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Chapter 1

Introduction

1.1 MOTIVATION

Computer scientists and engineers need powerful techniques to analyze
algorithms and computer systems. Similarly, networking engineers need
methods to analyze the behavior of protocols, routing algorithms, and
congestion in networks. Computer systems and networks are subject to
failure, and hence methods for their reliability and availability are needed.
Many of the tools necessary for these analyses have their foundations in
probability theory. For example, in the analysis of algorithm execution
times, it is common to draw a distinction between the worst-case and the
average-case behavior of an algorithm. The distinction is based on the fact
that for certain problems, while an algorithm may require an inordinately
long time to solve the least favorable instance of the problem, the average
solution time is considerably shorter. When many instances of a problem
have to be solved, the probabilistic (or average-case) analysis of the algorithm
is likely to be more useful. Such an analysis accounts for the fact that the
performance of an algorithm is dependent on the distributions of input data
items. Of course, we have to specify the relevant probability distributions
before the analysis can be carried out. Thus, for instance, while analyzing a
sorting algorithm, a common assumption is that every permutation of the
input sequence is equally likely to occur.

Similarly, if the storage is dynamically allocated, a probabilistic analysis
of the storage requirement is more appropriate than a worst-case analysis. In
a like fashion, a worst-case analysis of the accumulation of roundoff errors in
a numerical algorithm tends to be rather pessimistic; a probabilistic analysis,
although harder, is more useful.
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2 INTRODUCTION

When we consider the analysis of a Web server serving a large number of
users, several types of random phenomena need to be accounted for. First,
the arrival pattern of requests is subject to randomness due to a large popula-
tion of diverse users. Second, the resource requirements of requests will likely
fluctuate from request to request as well as during the execution of a single
request. Finally, the resources of the Web server are subject to random failures
due to environmental conditions and aging phenomena. The theory of stochas-
tic (random) processes is very useful in evaluating various measures of system
effectiveness such as throughput, response time, reliability, and availability.

Before an algorithm (or protocol) or a system can be analyzed, various
probability distributions have to be specified. Where do the distributions
come from? We may collect data during the actual operation of the system
(or the algorithm). These measurements can be performed by hardware moni-
tors, software monitors, or both. Such data must be analyzed and compressed
to obtain the necessary distributions that drive the analytical models dis-
cussed above. Mathematical statistics provides us with techniques for this
purpose, such as the design of experiments, hypothesis testing, esti-
mation, analysis of variance, and linear and nonlinear regression.

1.2 PROBABILITY MODELS

Probability theory is concerned with the study of random (or chance) phenom-
ena. Such phenomena are characterized by the fact that their future behavior
is not predictable in a deterministic fashion. Nevertheless, such phenomena
are usually capable of mathematical descriptions due to certain statistical reg-
ularities. This can be accomplished by constructing an idealized probabilistic
model of the real-world situation. Such a model consists of a list of all possible
outcomes and an assignment of their respective probabilities. The theory of
probability then allows us to predict or deduce patterns of future outcomes.

Since a model is an abstraction of the real-world problem, predictions
based on the model must be validated against actual measurements collected
from the real phenomena. A poor validation may suggest modifications to the
original model. The theory of statistics facilitates the process of validation.
Statistics is concerned with the inductive process of drawing inferences about
the model and its parameters based on the limited information contained in
real data.

The role of probability theory is to analyze the behavior of a system or
an algorithm assuming the given probability assignments and distributions.
The results of this analysis are as good as the underlying assumptions. Statis-
tics helps us in choosing these probability assignments and in the process of
validating model assumptions. The behavior of the system (or the algorithm)
is observed, and an attempt is made to draw inferences about the underly-
ing unknown distributions of random variables that describe system activity.
Methods of statistics, in turn, make heavy use of probability theory.
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1.3 SAMPLE SPACE 3

Consider the problem of predicting the number of request arrivals to a Web
server in a fixed time interval (0,t]. A common model of this situation is to
assume that the number of arrivals in this period has a particular distribution,
such as the Poisson distribution (see Chapter 2). Thus we have replaced a com-
plex physical situation by a simple model with a single unknown parameter,
namely, the average arrival rate λ. With the help of probability theory we
can then deduce the pattern of future arrivals. On the other hand, statistical
techniques help us estimate the unknown parameter λ based on actual obser-
vations of past arrival patterns. Statistical techniques also allow us to test the
validity of the Poisson model.

As another example, consider a fault-tolerant computer system with auto-
matic error recovery capability. Model this situation as follows. The proba-
bility of successful recovery is c and probability of an abortive error is 1 − c.
The uncertainty of the physical situation is once again reduced to a simple
probability model with a single unknown parameter c. In order to estimate
parameter c in this model, we observe N errors out of which n are successfully
recovered. A reasonable estimate of c is the relative frequency n/N, since we
expect this ratio to converge to c in the limit N → ∞. Note that this limit is
a limit in a probabilistic sense:

lim
N→∞

P
(∣∣∣ n

N
− c

∣∣∣ > ε
)

= 0.

Axiomatic approaches to probability allow us to define such limits in a math-
ematically consistent fashion (e.g., see the law of large numbers in Chapter 4)
and hence allow us to use relative frequencies as estimates of probabilities.

1.3 SAMPLE SPACE

Probability theory is rooted in the real-life situation where a person performs
an experiment the outcome of which may not be certain. Such an experiment
is called a random experiment. Thus, an experiment may consist of the
simple process of noting whether a component is functioning properly or has
failed; it may consist of determining the execution time of a program; or it
may consist of determining the response time of a server request. The result of
any such observations, whether they are simple “yes” or “no” answers, meter
readings, or whatever, are called outcomes of the experiment.

Definition (Sample Space). The totality of the possible outcomes of
a random experiment is called the sample space of the experiment and it
will be denoted by the letter S.

We point out that the sample space is not determined completely by the
experiment. It is partially determined by the purpose for which the exper-
iment is carried out. If the status of two components is observed, for some
purposes it is sufficient to consider only three possible outcomes: two func-
tioning, two malfunctioning, one functioning and one malfunctioning. These
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0 1

Figure 1.1. A one-dimensional sample space

three outcomes constitute the sample space S. On the other hand, we might
be interested in exactly which of the components has failed, if any has failed.
In this case the sample space S must be considered as four possible outcomes
where the earlier single outcome of one failed, one functioning is split into two
outcomes: first failed, second functioning and first functioning, second failed.
Many other sample spaces can be defined if we take into account such things
as type of failure and so on.

Frequently, we use a larger sample space than is strictly necessary because
it is easier to use; specifically, it is always easier to discard excess information
than to recover lost information. For instance, in the preceding illustration,
the first sample space might be denoted S1 = {0, 1, 2} (where each number
indicates how many components are functioning) and the second sample space
might be denoted S2 = {(0, 0), (0, 1), (1, 0), (1, 1)} (where 0 = failed, 1 = func-
tioning). Given a selection from S2, we can always add the two components to
determine the corresponding choice from S1; but, given a choice from S1 (in
particular 1), we cannot necessarily recover the corresponding choice from S2.

