
�

� �

�

3

1

Accessible Machine Learning Approaches for Toxicology
Sean Ekins1, Alex M. Clark2, Alexander L. Perryman3, Joel S. Freundlich3,4,
Alexandru Korotcov5, and Valery Tkachenko6

1Collaborations Pharmaceuticals, Inc., Raleigh, NC, USA
2Molecular Materials Informatics, Inc., Montreal, Quebec, Canada
3Department of Pharmacology & Physiology, New Jersey Medical School, Rutgers University, Newark,
NJ, USA
4Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of
Emerging and Re-emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ, USA
5 Gaithersburg, MD, USA
6 Rockville, MD, USA

CHAPTER MENU

Introduction, 3
Bayesian Models, 5
Deep Learning Models, 13
Comparison of Different Machine Learning Methods, 16
Future Work, 21

1.1 Introduction

Computational approaches have in recent years played an increasingly
important role in the drug discovery process within large pharmaceutical
firms. Virtual screening of compounds using ligand-based and structure-based
methods to predict potency enables more efficient utilization of high through-
put screening (HTS) resources, by enriching the set of compounds physically
screened with those more likely to yield hits [1–4]. Computation of absorp-
tion, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties
exploiting statistical techniques greatly reduces the number of expensive assays
that must be performed, now making it practical to consider these factors
very early in the discovery process to minimize late-stage failures of potent
lead compounds that are not drug-like [5–11]. Large pharma have successfully
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4 Computational Toxicology

integrated these in silico methods into operational practice, validated them,
and then realized their benefits, because these firms have (i) expensive
commercial software to build models, (ii) large, diverse proprietary datasets
based on consistent experimental protocols to train and test the models, and
(iii) staff with extensive computational and medicinal chemistry expertise to
run the models and interpret the results. Drug discovery efforts centered in
universities, foundations, government laboratories, and small biotechnology
companies, however, generally lack these three critical resources and, as a
result, have yet to exploit the full benefits of in silico methods. For close
to a decade, we have aimed to used machine learning approaches and have
evaluated how we could circumvent these limitations so that others can benefit
from current and emerging best industry practices.

The current practice in pharma is to integrate in silico predictions into a
combined workflow together with in vitro assays to find “hits” that can then
be reconfirmed and optimized [12]. The incremental cost of a virtual screen
is minimal, and the savings compared with a physical screen are magnified if
the compound would also need to be synthesized rather than purchased from
a vendor. Imagine if the blind hit rate against some library is 1%, and the in sil-
ico model can pre-filter the library to give an experimental hit rate of 2%, then
significant resources are freed up to focus on other promising regions of chem-
ical property space [13]. Our past pharmaceuticals collaborations [14, 15] have
suggested that computational approaches are critical to making drug discovery
more efficient.

The relatively high cost of in vivo and in vitro screening of ADME and toxicity
properties of molecules has motivated our efforts to develop in silico methods
to filter and select a subset of compounds for testing. By relying on very large,
internally consistent datasets, large pharma has succeeded in developing
highly predictive proprietary models [5–8]. At Pfizer (and probably other
companies), for example, many of these models (e.g., those that predict the
volume of distribution, aqueous kinetic solubility, acid dissociation constant,
and distribution coefficient) [5–8, 16] are believed (according to discussions
with scientists) to be so accurate that they have essentially put experimental
assays out of business. In most other cases, large pharma perform experimental
assays for a small fraction of compounds of interest to augment or validate
their computational models. Efforts by smaller pharma and academia have
not been as successful, largely because they have, by necessity, drawn upon
much smaller datasets and, in a few cases, tried to combine them [11, 17–22].
However, this is changing rapidly, and public datasets in PubChem, ChEMBL,
Collaborative Drug Discovery (CDD) and elsewhere are becoming available for
ADME/Tox properties. For example, the CDD public database has >100 public
datasets that can be used to generate community-based models, including
extensive neglected infectious disease structure–activity relationship (SAR)
datasets (malaria, tuberculosis, Chagas disease, etc.), and ADMEdata.com
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datasets that are broadly applicable to many projects. Recent efforts with
them have led to a platform that enables drug discovery projects to benefit
from open source machine learning algorithms and descriptors in a secure
environment, which allows models to be shared with collaborators or made
accessible to the community.

In the area of pharmaceutical research and development and specifically that
of cheminformatics, there are many machine learning methods, such as sup-
port vector machines (SVM), k-nearest neighbors, naïve Bayesian, and deci-
sion trees, [23] which have seen increasing use as our datasets, have grown to
become “big data” [24–27]. These methods [23] can be used for binary classifi-
cation, multiple classes, or continuous data. In more recent years, the biological
data amassed from HTS and high content screens has called for different tools
to be used that can account for some of the issues with this bigger data [26].
Many of these resulting machine learning models can also be implemented on
a mobile phone [28, 29].

