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Introduction

1.1 Motivations

This book is focused on a specific use of electromagnetic bandgap (EBG)
structures: their function as common-mode (CM) filter in high-speed differen-
tial digital systems and/or hybrid mixed-signal circuits.

In order to appreciate the potential of these structures as signal filter, it is
instructive to give a look to the historical development of the EBG structures at
least since 1999 when they were proposed as high-impedance electromagnetic
surfaces for band-stop filter [1,2].

The first application was related to flat metal sheets used in many antennas as
reflectors or ground planes. These sheets support surface waves [3,4], that is,
propagating electromagnetic waves that are bound to the interface between
metal and free space. If the metal surface is smooth and flat, the surface wave
will not couple to external propagating plane waves. However, they will radiate
vertically if scattered by bends, discontinuities, or surface texture and this can
generate, in case of multiple antenna placement, unwanted mutual coupling
and interference.

By applying a special texture on a conducting surface, it is possible to alter its
electromagnetic properties [5,6]. In the limit where the period of the surface
texture is much smaller than the wavelength, the structure can be described
using an effective medium model, and its qualities can be described by the
surface impedance. A smooth conducting sheet has a low surface impedance;
however, with a specially designed textured surface, the sheet can have a high
surface impedance, thus inhibiting the flow of the currents over a selected
frequency range.

The first example of EBG as high-impedance surface consisted in an array of
metal protrusions on a flat metal sheet. They are arranged in a two-dimensional
lattice and can be visualized as mushrooms protruding from the surface [7–11].
The surface can be easily fabricated using standard printed circuit boards (PCB)
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technology. The protrusion are formed as metal patches connected to the lower
continuous conducting surfaces by plated through-hole vias.

If the protrusions are small compared to the operating wavelength, their
electromagnetic behavior can be described by using the lumped circuit theory.
The EBG structure behaves like a network of parallel resonant LC circuits, which
act as a two-dimensional electric filter to block the flow of currents along the
sheet. In the frequency range where the surface impedance is high, the tangential
magnetic field is small, even with a large electric field along the surface.

The mushroom-type EBG configuration has inspired the PCB designers to
use this structure for suppressing noise in power planes [12]. An ideal power
delivery network (PDN) is assumed to supply clean power to integrated circuits.
However, electromagnetic noise in power/ground-reference planes can cause
fluctuation or disturbance in the power supply voltage, which, in turn, leads to
false switching, jitter, and malfunctioning in analog or digital circuits. Modern
digital electronic circuits have increased the clock frequency and pulse edge
rate, and has contributed to the decreased of the power supply voltage and noise
margin. This power/ground-reference noise creates significant challenges for
electromagnetic compatibility and signal/power integrity engineers. Simulta-
neous switching noise has become one of the major concerns [13,14] in high-
speed PCB design.

This type of disturbance has been discussed extensively over the last
decade [15–21] and different approaches have been proposed. Most prominent
of these involve the use of discrete decoupling capacitors and embedded
capacitances [22,23]. However, this approach fails when operated at high
frequencies due to the inherent inductance of discrete capacitors and especially
the inductance associated with connecting the capacitors to the power/ground-
reference planes. Embedded capacitance is usually two very closely spaced
planes (often with a higher than normal dielectric constant); it is an expensive
solution and reliability considerations limit its practical use. Mushroom EBGs
have proven effective for noise suppression at frequencies above 1GHz and can
be effective when discrete capacitors and/or embedded capacitance cannot be
effective. When the mushroom-type configuration is implemented in PCB,
it uses three layers where the EBG pattern layer with specially designed vias is
inserted between the power plane and a ground-reference plane, as shown in
Figure 1.1. This configuration makes the fabrication more expensive since extra
PCB layers are used for the filter.

The natural evolution of the mushroom-type EBG applied to PDN in printed
circuit boards have been the planar EBG structures used either for switching
noise mitigation or in mixed-signal boards [24–33]. These structures consist
of a power distribution system of only two layers, instead of three of the
mushroom type, with one of the layers patterned in a periodic fashion,
effectively creating a frequency band-stop filter. These structures, in contrast
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to the previously described mushroom filters, do not have vias or require the
third layer. These features make such structures very attractive for PCB
applications from the manufacturing and cost perspectives.

Their basic structure is illustrated in Figure 1.2.

Figure 1.2 Planar EBG configuration. (a) Top view. (b) Cross-sectional view. (c) Perspective
view.

Figure 1.1 Mushroom EBG configuration. (a) Top view. (b) Cross-sectional view. (c) Per-
spective view.
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In this basic structure, the solid layer can be used for one voltage level and the
EBG patterned one for a second voltage level (often ground-reference). Between
these two layers, there is a uniform substrate material whose nature (organic,
ceramic, lossy, etc.) depends on the application of the board and the perform-
ances of the filter. For one-dimensional wave propagation, the unit cell of this
planar EBG structure can be modeled with the basic equivalent circuit shown in
Figure 1.3 [34–38].