It is useful to think of the outcomes of an experiment, the elements of the
sample space, as points in a space of one or more dimensions. For example, if
an experiment consists of examining the state of a single component, it may
be functioning properly (denoted by the number 1), or it may have failed
(denoted by the number 0). The sample space is one-dimensional, as shown
in Figure 1.1. If a system consists of two components there are four possible
outcomes, as shown in the two-dimensional sample space of Figure 1.2. Here
each coordinate is 0 or 1 depending on whether the corresponding component
is functioning properly or has failed. In general, if a system has n components,
there are 2n possible outcomes each of which can be regarded as a point in an

(0,0) (1,0)

(0,1) (1,1)

Component 2

Component 1

Figure 1.2. A two-dimensional sample space
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0 21

Figure 1.3. A one-dimensional sample space

n-dimensional sample space. It should be noted that the sample space used
here in connection with the observation of the status of components could also
serve to describe the results of other experiments; for example, the experiment
of observing n successive executions of an if statement, with 1 denoting the
execution of the then clause and 0 denoting the execution of the else clause.

The geometric configuration that is used to represent the outcomes of an
experiment (e.g., Figure 1.2) is not necessarily unique. For example, we could
have regarded the outcomes of the experiment of observing the two-component
system to be the total number functioning, and the outcomes would be 0,1,2,
as depicted in the one-dimensional sample space of Figure 1.3. Note that point
1 in Figure 1.3 corresponds to points (0,1) and (1,0) in Figure 1.2. It is often
easier to use sample spaces whose elements cannot be further “subdivided”;
that is, the individual elements of a sample space should not represent two or
more outcomes that are distinguishable in some fashion. Thus, sample spaces
like those of Figures 1.1 and 1.2 should be used in preference to sample spaces
like the one in Figure 1.3.

It is convenient to classify sample spaces according to the number of ele-
ments they contain. If the set of all possible outcomes of the experiment is
finite, then the associated sample space is a finite sample space. Thus, the
sample spaces of Figures 1.1–1.3 are finite sample spaces.

To consider an example where a finite sample space does not suffice, sup-
pose we inspect components coming out of an assembly line and that we are
interested in the number inspected before we observe the first defective com-
ponent. It could be the first, the second, . . ., the hundredth, . . ., and, for all
we know, we might have to inspect a billion or more before we find a defec-
tive component. Since the number of components to be inspected before the
first defective one is found is not known in advance, it is appropriate to take
the sample space to be the set of natural numbers. The same sample space
results for the experiment of tossing a coin until a head is observed. A sample
space such as this, where the set of all outcomes can be put into a one-to-one
correspondence with the natural numbers, is said to be countably infinite.
Usually it is not necessary to distinguish between finite and countably infi-
nite sample spaces. Therefore, if a sample space is either finite or countably
infinite, we say that it is a countable or a discrete sample space.

Measurement of the time until failure of a component would have an entire
interval of real numbers as possible values. Since the interval of real numbers
cannot be enumerated—that is, they cannot be put into one-to-one correspon-
dence with natural numbers—such a sample space is said to be uncountable
or nondenumerable. If the elements (points) of a sample space constitute a
continuum, such as all the points on a line, all the points on a line segment or
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all the points in a plane, the sample space is said to be continuous. Certainly,
no real experiment conducted using real measuring devices can ever yield such
a continuum of outcomes, since there is a limit to the fineness to which any
instrument can measure. However, such a sample space can often be taken as
an idealization of, an approximation to, or a model of a real world situation,
which may be easier to analyze than a more exact model.

Problems

1. Problems Describe a possible sample space for each of the following experiments:

(a) A large lot of RAM (random access memory) chips is known to contain a
small number of ROM (read-only memory) chips. Three chips are chosen
at random from this lot and each is checked to see whether it is a ROM or
a RAM.

(b) A box of 10 chips is known to contain one defective and nine good chips.
Three chips are chosen at random from the box and tested.

(c) An if . . . then . . . else . . . statement is executed 4 times.

1.4 EVENTS

An event is simply a collection of certain sample points, that is, a subset of
the sample space. Equivalently, any statement of conditions that defines this
subset is called an event. Intuitively, an event is defined as a statement whose
truth or falsity is determined after the experiment. The set of all experimental
outcomes (sample points) for which the statement is true defines the subset
of the sample space corresponding to the event. A single performance of the
experiment is known as a trial. Let E be an event defined on a sample space
S; that is, E is a subset of S. Let the outcome of a specific trial be denoted
by s, an element of S. If s is an element of E, then we say that the event E
has occurred. Only one outcome s in S can occur on any trial. However, every
event that includes s will occur.

Consider the experiment of observing a two-component system and the cor-
responding sample space of Figure 1.2. Let event A1 be described by the state-
ment “Exactly one component has failed.” Then it corresponds to the subset
{(0,1), (1,0)} of the sample space. We will use the term event interchangeably
to describe the subset or the statement. There are sixteen different subsets
of this sample space with four elements, and each of these subsets defines an
event. In particular, the entire sample space S = {(0, 0), (0, 1), (1, 0), (1, 1)} is
an event (called the universal event), and so is the null set ∅ (called the
null or impossible event). The event {s} consisting of a single sample point
will be called an elementary event.

Consider the experiment of observing the time to failure of a component.
The sample space, in this case, may be thought of as the set of all nonnegative
real numbers, or the interval [0,∞) = {t | 0 ≤ t < ∞}. Note that this is an
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TABLE 1.1. Sample Points

s0 = (0, 0, 0, 0, 0) s16 = (1, 0, 0, 0, 0)

s1 = (0, 0, 0, 0, 1) s17 = (1, 0, 0, 0, 1)

s2 = (0, 0, 0, 1, 0) s18 = (1, 0, 0, 1, 0)

s3 = (0, 0, 0, 1, 1) s19 = (1, 0, 0, 1, 1)

s4 = (0, 0, 1, 0, 0) s20 = (1, 0, 1, 0, 0)

s5 = (0, 0, 1, 0, 1) s21 = (1, 0, 1, 0, 1)

s6 = (0, 0, 1, 1, 0) s22 = (1, 0, 1, 1, 0)

s7 = (0, 0, 1, 1, 1) s23 = (1, 0, 1, 1, 1)

s8 = (0, 1, 0, 0, 0) s24 = (1, 1, 0, 0, 0)

s9 = (0, 1, 0, 0, 1) s25 = (1, 1, 0, 0, 1)

s10 = (0, 1, 0, 1, 0) s26 = (1, 1, 0, 1, 0)

s11 = (0, 1, 0, 1, 1) s27 = (1, 1, 0, 1, 1)

s12 = (0, 1, 1, 0, 0) s28 = (1, 1, 1, 0, 0)

s13 = (0, 1, 1, 0, 1) s29 = (1, 1, 1, 0, 1)

s14 = (0, 1, 1, 1, 0) s30 = (1, 1, 1, 1, 0)

s15 = (0, 1, 1, 1, 1) s31 = (1, 1, 1, 1, 1)

example of a continuous sample space. Now if this component is part of a
system that is required to carry out a mission of certain duration t, then an
event of interest is “The component does not fail before time t.” This event
may also be denoted by the set {x | x ≥ t}, or by the interval [t,∞).

