇x
T f (x) =

⎡⎢⎢⎢⎢⎢⎣

𝜕2f1(x)
𝜕x1𝜕x1

· · ·
𝜕2fI(x)
𝜕x1𝜕xI

⋮ ⋱ ⋮
𝜕2f1(x)
𝜕xI𝜕x1

· · ·
𝜕2fI(x)
𝜕xI𝜕xI

⎤⎥⎥⎥⎥⎥⎦
, (1.58)

which is a symmetric matrix.

1.3 FOURIER SERIES

One of the main tools used in physics and engineering are Fourier series and Fourier
integrals, which were published by Jean Baptiste Fourier in 1822, almost 200 years
ago. This section reviews the basics of these important entities [3–5] as they are the
foundation for a lot of the mathematical concepts used in optics.

1.3.1 Real Fourier Series

A Fourier series is used to represent a periodic function f (x). The definition of a
periodic function is

f (x) = f (x + md); where |m| = 0, 1, 2, 3,… (1.59)

where d is the length of the period (Figure 1.1) and 𝜈 = 1
d

is the fundamental spatial
frequency in one dimension. The following expression is the usual way for writing a
Fourier series representing the periodic function f (x):

f (x) =
∞∑
n=0

[an cos(2𝜋 n𝜈 x) + bn sin(2𝜋 n𝜈 x)]. (1.60)
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f(x)

x
d d

FIGURE 1.1 Example of a periodic function f (x).

In short, a Fourier series is an expansion of a periodic function f (x) in terms of
sines and cosines. The coefficients for this series are given by:

a0 = 1
𝜋∫

𝜋

−𝜋
f (x) dx, (1.61)

an =
1
𝜋∫

𝜋

−𝜋
f (x) cos(nx)dx, (1.62)

and

bn =
1
𝜋∫

𝜋

−𝜋
f (x) sin(nx)dx (1.63)

for n = 1, 2,… ,∞. It is noted that this basis set is orthonormal, as seen by the fol-
lowing the integral identities:

∫
𝜋

−𝜋
sin(mx) sin(nx)dx = 𝜋𝛿mn, (1.64)

∫
𝜋

−𝜋
cos(mx) cos(nx)dx = 𝜋𝛿mn, (1.65)

∫
𝜋

−𝜋
sin(mx) cos(nx)dx = 0, (1.66)

∫
𝜋

−𝜋
sin(mx) dx = 0, (1.67)

and

∫
𝜋

−𝜋
cos(mx) dx = 0 (1.68)

for m, n ≠ 0. In the first two equations, 𝛿mn denotes the Kronecker delta function.

1.3.2 Complex Fourier Series

The natural extension of the above is to express a Fourier series in terms of complex
coefficients. Consider a real-valued function f (x). In this case, we have

f (x) =
∞∑

n=−∞
Cn e

+inx, (1.69)
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where

Cn =
1

2𝜋∫
𝜋

−𝜋
f (x) e−inxdx. (1.70)

The above coefficients can be expressed in terms of those in the Fourier series
given in Eq. (1.60), namely,

Cn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2𝜋∫

𝜋

−𝜋
f (x)[cos(nx) + i sin(nx)]dx for n < 0

1
2𝜋∫

𝜋

−𝜋
f (x) dx for n < 0

1
2𝜋∫

𝜋

−𝜋
f (x) [cos(nx) − i sin(nx)]dx for n > 0

(1.71)

=

⎧⎪⎪⎨⎪⎪⎩

1
2𝜋

(an + ibn) for n < 0

1
2𝜋

a0 for n = 0

1
2𝜋

(an − i bn) for n < 0

. (1.72)

For a function that is periodic in
{
− d

2
, d

2

}
, this complex series become

f (x) =
∞∑

n=−∞
Cn e

+2𝜋i n 𝜈 x, (1.73)

where

Cn =
1
d∫

d
2

− d
2

f (x)e−2𝜋i n 𝜈 xdx (1.74)

and 𝜈 = 1
d
. These equations are the basis for the extremely important Fourier trans-

form, which is obtained by transforming Cn from a discrete variable to a continuous
one as the length d → ∞. We will discuss Fourier Transforms shortly.

1.3.3 Effects of Finite Fourier Series Use

Sometimes, it is necessary not to have an infinite series, but a finite series to represent
the periodic function f (x). In this case, we write

f (x) =
N∑
n=0

[an cos(2𝜋 n𝜈 x) + bn sin(2𝜋 n𝜈 x)] = SN(x). (1.75)

What is the best choice of coefficients, {an} and {bn}? Let us define an error
function

EN(x) = f (x) − SN(x). (1.76)
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Rewriting Eq. (1.75), we find that

SN(x) =
∞∑
n=0

[an cos(2𝜋 n𝜈 x) + bn sin(2𝜋 n𝜈 x)]

= a0 +
∞∑
n=1

[
(an − ibn)

2

]
e+2𝜋 n 𝜈 x +

∞∑
n=1

[
(an + ibn)

2

]
e−2𝜋 n 𝜈 x. (1.77)

Manipulating the terms in Eq. (1.77), we find that

SN(x) =
N∑

n=−N
Cn e

+2𝜋i n 𝜈 x; Cn = f (x) ⋅ e−2𝜋in 𝜈 x. (1.78)

Now let us return to the questions: “How good is our approximation?” or “Does
𝜎2
N → 0 as N → ∞?” Using our complex notation, the error 𝜎2

N can be rewritten as

𝜎2
N =

(
f −

N∑
n=−N

Cn e
+2𝜋 in 𝜈 x

)
⋅

(
f ∗ −

N∑
n=−N

C∗
n e

−2𝜋i n 𝜈 x

)
(1.79)

= f ⋅ f ∗ −
N∑

m=−N
|Cm|2. (1.80)

This equation implies the following desirable feature, 𝜎2
N+1 − 𝜎2

N = −2|CN+1|2 ≤
0. This means that the error 𝜎2

N can only decrease if more terms are added to the
Fourier series as in SN → SN+1. If 𝜎2

N → 0, then

N∑
m=−N

|Cm|2 yields
→ f ⋅ f ∗.

The ultimate result, which holds for all healthy functions (and also for some
strange ones too), is the completeness relationship,

f ⋅ f ∗ =
∞∑

m=−∞
|Cm|2. (1.81)

However, this relationship is not completely satisfactory because it always cannot

easily be checked and f (x) can be quite different from
∞∑

n=−∞
Cn e

+2𝜋 n 𝜈 x for a finite

number of points.

Example 1.7 Let

f (x) =

{
1 for 0 ≤ x ≤ d

2

−1 for − d
2
< x < 0

, (1.82)
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which implies that

Cn =

{
0 if n is even

2
𝜋in

if n is odd
. (1.83)

Equation (1.82) is depicted in Figure 1.2a.
From Eq. (1.83), we see that the Fourier series for the function in Eq. (1.70) can

be written as

∞∑
n=−∞

Cne
+2𝜋i n 𝜈 x =

∑
n=1,3,5,…

4
𝜋n

sin(2𝜋n𝜈x) = S∞(x). (1.84)

It is clear that the series in Eq. (1.84) certainly is zero at x = 0, while f (x) is +1 for
x = 0 (Figure 1.2b).

For functions with a finite number of discontinuities, Dirichlet has shown that at
discontinuous point of f (x) the infinite Fourier series assumes the arithmetic means
of the right- and left-hand limits (Figure 1.2):

∞∑
m=−∞

Cne
+2𝜋i n 𝜈 x = 1

2
lim
→0

[ f (x + ) + f (x − )]. (1.85)

Figure 1.2b shows how a square wave is perfectly represented by the infinite series,
except at points of discontinuity, where the series assumes the mean value.

Another effect occurs when one tries to approximate a discontinuous function f (x)
by the finite series Fourier series SN(x). Figure 1.3 shows a rectangular function f (x)
and examples of the series, SN(x), for N = 9, 15, and 25, for the interval 0 ≤ x ≤ d

2
.

These graphs clearly show there is overshoot and ringing occurring in the SN curves
for N > 1. This is the so-called Gibbs effect. Looking closely at these three plots, we
see that as you add more sinusoids to the series, the width of the overshoot decreases,
but the amplitude of the overshoot peak remains about the same, 4

𝜋
. These characteris-

tics continue as N → ∞. What is most interesting is that the overshoot is still present
with an infinite number of sinusoids, but it has zero width; hence, no energy. Exactly

f(x)

(a) (b)

x x

S
∞

(x)

d/2

–d/2

FIGURE 1.2 Dirichlet examples of (a) f (x) and (b) S∞(x).
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x

(a) (b) (c)

x x

S15(x) S25(x)S9(x)

4/

1

d/2 d/2d/2

FIGURE 1.3 Plots of (a) S9(x), (b) S15(x), and (c) S25(x) as a function of x.

at the discontinuity the value of the reconstructed signal converges to the midpoint
of the step. The result is the rectangle of amplitude 1. In other words, the summation
converges to the signal in the sense that the error between the two has zero energy
(Gibbs).