1.2 Bayesian Models

Our machine learning experience over a decade [14, 30–46] has focused on
Bayesian approaches (Figure 1.1). Bayesian models classify data as active or
inactive on the basis of user-defined thresholds using a simple probabilistic
classification model based on Bayes’ theorem. We initially used the Bayesian
modeling software within the Pipeline Pilot and Discovery Studio (BIOVIA)
with many ADME/Tox and drug discovery datasets. Most of these models
have used molecular function class fingerprints of maximum diameter 6 and
several other simple descriptors [47, 48]. The models were internally validated
through the generation of receiver operator characteristic (ROC) plots. We
have also compared single- and dual-event Bayesian models utilizing pub-
lished screening data [49, 50]. As an example, the single-event models use only
whole-cell antitubercular activity, either at a single compound concentration
or as a dose–response IC50 or IC90 (amount of compound inhibiting 50% or
90% of growth, respectively), while the dual-event models also use a selectivity
index (SI=CC50/IC90, where CC50 is the compound concentration that is
cytotoxic and inhibits 50% of the growth of Vero cells). While single-event
models [13, 51, 52] are widely published, dual-event models [53] attempt
to predict active compounds with acceptable relative activity against the
pathogen (in this case, Mtb), versus the model mammalian cell line (e.g., Vero
cells). Our models identified 4–10 times more active compounds than random
screening did and the models also had relatively high hit rates, for example,
14% [54], 71% (Figure 1.1) [53], or intermediate [55] for Mtb. Recent machine
learning work on Chagas disease has identified in vivo active compounds
[56], one of which is an approved antimalarial in Europe. Most recently, we



�

� �

�

Fi
g

ur
e

1.
1

Su
m

m
ar

y
of

m
ac

hi
ne

le
ar

ni
ng

m
od

el
s

ge
ne

ra
te

d
fo

rM
yc

ob
ac

te
riu

m
tu

be
rc

ul
os

is
in

vi
tr

o
da

ta
.T

hi
s

ap
p

ro
ac

h
ha

s
al

so
b

ee
n

ap
p

lie
d

to
A

D
M

E/
To

x
da

ta
se

ts
.



�

� �

�

Accessible Machine Learning Approaches for Toxicology 7

have been actively constructing Bayesian models for ADME properties such
as aqueous solubility, mouse liver microsomal stability [57], and Caco-2 cell
permeability [30], which complement our earlier ADME/Tox machine learn-
ing work [13, 52, 58–64]. We have also summarized the application of these
methods to toxicology datasets [58] and transporters [34, 59, 62, 63, 65–67].
This has led to models with generally good to acceptable ROC scores> 0.7
[30]. Open source implementation of the ECFP6/FCFP6 fingerprints [28] and
Bayesian model building module [25, 30] has also enabled their use in new
software implementations (see later). We are keen to explore machine learning
algorithms and make them accessible for seeding drug discovery projects, as
we have demonstrated.

1.2.1 CDD Models

ADME properties have been modeled by us with collaborators [30] and others
using an array of machine learning algorithms, such as SVMs [68], Bayesian
modeling [69], Gaussian processes [70], or others [71]. A major challenge
remains the ability to share such models. CDD has developed and marketed
a robust, innovative commercial software platform that enables scientists to
archive, mine, and (optionally) share SAR, ADME/Tox, and other types of
preclinical research data [72]. CDD hosts the software and customers’ data
vaults on its secure servers. CDD collaborated with computational chemists at
Pfizer in a proof of concept study. This demonstrated that models constructed
with open descriptors and keys (chemical development kit, CDK+ SMARTS)
using open software (C5.0 - once built, models can be made open) performed
essentially identically to expensive proprietary descriptors and models
(MOE2D+ SMARTS+Rulequest’s Cubist) across all metrics of performance
when evaluated on multiple Pfizer-proprietary ADME datasets: human liver
microsomal (HLM) stability, RRCK passive permeability, P-gp efflux, and
aqueous solubility [14]. Pfizer’s HLM dataset, for example, contained more
than 230,000 compounds and covered a diverse range of chemistry, as well as
many therapeutic areas. The HLM dataset was split into a training set (80%)
and a test set (20%) using the venetian blind splitting method; in addition, a
newly screened set of 2310 compounds was evaluated as a blind dataset. All
the key metrics of model performance - for example, R2, root-mean-square
error (RMSE), kappa, sensitivity, specificity, positive predictive value (PPV)
- were nearly identical for the open source approach versus the proprietary
software (e.g., PPV of 0.80 vs 0.82). The open source approach even computed
slightly faster (0.2 vs 0.3 s/compound). All the datasets studied yielded the
same conclusion, that is, models built with open descriptors and models are as
predictive as the commercial tools [14].

This result is an important prerequisite for a goal of creating a machine
learning model exchange platform that can be deployed without requiring
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licenses for other software or algorithms, which would otherwise make it too
expensive to achieve widespread adoption [73, 74]. This preliminary study did
not directly address the issue of whether the descriptors mask the underlying
data sufficiently well that structure identities cannot be reverse-engineered,
but others have begun to assess this question with respect to an array of
molecular descriptor types [75] and open source descriptors and models could
be used in any other software (GLP license).