1.5 ALGEBRA OF EVENTS

Consider an example of a wireless cell with five identical channels. One possible
random experiment consists of checking the system to see how many channels
are currently available. Each channel is in one of two states: busy (labeled 0)
and available (labeled 1). An outcome of the experiment (a point in the sample
space) can be denoted by a 5-tuple of 0s and 1s. A 0 in position i of the
5-tuple indicates that channel i is busy and a 1 indicates that it is available.
The sample space S has 25 = 32 sample points, as shown in Table 1.1. The
event E1 described by the statement “At least four channels are available” is
given by

E1 = {(0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 1),

(1, 1, 1, 1, 0), (1, 1, 1, 1, 1)}
= {s15, s23, s27, s29, s30, s31}.

The complement of this event, denoted by E1, is defined to be
S − E1, and contains all of the sample points not contained in E1;
that is, E1 = {s ∈ S | s /∈ E1}. In our example, E1 = {s0 through s14,
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s16 through s22, s24 through s26, s28}. E1 may also be described by the state-
ment “at most three channels are available.” Let E2 be the event “at most
four channels are available.” Then E2 = {s0 through s30}. The intersection
E3 of the two events E1 and E2 is denoted by E1 ∩ E2 and is given by:

E3 = E1 ∩ E2

= {s ∈ S | s is an element of both E1 and E2}
= {s ∈ S | s ∈ E1 and s ∈ E2}
= {s15, s23, s27, s29, s30}.

Let E4 be the event “channel 1 is available.” Then E4 = {s16 through s31}.
The union E5 of the two events E1 and E4 is denoted by E1 ∪ E4 and is
given by:

E5 = E1 ∪ E4
= {s ∈ S | either s ∈ E1 or s ∈ E4 or both}
= {s15 through s31}.

Note that E1 has 6 points, E4 has 16 points, and E5 has 17 points. In general:

|E5| = |E1 ∪ E4|
≤ |E1| + |E4|.

Here, the notation |A| is used to denote the number of elements in the set A
(also known as the cardinality of A).

Two events A and B are said to be mutually exclusive events or dis-
joint events provided A ∩ B is the null set. If A and B are mutually exclusive,
then it is not possible for both events to occur on the same trial. For example,
let E6 be the event “channel 1 is busy.” Then E4 and E6 are mutually exclusive
events since E4 ∩ E6 = ∅.

Although the definitions of union and intersection are given for two events,
we observe that they extend to any finite number of sets. However, it is cus-
tomary to use a more compact notation. Thus we define

n⋃
i=1

Ei = E1 ∪ E2 ∪ E3 · · · ∪ En

= {s element of S|s element of E1 or s element of E2

or · · · s element of En}
n⋂

i=1

Ei = E1 ∩ E2 ∩ E3 ∩ · · · ∩ En

= {s element of S|s element of E1 and s element of E2

and · · · s element of En}
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These definitions can also be extended to the union and intersection of a
countably infinite number of sets.

The algebra of events may be fully defined by the following five laws or
axioms, where A, B, and C are arbitrary sets (or events), and S is the universal
set (or event):

(E1) Commutative laws:

A ∪ B = B ∪ A, A ∩ B = B ∩ A.

(E2) Associative laws:

A ∪ (B ∪ C) = (A ∪ B) ∪ C,

A ∩ (B ∩ C) = (A ∩ B) ∩ C.

(E3) Distributive laws:

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

(E4) Identity laws:

A ∪ ∅ = A, A ∩ S = A.

(E5) Complementation laws:

A ∪ A = S, A ∩ A = ∅.

Any relation that is valid in the algebra of events can be proved by using
these axioms [(E1–E5)]. Some other useful relations are as follows:

(R1) Idempotent laws:

A ∪ A = A, A ∩ A = A.

(R2) Domination laws:

A ∪ S = S, A ∩ ∅ = ∅.

(R3) Absorption laws:

A ∩ (A ∪ B) = A, A ∪ (A ∩ B) = A.

(R4) de Morgan’s laws:

(A ∪ B) = A ∩ B, (A ∩ B) = A ∪ B.
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(R5) (A) = A.

(R6) A ∪ (A ∩ B) = A ∪ B.

From the complementation laws, we note that A and A are mutually exclu-
sive since A ∩ A = ∅. In addition, A and A are collectively exhaustive since
any point s (an element of S) is either in A or in A. These two notions can
be generalized to a list of events.

A list of events A1, A2, . . . , An is said to be composed of mutually exclu-
sive events if and only if

Ai ∩ Aj =
{

Ai if i = j,
∅ otherwise.

Intuitively, a list of events is composed of mutually exclusive events if there
is no point in the sample space that is included in more than one event in
the list.

A list of events A1, A2, . . . , An is said to be collectively exhaustive if
and only if

A1 ∪ A2 · · · ∪ An = S.

Given a list of events that is collectively exhaustive, each point in the sample
space is included in at least one event in the list. An arbitrary list of events
may be mutually exclusive, collectively exhaustive, both, or neither. For each
point s in the sample space S, we may define an event As = {s}. The resulting
list of events is mutually exclusive and collectively exhaustive (such a list of
events is also called a partition of the sample space S). Thus, a sample space
may be defined as the mutually exclusive and collectively exhaustive listing
of all possible outcomes of an experiment.

Problems

1. Four components are inspected and three events are defined as follows:

A = “all four components are found defective.”

B = “exactly two components are found to be in proper working order.”

C = “at most three components are found to be defective.”

Interpret the following events:

(a) B ∪ C.

(b) B ∩ C.

(c) A ∪ C.

(d) A ∩ C.

2. Use axioms of the algebra of events to prove the relations:

(a) A ∪ A = A.



Trim Size: 6.125in x 9.25in 60Trivedi c01.tex V3 - 05/23/2016 11:51am Page 11�

� �

�

1.6 GRAPHICAL METHODS OF REPRESENTING EVENTS 11

(b) A ∪ S = S.

(c) A ∩ ∅ = ∅.
(d) A ∩ (A ∪ B) = A.

(e) A ∪ (A ∩ B) = A ∪ B.

1.6 GRAPHICAL METHODS OF REPRESENTING EVENTS

Venn diagrams often provide a convenient means of ascertaining relations
between events of interest. Thus, for a given sample space S and the two events
A and B, we have the Venn diagram shown in Figure 1.4. In this figure, the
set of all points in the sample space is symbolically denoted by the ones within
the rectangle. The events A and B are represented by certain regions in S.

The union of two events A and B is represented by the set of points lying
in either A or B. The union of two mutually exclusive events A and B is
represented by the shaded region in Figure 1.5. On the other hand, if A and
B are not mutually exclusive, they might be represented by a Venn diagram
like Figure 1.6. A ∪ B is represented by the shaded region; a portion of this
shaded region is A ∩ B and is so labeled.

For an event A, the complement A consists of all points in S that do not
belong to A, thus A is represented by the unshaded region in Figure 1.7. The
usefulness of Venn diagrams becomes apparent when we see that the following
laws of event algebra, discussed in the last section, are easily seen to hold true
by reference to Figures 1.6 and 1.7:

A ∩ S = A,

A ∪ S = S,

(A) = A,

(A ∪ B) = A ∩ B,

(A ∩ B) = A ∪ B.