1.3.4 Some Useful Properties of Fourier Series

This section provides some of the interesting properties for Fourier series. If the func-
tion f (x) has the Fourier coefficients {An}, g(x) have the coefficients {Bn} and both
f (x) and g(x) are periodic in |x| ≤ d

2
, then the following properties in both Fourier

domains are equivalent:

[f (x) + g(x)] ↔ [An + Bn] (1.86)

f (x) = ag(x) ↔ An = aBn (1.87)

f (x) = g(Mx) ↔ AMn = Bn (M is a fixed integer > 0). (1.88)

The following two properties, which are quite important, are called the “shift the-
orem”:

f (x) = g(x + c) ↔ An = Bne
+2𝜋 in 𝜈 c (1.89)

f (x) = g(x)e+2𝜋 iM 𝜈 c(M, an integer) ↔ An = Bn−M . (1.90)

The next two properties are sometimes called “reality symmetry” or Hermitian:

f (x) = g∗(x) ↔ An = B∗
n (1.91)

f (x) = f ∗(x) ↔ An = A∗
n (1.92)

f (x) = −g∗(x) ↔ An = −B∗
n (1.93)

f (x) = g1(x)g2(x) ↔ An =
∑
m

B(1)
m B(2)

n−m (1.94)

f (x) = g(x)g∗(x) ↔ An =
∑
m

BmB
∗
m−n (1.95)

f (x) =
dg(x)
dx

↔ An = (2𝜋 in𝜈)Bn (1.96)
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f (x) = ∫
x

−x
g(x′)dx′ ↔ An =

(Bn + B−n)
(2𝜋 in𝜈)

[B0 = 0 assumed] (1.97)

f (x) =
(1
d

)
∫

d∕2

−d∕2

g1(x′)g2(x′ − x)dx′ ↔ An = B(1)
n B(2)

−n

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[Cross-Correlation]

(1.98)

f (x) =
(1
d

)
∫

d∕2

−d∕2

g1(x′)g2(x − x′)dx′ ↔ An = B(1)
n B(2)

n

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[Convolution]

(1.99)

f (x) =
(1
d

)
∫

d∕2

−d∕2

g(x′)g∗(x − x′)dx′ ↔ An = |Bn|2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[Autocorrelation]

(1.100)

f (x) =
(1
d

)
∫

d∕2

−d∕2

g(x′)g∗(x − x′)dx′ ↔ An = Bn
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[Autoconvolution]

. (1.101)

1.4 FOURIER TRANSFORMS

As noted earlier, the Fourier transform is a generalization of the complex Fourier
series in the limit as d → ∞. We first replace the discrete Cn with the continuous
f̂ (𝜈)d𝜈 while letting n

d
→ 𝜈, and then change the sum to an integral. The result is that

Fourier series representation for f (x) becomes

f (x) = ∫
∞

−∞
f̂ (𝜈)e2𝜋i 𝜈 x dx. (1.102)

Its counterpart, the inverse Fourier transform, is given by

f̂ (k) = ∫
∞

−∞
f (x)e−2𝜋i 𝜈 x dx. (1.103)

1.4.1 Some General Properties

Since we generated the Fourier-integral transform as an extension of the Fourier-
series transform for periodic functions, we can expect some of the same properties.
In particular the Fourier-integral representation is optimized in the Gaussian sense:

∫
||||f (x) − ∫

∞

−∞
f̂ (𝜈)e2𝜋i 𝜈 x dx

||||
2

dx → Minimum. (1.104)
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Hence, it is plausible that the Fourier integral also exhibits the Dirichlet effect.
Here are some other properties:

f (x) + g(x) ↔ f̂ (𝜈) + ĝ(𝜈) (1.105)

f (x) = ag(x) ↔ f̂ (𝜈) = aĝ(𝜈) (1.106)

f (x) = g(mx) ↔ f̂ (𝜈) =
ĝ
(

𝜈
m

)
|m| (1.107)

f (x) = g(x + c) ↔ f̂ (𝜈) = ĝ(𝜈)e2𝜋i 𝜈 c [Shift Theorem] (1.108)

f (x) = g(x)e2𝜋i 𝜈0 c ↔ f̂ (𝜈) = ĝ(𝜈 − 𝜈0) (1.109)

f (x) = g(−x) ↔ f̂ (𝜈) = ĝ(−𝜈) (1.110)

f (x) = −g(−x) ↔ f̂ (𝜈) = ĝ(𝜈) (1.111)

f (x) = f ∗(x) ↔ f̂ (𝜈) = f̂ ∗(−𝜈) [Reality Symmetry] (1.112)

f (x) = −f ∗(x) ↔ f̂ (𝜈) = −f̂ ∗(−𝜈) (1.113)

f (x) = g1(x)g2(x) ↔ f̂ (𝜈) = ∫ ĝ1(𝜇)ĝ2(𝜈 − 𝜇)d𝜇 [Convolution] (1.114)

f (x) = g(x)g∗(x)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Real nonnegative

↔ f̂ (𝜈) = ∫ ĝ(𝜇)ĝ∗(𝜈 − 𝜇)d𝜇 [Auto-correlation] (1.115)

f (x) =
dg(x)
dx

↔ f̂ (𝜈) = 2𝜋i𝜈 ĝ(𝜈) (1.116)

f (x) = ∫
x

−x
g(x′)dx′ ↔ f̂ (𝜈) =

ĝ(𝜈) + ĝ(−𝜈)
2𝜋i𝜈

(1.117)

f (x) = ∫ g1(x′)g2(x′ − x)dx′ ↔ f̂ (𝜈) = ĝ1(𝜈)ĝ2(−𝜈) (1.118)

f (x) = ∫ g1(x′)g2(x − x′)dx′ ↔ f̂ (𝜈) = ĝ1(𝜈)ĝ2(𝜈) (1.119)

f (x) = ∫ g(x′)g∗(x′ − x)dx′ ↔ f̂ (𝜈) = |ĝ(𝜈)|2 (1.120)

f (x) = ∫ g(x′)g∗(x − x′)dx′ ↔ f̂ (𝜈) = ĝ2(𝜈) (1.121)

f (x, y) = g(x + x0, y + y0) ↔ f̂ (𝜈, 𝜇) = ĝ(𝜈, 𝜇)e2𝜋i (𝜈x0+𝜇y0) (1.122)

f (x, y) = g(−x, −y) ↔ f̂ (𝜈, 𝜇) = (−𝜈,−𝜇) (1.123)

f (x, y) = g(−x,−y)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Inversion around the y-axis

↔ f̂ (𝜈, 𝜇) = ĝ(−𝜈,+𝜇) (1.124)
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f (x, y) = f ∗(x, y) ↔ f̂ , 𝜇 = f̂ ∗(−𝜈,−𝜇) (1.125)

f (x, y) = ∫ ∫ g1(x′, y′)g2(x′ − x, y′ − y)dx′dy′ ↔ f̂ (𝜈, 𝜇) = ĝ1(𝜈, 𝜇)ĝ∗2(𝜈, 𝜇).

(1.126)

One of the most important properties of Fourier Transform is the following:

∫ ∫ f (x′, y′)g∗(x′, y′)dx′dy′ = ∫ ∫ f̂ (𝜈, 𝜇)ĝ∗(𝜈, 𝜇)d𝜈d𝜇 (1.127)

or

f ⋅ g∗ = f̂ ⋅ ĝ∗, (1.128)

that many other formulae can be derived from it. For example, if g(x′, y′) = f (x′, y′),
then we have

∫ ∫ | f (x′, y′)|2dx′dy′ = ∫ ∫ | f̂ (𝜈, 𝜇)|2d𝜈d𝜇. (1.129)

Equation (1.129) comes from Parseval’s Theorem. In addition, the Wiener–
Khinchin Formula

∫ ∫ |f (x′, y′)|2e−2𝜋i(𝜈′x′+𝜇′y′)dx′dy′ = ∫ ∫ f̂ (𝜈, 𝜇) f̂ ∗(𝜈 − 𝜈′, 𝜇 − 𝜇′)d𝜈d𝜇 (1.130)

also can be created via Eq. (1.127) by setting g(x′, y′) = f (x′, y′)e2𝜋i (𝜈′x′+𝜇′y′) and
ĝ∗(𝜈, 𝜇) = f̂ ∗(𝜈 − 𝜈′, 𝜇 − 𝜇′), using previously stated properties.

Before leaving this topic, let us review the Fourier series in polar coordinates.
Mathematically, we can write the series as

f (r, 𝜑) =
∑

fm(r) eim𝜑, (1.131)

where the coefficients can be written as

fm(r) =
1

2𝜋∫
2𝜋

0
f (r, 𝜑) eim𝜑 d𝜑 (1.132)

or

fm(r) = ∫
∞

−∞
f̂m(𝜗) e2𝜋i r𝜗d𝜗. (1.133)

This last equation implies that Eq. (1.131) can be rewritten as

f (r, 𝜑) =
∑

eim𝜑∫
∞

−∞
f̂m(𝜗)e2𝜋i r𝜗d𝜗. (1.134)
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x

y

m = 4
mϑ > 0

FIGURE 1.4 Plots of polar spirals.