Compared to the large datasets available in pharma, there are few that are
freely available. Jean Claude Bradley, Andrew Lang, and Antony Williams have,
however, provided a curated dataset of melting points for the community using
several open data sources, which was then used for modeling. A training set
comprising 2205 compounds and a test set of 500 compounds with doubly val-
idated melting points were used with 132 Open CDK [76] descriptors and the
RandomForest package (v4.5-34) in R. The resulting RandomForest model had
an RMSE of 40.9 ∘C and an R2 value of 0.82 when used to predict the test set.
We then compared these results to what could be obtained in the commer-
cial SAS JMP (v8.0.1, SAS, Cary, NC) and Discovery Studio (v2.5.5. San Diego,
CA). A neural network model in SAS had an RMSE of 48.5 ∘C and an R2 value
of 0.75. In comparison, a backpropagation neural network model in Discov-
ery Studio had an RMSE of 40.8 ∘C and an R2 value of 0.83 for the same test set.
These melting point models are all superior to 17 models identified in 10 papers
between 2003 and 2011 using commercial and other tools [77]. The results also
suggested that open descriptors and algorithms can produce models that are
comparable to those generated with commercial tools.

Similarly, we have curated PubChem BioAssay data on mouse liver micro-
somal (MLM) stability. Our curated training set with MLM half-life values on
894 compounds (from a compilation of 99 different sets of assay results), our
external test set with MLM half-life values on 30 antitubercular compounds,
and our independent, external validation set with percentage that compounds
the remaining data on 571 compounds (from combining 78 different sets of
assay results) are all freely available as sdf files in the supplementary material
[57]. We hypothesized that when constructing a binary classifier model, the
moderately stable/moderately unstable compounds might generate confusion
or even disinformation during the machine learning process. Consequently, we
proposed that a novel data “pruning” strategy should be investigated: the con-
ventional, or “full,” model was constructed using a training set in which stable
compounds were defined as having a t1/2 ≥ 60 min and unstable compounds
had a t1/2 < 60 min, while the new “pruned” model had a training set that used
the same stable compounds with a t1/2 ≥ 60 min, but only the compounds with
a t1/2 < 30 min were used as unstable compounds. Compounds with a half-life
between 30 and 59.4 min were simply deleted from the full training set in
order to create the pruned training set. The pruned MLM Bayesian model
displayed superior predictive power versus the full model (in terms of internal
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and external statistics, as well as histogram-based analyses), even though less
information was used to train the pruned model [57]. Since then, we have con-
tinued to explore our novel data pruning strategy when constructing Bayesian
models to predict other types of properties: in some cases, the pruned models
are significantly more accurate, while in one case, the pruning process did not
improve predictive power (but it did not substantially degrade performance,
either). Pruning is a simple protocol but perhaps a counterintuitive notion (i.e.,
the machine can learn more by teaching it with less data). Our results thus far
indicate that this pruning strategy merits further investigation.

We have recently integrated validated computational models for ADME/Tox
and physicochemical properties, for example, human metabolic stability,
Caco-2 permeability, protein binding, solubility, melting point, hERG, preg-
nane X receptor (PXR), cytotoxicity, CYP3A4 inhibition, CYP2D6 inhibition,
CYP2C9 inhibition, drug induced liver injury (DILI) [52], and P-gp (and other
transporters) [34, 63, 66, 67]. NCGC and others have generated large, open
or published datasets for Cytochrome P450’s, PXR, hERG [78], aggregation,
[79] and so on, which can also be used for modeling, although the structures
used may need additional curation based on our recent findings that lead us
to question the structure quality [80, 81]. Molecule quality could adversely
affect computational models, so it will be important to run these through new
tools for structure assessment, such as those available in ChemSpider, among
others [82]. One of the key reasons for using open source tool kits is that this
will allow big pharma companies to share their models with outside groups
more readily, whereas different vendor tools for building models are generally
incompatible.

We will now provide some additional detail to justify why we think it is impor-
tant to put considerable effort into building this model-sharing capability and
community. In this case, we considered how models could be shared and the
outputs visualized. In general, the quality of model scales with leave-one-out or
fivefold cross-validation ROC (values > 0.7 to 0.8 would be ideal). Using mod-
els with ROC> 0.7, we have demonstrated that these models can reliably rank
molecules such that the users can either take the top N% of compounds or use
medicinal chemistry intuition to filter them, with essentially the same hit rates
observed [53, 54, 56, 83].