The left part of the figure describes the propagation characteristics between
the EBG patch and the continuous power plane represented by the equivalent
patch inductance Lp and capacitance Cp. The second part of the figure
characterizes the bridge effects between two adjacent unit cells. The gap
between two patches generates a fringing electric filed associated with the
equivalent capacitance Cb and the bridge’s inductance Lbridge. A repetition of
these cells can be conceptually viewed as an electric filter of parallel LC
resonators.

The basic structure of the mushroom-like EBG structure has evolved to the
concept of the ground-reference surface perturbation lattice (GSPL) geome-
try [39–44]. This structure is similar to the EBG filter but with multiple vias, and
its design or use is typically appropriate when there is a need to enhance the
bandwidth of the bandgap for power delivery noise suppression [45–49]. By
using multiple shorting vias and optimizing their arrangement, the GSPL
structure presents a wider bandwidth bandgap than that of the mushroom-
like structure. In the GSPL, the mechanism of the bandwidth enhancement is
based on the optimization of the vias locations. A one-dimensional equivalent
circuit model, conceptually similar to that illustrated in Figure 1.3, can be used
to predict the stopband. Test structures are manufactured on FR4 substrate to

Figure 1.3 Qualitative equivalent circuit of a unit cell of a planar EBG structure.
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compare the measured results and the numerical ones. Figure 1.4 shows a GSPL
with four vias.

After the previous brief review of the main frequency-selective structures
similar to or derived from the EBGs, it is possible to move toward the
description of a more specific application: their use as signals filter in digital
systems.

Where data rates get into the high hundreds of megabits (Mb/s) or gigabits
(Gb/s), signal integrity (SI) concerns will usually require that differential
signaling is used in order to ensure the required signal quality. Dielectric
loss for long traces, reflections from connectors and vias, and even surface
roughness will reduce signal quality at the end of long traces at very high data
rates.

Differential signaling is also more immune to external noise corrupting the
intentional signals. The basic intention for differential signals is for two equal
and opposite currents (and voltages) to exist on the pair of traces, and the
ground-reference plane plays no role in the intentional signal current. In reality,
this is true only when there are only two signal conductors in free space, with no
other metal nearby. This perfect condition never occurs in typical printed
circuit boards [50]; therefore, there is always some RF currents on the ground-
reference plane in real-world PCBs.

The presence of common-mode noise in the differential signal is one of the
main causes of electromagnetic interference (EMI) problems in chip packages
and printed circuit boards, especially in the gigahertz range of state-of-the-art
high-speed digital systems. The common-mode signal can propagate outside
the shielded enclosure through connectors and cables and cause unwanted
external radiation.

The previously introduced EBG structures are primarily used for noise
mitigation in PCBs and packages, thus enhancing the power integrity perform-
ance of the power delivery network [51,52]. The regular planar EBG is
investigated in Ref. [53], studying the effects of the patterned plane on both
common-mode and differential-mode signal propagation along a differential

Figure 1.4 GSPL with four vias. MB=mother board.
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microstrip line. These principles are applied for filtering the common-mode
noise (due to some imbalance) in a differential signal [54–65].

The electromagnetic properties and the layout technique regulating the EBG
common-mode filter behavior will be discussed in several parts and under
different perspectives across the book. These EBG filters can be placed near I/O
connectors on PCBs to reduce the amount of common-mode current that is
coupled onto the cables or near ICs to suppress the common-mode noise near
its source.

The most simple EBG-based CM filter is laid out on the PCB outermost
stack-up layer (the so-called top and bottom layers) as in Figure 1.5 and
is sometime referenced as an onboard EBG CM filter. The figure shows the
real layout of a manufactured board that was employed for investigating the
cross talk among adjacent differential pairs routed on the same EBG
filter [66,67].

These onboard EBG CM filters can also be laid out on the internal layers of
the stack-up, as shown in Figure 1.6. The stripline filter consists of two
patterned layers above and below the differential traces: In this way the return
current flows on both the planes above and underneath the traces.A possible
variation to the classic EBG structure is the removing of the bridges connecting
the patches. This new configuration (Figure 1.7) in general provides deeper
notches (but less bandwidth of the bandgap filter) than the regular EBG
structure for filtering the common-mode signal.

These EBG filter configurations are designed to attenuate the common-mode
component of the signal, as shown by the common-mode mixed-mode scat-
tering parameter Scc21 in Figure 1.8a, without affecting the transmission of the
differential mode and thus without spoiling signal integrity of the output eye
diagram as shown in Figure 1.8b.

Figure 1.5 Basic onboard EBG CM filter structure for common-mode filtering: external layers
layout.
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A different layout strategy was adopted in Refs [68–73] to provide more
flexibility in the filter design. The EBG filter is eliminated from the PCB stack-
up, and it is modified to be a surface-mount component installed on top of a
PCB. In the literature, this configuration is referred to as a removable EBG CM
filter. Also, with this configuration, the key design concepts such as the use of
standard multilayer laminate technology, the straightforward design procedure,
and the reduced costs that make the EBG filter attractive are still valid.
Moreover, the electromagnetic behavior of the filter remains unchanged,

Figure 1.7 Modified onboard EBG CM filter structure for common-mode filtering.