The real part of eim𝜑+2𝜋ir𝜗 is cos{m𝜑 + 2𝜋r𝜗} and has maximum curves that form
as set of m spirals that obey the equation

m𝜑 + 2𝜋r𝜗 = W, forW = 0,±1,±2,… (1.135)

This suggests that Eq. (1.134) represents a superposition of spirals following
this expression. The parameter 2𝜋𝜗

m
specifies the extent of the spirals as illustrated in

Figure 1.4.
An alternative to the above is the two-dimensional version of the Fourier trans-

form in polar coordinates. Expressing the Cartesian coordinates in terms of polar
coordinates, we have

x = r cos{𝜑} y = r sin{𝜑},

𝜈 = 𝜌 cos{𝜃} 𝜇 = 𝜌 sin{𝜃},

x𝜈 = r𝜌 cos{𝜑} cos{𝜃} y𝜇 = r𝜌 sin{𝜑} sin{𝜃},

and
cos{𝜑} cos{𝜃} + sin{𝜑} sin{𝜃} = cos{𝜑 − 𝜃}. (1.136)

This implies that

f (x, y) = ∫ ∫
∞

−∞
f̂ (𝜇, 𝜈)e−2𝜋i (𝜈x+𝜇y) d𝜈d𝜇 (1.137a)

= ∫
2𝜋

0 ∫
∞

0
f̂pol(𝜚, 𝜃)e2𝜋ir𝜚 cos{𝜑−𝜃}𝜚d𝜚d𝜃 = fpol(r, 𝜑). (1.137b)
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Comparing Eqs. (1.137a) and (1.137b), we see that the transformation to polar
coordinates changes the functions f (x, y) and f̂ (𝜇, 𝜈) to fpol(r, 𝜑) and f̂pol(𝜚, 𝜃), respec-
tively, even though they represent the same spatial pattern. This is important for the
reader to recognize and not assume it is just a change of variables in the cited func-
tions.

Rewriting Eq. (1.137b) into the following form:

fpol(r, 𝜑) = ∫
2𝜋

0 ∫
∞

0
f̂pol(𝜚, 𝜃)e2𝜋ir𝜚 cos{𝜑−𝜃}𝜚d𝜚d𝜃

= ∫
2𝜋

0 ∫
∞

0
f̂pol(𝜚, 𝜃)e

2𝜋ir𝜚 sin
{

𝜋
2
+𝜑−𝜃

}
𝜚d𝜚d𝜃, (1.138)

one can use the following Bessel Function Series

eA sin(𝛼) =
∞∑

n=−∞
Jn(A)ein𝛼 (1.139)

to yield

fpol(r, 𝜑) =
∞∑

n=−∞∫
∞

0
Jn(2𝜋r𝜌)∫

2𝜋

0
f̂pol(⟩, 𝜃)ein{ 𝜋

2
+𝜑−𝜃

}
𝜌d𝜌d𝜃. (1.140)

Expressing f̂pol(𝜌, 𝜃) as a Fourier series, we obtain

fpol(r, 𝜑) =
∞∑

n=−∞∫
∞

0
Jn(2𝜋r𝜌)

∞∑
m=−∞

f̂ pol
m (𝜌)∫

2𝜋

0
e
i(m−n)𝜃+in

{
𝜋
2
+𝜑
}
𝜌d𝜌d𝜃

=
∞∑

n=−∞∫
∞

0
Jn(2𝜋r𝜌)

∞∑
m=−∞

f̂ pol
m (𝜌)ein

{
𝜋
2
+𝜑
}
∫

2𝜋

0
ei(m−n)𝜃𝜌d𝜌d𝜃. (1.141)

=
∞∑

n=−∞∫
∞

0
Jn(2𝜋r𝜌)

∞∑
n=−∞

f̂ pol
m (𝜌)ein

{
𝜋
2
+𝜑
}
(2𝜋𝛿mn)𝜌d𝜌.

= 2𝜋
∞∑

n=−∞∫
∞

0
Jn(2𝜋r𝜌)̂f

pol
n (𝜌)ein

{
𝜋
2
+𝜑
}
𝜌d𝜌. (1.142)

Example 1.8 If fpol(r, 𝜑) does not depend on 𝜑, then all the coefficients {f̂ pol
n (𝜌)} are

zero, except for f̂ pol
0 (𝜌). If we set 2𝜋 f̂ pol

n (𝜌) = f̂pol(𝜌), we obtain the Bessel Transfor-
mations given in the following equations:

fpol(r) = ∫
∞

0
J0(2𝜋r𝜌)̂fpol(𝜌)𝜌d𝜌 (1.143)
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and

f̂pol(𝜌) = ∫
∞

0
J0(2𝜋r𝜌)fpol(r)rdr. (1.144)

1.5 DIRAC DELTA FUNCTION

The companion to the Kronecker Delta Function introduced in the previous section
is the Dirac Delta function. It is used with continuous functions and has application
throughout science, engineering, and other disciplines. Consequently, it warrants a
discussion to ensure the reader understands its function and properties.

The Dirac Delta Function 𝛿(x) often is described as infinitely high spike with an
infinitesimal width such that the “area” essentially is 1. This is not too satisfying
as a mathematical function definition and a better way is to put in terms of limiting
function, say like the following:

𝛿(x) = limA→∞

{
A if |x| ≤ 1

2A

0 otherwise
(1.145a)

= limA→∞A rect

[
x
1
A

]
, (1.145b)

where

rect[x] =

{
1 if |x| ≤ 1

2A

0 if |x| > 1
2A

(1.146)

is the rectangle function. This form of the delta function satisfies the implicit def-
inition by keeping the area constant while its height gets larger and its width gets
narrower as A moves to infinity. This implies that

∫
∞

−∞
g(x)𝛿(x − c)dx = limA→∞∫

∞

−∞
g(x) A rect

[
x − c

1
A

]
dx = g(c). (1.147)

There are other forms for the delta function than the above that satisfy the implicit
definition and normalize to one. However, not all of them mean that 𝛿(x − c) = 0
whenever x ≠ c. For example, the function

Asinc[A(x − c)] = sinc[𝜋A(x − c)]
𝜋A(x − c)

. (1.148)

Equation (1.148) defines the sinc function. This means that we hypothesize that

∫
∞

−∞
g(x)𝛿(x − c)dx = limA→∞∫

∞

−∞
g(x) Asinc

[x − c
A

]
dx = g(c). (1.149)

Because of the periodic nature of the sine function, there will be points where this
sinc function will equal 1 when x ≠ c. Fortunately, when A is large, it will oscillate
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rapidly, resulting in the g(x) contributions outside of x = c, averaging to zeros because
of that fact over the long integration interval. This implies that

𝛿(x) = limA→∞Asinc
[ x
A

]
(1.150)

is a legitimate representation of the Dirac Delta Function.
One of the properties of this function is that it is the derivative of the Unit Step

Function. In particular, we have

d
dx

U(x − c) = 𝛿(x − c), (1.151)

where

U(x) =
⎧⎪⎨⎪⎩

1 if x > 0
1
2

if x = 0

0 if x < 0

(1.152)

is the Heaviside (or Unit) Step Function.

1.6 PROBABILITY THEORY

Optical detection and estimation theory is based on the concepts derived from
probability theory. This theory is fundamental to understanding the performance of
any optical remote sensing or communications system. This section provides a brief
review of probability theory following Bar-Shalom and Fortmann, Appendix B [2]
and Helstrom [6]. It recognizes that this theory is designed to understand the possible
outcomes of chance experiments. These outcomes are unpredictable, but known with
certain knowledge of their relative frequency of occurrence, countable or not. The
theory provides a means for creating a strategy for “predicting” the various outcomes,
which hopefully maximizes possible gains and minimizes losses. More information
can be found in books on probability, for example, by Venkatesh [7] and Helstrom [6].

1.6.1 Axioms of Probability

Let A specify an event in a chance experiment whose results come from a specific set
of random outcome. This could be “heads” if one was flipping a coin or the number
“3” in throwing a die. Let S represent an assured event in the experiment; this would
mean “a number between 1 and 6 coming up after throwing a die.” The probability
of an event, denoted by P{A}, occurring obeys these following axioms:

Axiom 1

It is nonnegative, that is,
P{A} ≥ 0. (1.153)

Axiom 2

It is unity for assured event, that is,

P{S} = 1. (1.154)
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Axiom 3

It is additive over the union of mutually exclusive events, that is, if the events A and
B have no common elements, then

A ∩ B ≡ {A and B} = {A,B} = ∅, (1.155)

and
P{A ∪ B} = P{A or B} = P{A + B} = P{A} + P{B}. (1.156)

Axiom 4

If Ai ∩ Aj = ∅ for all i and j, i ≠ j, then

P{∪∞
i=1Ai} =

∞∑
i=1

P(Ai). (1.157)

An assignment of probabilities to the events consistent with these axioms is known
as a probability measure.

Corollaries to the above are

Corollary 1

P(∅) = 0. (1.158)

Corollary 2

0 ≤ P{A} ≤ 1. (1.159)

Corollary 3

With A being the complement of the event A, then

P{A} = 1 − P{A}, (1.160)

using Eqs. (1.154) and (1.157).

Corollary 4

If the n events Ai, {1 ≤ i ≤ n}, are mutually exclusive, for example, Ai ∩ Aj =
∅ for all i and j, i ≠ j, then

P{∪n
i=1Ai} =

n∑
i=1

P(Ai). (1.161)

Corollary 5

P{A ∪ B} = P{A} + P{B} − P{A ∩ B}. (1.162)
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A

A ∩ B

B

FIGURE 1.5 Venn diagram of events A and B.

It should be noted that probability theory is essentially computing the new probabili-
ties from an initial probability measure set over the events of the chance experiment.
It is a Bookkeeping drill that requires that all the unit quantities of probability be
accounted for, no probability is negative, and no excess probability emerges.

1.6.2 Conditional Probabilities

Sometimes the outcomes from two events are common. These type of outcomes form
the intersection A ∩ B, as depicted in Figure 1.5. The conditional probability of the
event A, given event B, is defined as

P{A |B} = P{A ∩ B}
P{B}

(1.163)

in terms of the probability measure assigned to the event. The probability P{A |B}
can be interpreted as the likelihood of event A occurring when it is known that event
B has occurred.