Another useful graphical device is the tree diagram. As an example, con-
sider the experiment of observing two successive executions of an if statement
in a certain program. The outcome of the first execution of the if statement

A B

Figure 1.4. Venn diagram for sample space S and events A and B
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A B

S

Figure 1.5. Venn diagram of disjoint events A and B

A B

S

A
B

Figure 1.6. Venn diagram for two intersecting events A and B

A A

Figure 1.7. Venn diagram of A and its complement

may be the execution of the then clause (denoted by T1) or the execution
of the else clause (denoted by E1). Similarly the outcome of the second exe-
cution is T2 or E2. This is an example of a sequential sample space and
leads to the tree diagram of Figure 1.8. We picture the experiment proceed-
ing sequentially downward from the root. The set of all leaves of the tree is
the sample space of interest. Each sample point represents the event corre-
sponding to the intersection of all events encountered in tracing a path from
the root to the leaf corresponding to the sample point. Note that the four
sample points (the leaves of the tree) and their labels constitute the sample
space of the experiment. However, when we deal with a sequential sample
space, we normally picture the entire generating tree as well as the resulting
sample space.

When the outcomes of the experiment may be expressed numerically, yet
another graphical device is a coordinate system. As an example, consider a
system consisting of two subsystems. The first subsystem consists of four com-
ponents and the second subsystem contains three components. Assuming that
we are concerned only with the total number of defective components in each
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The union of these two sample points
corresponds to the event "then clause
is executed exactly once"

x

Figure 1.8. Tree diagram of a sequential sample space
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Figure 1.9. A two-dimensional sample space

subsystem (not with what particular components have failed), the cardinality
of the sample space is 5 · 4 = 20, and the corresponding two-dimensional sam-
ple space is illustrated in Figure 1.9. The three events identified in Figure 1.9
are easily seen to be

A = “the system has exactly one non-defective component.”

B = “the system has exactly three non-defective components.”

C = “the first subsystem has more non-defective components than the
second subsystem.”

1.7 PROBABILITY AXIOMS

We have seen that the physical behavior of random experiments can be mod-
eled naturally using the concepts of events in a suitably defined sample space.
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To complete our specification of the model, we shall assign probabilities to
the events in the sample space. The probability of an event is meant to repre-
sent the “relative likelihood” that a performance of the experiment will result
in the occurrence of that event. P (A) will denote the probability of the event
A in the sample space S.

In many engineering applications and in games of chance, the so-called rel-
ative frequency interpretation of the probability is utilized. However, such an
approach is inadequate for many applications. We would like the mathemati-
cal construction of the probability measure to be independent of the intended
application. This leads to an axiomatic treatment of the theory of probability.
The theory of probability starts with the assumption that probabilities can
be assigned so as to satisfy the following three basic axioms of probability.
The assignment of probabilities is perhaps the most difficult aspect of con-
structing probabilistic models. Assignments are commonly based on intuition,
experience, or experimentation. The theory of probability is neutral; it will
make predictions regardless of these assignments. However, the results will
be strongly affected by the choice of a particular assignment. Therefore if
the assignments are inaccurate, the predictions of the model will be mis-
leading and will not reflect the behavior of the “real world” problem being
modeled.

Let S be a sample space of a random experiment. We use the notation
P (A) for the probability measure associated with event A. If the event A
consists of a single sample point s then P (A) = P ({s}) will be written as
P (s). The probability function P (·) must satisfy the following Kolmogorov’s
axioms:

(A1) For any event A, P (A) ≥ 0.

(A2) P (S) = 1.

(A3) P (A ∪ B) = P (A) + P (B) provided A and B are mutually exclusive
events (i.e., when A ∩ B = ∅).

The first axiom states that all probabilities are nonnegative real numbers.
The second axiom attributes a probability of unity to the universal event S,
thus providing a normalization of the probability measure (the probability of
a certain event, an event that must happen, is equal to 1). The third axiom
states that the probability function must be additive. These three axioms
are easily seen to be consistent with our intuitive ideas of how probabilities
behave.

The principle of mathematical induction can be used to show [using
axiom (A3) as the basis of induction] that for any positive integer n the
probability of the union of n mutually exclusive events A1, A2, . . . , An is equal
to the sum of their probabilities:

P (A1 ∪ A2 ∪ · · · ∪ An) =
n∑

i=1

P (Ai).
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The three axioms, (A1)–(A3), are adequate if the sample space is finite
but to deal with problems with infinite sample spaces, we need to modify
axiom A3:

(A3′) For any countable sequence of events A1, A2, . . . , An, . . ., that are
mutually exclusive (that is, Aj ∩ Ak = ∅ whenever j 
= k):

P (
∞⋃

n=1

An) =
∞∑

n=1

P (An).

All of conventional probability theory follows from the three axioms (A1)
through (A3′) of probability measure and the 5 axioms (E1)–(E5) of the alge-
bra of events discussed earlier. These eight axioms can be used to show several
useful relations:

(Ra) For any event A, P (A) = 1 − P (A).

Proof: A and A are mutually exclusive, and S = A ∪ A. Then by axioms (A2)
and (A3), 1 = P (S) = P (A) + P (A), from which the assertion follows.

(Rb) If ∅ is the impossible event, then P (∅) = 0.

Proof: Observe that ∅ = S so that the result follows from relation (Ra) and
axiom (A2).

(Rc) If A and B are any events, not necessarily mutually exclusive, then
P (A ∪ B) = P (A) + P (B) − P (A ∩ B).

Proof: From the Venn diagram of Figure 1.6, we note that A ∪ B = A ∪ (A ∩
B) and B = (A ∩ B) ∪ (A ∩ B), where the events on the right-hand side are
mutually exclusive in each equation. By axiom (A3), we obtain

P (A ∪ B) = P (A) + P (A ∩ B)

P (B) = P (A ∩ B) + P (A ∩ B).

The second equation implies P (A ∩ B) = P (B) − P (A ∩ B), which, after
substitution in the first equation, yields the desired assertion.

The relation (Rc) can be generalized to a formula similar to the principle
of inclusion and exclusion of combinatorial mathematics [LIU 1968]:

(Rd) If A1, A2, . . . An are any events, then

P (
n⋃

i=1

Ai) = P (A1 ∪ A2 ∪ · · · ∪ An)

=
∑

i

P (Ai) −
∑

1≤i<j≤n

P (Ai ∩ Aj)
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+
∑

1≤i<j<k≤n

P (Ai ∩ Aj ∩ Ak) + · · ·

+(−1)n−1P (A1 ∩ A2 ∩ · · · ∩ An),

where the successive sums are over all possible events, pairs of events,
triples of events, and so on.
Proof: We prove this result by induction on the number of events n. The result
(Rc) above can serve as the basis of induction. Assume inductively that (Rd)
holds for a union of n − 1 events. Define the event B = A1 ∪ A2 ∪ · · · ∪ An−1.
Then

n⋃
i=1

Ai = B ∪ An.