A number of modeling projects in recent years have successfully made use
of the extended connectivity fingerprints, commonly referred to as ECFP_n
or FCFP_n (n = 2, 4, or 6, etc.). For example, we have amassed experience in
applying the FCFP_6 descriptors to modeling phenotypic HTS data for Mtb
and other datasets. These fingerprints are created by enumerating a collection
of substructures using breadth-first expansion from a starting atom. The finger-
print method was originally made available as part of the Pipeline Pilot project
and similar methods have been made available from ChemAxon’s proprietary
JChem and RDKit. The Accelrys fingerprint methodology used by us in all our
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previous modeling work was published in detail, but the disclosure omitted a
number of trade secrets, which means that while it is now straightforward to
implement an algorithm that generates fingerprints that are similarly effective,
it is not possible to produce results that can be directly comparable between
the two different implementations.

We therefore created a drop-in replacement for the ECFP_6 fingerprints that
can be readily ported between multiple toolkits and programming languages.
We have thus built and validated an algorithm that follows the published ref-
erences for ECFP and FCFP fingerprints as closely as possible, and we made
the resulting code available to the public as a feature in the CDK project under
an open source license. We have evaluated the ROC of models built previously
in the literature and with our own Bayesian and open source descriptors and
found them to be near identical. While this is in itself a valuable addition to
the popular Java-based toolkit, we have taken care to implement the algorithm
in a concise manner with few external dependencies. Avoiding toolkit-specific
supporting algorithms has allowed us to port the ECFP_6 algorithm to other
platforms. As part of the model building software, we have initially opted for the
Bayesian algorithm, as we found little difference between the Bayesian, SVM,
and recursive partitioning algorithms when tested on external datasets or using
internal cross-validation.

We have coded the software and implemented a version of CDD mod-
els. The source code for the Bayes model is open source (MIT license),
https://github.com/cdd/modified-bayes. Creating a model requires two sets of
molecules to train the model: the “good or active” molecules and a previously
screened training set. CDD Vault uses the FCFP_6 structural fingerprints to
build a Bayesian statistical model. The model then generates a score that can
be used to rank compounds that have not yet been screened. The model is
stored as a special type of protocol (category= quantitative structure–activity
relationship (QSAR) model), and it provides an ROC plot, so its effectiveness
can be gauged. ROC curves are graphic representations of the relationship
existing between the sensitivity (i.e., the true positive rate on the y-axis) and
the specificity (i.e., the false positive rate on the x-axis) of a statistical test. It
is generated by plotting the fraction of true positives out of the total number
of actual positives (sensitivity) versus the fraction of false positives out of
the total actual negatives (1− specificity). Each molecule receives a relative
score, applicability number, and maximum similarity number. The model
will automatically score all compounds in the project that is selected, while
creating it. It can subsequently be shared with other projects to score more
molecules.

A naïve Bayesian model is optimized for sparse datasets. The learned models
are created with a straightforward learn-by-example paradigm: give it a set of
hit compounds (the “good” samples), and the system learns to distinguish them
from other baseline data. The learning process generates a large set of Boolean
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features from the input FCFP_6 fingerprints, then collects the frequency of
occurrence of each feature in the “good” subset and in all data samples. To apply
the model to a particular compound, the features of the compound are gen-
erated and a weight is calculated for each feature using a Laplacian-adjusted
probability estimate. The model reports a score, which is calculated by normal-
izing the probability, taking the natural log, and summing the results. This score
is a relative predictor of the likelihood of that sample being from the “good” sub-
set: the higher the score, the higher the likelihood. Once trained, the model can
be applied to a set of compounds whose activity is unknown, and it provides a
score whose value gives a prediction of the likelihood that the molecule will be
a hit in the modeled protocol.

To get an idea of the range of scores, the user can sort the score column by
clicking on the header in the search results table. By clicking again one can
sort from the highest number to the lowest. Now that the user has an idea of
the range of possible scores, the molecules can be filtered to show only high
values. The Applicability score is the fraction of structural features that a par-
ticular compound shared with the entire training set of molecules. Maximum
Tanimoto/Jaccard similarity to any of the “good” molecules in the training set
is also calculated. This value is independent of the Bayesian model, and it pro-
vides a way to perform a similarity search that compares it to all of the active
compounds at once. It is also a way to identify whether a compound was in the
training set for the model, in which case, the similarity value is equal to 1.

We have described the testing of this software using datasets for malaria,
tuberculosis, cholera, Ames mutagenicity, mouse intrinsic clearance, human
intrinsic clearance, Caco-2 cell permeability, 5-HT2B, solubility, PXR activa-
tion, maximum recommended therapeutic dose, and blood-brain barrier per-
meability. In most cases, the threefold cross-validation ROC values are greater
than 0.75. The ROC values were comparable to models previously published
by us using the commercial descriptors and Bayesian algorithm. In addition
to making the technologies open source, we have also described how the
models can be built and implemented in a mobile app called mobile molecular
datasheet (MMDS) (Figure 1.2). Models for solubility, probe-likeness,
hERG, KCNQ1, bubonic plague, Chagas disease, tuberculosis, and malaria
were created and also made open source (http://molsync.com/bayesian1).
As a follow-up to this work, (and not using the CDD platform), we have now
undertaken a large-scale validation study [25] in order to ensure that the
Bayesian modeling technique generalizes to a broad variety of drug discovery
datasets and the open source software can be used in different scenarios.
Most recently, we have been involved in developing semiquantitative Bayesian
models and making these open source, as well [84].