Example 1.9 A coin is tossed three times in succession. The possible outcomes from
this chance experiment are

𝜗1 𝜗2 𝜗3 𝜗4 𝜗5 𝜗6 𝜗7 𝜗8

{HHH} {HHT} {HTH} {HTT} {THH} {THT} {TTH} {TTT}

It is clear that there are eight elements to the universal set of outcomes of this
experiment. For illustrative purposes, let us assume that the coin is unbalanced and
the individual probabilities of occurrence for the above universal set after flipping the
coin many times come out nonuniform and have the probabilities given in Table 1.1.

TABLE 1.1 Probabilities for Possible Outcomes from Flipping a Coin

𝜗1 𝜗2 𝜗3 𝜗4 𝜗5 𝜗6 𝜗7 𝜗8

{HHH} {HHT} {HTH} {HTT} {THH} {THT} {TTH} {TTT}
0.07 0.31 0.17 0.05 0.29 0.01 0.06 0.04
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(a) What is the probability that three heads will appear, given the coin’s first toss
is heads? From our table, the possible outcomes beginning with heads are B =
{𝜗1, 𝜗2, 𝜗3, 𝜗4}. This conditioning event has probability

P{B} = 0.07 + 0.31 + 0.17 + 0.05 = 0.60.

The probability that three heads come up is

P{HHH} = 0.07.

Using Eq. (1.163), we have

P{HHH |B} = P{HHH}
P{B}

= 0.07
0.6

≈ 0.11.

(b) What is the probability that three heads will appear, given the coin was heads on
the first two tosses? In this case, the possible outcomes are B = {𝜗1, 𝜗2}. This
implies that

P{B} = 0.07 + 0.31 = 0.38,

and we have
P{HHH |B} = 0.07

0.38
≈ 0.18.

(c) What is the probability that tails appeared on the second and third tosses, given
the number of tails is odd? In this case, the events are A = {𝜗4, 𝜗8} and B =
{𝜗2, 𝜗3, 𝜗5, 𝜗8}. The intersection of A and B is A ∩ B = {𝜗8} and we find that

P{A |B} = P{A ∩ B}
P{B}

= 0.04
0.31 + 0.17 + 0.29 + 0.04

= 0.04
0.81

≈ 0.5.

Example 1.10 The reliability of a rectifier is such that the probability of it lasting at
least t hours is given by e−𝛼t

2
. What is the probability that the rectifier fails between

times t1 and t2, given it is still operating after time 𝜏, where 𝜏 < t1 < t2.
The universal set of time possible goes from zero to infinity. The conditioning

event B is that the failure happens in the interval 𝜏 < t < ∞. The associated proba-
bility of that happening is e−𝛼𝜏

2
, by the hypothesis. Event A is that the rectifier fails

within the interval t1 < t < t2. This implies that

P{failure in t1 < t < ∞} = P{failure in t1 < t < t2} + P{failure in t2 < t < ∞}

allows us to write

P{failure in t1 < t < t2} = P{failure in t2 < t < ∞} − P{failure in t1 < t < ∞}

= e−𝛼t2
2 − e−𝛼t1

2

using Eq. (1.144). From the above description, we have

P{A |B} = P{A ∩ B}
P{B}

= e−𝛼t2
2 − e−𝛼t1

2

e−𝛼𝜏2
.
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If one cross multiplies the above conditional probability and use the fact that

A ∩ B = B ∩ A,

then the following theorem can be derived:

P{A ∩ B} = P{B} P{A |B}.
This results in the following corollary:

Corollary 6

For any set of events {A1,A2,… ,Am}, we have

P{A1 ∩ A2,∩ · · · ∩ Am}

= P{A1}P{A2 |A2}P{A3 |A2 ∩ A2} · · ·P{Am |A1 ∩ A2,∩ · · · ∩ Am−1}

The above theorem is known as the multiplication theorem.

Example 1.11 A class contains 12 boys and 4 girls. If three students are chosen at
random from the class, what is the probability that they are all boys?

The probability that the first student chosen is a boy is 12
16

since there are 12 boys
in a class of 16 students. If the first selection is a boy, then the probability that the
next student chosen is a boy is 11

15
. Finally, If the first two selections are boys, then the

probability that the final selected student is a boy is 10
14

. Then by the multiplication
theorem, the probability that all three students chosen are boys is(12

16

)(11
15

)(10
14

)
=
(1

4

)(11
1

)(1
7

)
= 11

28
.

1.6.3 Probability and Cumulative Density Functions

Nearly all applications of probability to science and engineering are derived from
the outcomes from chance experiments, which are associated with specific numbers,
for example, voltages, currents, and power. Thus, events are sets of outcomes from
chance experiments. A scalar random variable is a real-valued parameter that labels
an outcome of a chance experiment for a given event with a probability measure
assigned to it. Its value is known as its realization. It follows that the outcome of
experiment can be a single number, a pair or more of numbers, and even a function
of the parameter. We now turn to defining the two key functions for characterizing
all of the above. They are the probability density function (PDF) and cumulative
distribution function (CDF).

The PDF px(x) of a continuous-valued random variable x at x = 𝜗 is defined as

px(𝜗)d𝜗 = P{𝜗 ≤ x ≤ 𝜗 + d𝜗} ≥ 0. (1.164)

For simplicity, the PDF can be shorted to p(𝜗), where the argument of the function
defines it. We will do so for the remainder of this section.
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Example 1.12 Let us assume we have a device for counting the number of electrons
radiated by some sort of emissive surface during the period of 𝜏 seconds. We also
assume we have a constant time average rate of occurrence for said electron emissions
equal to 𝜆. A stochastic process

Z(t) = C
k∑

m=1

𝛿(t − tm), (1.165)

composed of a sequence of electron emissions (impulses) occurring at times tm in
a time period − 𝜏

2
to 𝜏

2
and multiplied by a constant C, is a Poisson process if the

probability that the number, X, of impulses occurring in the time period 𝜏 is an integer
with probability

P{X(t) = k} = (𝜆t)k

k!
e−𝜆t. (1.166)

[8]. In Eq. (1.165), an impulse is represented by 𝛿(t), the Dirac delta function
defined previously.

The PDF for Z(t) is not Poisson, but rather equals

P{Z(t)} = P{t1, t2,… , tk |k}P{X(t) = k}. (1.167)

If the times of the impulse occurrences are independent of one another and indepen-
dent of the total number of pulses, then Eq. (1.167) can be written as

P{Z(t)} = 1
𝜏k

P{X(t) = k}. (1.168)

Using Eq. (1.164) and Corollary 4, we can write

P{a ≤ x ≤ b} = ∫
b

a
p(x)dx. (1.169)

The function

P{−∞ ≤ x ≤ b} ≡ Px(b) = P{x ≤ b} = ∫
b

−∞
p(x)dx (1.170)

is called the CDF of xat b. Since the event S ≡ (x ≤ ∞) is a sure thing, then

P{x ≤ ∞} = ∫
∞

−∞
p(x)dx = 1. (1.171)

Equation (1.171) is known as the normalization integral for the PDF p(x). This
equation must be true for p(x) to be a proper PDF.

The relationship between the PDF and CDF can be derived from Eq. (1.170),
namely, we see that

p(x) = d
d𝜗

Px(𝜗)|𝜗=x, (1.172)

if the derivative exists.
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1.6.4 Probability Mass Function

Let us assume that we have discrete random variable x comprising one set of possible
countable values {𝜗1, 𝜗,… , 𝜗m}. (Note: the set could extend to infinity and still be
countable.) As a result, their probabilities are written as

P{x = 𝜗i} = 𝜇x(𝜗i) = 𝜇i, for i = 1, 2,… ,m. (1.173)

The parameter 𝜇i is the point mass associated with outcome 𝜗i. Similar to Eq.
(1.171), we have

m∑
i=1

𝜇i = 1. (1.174)

Using the Dirac Delta Function, we can write the PDF for the above random vari-
able as

p(x) =
m∑
i=1

𝜇i 𝛿(x − 𝜗i). (1.175)

This PDF normalizes properly, so it is a true PDF. The distribution expressed in Eq.
(1.175) has jumps in it at values of 𝜗i. Its CDF is a “stair step” or “staircase” function
whose derivative is zero everywhere but at the jumps, where it is an impulse.

As a final note, a random variable x can take on values that are continuous, discrete,
or a combination of both. The PDF for a mixed random variable has the form

p(x) = pc(x) +
m∑
i=1

𝜇i 𝛿(x − 𝜗i). (1.176)

where pc(x) represents the continuous part of the PDF. As one would expect,

∫ p(x)dx = ∫x∈X
pc(x)dx +

m∑
i=1

𝜇i∫ 𝛿(x − 𝜗i)dx

= ∫x∈X
pc(x)dx +

m∑
i=1

𝜇i = 1. (1.177)

Example 1.13 Let us again assume that we have discrete random variable x that
only takes on the following values {𝜗1, 𝜗,… , 𝜗m}. Their associated probabilities are
P{x = 𝜗i}; i = 1,… ,m, which normalize properly. Its CDF will have steps of height
P{x = 𝜗i} at all points 𝜗i and can be written as

Px(x) =
m∑
i=1

P{x = 𝜗i} U(x − 𝜗i). (1.178)

Using Eq. (1.172) for the PDF, we find that

px(x) =
m∑
i=1

P{x = 𝜗i} 𝛿(x − 𝜗i) (1.179a)
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=
m∑
i=1

𝜇i 𝛿(x − 𝜗i). (1.179b)

Equation (1.179b) is the same one we used in Eq. (1.173) for characterizing the PDF
in terms of the point masses.