Figure 1.6 Basic onboard EBG CM filter structure for common-mode filtering: internal layers
layout.
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with the common-mode return currents of the differential pair being respon-
sible for the commonmode to EBG cavity mode coupling. The PCB area used by
the removable EBG CM filter can be minimized by employing techniques for its
miniaturization; the simplest strategy is to utilize a high-permittivity material
whose larger costs, with respect to the standard laminates (i.e., FR-4), remains
limited to a millimeter-size multilayer PCB rather than the main PCB.

A qualitative example of removable EBG CM filter is given in Figure 1.9.

Figure 1.8 Mixed-mode scattering parameters for EBG CM filters. (a) Scc21. (b) Sdd21.
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The filter is attached to the PCB by means of four corner pads for the current
return corresponding to pads on the PCB.

The performances of such removable configuration are as good as the
onboard counterpart. Figure 1.10 shows a Scc21 for this filter, very well centered
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Figure 1.10 Mixed-mode scattering parameters Scc21 for a removable EBG CM filter.

Figure 1.9 Basic removable EBG CM filter structure for common-mode filtering.
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on the design frequency (i.e., 8 GHz) and its sensitivity due to the variation of
geometrical parameters, as will be discussed in this book.

In conclusion of this brief introduction to the topic of the implementation of
the electromagnetic bandgap structures as CM filters for high-speed differential
signals, it should be mentioned that the actual research trend is toward the
miniaturization of these structures in order to minimize their dimensions
without affecting the filtering performances [74].

The more recent scientific literature shows two different approaches to reach
this goal: the use of material with high dielectric permittivity and the design of
patterned structures using novel resonators with limited dimensions to excite
the filter resonances.

The former approach has explored the use of ceramic dielectric such as the
low-temperature co-fired ceramic (LTCC) [75,76] and it is suitable for the use
of the removable filters because they allow a decoupling between the dielectric
material of the main board and that of the component itself.

The latter is showing very promising miniaturization factors of around 10
times the standard EBG CM filters [77–79]. These resonators can be easily
implemented on PCB or even on package substrate by designing an open stub
with shorting via connecting to the reference plane. This configuration provides
the shorting path of the common-mode return currents at gigahertz range and
still maintains the isolation at DC level.

Finally, particularly significant to have a complete outlook of the EBG field of
applications are Refs [80–83].

All the three-dimensional full-wave simulations have been performed by
using the CST Studio Suite 2015 by Computer Simulation Technology
(CST) [84] and the Advanced Design System (ADS) environment by Keysight
Technology [85] for the transient and frequency analysis of the equivalent circuit
models.

1.2 Scope of the Book

The book aims at providing the basic principles of operation of the planar
EBG structures as common-mode filters for high data rate digital systems.
The following is a brief description of the chapterwise coverage of different
topics.

This chapter introduces the topic of the book, offering a brief historical
perspective of the introduction and use of the EBGs in the printed circuit board
world and their evolution into CM filters.

Chapter 2 describes the fundamental mechanisms of planar EBGs looking
into details of the mechanisms of resonances and the definition of the lower
and higher boundaries of the bandgap as well as proposes the design criteria
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for these structures with particular emphasis on their impact on power
integrity.

Chapter 3 is devoted to the study of the structures described in Chapter 2, but
also looking at their impact on the integrity of signals flowing on single-ended
and/or differential traces routed above or between EBG filters. This chapter
shows the common-mode filter on a differential trace referenced to a patterned
plane is equivalent to the response of a single-ended trace reference to the same
plane. This finding will be the basis for the use of the EBGs as filters.

Chapter 4 introduces the concept of onboard EBG CM filter based on a
simple patch resonant cavity. This approach permits a simple and
detailed theoretical treatment that allows the reader to easily design their
own EBG CM filter for their specific application. Some full-wave examples
and simulation results are presented and compared to validate the design
approach.

Chapter 5 contains few specific topics concerning the design and implemen-
tation of EBG CM filters:

� Techniques to enhance the bandwidth of the bandgap associated with the
EBG such as multiple size of patches and bridges.� Approaches to reduce the overall size of the EBG on the printed circuit board.

Chapter 6 is similar in structure to Chapter 4: It discusses the evolution of the
onboard EBG CM filters in removable EBG CM filters. These removable filters
allow designers to replace EBG filters on the board according to their needs
without redesigning the overall board. This chapter presents different top-
ologies of removable EBG CM filters, from the one with the traces kept on the
main PCB to the second configuration with the differential pair routed on (or
inside) the removable part. This chapter also contains details of the miniatur-
ization techniques for the EBG CM filters and their external electromagnetic
radiation.

Chapter 7 describes a number of measurements made to validate the
operations of CM EBG filters as designed in previous chapters. The main
content of this chapter is to provide information and details of the measurement
setup and procedures to measure the signal integrity and EMC performances of
these EBG structures. A detailed description of the measurement techniques
and of the calibration and de-embedding strategies are included.
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