Using the result (Rc) above, we get

P (

n⋃
i=1

Ai) = P (B ∪ An)

= P (B) + P (An) − P (B ∩ An). (1.1)

Now
B ∩ An = (A1 ∩ An) ∪ (A2 ∩ An) ∪ · · · ∪ (An−1 ∩ An)

is a union of n − 1 events and hence, using the inductive hypothesis, we get

P (B ∩ An) = P (A1 ∩ An) + P (A2 ∩ An) + · · · + P (An−1 ∩ An)

−P [(A1 ∩ An) ∩ (A2 ∩ An)]

−P [(A1 ∩ An) ∩ (A3 ∩ An)]

− · · ·

+P [(A1 ∩ An) ∩ (A2 ∩ An) ∩ (A3 ∩ An)]

+ · · · − · · ·

+(−1)n−2P [(A1 ∩ An) ∩ (A2 ∩ An) ∩ · · · ∩ (An−1 ∩ An)]

= P (A1 ∩ An) + P (A2 ∩ An) + · · · + P (An−1 ∩ An)

−P (A1 ∩ A2 ∩ An) − P (A1 ∩ A3 ∩ An) − · · ·

+P (A1 ∩ A2 ∩ A3 ∩ An) + · · ·

− · · ·

+(−1)n−2P (A1 ∩ A2 ∩ A3 ∩ · · · ∩ An−1 ∩ An). (1.2)

Also, since B = A1 ∪ A2 ∪ · · · ∪ An−1 is a union of n − 1 events, the inductive
hypothesis gives

P (B) = P (A1) + P (A2) + · · · + P (An−1)
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−P (A1 ∩ A2) − P (A1 ∩ A3) − · · ·

+ · · ·

+(−1)n−2P (A1 ∩ A2 ∩ · · · ∩ An−1). (1.3)

Substituting (1.2) and (1.3) into (1.1), we obtain the required result.

The relation (Rd) is computationally expensive to use. A computationally
simpler formula is the sum of disjoint products (SDP) formula below.

(Re)

P (
n⋃

i=1

Ai) = P (A1) + P (A1 ∩ A2) + P (A1 ∩ A2 ∩ A3) + · · ·

+P (A1 ∩ A2 ∩ · · · ∩ An−1 ∩ An). (1.4)

The SDP formula is frequently used in reliability computations [LUO 1998].
We leave the proof as an exercise.

To avoid certain mathematical difficulties, we must place restrictions on
which subsets of the sample space may be termed events to which probabilities
can be assigned. In a given problem there will be a particular class of subsets
of S that is “measurable” and will be called the “class of events” F . Since we
would like to perform the standard set operations on events, it is reasonable
to demand that F be closed under countable unions of events in F as well as
under complementation. A collection of subsets of a given set S that is closed
under countable unions and complementation is called a σ field of subsets of
S. Now a probability space or probability system may be defined as a
triple (S,F , P ), where S is a set, F is a σ-field of subsets of S, and P is a
probability measure on F assumed to satisfy axioms (A1)–(A3′).

If the sample space is discrete (finite or countable), then every subset of S
can be an event belonging to F . However, in the case that S is uncountable,
this is no longer true. For example, let S be the interval [0,1] and assume the
probability assignment P (a ≤ x ≤ b) = b − a for 0 ≤ a ≤ b ≤ 1. Then it can
be shown that not all possible subsets of S can be assigned a probability in
a manner consistent with the three axioms of P . In such cases, the small-
est σ field of subsets of S containing all open and closed intervals is usually
adopted as the class of events F .

In summary, P is a function with domain F and range [0, 1], which satisfies
the three axioms (A1), (A2), and (A3′). P assigns a number between 0 and
1 to any event in F . In general, F does not include all possible subsets of S,
and the subsets (events) included in F are called measurable. However, for our
purposes, every subset of a sample space constructed here can be considered
an event having a probability.

We now outline the steps of a basic procedure to be followed in solving
problems [GOOD 1977]:
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1. Identify the sample space S. The sample space S must be chosen so that
all of its elements are mutually exclusive and collectively exhaustive,
that is, no two elements can occur simultaneously and one element must
occur on any trial. Many of the “trick” probability problems are based
on some ambiguity in the problem statement or an inexact formulation
of the model of a physical situation. The choice of an appropriate sample
space resulting from a detailed description of the model, will do much
to resolve common difficulties. Since many choices for the sample space
are possible, it is advisable to use a sample space whose elements cannot
be further “subdivided”—that is, all possible distinguishable outcomes
of the experiment should be listed separately.

2. Assign probabilities. Assign probabilities to the elements in S. This
assignment must be consistent with the axioms (A1), (A2), and (A3).
In practice, probabilities are assigned either on the basis of estimates
obtained from past experience, or on the basis of a careful analysis of
conditions underlying the random experiment, or on the basis of assump-
tions, such as the common assumption that various outcomes in a finite
sample space are equiprobable (equally likely).

3. Identify the events of interest. The events of interest, in a practical situa-
tion, will be described by statements. These need to be recast as subsets
of the sample space. The laws of event algebra (E1)–(E5) and (R1)–(R6)
may be used for any simplification. Pictorial devices such as Venn dia-
grams, tree diagrams, or coordinate system plots may also be used to
advantage.

4. Compute desired probabilities. Calculate the probabilities of the events
of interest using the axioms (A1), (A2), and (A3′) and any derived laws
such as (Ra), (Rb), (Rc), (Rd), and (Re). It is usually helpful to express
the event of interest as a union of mutually exclusive points in the sample
space and summing the probabilities of all points included in the union.

Example 1.1

As a simple illustration of this procedure, consider the example of the wireless cell
with 5 channels.

Step 1: An appropriate sample space consists of 32 points (see Table 1.1), each
represented by a 5-tuple of 0s and 1s. A 0 in position i indicates that channel i is
busy and a 1 indicates that it is available.

Step 2: In the absence of detailed knowledge about the system, we assume that
each sample point is equally likely. Since there are 32 sample points, we assign a
probability of 1

32
to each, that is, P (s0) = P (s1) = · · · = P (s31) = 1

32
. It is easily

seen that this assignment is consistent with the three probability axioms.
Step 3: Assume that we are required to determine the probability that a call

is not blocked, given that the conference call needs at least three channels for its
execution. The event E of interest, then, is “three or more channels are available.”
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From the definition of the sample points, we see that

E = {s7, s11, s13, s14, s15, s19, s21, s22, s23, s25– –s31}

= {s7} ∪ {s11} ∪ {s13} ∪ {s14} ∪ {s15} ∪ {s19} ∪ {s21} ∪ {s22}

∪{s23} ∪ {s25} ∪ {s26} ∪ {s27} ∪ {s28} ∪ {s29} ∪ {s30}

∪{s31}.

Step 4: We have already simplified E so that it is expressed as a union of mutually
exclusive events. The probability of each of these elementary events is 1

32
. Thus, a

repeated application of axiom (A3′) gives us

P (E) =
∑

si∈E

P (si)

=
1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32

+
1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32

=
1

2
.

Alternatively, we could have noted that E consists of 16 sample points and since
each 32 sample point is equally likely, P (E) = 16

32
.

�

Problems

1. Give the proof of the relation (Re) in this section.

2. Consider a pool of six I/O (input/output) buffers. Assume that any buffer is just
as likely to be available (or occupied) as any other. Compute the probabilities
associated with the following events:

A = “at least 2 but no more than 5 buffers occupied.”

B = “at least 3 but no more than 5 occupied.”

C = “all buffers available or an even number of buffers occupied.”