1.6.5 Expectation and Moments of a Scalar Random Variable

The expected value, or mean or first moment, of a random variable is defined as

x ≡ {x} = ∫
∞

−∞
x p(x)dx. (1.180)

The expected value of any function of the random variable therefore is

{g(x)} = ∫
∞

−∞
g(x) p(x)dx. (1.181)

The variance, or second moment, of a random variable is defined as

var(x) = 𝜎2
x ≡ {(x − x)2} = {x2} − (x)2 = ∫

∞

−∞
(x − x)2 p(x)dx. (1.182)

The square root of the variance is the called the standard deviation. Looking at
the forms of Eqs. (1.180) and (1.182) implies that the nth (noncentral) moment of the
random variable is given by

{xn} = ∫
∞

−∞
xn p(x)dx. (1.183)

Example 1.14 Let us assume a random variable x that is uniformly distributed. Its
PDF is given by

p(x) =

{
1

x2−x1
for x1 ≤ x ≤ x2

0 otherwise
. (1.184)

The mean for this random variable equals

x ≡ {x} = ∫
x2

x1

(
x

x2 − x1

)
dx = 1

2

(
x2

x2 − x1

)||||| x2
x1

= 1
2

(
x2

2 − x1
2

x2 − x1

)
=

(x2 + x1)
2

.

The covariance equals

var(x) = ∫
x2

x1

(
x2

x2 − x1

)
dx − (x)2 = 1

3

(
x3

x2 − x1

)||||| x2
x1

−
(
(x2 + x1)

2

)2

=
(x2 − x1)2

12
.
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1.6.6 Joint PDF and CDF of Two Random Variables

Given two random variables x and y, the joint PDF is defined as the probability of the
joint event, which is denoted by the set intersection symbol, and is written as

pxy{𝜗, 𝜁}d𝜗d𝜁 ≡ Pxy{[𝜗 < x < 𝜗 + d𝜗] ∩ [𝜁 < y < 𝜁 + d𝜁 ]}. (1.185)

The function pxy{x, y} is called the join or bivariate PDF. It follows that

pxy(x, y) =
d

d𝜗 d𝜁
Px(𝜗, 𝜁 )|𝜗=x,𝜁=y (1.186)

defines the relationship between the bivariate PDF and bivariate CDF, provided that
Px(x, y) is continuous and differentiable. Integrating Eq. (1.185) over one of the vari-
ables yields the PDF of the other variable, that is,

∫
∞

−∞
pxy(𝜗, 𝜁 )d𝜁 = px(𝜗) (1.187)

or

∫
∞

−∞
p(𝜗, 𝜁 )d𝜁 = p(𝜗) (1.188)

in reduced notation. The resulting PDF is called the marginal PDF or marginal
density.

The covariance of two scalar random variables 𝜗1 and 𝜗2 with means 𝜗1 and 𝜗2,
respectively, is equal to

{(𝜗1 − 𝜗1)(𝜗2 − 𝜗2)} = ∫
∞

−∞
(𝜗1 − 𝜗1)(𝜗2 − 𝜗2)p(𝜗1, 𝜗2)d𝜗1d𝜗2 (1.189)

= 𝜎2
𝜗1𝜗2

. (1.190)

The correlation coefficient of these two random variables can be written as

𝜌12 =
𝜎2
𝜗1𝜗2

𝜎𝜗1
𝜎𝜗2

, (1.191)

where 𝜎𝜗i is the standard deviation of the variable 𝜗i, i = 1, 2. The correlation coeffi-
cient of any two random variables must obey the following inequality:

|𝜌12| ≤ 1. (1.192)

1.6.7 Independent Random Variables

If the conditional PDF px(x|y) does not depend on y, then we have

px(x|y) = px(x), (1.193)
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which says that any observation of the random variables x provides no information
about the variable y. This situation establishes that the two random variables x and
y are statistically independent. Another way to say this is that two events are inde-
pendent if the probability of their joint event equals the product of their marginal
probabilities, or

P{A ∩ B} = P{A,B} = P{A}P{B}. (1.194)

The conclusion from this is that

pxy(x, y) = px(x)py(y) (1.195)

and
Pxy(x, y) = Px(x)Py(y), (1.196)

both in terms of marginal probabilities.

1.6.8 Vector-Valued Random Variables

The PDF of the vector-valued random variable

x = [x1 · · · xm]T (1.197)

is defined as the joint density of its components

px1···xm(𝜗1 · · · 𝜗m)d𝜗1 · · · d𝜗m ≡ px(𝝑)d𝝑 = Px(∩m
i=1{𝜗i < xi ≤ 𝜗i + d𝜗i}), (1.198)

where the set intersection symbol is used to denote the joint event

A ∩ B = {A and B} = {A,B}. (1.199)

The mean of x is the result of the m-fold integration

x = {x} = ∫ xpx(x)dx. (1.200)

The covariance matrix of x is given by

𝚪xx =
{
(x − x)(x − x)T

}
= ∫ (x − x)(x − x)T px(x)dx. (1.201)

The covariance matrix is a positive definite (or semidefinite) matrix, whose diag-
onal elements are the variances of the random variable x. The off-diagonal elements
are the covariances between various components of x.

The characteristic or moment generating function of a vector random variable is
defined as

Mx(S) =
{
eS

Tx
}
= ∫ eS

Txpx(x)dx, (1.202)
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which is the Fourier transform of the PDF. The first moment of x is related to the
characteristic function via the relation

{x} = ∇SMx(S)|S=𝟎, (1.203)

where ∇S is the (column) gradient operator defined in Section 1.2.7. Similarly, we
have {

xxT
}
= ∇S∇T

SMx(S)|S=𝟎. (1.204)

1.6.9 Gaussian Random Variables

The PDF of a Gaussian or normally distributed random variable is

p(x) = N(x, x, 𝜎2) = 1√
2𝜋𝜎2

exp

{
−(x − x)2

2𝜎2

}
, (1.205)

where N(x, x, 𝜎2) denotes the normal PDF, x is the mean, and 𝜎2 its variance. These
first two moments totally characterize the Gaussian random variance and are known
as its statistics.

A vector-valued Gaussian random variable has a PDF of the form

p(x) = N(x, x,𝚪) = 1√
2𝜋𝚪

exp{−(x − x)T𝚪−1(x − x)}, (1.206)

where x is the mean of the vector x and 𝚪 is its covariance matrix. If 𝚪 is a diagonal
matrix, then the elements of vector x are uncorrelated and independent. Consequently,
their joint PDF equals the product of their marginal PDFs.

Two vector random vectors x and y are jointly Gaussian if the stacked vector

z =
[
x
y

]
. (1.207)

Its PDF is given by
p(x, y) = p(z) = N(z, z,𝚪zz). (1.208)

The mean and covariance matrix of z in terms of those vectors x and y are

z =
[
x
y

]
(1.209)

and

𝚪zz =
[
𝚪xx 𝚪xy
𝚪yx 𝚪yy

]
, (1.210)

where

𝚪xx =
{
(x − x)(x − x)T

}
, (1.211)
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𝚪xy =
{
(x − x)(y − y)T

}
, (1.212)

𝚪yx =
{
(y − y)(x − x)T

}
, (1.213)

and
𝚪yy =

{
(y − y)(y − y)T

}
. (1.214)

The conditional probability for x, given y, is written as

p(x|y) = p(x, y)
p(y)

. (1.215)

Let
𝝃 = (x − x) and 𝜼 = (y − y).

Substituting Eqs. (1.206) and (1.208) into Eq. (1.215), we obtain for the argument
in the resulting exponent the following equation:

q =
[
𝝃

𝜼

]T[𝚪xx 𝚪xy
𝚪yx 𝚪yy

]−1 [
𝝃

𝜼

]
− 𝜼T𝚪yy

−1𝜼 (1.216)

=
[
𝝃

𝜼

]T [𝚼xx 𝚼xy
𝚼yx 𝚼yy

] [
𝝃

𝜼

]
− 𝜼T𝚪yy

−1𝜼, (1.217)

using the results in Section 1.3. In particular, we find for the partitions that

𝚼xx
−1 = 𝚪xx − 𝚪xy𝚪yy

−1𝚪yx, (1.218)

𝚪yy
−1 = 𝚼yy − 𝚼yx𝚼xx

−1𝚼xy, (1.219)

and
𝚼xx

−1𝚼xy = −𝚪xy𝚪yy
−1, (1.220)

which allows us to write Eq. (1.217) [after a multiplication of −2] as

q = 𝝃T𝚼xx𝝃 + 𝝃T𝚼xy𝜼 + 𝜼T𝚼yx𝝃 + 𝜼T𝚼yy𝜼 − 𝜼T𝚪yy
−1𝜼

= (𝝃 + 𝚼xx
−1𝚼xy𝜼)T𝚼xx (𝝃 + 𝚼xx

−1𝚼xy𝜼) + 𝜼T (𝚼yy − 𝚼yx𝚼xx
−1𝚼xy)𝜼 − 𝜼TΓyy

−1𝜼

= (𝝃 + 𝚼xx
−1𝚼xy𝜼)T𝚼xx (𝝃 + 𝚼xx

−1𝚼xy𝜼), (1.221)

using the partitioning results. It is clear that Eq. (1.221) has a quadratic form, which
means that the conditional PDF of x, given y, also is Gaussian.