These efforts would suggest that a modeling ecosystem can be created, with
multiple software being able to use the open source descriptors and algorithms,
so that a consistent model format is achieved.
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Figure 1.2 Example of Bayesian models implemented in MMDS. (See color plate section for
the color representation of this figure.)
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1.3 Deep Learning Models

In recent years, there has been increasing use of an approach called deep
learning (DL), which builds on many years of artificial neural network research
[85] and which has shown powerful advantages in learning from images and
languages [86]. This may represent the next era of cheminformatics and phar-
maceutical research in general, which is focused on mining the heterogeneous
big data that is accumulating, using more sophisticated algorithms such as DL.

Widely described artificial neural networks (ANN) approaches use an input
layer, hidden layer, and output layer (Figure 1.3a), where each connection has
a weight, and these vary during training in order to connect input to output
data. This method has been used extensively, but it suffers from overfitting of
data and a poor ability to generalize with an external dataset [23], although
more recent versions such as Bayesian regularized artificial neural networks
are less prone to being overtrained [87]. DL or deep neural networks (DNNs)
[23] are in many ways similar to ANN in that they mimic how the brain works
and take information via an input layer. But unlike ANN, DL has many hidden
layers [88] to combine signals with different weights, passing the results succes-
sively deeper in the network until reaching an output layer (Figure 1.3b). The
DL model is trained with a dataset by adjusting the weights to give the response
expected for a certain input (e.g., whether a compound is active or inactive
or the level of activity/inactivity). The ability to have multiple learnable stages
makes this approach more useful for tackling more complex problems. DL can
be used for unsupervised learning and appears to work well with noisy data.
However, it still suffers from the potential to overfit data, besides displaying
higher computational cost than ANN or other methods [89]. To date, there has
been relatively limited application of DL to pharmaceutical problems and very
few studies in the area of cheminformatics, as compared with other machine

Output layer
Output layer

Hidden layer Hidden layer 1 Hidden layer 2
Input layer Input layer

(a) (b)

Figure 1.3 (a) A two-layer neural network (one hidden layer of four neurons (or units) and
one output layer with two neurons), and three inputs. (b) A three-layer neural network with
three inputs, two hidden layers of four neurons each and one output layer. In both cases,
there are connections (synapses) between neurons across layers, but not within a layer.
Source: Adapted from http://cs231n.github.io/neural-networks-1/.
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learning methods [85]. DL tools are available in popular open source statistical
software, such as R [90]. In addition, we have TensorFlow [91], Deeplearning4j
[92] and Facebook, who made their DL software (Torch) open source [93, 94],
followed a year later by Microsoft (CNTK) [95]. Some of these methods have
been summarized in a recent review [96]. While these are open source, they
need some considerable expertise to utilize, or they require the employment of
a specialist that is skilled in integrating these with cheminformatics data such
as molecular descriptors.

We are currently developing an open science data repository (OSDR) [97]
for connecting scientists and sharing data for many types of projects relevant
to drug discovery (see also Chapter 13). OSDR represents a general platform for
acquisition, curation, semantic enrichment, and management of various scien-
tific data related to chemistry, bioinformatics, and pharmacology. OSDR also
provides a powerful and extensible framework for hosting not just data but also
various prediction algorithms, as well as previously generated models.

We have integrated DL into OSDR to provide a user-friendly implementa-
tion of the technology. There is increasing interest from big pharma companies
working on new methods for QSAR [98, 99]. While such experts have ready
access to a wide variety of in-house and commercial software, smaller compa-
nies may be at a disadvantage as these skills and software may be less accessible.
It is our goal to make DL for cheminformatics accessible to non-experts in
academia and industry. In addition, while there are many proponents of DL
and other machine learning techniques, they do not have the advantage of drug
discovery expertise; consequently, they frequently oversell the utility of such
technology or misuse public datasets. It is therefore important to access and test
DL. Adding machine learning methods and DL to OSDR would clearly differ-
entiate it from capabilities found elsewhere (e.g., Figshare, Mendeley, CDD, and
many other systems, both commercial and open source) for depositing data. It
would enable the ability to learn from data, to build and share models, as well
as make predictions that could enable many uses in drug discovery and sim-
ilar areas where it is important to learn from molecular structures. It should
be noted that the open source DL toolkits described earlier are far from “plug
and play” type software tools for the average scientist, in which their molecules
and data are input to train a model (or for that matter in any training or test
datasets) and then generate predictions. Significant expertise in using these
software toolkits is needed and integrating them with molecular descriptor
software is a problem in itself, requiring deep knowledge of cheminformatics
toolkit(s) and their capabilities. It is more likely that a specialized program-
mer/statistician/cheminformatician with knowledge of the software tools will
be needed to generate the models, which can then be made available for others
to use. Conversely, our approaches described herein could facilitate making DL
more accessible to non-expert users by developing easy to use, fully integrated
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tools, which can be applied with any dataset in OSDR or used as standalone
software to produce models.