Also determine the probability that at least one of the events A, B, and C occurs.

3. Show that if event B is contained in event A, then P (B) ≤ P (A).

1.8 COMBINATORIAL PROBLEMS

If the sample space of an experiment consists of only a finite number n of
sample points, or elementary events, then the computation of probabilities
is often simple. Assume that assignment of probabilities is made such that for
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si (an element of S), P (si) = p
i

and

n∑
i=1

p
i
= 1.

Since any event E consists of a certain collection of these sample points,
P (E) can be found, using axiom (A3′), by adding up the probabilities of the
separate sample points that make up E (recall the wireless cell example of
the last section).

Example 1.2

Consider the following if statement in a program:

if B then s1 else s2.

The random experiment consists of “observing” two successive executions of the if
statement. The sample space consists of the four possible outcomes:

S = {(s1, s1), (s1, s2), (s2, s1), (s2, s2)}

= {t1, t2, t3, t4}.

Assume that on the basis of strong experimental evidence, the following probability
assignment is justified:

P (t1) = 0.34, P (t2) = 0.26, P (t3) = 0.26, P (t4) = 0.14.

The events of interest are given E1 = “at least one execution of the statement s1”
and E2 = “statement s2 is executed the first time.” It is easy to see that

E1 = {(s1, s1), (s1, s2), (s2, s1)}

= {t1, t2, t3},

E2 = {(s2, s1), (s2, s2)}

= {t3, t4},

P (E1) = P (t1) + P (t2) + P (t3) = 0.86,

P (E2) = P (t3) + P (t4) = 0.4.

�

In the special case when S = {s1, . . . sn} and P (si) = p
i
= (1/n) (equally

likely sample points), the situation is even simpler. Calculation of probabilities
is then reduced to simply counting the number of sample points in the event
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of interest. If the event E consists of k sample points, then

P (E) =
number of points in E

number of points in S

=
favorable outcomes

total outcomes

=
k

n
. (1.5)

Example 1.3

A group of four VLSI chips consists of two good chips, labeled g1 and g2, and two
defective chips, labeled d1 and d2. If three chips are selected at random from this
group, what is the probability of the event E = “two of the three selected chips are
defective”?

A natural sample space for this problem consists of all possible three chip
selections from the group of four chips: S = {g1g2d1, g1g2d2, g1d1d2, g2d1d2}. It is
customary to interpret the phrase “selected at random” as implying equiprobable
sample points. Since the two sample points g1d1d2 and g2d1d2 are favorable to the
event E, and since the sample space has four points, we conclude that P (E) = 2

4
= 1

2
.

�

We have seen that under the equiprobability assumption, finding P (E)
simply involves counting the number of outcomes favorable to E. However,
counting by hand may not be feasible when the sample space is large. Standard
counting methods of combinatorial analysis can often be used to avoid writing
down the list of favorable outcomes explicitly.

1.8.1 Ordered Samples of Size k, with Replacement

Here we are interested in counting the number of ways we can select k objects
from among n objects where order is important and when the same object is
allowed to be repeated any number of times (permutations with replace-
ment). Alternatively, we are interested in the number of ordered sequences
(si1

, si2
, . . . , sik

), where each sir
belongs to {s1, . . . , sn}. It is not difficult to

see that the required number is (n · n · · · · · n(ktimes)), or nk.

Example 1.4

Assume that we are interested in finding the probability that some randomly chosen
k-digit decimal number is a valid k-digit octal number. The sample space, in this
case, is

S = {(x1, x2, . . . , xk) | xi ∈ {0, 1, 2, . . . , 9}}

and the event of interest is

E = {(x1, x2 . . . xk) | xi ∈ {0, 1, 2, . . . , 7}}.
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By the above counting principle, |S| = 10k and |E| = 8k. Now, if we assume that all
the sample points are equally likely, then the required answer is

P (E) =
|E|
|S| =

8k

10k
=

4k

5k
.

�

1.8.2 Ordered Samples of Size k, without Replacement

The number of ordered sequences (si1
, si2

, . . . , sik
), where each sir

belongs to
{s1, . . . , sn}, but repetition is not allowed (i.e., no si can appear more than
once in the sequence), is given by

n(n − 1) · · · (n − k + 1) =
n!

(n − k)!
for k = 1, 2, . . . , n.

This number is also known as the number of permutations of n distinct objects
taken k at a time, and denoted by P (n, k).

Example 1.5

Suppose we wish to find the probability that a randomly chosen three-letter sequence
will not have any repeated letters.

Let I = {a, b, . . . , z} be the alphabet of 26 letters. Then the sample space is given
by

S = {(α, β, γ) | α ∈ I, β ∈ I, γ ∈ I}

and the event of interest is

E = {(α, β, γ) | α ∈ I, β ∈ I, γ ∈ I, α �= β, β �= γ, α �= γ}.

By the abovementioned counting principle, |E| is simply P (26, 3) = 15, 600. Further-
more, |S| = 263 = 17, 576. Therefore, the required answer is

P (E) =
15, 600

17, 576
= 0.8875739.

�

1.8.3 Unordered Samples of Size k, without Replacement

The number of unordered sets {si1 , si2 , . . . , sik
}, where sir

(r = 1, 2, . . . , k)
are distinct elements of {s1, . . . , sn} is

n!
k!(n − k)!

for k = 0, 1, . . . , n.
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This is also known as the number of combinations of n distinct objects taken
k at a time, and is denoted by

(
n
k

)
.

Example 1.6

If a box contains 75 good VLSI chips and 25 defective chips, and 12 chips are selected
at random, find the probability that at least one chip is defective.

By the counting principle described above, the number of unordered samples
without replacement is

(
100
12

)
and hence the size of the sample space is |S| =

(
100
12

)
.

The event of interest is E = “at least one chip is defective.” Here we find it easier
to work with the complementary event E = “no chip is defective.” Since there are
75 good chips, the preceding counting principle yields |E| =

(
75
12

)
. Then

P (E) =
|E|
|S|

=

(
75
12

)
(

100
12

)
=

75! · 12! · 88!

12! · 63! · 100!

=
75! · 88!

63! · 100!
.

Now since P (E) = 1 − P (E), the required probability is easily obtained.

�

Example 1.7

Consider a TDMA (time division multiple access) wireless system [SUN 1999], where
the base transceiver system of each cell has n base repeaters [also called base radio
(BR)]. Each base repeater provides m time-division-multiplexed channels. Thus,
there are mn channels in the system. We note that normally a cell reserves one
or more channels for signaling transfer, which resides in one of n base repeaters.
However, for simplicity, we do not consider signaling channels (also called control
channels) in this example.

A base repeater is subject to failure. In order to evaluate the impact of such a
failure on the performability of the system, we should know the number of ongoing
talking channels on the failed base repeater. Suppose the channels are allocated
randomly to the users. Denote the total number of talking channels in the whole
system as k, and the number of idle channels in the whole system as j (j + k =
mn always holds), when the failure occurs. Then the probability, p

i
, that i talking

channels reside in the failed base repeater is given by

p
i

=

(
m(n−1)

k−i

) (
m
i

)
(

mn
k

) , for 0 ≤ i ≤ min(m, k). (1.6)

Clearly, the total number of possible combinations to have k talking chan-
nels out of mn channels is

(
mn
k

)
, namely, the size of the sample space, |S|. The
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event of interest is E = “i talking channels on the failed base repeater.” Now if i
(0 ≤ i ≤ min(m, k)) out of the k talking channels are on the failed base repeater,
corresponding to a total of

(
m
i

)
combinations, then (k − i) talking channels are on

the rest of the (n − 1) base repeaters, which has
(

m(n−1)
k−i

)
combinations. Thus,

|E| =
(

m(n−1)
k−i

) (
m
i

)
. Probability p

i
can now be easily obtained as |E|/|S|.