Using Eq. (1.220), we find that

𝝃 + 𝚼xx
−1𝚼xy𝜼 = (x − x) − 𝚪xy𝚪yy

−1(y − y). (1.222)

The conditional mean of x, given y, is

x̂ = {x|y} = x − 𝚪xy𝚪yy
−1(y − y), (1.223)
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and its covariance matrix

𝚪xx|y = {(x − x̂)(x − x̂)T |y} = 𝚼xx
−1 = 𝚪xx − 𝚪xy𝚪yy

−1𝚪yx, (1.224)

using Eq. (1.218).
As a final comment, Gaussian random variables remain Gaussian even under linear

or affine transformations.

1.6.10 Quadratic and Quartic Forms

The expected value of quadratic and quartic forms of Gaussian random variables can
be derived as follows. Let us assume that

p(x) = N(x, x,𝚪).

Then the characteristic function for the above is

Mx(S) =
{
eS

Tx
}
= e

1
2
ST𝚪 S+STx. (1.225)

For convenience and without any loss of generality, let us assume x = 0.
Given the vector random variable x, we can write the following general equation:{

xTA x
}
=

{
tr[A xxT ]

}
= tr[A 𝚪] (1.226)

for any arbitrary matrix A. The same result can be obtained using the characteristic
function; specifically, we have{

xTA x
}
=

{
∇S

TeS
TxA x

}||||S=𝟎 =
{
∇S

TA xeS
Tx
}||||S=𝟎

= ∇S
TA

{
xeS

Tx
}||||S=𝟎 = ∇S

TA
{
∇Se

STx
}||||S=𝟎

= ∇S
TA ∇SMx(S)|S=𝟎. (1.227)

Substituting Eq. (1.225) into Eq. (1.227), with x = 0, will give us Eq. (1.226). This
same procedure can be applied to the quartic form.

Specifically, we find that

{xTA xxTB x} = ∇S
TA ∇S∇S

TB ∇SMx(S)|S=𝟎 (1.228)

= tr[A 𝚪]tr[B 𝚪] + 2tr[A 𝚪 B 𝚪]. (1.229)

Example 1.15 IfA andB equal the scalar 1 and 𝚪 equals the scalar 𝜎2, then the scalar
counterpart for Eq. (1.224) is the well-known expression for the fourth moment of a
Gaussian random variable given by {

x4} = 3𝜎4. (1.230)
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Using Eqs. (1.226) and (1.229), the covariance of two quartic forms is equal to{(
xTAx −

{
xTAx

}) (
xTBx −

{
xTBx

})}
=

{
xTAxxTBx

}
−

{
xTAx

} {
xTBx

}
−

{
xTBx

} {
xTAx

}
+

{
xTBx

} {
xTAx

}
=

{
xTAxxTBx

}
−

{
xTAx

} {
xTBx

}
= tr [A𝚪] tr [B𝚪] + 2tr [A𝚪B𝚪]

− tr [A𝚪] tr [B𝚪]

= 2tr [A𝚪B𝚪] . (1.231)

1.6.11 Chi-Squared Distributed Random Variable

If anm-dimensional random variable x is Gaussian with mean x and covariance matrix
𝚪, then the scalar random variable of the form

q = (x − x)T𝚪−1(x − x) (1.232)

is the sum of the squares of m independent, zero-mean, unity-variance Gaussian ran-
dom variables and consequently, has a chi-squared distribution with m degrees of
freedom. Let’s see why this is true.

Define
u = 𝚪−1∕2 (x − x). (1.233)

Obviously, the form of the above implies that u is Gaussian, with

{u} = 0 (1.234)

and

{uuT} = 𝚪−1∕2
{
(x − x)(x − x)T

}
𝚪−1∕2 = 𝚪−1∕2𝚪 𝚪−1∕2 = I. (1.235)

Because the above covariance matrix is a diagonal matrix, its components are inde-
pendent. This means that

q = uTu =
m∑
i=1

u2
i , (1.236)

where ui ∼ N(0, 1).
Given the above, the convention is to write

q ∼ 𝜒2
m. (1.237)
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The mean for q is

{q} =

{
m∑
i=1

u2
i

}
= m, (1.238)

and its variances equals

⎧⎪⎨⎪⎩
[

m∑
i=1

(u2
i − 1)

]2⎫⎪⎬⎪⎭ =
m∑
i=1

{(u2
i − 1)2}

=
m∑
i=1

[ {u4
i } − 2 {u2

i } + 1] = 2m, (1.239)

using Eq. (1.230) for the fourth moment of a Gaussian random variable as
𝜎4 = 𝜎2 = 1.

1.6.12 Binomial Distribution

A chance experiment 𝔼 is repeated m times. The m trials effectively create an m -fold
chance experiment, that is, 𝔼m defines our new chance experiment. The outcomes of
𝔼m are m -tuples of outcomes generated by the various outcome combinations from
the m trials of 𝔼. Let us look how to characterize these experiments statistically by
an example.

The convention is to recognize that any event B in the experiment 𝔼 has a prob-
ability p and its complement B′ has probability (1 − p) = q. An occurrence of B is
a “success” and the occurrence of its complement is a “failure.” For simplicity dis-
cussion here, let us assume that our experiment involves a biased coin, and “heads”
denote “success” and “tails” denote “failure. Clearly, these trials are statistically inde-
pendent. The universal set has 2m possible outcomes. To characterize the compound
experiments, we seek the probability density for the number of “heads” and “tails” in
m trials of chance experiment 𝔼, which we interpret as a single experiment, 𝔼′ = 𝔼m.
𝔼′ is often described as a succession of Bernoulli trials.

Let Ak denote the event where k “heads” and (m − k) “tails” both occur after m
coin tosses happen. The number of outcomes of 𝔼′ in event Ak is equal to(

m
k

)
= m!

r!(m − k)!
, (1.240)

which is called the binominal coefficient [6, pp. 40–41]. Taking the sum of Eq. (1.240)
gives

m∑
k=0

(
m
k

)
=

m∑
k=0

m!
r!(m − k)!

= (1 + 1)m = 2m (1.241)

using the binomial theorem,

(x + y)n =
n∑

k=0

n!
r!(n − r)!

xn−kyr. (1.242)
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Equation (1.241) confirms our earlier claim that we have 2m possible outcomes in
the universal set.

Let us now interpret our compound experiment as an atomic event (single out-
come) in 𝔼′ consisting of k “successes” and (m − k) “failures” in a particular order.
The probability of this event is pkqm−k because each trial is independent of the others.

The number of such atomic events in Ak is

(
m
k

)
and the probability of Ak is

P{Ak} =
(
m
k

)
pkqm−k (1.243)

from Corollary 4, Eq. (1.161). Equation (1.243) is known as binomial distribution.
Taking the sum of Eq. (1.243) yields

m∑
k=0

P{Ak} =
m∑
k=0

(
m
k

)
pkqm−k = (p + q)m = (1)m = 1. (1.244)

Example 1.16 Let us assume we have a pair of fair dice that we toss 10 times. What
is the probability that the dice totals seven points exactly four times? The possible
outcomes that total seven points are (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1). The
probability of success equals to p = 6 × 6−2 = 1

6
. The probability of failure is q =

1 − p = 5
6
. The probability of the cited event is(
10
4

)(1
6

)4(5
6

)6
= (210)(0.000771605)(0.334897977) = 0.0543.

The probability that at most k successes occur in m trials is defined as

B(k,m; p) =
k∑

r=0

(
m
r

)
prqm−r, (1.245)

and its results comprise what is known as the cumulative binomial distribution.
The mean of the binomial distribution can be calculated as follows:

k = {k} =
m∑
k=0

k

(
m!

k!(m − k)!

)
pkqm−k =

m∑
k=1

(
m!

(k − 1)!(m − k)!

)
pkqm−k

=
m−1∑
l=0

(
m!

l!(m − 1 − l)!

)
pl+1qm−1−l = mp

m−1∑
l=0

(
(m − 1)!

l!(m − 1 − l)!

)
plqm−1−l

= mp
n∑
l=0

(
n!

l!(n − l)!

)
plqn−l = mp. (1.246)
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The variance of the binomial distribution can be derived as follows:

𝜎2 = {k2} − [ {k}]2 = {k2} − {k} + {k} − [ {k}]2

= {k(k − 1)} + {k} − [ {k}]2. (1.247)

Now,

{k(k − 1)} =
m∑
k=0

k(k − 1)
(

m!
k!(m − k)!

)
pkqm−k =

m∑
k=2

(
m!

(k − 2)!(m − k)!

)
pkqm−k

=
m−2∑
l=0

(
m!

l!(m − 2 − l)!

)
pl+2qm−2−l

= m(m − 1)p2
m−1∑
l=0

(
(m − 2)!

l!(m − 2 − l)!

)
plqm−2−l

= m(m − 1)p2
n∑
l=0

(
n!

l!(n − l)!