There have been very few discussions of the potential for using DL in phar-
maceutical research [88, 89]. The results obtained thus far have admittedly
focused on internal validation with little prospective testing, as seen with
other machine learning methods [53, 100]. DL appears promising and will
likely see greater application in the years ahead. So how long will it be before
DL is widespread in pharmaceutical research [88] and what can we expect? It
is possible that DL could be the source of more predictive models, but hurdles
remain in the implementation and accessibility of these models. In addition,
there is also the healthy skepticism of any new computational technology
that has to be addressed before it is able to be used widely in the industry.
What is clearly needed is software that is tightly integrated with the data
to be modeled. This data would most frequently reside in private or public
databases and could represent many different endpoints, both quantitative and
qualitative. Therefore, any efforts to bring the molecules, sources of data, and
DL algorithms together would greatly streamline model generation and make
it more accessible to other scientists. However, as with other computational
modeling approaches, we may also want to consider the applicability domain
[101] and various critical factors, such as the quality of the underlying data
[80, 102], which may determine the utility and relevance of a DL model for
making a prospective prediction [103]. Already, comparisons of DL with other
machine learning algorithms have shown that it frequently improves upon
the state of the art, when using predominantly internal cross-validation as the
form of evaluation. At the time of this writing, there are over 100 DL start-up
companies globally, but few are focused on pharmaceutical applications alone
[104, 105].

Presently, there are a variety of open source libraries implementing DL
algorithms. There is also a set of mature and well-recognized open source
cheminformatics toolkits which are able to generate feature sets for chemical
structures that, when combined with labeling information on properties or
descriptors, can be used to train machine learning algorithms to generate
predictive models. Unfortunately, these two areas usually have to be manually
connected to support the overall pipeline of drug discovery. DL algorithms
need to be accessible to readily scour libraries of compounds for the property
of interest. OSDR provides a powerful and extensible framework for hosting
not just data but also various prediction algorithms as well as previously
generated models. We have built a Jupyter Notebook directly into OSDR to
seamlessly integrate chemical operations, datasets manipulation, and machine
learning models (DL, as well as Bayesian, trees, etc.) within one framework.
As DL methods have not been widely assessed using prospective validation,
we can use our approach to take previously published and novel data input in
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OSDR, build models, and evaluate them for internal quality, before validating
them using prospective predictions on vendor libraries.

1.4 Comparison of Different Machine Learning
Methods

We have been interested in comparing DNNs with classic machine learning
(CML) methods with different datasets of toxicological relevance for future
embedding into the OSDR [97].

Diverse publicly available datasets for different types of ADME/Tox activities
were used to develop prediction pipelines [30, 106] (Table 1.1). The ECFP6
fingerprints, consisting of 1024-bin datasets, were computed from sdf files
using RDKit (http://www.rdkit.org/). A typical frequency of fingerprints
occurrence in the 1024 bin compound representation in a dataset is shown in

Table 1.1 Comparison of machine learning methods using FCFP6 1024 bit descriptors on
ADME/Tox properties using fivefold cross-validation ROC values.

Models BNB LLR ABDT RF SVM DNN-2 DNN-3

Active/
inactive
and ratio

Solubility
train

0.9594 0.9911 0.9963 0.9336 0.9833 0.9996 0.9996 1144/155, 7.38

Solubility
test

0.8621 0.9375 0.9323 0.8738 0.9267 0.9349 0.9332

hERG Train 0.9302 0.9162 0.9916 0.9219 0.9600 1.0000 1.0000 373/433, 0.86
hERG Test 0.8424 0.8529 0.8436 0.8343 0.8637 0.8400 0.8409

KCNQ
Train

0.7951 0.8637 0.8087 0.7644 0.8638 1.0000 1.0000 301, 737/3878,
77.81

KCNQ Test 0.7855 0.8256 0.8012 0.7321 0.8318 0.8608 0.8559

ERα agonist
train

0.9320 0.9820 0.9730 0.9300 0.9920 0.9986 0.9986 966/1178, 0.82

ERα agonist
test

0.9120 0.9340 0.9370 0.9120 0.9280 0.9360 0.9364

The test set consists of 20-25% of the original records, separated before training and used for
validation. BNB, Bernoulli naive Bayes; LLR, logistic linear regression; ABDT, AdaBoost decision
trees; RF, random forest; SVM, support vector machines; DNN-N , DNN with two or three hidden
layers. The solubility dataset consisted of 1299 molecules, hERG had 806 molecules, KCNQ1 had
305,615 molecules, and the ERα agonist dataset had 2144 molecules. Note: The active/inactive
ratios for hERG and KCNQ1 are reversed as we are trying to obtain compounds that are more
desirable (active=noninhibitors).
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Figure 1.4 Typical frequency of fingerprints occurrence in the 1024-bin compounds in a
dataset.