�

Problems

1. How many even two-digit numbers can be constructed out of the digits 3, 4, 5,
6, and 7? Assume first that you may use the same digit again. Next, answer this
question assuming that you cannot use a digit more than once.

2. Three couples (husbands and their wives) must sit at a round table in such a
way that no husband is placed next to his wife. How many configurations exist?.
If seats are occupied at random, what is the probability of such a configuration?

3. If a three-digit decimal number is chosen at random, find the probability that
exactly k digits are ≥ 5, for 0 ≤ k ≤ 3.

4. A box with 15 VLSI chips contains five defective ones. If a random sample of
three chips is drawn, what is the probability that all three are defective?

5. In a party of five persons, compute the probability that at least two of the persons
have the same birthday (month/day), assuming a 365-day year.

6. � A series of n jobs arrive at a multiprocessor computer with n processors. Assume
that each of the nn possible assignment vectors (processor for job 1, . . ., processor
for job n) is equally likely. Find the probability that exactly one processor will
not be assigned a job.

1.9 CONDITIONAL PROBABILITY

So far, we have assumed that the only information about the outcome of a
trial of a given experiment, available before the trial, is that the outcome
will correspond to some point in the sample space S. With this assumption,
we can compute the probability of some event A. Suppose that we are given
the added information that the outcome s of a trial is contained in a subset
B of the sample space, with P (B) 
= 0. Knowledge of the occurrence of the
event B may change the probability of the occurrence of the event A. We wish
to define the conditional probability of the event A given that the event
B occurs, or the conditional probability of A given B, symbolically as
P (A|B). Given that event B has occurred, the sample point corresponding
to the outcome of the trial must be in B and cannot be in B. To reflect this
partial information, we define the conditional probability of a sample point s
(an element of S) by

P (s|B) =

{
P (s)
P (B) if s ∈ B,

0 if s ∈ B.
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Thus the original probability assigned to a sample point in B is scaled up
by 1/P (B), so that the probabilities of the sample points in B will add up
to 1. Now the conditional probability of any other event, such as A, can be
obtained by summing over the conditional probabilities of the sample points
included in A (noting that A = (A ∩ B) ∪ (A ∩ B)):

P (A|B) =
∑
s∈A

P (s|B)

=
∑

s∈A∩B

P (s|B) +
∑

s∈A∩B

P (s|B)

=
∑

s∈A∩B

P (s|B)

=
∑

s∈A∩B

P (s)
P (B)

=
P (A ∩ B)

P (B)
, P (B) 
= 0.

This leads us to the following definition.

Definition (Conditional Probability). The conditional probability of
A given B is

P (A|B) =
P (A ∩ B)

P (B)

if P (B) 
= 0 and it is undefined otherwise.

A rearrangement of this definition yields the following multiplication
rule (MR):

P (A ∩ B) =

⎧⎨
⎩

P (B)P (A|B) if P (B) 
= 0,
P (A)P (B|A) if P (A) 
= 0,
0 otherwise.

Example 1.8

We are given a box containing 5000 VLSI chips, 1000 of which are manufactured
by company X and the rest by company Y. Ten percent of the chips made by
company X are defective and 5% of the chips made by company Y are defective. If
a randomly chosen chip is found to be defective, find the probability that it came
from company X.

Define the events A = “chip made by company X” and B = “chip is defective.”
Since out of 5000 chips, 1000 are made by company X, we conclude that P (A) =
1000/5000 = 0.2. Also, out of a total of 5000 chips, 300 are defective. Therefore,
P (B) = 300/5000 = 0.06. Now the event A ∩ B = “the chip is made by company
X and is defective.” Out of 5000 chips, 100 chips qualify for this statement. Thus
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P (A ∩ B) = 100/5000 = 0.02. Now the quantity of interest is

P (A|B) =
P (A ∩ B)

P (B)
=

0.02

0.06
=

1

3
.

Thus the knowledge of the occurrence of B has increased the probability of the
occurrence of event A. Similarly we find that the knowledge of the occurrence of A
has increased the chances for the occurrence of the event B, since P (B|A) = 0.1. In
fact, note that

P (A|B)

P (B|A)
=

1/3

0.1
=

0.2

0.06
=

P (A)

P (B)
.

This interesting property of conditional properties is easily shown to hold in general

P (A|B)

P (B|A)
=

P (A ∩ B)/P (B)

P (A ∩ B)/P (A)
=

P (A)

P (B)
.

�

Problems

1. Consider four computer firms, A, B, C, D, bidding for a certain contract. A survey
of past bidding success of these firms on similar contracts shows the following
probabilities of winning:

P (A) = 0.35, P (B) = 0.15, P (C) = 0.3, P (D) = 0.2.

Before the decision is made to award the contract, firm B withdraws its bid. Find
the new probabilities of A, C, D winning the bid.

1.10 INDEPENDENCE OF EVENTS

We have seen that it is possible for the probability of an event A to decrease or
increase given that event B has occurred. If the probability of the occurrence
of an event A does not change regardless of whether event B has occurred,
we are likely to conclude that the two events are independent. Thus we define
two events A and B to be independent if and only if

P (A|B) = P (A).

From the definition of conditional probability, we have [provided P (A) 
= 0
and P (B) 
= 0]:

P (A ∩ B) = P (A)P (B|A) = P (B)P (A|B).

From this we conclude that the condition for the independence of A and
B can also be given either as P (A|B) = P (A) or as P (A ∩ B) = P (A)P (B).
Note that P (A ∩ B) = P (A)P (B|A) (if P (A) 
= 0) holds regardless of whether
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A and B are independent, but P (A ∩ B) = P (A)P (B) holds only when A
and B are independent. In fact this latter condition is the usual definition of
independence.

Definition (Independent Events). Events A and B are said to be
independent if

P (A ∩ B) = P (A)P (B).

This equation is symmetric in A and B and shows that whenever A is
independent of B, so is B of A. Some authors use the phrases “stochasti-
cally independent events” or “statistically independent events” in place of
just “independent events.” Note that if A and B are not independent, then
P (A ∩ B) is computed using the multiplication rule of the last section. The
abovementioned condition for independence can be derived in another way by
first noting that the event A is a disjoint union of events A ∩ B and A ∩ B.
Now the conditional probability of all the sample points in the latter event is
zero while the conditional probability of all the sample points in the former
event is increased by the factor 1/P (B). Therefore, for P (A|B) = P (A) to
hold, the decrease in probability due to points in A ∩ B must be balanced by
the increase in probability due to points in A ∩ B. In other words

P (A ∩ B)
P (B)

− P (A ∩ B) = P (A ∩ B) − 0

or

P (A ∩ B)
P (B)

=P (A ∩ B) + P (A ∩ B)

=P (A).