)
plqn−l = m(m − 1)p2. (1.248)

Substituting Eqs. (1.246) and (1.248) into Eq. (1.247) yields

𝜎2 = {k(k − 1)} + {k} − [ {k}]2 = m(m − 1)p2 + mp − (mp)2

= m2p2 − mp2 + mp − m2p2 = mp − mp2 = mp(1 − p). (1.249)

Example 1.17 The probability that a certain diode fails before operating 1000 h is
0.15. The probability that among 20 such diodes, at least 5 diodes will fail before
reaching 1000 h is

20∑
r=5

(
20
r

)
(0.15)m(0.85)m−r = 1 − B(4, 20; 0.15) ≈ 0.17.

1.6.13 Poisson Distribution

When the number of Bernoulli trial is large and the probability p gets small, the bino-
mial distribution approximates another probability distribution, namely, the Poisson
distribution. We show that as follows:

Recall from the last section that the mean of the binomial distribution is mp, which
we now will call 𝜆. This implies that

p = 𝜆
m
. (1.250)

This implies that(
m!

k!(m − k)!

)
pkqm−k =

(
m!

k!(m − k)!

)(
𝜆
m

)k(
1 − 𝜆

m

)m−k
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=
(
m(m − 1) · · · (m − k + 1)

k!

)(
𝜆
m

)k(
1 − 𝜆

m

)m−k
=
(m
m

)(m − 1
m

)
· · ·
(
(m − k + 1)

m

)
𝜆k

k!

(
1 − 𝜆

m

)m−k
=
(m
m

)(m − 1
m

)
· · ·
(
(m − k + 1)

m

)
𝜆k

k!

(
1 − 𝜆

m

)m(
1 − 𝜆

m

)−k
. (1.251)

Now if we let m get very large, then all but the last three factors go to one. Looking
at the second to last factor, if m is getting large while keeping k and 𝜆 fixed, then

(
1 − 𝜆

m

)m
≈

( ∞∑
i=0

1
i!

(
− 𝜆
m

)i)m

=
(
e−

𝜆
m

)m
= e−𝜆. (1.252)

The last factor goes to 1 as m is getting large. The result is that

limm→∞P{Ak} = 𝜆k

k!
e−𝜆. (1.253)

The function on the right side of Eq. (1.253) is called Poisson distribution. The
Poisson distribution has a mean equal to 𝜆 = mp and its variance also is its mean.

Example 1.18 Suppose that the expected number of electrons counted in (0, 𝜏) ism =
4.5. Assume the electron count follows a Poisson distribution. What is the probability
that exactly two electrons are counted? The probability in this case is given by

p(2, 4.5) = (4.5)2

2!
e−4.5 = 0.1125.

What is the probability that at least six electrons are counted? The probability in this
case equals

P{k ≥ 6} = 1 −
5∑

k=0

p(k, 4.5) =
5∑

k=0

(4.5)k

k!
e−4.5 = 0.2971.

1.6.14 Random Processes

In the previous sections, we dealt with the random variable x that is a real number
defined by the outcome 𝜗 of a chance experiment, that is,

x = x(𝜗). (1.254)
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A random or stochastic process is function of time determined by the outcome of
that chance experiment. That is, we rewrite Eq. (1.254) as

x(t) = x(t, 𝜗), (1.255)

which now represents a family of functions in time, ever changing for each outcome
𝜗. Let us now define its properties.

The mean of the random process is written as

x(t) = {x(t)}, (1.256)

while its autocorrelation is given as

R(t1, t2) = {x(t1)x(t2)}. (1.257)

The autocovariance of the random process is defined as

𝚪(t1, t2) = {[x(t1) − x(t1)][x(t2) − x(t2)]} = R(t1, t2) − x(t1)x(t2). (1.258)

Looking at the above two equations, it is clear that R(t1, t2) is a joint noncentral
moment as its mean of the process has not been removed, while𝚪(t1, t2) is joint central
moment because it had its mean removed. A zero-mean random process makes them
equivalent.

When a random process has a mean that is time independent, its autocorrelation
depends on the length of the time interval between t1 and t2, not their specific values.
In other words, we write

R(t1, t2) = R(𝜏), (1.259)

where
𝜏 = t2 − t1. (1.260)

This type of random process is called stationary. (Its counterpart where the process
depends on the specific times used is called nonstationary.)

Let us now define the power spectrum of a stationary random process. The Fourier
transform of the autocovariance function is equal to

∫
∞

−∞
𝚪(𝜉)e−i𝜔𝜉d𝜉 = ∫

∞

−∞
R(𝜉)e−i𝜔𝜉d𝜉 + ∫

∞

−∞
x2e−i𝜔𝜉d𝜉 (1.261a)

= ∫
∞

−∞
R(𝜉)e−i𝜔𝜉d𝜉 + x2𝛿(𝜔), (1.261b)

where 𝜔 denotes radial (temporal) frequency. The second term on the right of Eq.
(1.261b) is the “dc” component of the power spectrum (𝜔 = 0). It has no bandwidth,
but has a magnitude equal to the square of the mean. On the other hand, the first term
on the right of Eq. (1.261b) refers to the AC terms and has bandwidth. We define this
term as the power spectrum of the random process, that is,

S(𝜔) = ∫
∞

−∞
R(𝜉)e−i𝜔𝜉d𝜉. (1.262)
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In other words, it is the Fourier transform of the autocorrelation function. This
result is the Wiener–Khinchin Theorem. The integral ofS(𝜔) is related to the variance,
which can be seen as follows:

∫
∞

−∞
S(𝜔)ei𝜔𝜉d𝜔

||||𝜏=0
= ∫

∞

−∞
S(𝜔)d𝜔 = R(0) (1.263a)

= {(x(t1))2} = 𝝈2
x + x

2. (1.263b)

For a zero-mean random process, it is the variance.
An important random process found in both radio frequency (RF) and optical sys-

tems is white noise. This is where the random process has both a zero mean and zero
autocorrelation. Mathematically, this is characterized by the equation

R(t1, t2) = R(𝜏) = 𝛿(𝜏). (1.264)

This means that S(𝜔) = 1, which implies that we have a constant power spec-
trum. The term “white noise” comes from the analogy with white light possessing all
wavelengths (frequencies) of light.

1.7 DECIBELS

The decibel, or dB, for short, is one of the most widely used mathematical tools
for those involved with system engineering. It is related to the common (base 10)
logarithm and has the following mathematical form:

X, measure in dB = 10 log10XdB. (1.265)

The decibel, named after Alexander Graham Bell, was created to measure the ratio
of two power levels; the most typical use is the ratio of power out of systems over its
input power. The parameter X typically is the ratio of two power levels P1 and P2, or

Gain
Loss (dB)

= 10 log10

(
P2

P1

)
dB. (1.266)

One of the key reasons that the decibel is used in engineering is that it can trans-
form a multiplicative equation into an additive equation. However, one must be care-
ful in its use since there are various units involved. Let us look at an example to show
how to do it properly.

Consider the range equation we will define in Chapter 4:

Prx ≈ 𝛾txPtx
AtxArx

(𝜆R)2
, (1.267)

where Prx is the received power, 𝛾tx the transmitter optics transmittance, Ptx the laser
transmitter power, 𝜆 the wavelength of light, R the distance between the transmitter
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and receiver, andAtx andArx the areas of the transmitter and receiver apertures, respec-
tively. Applying Eq. (1.265) to Eq. (1.267) yields

10 log10(Prx) = 10 log10(𝛾tx) + 10 log10(Ptx) + 10 log10

(
AtxArx

(𝜆R)2

)
. (1.268)

Equation (1.268) has a unit problem. The elements for the two power levels have
unit of watts, while everything else is unitless. To remedy this problem, we can sub-
tract 10 log10(1 W) to each side of Eq. (1.268) without affecting the correctness of
the equations and obtain the following new equation:

10 log10

(
Prx

1 W

)
= 10 log10(𝛾tx) + 10 log10

(
Ptx

1W

)
+ 10 log10

(
AtxArx

(𝜆R)2

)
.

(1.269)
This corrects the problem. If we define

P′
tx(dBW) = 10 log10

(
Prx

1 W

)
(1.270)

and

P′
rx(dBW) = 10 log10

(
Prx

1 W

)
, (1.271)

then Eq. (1.268) becomes

P′
rx(dBW) = 10 log10(𝛾tx)dB + P′

tx(dBW) + 10 log10

(
AtxArx

(𝜆R)2

)
dB. (1.272)

If we had specified 1 mW rather than 1 W in the above derivation, Eq. (1.272)
would be written as

P′
rx(dBmW) = 10 log10(𝛾tx) dB + P′

tx(dBmW) + 10 log10

(
AtxArx

(𝜆R)2

)
dB. (1.273)

Clearly, we could write the last term in Eq. (1.272) as

10 log10

(
AtxArx

(𝜆R)2

)
= dB10 log10

(
Atx

1 m

)
dB

+ 10 log10

(
Arx

1 m

)
dB − 20 log10(𝜆R) dB

= A′
tx(dBm) + A′

rx(dBm) − 20 log10(𝜆R) dB (1.274)

= A′
tx(dBm) + A′

rx(dBm) − 2𝜆′(dBm) − 2R′(dBm) (1.275)
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TABLE 1.2 Equivalent Power Ratios

Decibel
Value

Positive dB
Power Ratios

Negative dB
Power Ratios

0 1 1
1 1.3 0.79
2 1.6 0.63
3 2.0 0.50
4 2.5 0.40
5 3.2 0.32
6 4.0 0.25
7 5.0 0.20
8 6.3 0.16
9 7.9 0.13

following the same procedure. This implies that

P′
rx(dBW) = 10 log10(𝛾tx) dB + P′

tx(dB W)+ = A′
tx(dBm) + A′

rx(dBm) − 2𝜆′(dBm)

− 2R′(dBm). (1.276)

Now, the reader seeing Eq. (1.276) for the first time may think we again have a unit
problem, mixing watts and meters since they have learned that quantities that have
different units should not add. However, logarithmic units are different and entities
with different logarithmic or decibel units do add. The reason is that all dBm element
units cancel, leaving only the unitless 10 log10(𝛾tx) dB and (dB W) terms left, agree-
ing with the right side of the equation. This may be hard to get used to at first, but the
benefit will pay off when dealing with complex equations that must be having sev-
eral parameters varied in a trade study. In addition, adding and subtracting numbers
is easier to do in one’s head than multiplying or dividing numbers; at least for most
people. This is an easy bookkeeping approach for engineers.