Figure 1.4. Two general prediction pipelines were developed. The first pipeline
used only CML methods, such as Bernoulli naive Bayes (BNB), linear logistic
regression, AdaBoost decision tree, Random Forest (RF), and SVM. The open
source Scikit-learn (http://scikit-learn.org/stable/) ML python library was
used for building, tuning, and validating all these CML models. The second
pipeline used DNN learning models using Keras (https://keras.io/), a DL
library, and Tensorflow (www.tensorflow.org) as a backend. The developed
pipeline consists of stratified splitting of the input dataset into train (80%) and
test (20%) datasets. Hence tuning of all the models and the search for hyper
parameters were conducted solely on the training dataset for better model
generalization. The ROC curve and the area under the curve (AUC) were
computed for each model.

1.4.1 Classic Machine Learning Methods

The following details the classic machine learning methods used in the first
pipeline.

1.4.1.1 Bernoulli Naive Bayes
Naive Bayes method is a supervised learning algorithms based on applying
Bayes’ theorem with the “naive” assumption of independence between every
pair of features. BNB implements the naive Bayes training and classification
algorithms for data that are distributed according to multivariate Bernoulli
distributions; that is, there may be multiple features but each one is assumed
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to be a binary-valued (Bernoulli, Boolean) variable. Naive Bayes learners and
classifiers can be extremely fast compared to more sophisticated methods.
The decoupling of the class conditional feature distributions means that each
distribution can be independently estimated as a one-dimensional distribution.
On the other hand, although naive Bayes is known as a decent classifier, it is
known to be not a very good estimator, so the class probability outputs are not
very accurate. The BNB model was tuned and trained using the BernoulliNB()
method from Naïve Bayes module of Scikit-learn. The fourfold stratified
cross-validation with a nonparametric approach based on isotonic regression
for balancing classes (most of datasets are heavily imbalanced) was used. The
cross-validation generator estimates the model parameter on the training
portions of the cross-validation split for each split, and the calibration is
done on the test cross-validation split of the training dataset, the probabilities
predicted for the folds are then averaged. AUC was computed using those
probabilities.

1.4.1.2 Linear Logistic Regression with Regularization
Logistic regression measures the relationship between the categorical depen-
dent variable and one or more independent variables by estimating probabilities
using a logistic function, which is the cumulative logistic distribution, thus pre-
dicting the probability of particular outcomes. The L2 binominal regularized
logistic regression method was used to classify the activities. A stochastic aver-
age gradient optimizer was used in the LogisticRegressionCV() method from the
linear module of Scikit-learn. A fourfold stratified cross-validation method was
used in a grid search of the best regularization parameter (L2 penalties were in
logarithmic scale between 1e−5 and 1e−1). The AUC of ROC was used for scor-
ing the classification (maximizing AUC) performance for each fold of balanced
classes’ classification task.

1.4.1.3 AdaBoost Decision Tree
AdaBoost is a type of “ensemble learning” where multiple learners are employed
to build a stronger learning algorithm by conjugating many weak classifiers.
The decision tree (DT) was chosen as a base algorithm in our implementation
of the AdaBoost method (ABDT). The AdaBoostClassifier() method with 100
estimators and 0.9 learning rate from Scikit-learn ensemble methods was used.
Similarly to naïve Bayes, the ABDT model was tuned using isotonic calibration
for the imbalanced classes with the fourfold stratified cross-validation method.

1.4.1.4 Random Forest
The RF method is another ensemble method, which fits a number of deci-
sion tree classifiers on various sub-samples of the dataset and uses averaging
to improve the predictive accuracy and control overfitting. The RandomForest-
Classifier() method with maximum depth of tree 5 and balanced classes weights
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was used to build the model. The fourfold stratified cross-validation grid search
was done using 5, 10, 25, and 50 estimators with the AUC of ROC as a scoring
function of the estimator.

1.4.1.5 Support Vector Machine
SVM is one of the most popular supervised machine learning algorithms used
mostly in classification problems and it is quite effective in high-dimensional
spaces. The learning of the hyperplane in SVM algorithm can be done using dif-
ferent kernel functions for the decision function. The C SVM classification with
libsvm implementation method from Scikit-learn was also used (svm.SVC()).
The fourfold stratified cross-validation grid search using weighted classes was
done for two kernels (linear, rbf ), C (1, 10, 100), and gamma values (1e−2, 1e−3,
1e−4). The parameter C, common to all SVM kernels, trades off misclassifica-
tion of training examples against simplicity of the decision surface. A low C
makes the decision surface smooth, while a high C aims at classifying all train-
ing examples correctly. Gamma defines how much influence a single training
example has. The larger gamma is, the closer other examples must be to be
affected. The implementation of SVM automatically finds the best parameters
and saves the best SVM model for activity predictions.

1.4.2 Deep Neural Networks

N-layer neural networks are shown in Figure 1.2. It is worth noting that a
single-layer neural network describes a network with no hidden layers where
the input is directly mapped to the output layer. In that sense, the logistic
regression or SVM methods are simply a special case of single-layer neural
networks. In this work, for simplification of the DNN representation, we will
be counting hidden layers only. Neural networks with 1–2 hidden layers are
often called shallow neural networks and those with three or more hidden
layers are known as the DNNs. Two basic approaches to avoid DNN moel
overfitting used in training are the L2 norm and dropout regularizaton for
all hidden layers. The following hyperparameter optimization was performed
using a DNN with three hidden layers: Keras with Tensorflow backend and
the grid-search method from Scikit-learn. The following parameters were
optimized prior to final model training:

• optimization algorithm: SGD, Adam, Nadam
• learning rate: 0.05, 0.025, 0.01, 0.001
• network weight initialization: uniform, lecun_uniform, normal, glorot_

normal, he_normal, he_normal
• hidden layers activation function: relu, tanh, LeakyReLU , SReLU
• output function: softmax, softplus, sigmoid
• L2 regularization: 0.05, 0.01, 0.005, 0.001, 0.0001
• dropout regularization: 0.2, 0.3, 0.5, 0.8
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• the number of nodes in a hidden layer (all hidden layers): 512, 1024, 2048,
4096

• The following hyperparameters were used for further DNN training: SGD,
learning rate 0.01 (automatically 10% reduced on plateau of 50 epochs),
weight initialization he_normal, hidden layers activation SReLU, output
layer function sigmoid, L2 regularization 0.001, dropout 0.5. The binary
crossentropy was used as a loss function. In order to save training time, an
early training termination was implemented by stopping the training if no
change in loss was observed after 200 epochs. The number of hidden nodes
in all hidden layers was set equal to the number of input features (number
of bins in the fingerprints).

1.4.3 Comparing Models

The AUC values of the all trained models for compounds represented as ECFP6
in 1024-bin fingerprints are summarized in Table 1.1 and the F1 scores [107]
are summarized in Table 1.2. The F1 score can be interpreted as a weighted
average of the precision and recall, where an F1 score reaches its best value at
1 and worst at 0. In all cases, the SVM models were better than any other CLM
models including naïve Bayes for the test set ROC values. The DNN models
were also better than the SVM for three out of four datasets based on ROC
values. Using the F1 scores, DNN outperformed all methods for the solubility
using KCNQ data and ARα agonist datasets, while the Bayesian method per-
formed well for the hERG data (Table 1.2). The 1024-bin fingerprints may not
however be sufficient for maximizing DNN performance, thus other 2D or 3D

Table 1.2 Comparison of machine learning methods using FCFP6 1024-bit descriptors on
ADME/Tox properties using fivefold cross-validation F1 values at p= 0.5.

Models BNB LLR ABDT RF SVM DNN-2 DNN-3

Solubility train 0.9417 0.9626 0.9595 0.9559 0.9539 0.9917 0.9917
Solubility test 0.9087 0.9446 0.9457 0.9451 0.9396 0.9586 0.9609
hERG Train 0.8536 0.8406 0.9562 0.8249 0.8852 1.0000 1.0000
hERG Test 0.7976 0.7975 0.7152 0.7799 0.7843 0.7763 0.7843
KCNQ train 0.7962 0.8646 0.8193 0.8332 0.8558 0.9991 0.9999
KCNQ test 0.7938 0.8578 0.8157 0.8251 0.8508 0.9911 0.9923
ERα agonist train 0.8355 0.9173 0.8927 0.8304 0.9705 0.9697 0.9697
ERα agonist test 0.8017 0.8201 0.8330 0.7881 0.8535 0.8542 0.8542

The test set consists of 20-25% of the original records, separated before training and used for
validation. BNB, Bernoulli naive Bayes; LLR, logistic linear regression; ABDT, AdaBoost decision
trees; RF, random forest; SVM, support vector machines; DNN-N , DNN with two or three hidden
layers.
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fingerprints may need to be tried in future with this method. In addition, a
far larger number of datasets need to be assessed across the multiple machine
learning methods. This work suggests DNN and SVM generally outperform all
other machine learning methods when dealing with this selection of four small
to very large toxicology datasets and does not depend on whether the datasets
are balanced or not.

1.5 Future Work

Doubtless there will be new machine learning algorithms developed in the
coming decade. The key for computational toxicology will be to integrate these
into cheminformatics workflows and tools that are used in decision making.
Our efforts have lead us to providing as open source some of the software tools
we have previously taken for granted. Sustaining software companies and the
very developers of these tools will require some intelligent choices of how to
monetize this work as services such as training and customization of the tools.
As scientists, we are driven to solve problems and having the best software
available as we deal with different datasets for toxicology will enable us to come
up with solutions and hypotheses which we can test experimentally. Clearly,
trying out more machine learning approaches in parallel may lead to the
selection of the best model per endpoint. Readily accessible machine learning
models are likely to be an increasingly important tool for drug discovery in
general and these may fuse public and private data. Such models will still
require some expertize to use and interpret, thus creating new opportunities
for cheminformaticians.
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