Some common increments in decibels should be memorized by the reader so they
are proficient in using decibels in link budgets. A factor of 1 equals 0 dB, a factor
of 10 equals 10 dB, a factor of 100 is 20 dB, and so on. However, the workhorse
engineering number to remember is 3 dB. Its +3 dB value is 1.995, which basically is
2, and its−3 dB number is 0.5012, which essentially is 0.5. Therefore, if one increases
the signal power by 2, we say we have a 3 dB increase in power; if we cut the signal
power by half, we decrease the power by −3 dB. Table 1.2 provides a list of the real
number equivalents for decibels between 1 and 9.

1.8 PROBLEMS

Problem 1.1. Let

A =
[

1 2 3
0 1 4

]
and B =

[
2 3 0
−1 2 5

]
.
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(a) what is A + B?
(b) What is A − B?

Problem 1.2. Compute the determinant

|A| = ||||||
1 2 10
2 3 9
4 5 11

|||||| .
Problem 1.3. Compute the determinant

|A| = ||||||||
+2 +3 −2 +4
+3 −2 +1 +2
+3 +2 +3 +4
−2 +4 0 +5

|||||||| .
Problem 1.4. Compute the determinant

|A| = ||||||||
+2 +3 −2 +4
+7 +4 −3 +10
+3 +2 +3 +4
−2 +4 0 +5

|||||||| .
Problem 1.5. Show that the cofactor of each element of

A =

⎡⎢⎢⎢⎢⎢⎣

−1
3

−2
3

−2
3

+2
3

+1
3

−2
3

+2
3

−2
3

+1
3

⎤⎥⎥⎥⎥⎥⎦
is that element.

Problem 1.6. Show that the cofactor of an element of any row of

A =
⎡⎢⎢⎣
−4 −3 −3
+1 0 +1
+4 +3 +3

⎤⎥⎥⎦
is the corresponding element of the same numbered column.

Problem 1.7. Find the inverse of

A =
||||2 3
1 4
|||| .

Problem 1.8. Find the inverse of

A =
||||||
2 3 1
1 2 3
3 1 2

|||||| .
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Problem 1.9. Find the inverse of

A =

||||||||
+2 +4 +3 +2
+3 +6 +5 +2
+2 +5 +2 −3
+4 +5 +14 +14

|||||||| .
Problem 1.10. Calculate the Fourier series coefficients Cn for the following periodic

function:

a
B

A

X

u(x)

b

NOTE: The curve essentially follows the positive part of the sine function with
period 2b.

Problem 1.11. Calculate the Fourier series coefficients Cn for the function u(x) plot-
ted as follows, but do so exploiting some of the properties contained
in Eqs. (1.4)–(1.24) to provide a solution derived from the coefficient
calculation of a square wave. The slopes up and down are equally
steep, and that B depicts a negative number in the graph.

B

A

X

φ(x)

da

Problem 1.12. Calculate the Fourier series coefficients Cn for the function u(x) plot-
ted as follows, but do so exploiting some of the properties contained
in Eqs. (1.4)–(1.24) to provide a solution derived from the coefficient
calculation of a square wave. The slopes up and down are equally
steep, and that B depicts a negative number in the graph.
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B

A

X

u(x)

da

Problem 1.13. Calculate the Fourier series coefficients Cn for u(x) = A(x)ei𝜑(x).
𝜑(x) = 𝜑0 + 10𝜋 x

b
. The curve shown in the following figure is like

the lower portion of the cosine function.

a
X

a+b

A1

A2

A(x)

Problem 1.14. Let

f (x) = e
−
(
x
a

)2

.

Prove that its Fourier transform is

f̂ (𝜈) =
√
𝜋a e−(𝜋𝜈a)

2
.

Problem 1.15. Let

f (x) = rect
( x
a

)
=

{
1 if |x| ≤ a

2
0 otherwise

.

Prove that its Fourier transform is

f̂ (𝜈) = sin(a𝜈)
a𝜈

≡ sinc(a𝜈).

Problem 1.16. Let
f (x, y) = rect

( x
a

)
rect

( y
b

)
.

What is its two-dimensional Fourier transform?
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Problem 1.17. Let

f (x, y) = Circ(r) ≡ circ function

=

{
1 |r| =√x2 + y2 ≤ 1

0 otherwise
.

What is its two-dimensional Fourier transform?

Problem 1.18. Assume a card selected out of an ordinary deck of 52 cards. Let

A = {the card is a spade}

and

B = {the card is a face card, that is, jack, queen, or king}.

Compute P{A}, P{B}, and P{A ∩ B}.

Problem 1.19. Let two items be chosen out of a lot of 12 items where 4 of them are
defective. Assume

A = {both chosen items are defective}

and

B = {both chosen items are not defective}.

Compute P{A} and P{B}.

Problem 1.20. Given the problem laid out in Problem 1.19. Assume now that

C = {At least one chosen item is defective}.

What is the probability that event C occurs?

Problem 1.21. Let a pair of fair dice be tossed. If the sum is 6, what is the probability
that one of the dice is a 2? In other words, we have

A = {sum is 6}

and

B = {a 2 appears on at least one die}.

Find P{B|A}.

Problem 1.22. In a certain college, 25% of the students fail in mathematics, 15% of
the students fail in chemistry, and 10% of the students fail both in
mathematics and chemistry. A student is selected at random.
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(a) If the student failed in chemistry, what is the probability that the
student also failed in mathematics?

(b) If he failed in mathematics, what is the probability that he failed
in chemistry too?

(c) What is the probability that he failed both in mathematics and
chemistry?

Problem 1.23. LetA andB be events with P{A} = 1∕2, P{B} = 1∕3, and P{A ∩ B} =
1∕4. Find (a) P{B|A}, (b) P{A|B}, and (c) P{A ∪ B},P{Ac|Bc}, and
P{Bc|Ac}. Here, Ac and Bc are the complements of A and B, respec-
tively.

Problem 1.24. A lot contains 12 items of which 4 are defective. Three items are
drawn at random from that lot one after another. Find the probability
that all three are nondefective.

Problem 1.25. A card player is dealt 5 cards one right after another from an ordinary
deck of 52 cards. What is the probability that they are all spades?

Problem 1.26. Let 𝜑(t) be the standard normal distribution (i.e., mean equals zero
and variance equals to unity)? Find𝜑(t) for (a) t = 1.63, (b) t = −0.75
and t = −2.08.

HINT: You may need a standard normal distribution table to solve this problem.

Problem 1.27. Let x be a random variable with a standard normal distribution 𝜑(t).
Find
(a)

P{0 ≤ x ≤ 1.42}.

(b)
P{−0.73 ≤ x ≤ 0}.

(c)
P{−1.37 ≤ x ≤ 2.01}.

(d)
P{0.65 ≤ x ≤ 1.26}.

(e)
P{−1.79 ≤ x ≤ −0.54}.

(f)
P{x ≥ 1.13}.

(g)
P{|x| ≤ 0.5}.

HINT: You may need a standard normal distribution table to solve this problem.
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Problem 1.28. A fair die is tossed seven times. Let us assume that success occurs if
a 5 or 6 appear. Let n = 7, p = P{5, 6} = 1

3
, and q = 1 − p = 2

3
.

(a) What is the probability that a 5 or a 6 occurs exactly three times
(i.e., k = 3)?

(b) What is the probability that a 5 or a 6 occurs at least once?

Problem 1.29. A fair coin is tossed six times. Let us assume that success is a heads.
Let n = 6 and p = q = 1

2
.

(a) What is the probability that exactly two heads occur (i.e., k = 2)?
(b) What is the probability of getting at least four heads (i.e., k =

4, 5, and 6)?
(c) What is the probability that at least one head occurs?

Problem 1.30. For a Poisson distribution

p(k, 𝜆) = 𝜆k

k!
e−𝜆,

find (a) p(2, 1), (b) p
(
3, 1

2

)
, and (c) p(2, 7).

Problem 1.31. Suppose 300 misprints are randomly distributed throughout a book of
500 pages. Find the probability that a given page contains (a) exactly
2 misprints, (b) 2 or more misprints.

HINT: You may want to consider the number of misprints on one page as the number
of successes in a sequence of Bernoulli trials. Note that we are dealing with large
numbers.

Problem 1.32. Suppose 2% of the items made by a factory are defective. Find the
probability that there are 3 defective items in a sample of 100 items.

Problem 1.33. Given
X(dB) = 10 log10X,

derive an equation for X in terms of X(dB).

Problem 1.34. Given
X(dB) = 10 log10X,

find X(dB) for (a) X = 632, (b) X = 4000, and (c) X = 1
2500

.
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