Example 1.9

A microcomputer system consists of a microprocessor CPU chip and a random access
main memory chip. The CPU is selected from a lot of 100, 10 of which are defective,
and the memory chip is selected from a lot of 300, 15 of which are defective. Define A
to be the event “the selected CPU is defective,” and let B be the event “the selected
memory chip is defective.” Then P (A) = 10/100 = 0.1, and P (B) = 15/300 = 0.05.
Since the two chips are selected from different lots, we may expect the events A and
B to be independent. This can be checked since there are 10 · 15 ways of choosing
both defective chips and there are 100 · 300 ways of choosing two chips. Thus

P (A ∩ B) =
10 · 15

100 · 300

= 0.005

= 0.10 · 0.05

= P (A)P (B).

�
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Several important points are worth noting about the concept of indepen-
dence:

1. If A and B are two mutually exclusive events, then A ∩ B = ∅, which
implies P (A ∩ B) = 0. Now if they are independent as well, then either
P (A) = 0 or P (B) = 0.

2. If an event A is independent of itself, that is, if A and A are independent,
then P (A) = 0 or P (A) = 1, since the assumption of independence yields
P (A ∩ A) = P (A)P (A) or P (A) = [P (A)]2.

3. If the events A and B are independent and the events B and C are
independent, then events A and C need not be independent. In other
words, the relation of independence is not a transitive relation.

4. If the events A and B are independent, then so are events A and B,
events A and B, and events A and B. To show the independence of
events A and B, note that A ∩ B and A ∩ B are mutually exclusive
events whose union is B. Therefore

P (B) = P (A ∩ B) + P (A ∩ B)

= P (A)P (B) + P (A ∩ B)

since A and B are independent. This implies that P (A ∩ B) = P (B) −
P (A)P (B) = P (B)[1 − P (A)] = P (B)P (A), which establishes the inde-
pendence of A and B. Independence of A and B, and A and B can be
shown similarly.

The concept of independence of two events can be naturally extended to
a list of n events.

Definition (Independence of a Set of Events). A list of n events
A1, A2, . . . , An is defined to be mutually independent if and only if for each
set of k (2 ≤ k ≤ n) distinct indices i1, i2, . . . , ik, which are elements of
{1, 2, . . . , n}, we have

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik
) = P (Ai1)P (Ai2) · · ·P (Aik

).

Given that a list of events A1, A2, . . . , An is mutually independent, it is
straightforward to show that for each set of distinct indices i1, i2, . . . , ik, which
are elements of {1, 2, . . . , n}:

P (Bi1
∩ Bi2

∩ · · · ∩ Bik
) = P (Bi1

)P (Bi2
) · · ·P (Bik

) (1.7)

where each Bik
may be either Aik

or Aik
. In other words, if the Ais are

independent and we replace any event by its complement, we still have inde-
pendence.
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By the probability axiom (A3), if a list of events is mutually exclusive, the
probability of their union is the sum of their probabilities. On the other hand,
if a list of events is mutually independent, the probability of their intersection
is the product of their probabilities. The additive and multiplicative nature,
respectively, of two event lists should be noted.

Note that it is possible to have P (A ∩ B ∩ C) = P (A)P (B)P (C)
with P (A ∩ B) 
= P (A)P (B), P (A ∩ C) 
= P (A)P (C), and P (B ∩ C) 
=
P (B)P (C). Under these conditions, events A, B, and C are not
mutually independent. Similarly, the condition P (A1 ∩ A2 · · · ∩ An) =
P (A1)P (A2) · · ·P (An) does not imply a similar condition for any smaller
family of events, and therefore this condition does not imply that events
A1, A2, . . . , An are mutually independent.

Example 1.10 [ASH 1970]

Consider the experiment of rolling two dice. Let the sample space S = {(i, j) | 1 ≤
i, j ≤ 6}. Also assume that each sample point is assigned a probability of 1

36
. Define

the events A, B, and C so that

A = “first die results in a 1, 2, or 3.”

B = “first die results in a 3, 4, or 5.”

C = “the sum of the two faces is 9.”

Then A ∩ B = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}, A ∩ C = {(3, 6)}, B ∩ C =
{(3, 6), (4, 5), (5, 4)}, and A ∩ B ∩ C = {(3, 6)}. Therefore

P (A ∩ B) =
1

6
�= P (A)P (B) =

1

4
,

P (A ∩ C) =
1

36
�= P (A)P (C) =

1

18
,

P (B ∩ C) =
1

12
�= P (B)P (C) =

1

18
,

but

P (A ∩ B ∩ C) =
1

36
= P (A)P (B)P (C).

�

If the events A1, A2, . . . , An are such that every pair is independent, then
such events are called pairwise independent. It does not follow that the
list of events is mutually independent.

Example 1.11 [ASH 1970]

Consider the above experiment of tossing two dice. Let

A = “first die results in a 1, 2, or 3.”

B = “second die results in a 4, 5, or 6.”

C = “the sum of the two faces is 7.”
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Then
A ∩ B = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}

and

A ∩ C = B ∩ C

= A ∩ B ∩ C

= {(1, 6), (2, 5), (3, 4)}.

Therefore

P (A ∩ B) =
1

4
= P (A)P (B),

P (A ∩ C) =
1

12
= P (A)P (C),

P (B ∩ C) =
1

12
= P (B)P (C),

but

P (A ∩ B ∩ C) =
1

12
�= P (A)P (B)P (C) =

1

24
.

In this example, events A, B, and C are pairwise independent but not mutually
independent.

�

We illustrate the idea of independence by considering the problem of com-
puting reliability of so-called series–parallel systems. A series system is one
in which all components are so interrelated that the entire system will fail
if any one of its components fails. On the other hand, a parallel system is
one that will fail only if all of its components fail. We will assume that failure
events of components in a system are mutually independent.

First consider a series system of n components. For i = 1, 2, · · · , n, define
events Ai = “component i is functioning properly.” Let the reliability, Ri,
of component i be defined as the probability that the component is function-
ing properly; then Ri = P (Ai). By the assumption of series connections, the
system reliability:

Rs = P (“the system is functioning properly”)

= P (A1 ∩ A2 ∩ · · · ∩ An)

= P (A1)P (A2) · · ·P (An)

=
n∏

i=1

Ri. (1.8)
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This simple product law of reliabilities, applicable to series systems
of independent components, demonstrates how quickly system reliability
degrades with an increase in complexity. For example, if a system consists
of five components each in series, each having a reliability of 0.970, then
the system reliability is 0.9705 = 0.859. Now if the system complexity is
increased so that it contained 10 similar components, its reliability would
be reduced to 0.97010 = 0.738. Consider what happens to system reliability
when a large system like a computer system consists of tens to hundreds of
thousands of components!

One way to increase the reliability of a system is to use redundancy.
The first scheme that comes to mind is to replicate components with small
reliabilities (parallel redundancy). First consider a system consisting of n
independent components in parallel, so that it will fail to function only if all
n components have failed. Define event Ai = “the component i is functioning
properly” and Ap = “the parallel system of n components is functioning prop-
erly.” Also let Ri = P (Ai) and Rp = P (Ap). To establish a relation between
Ap and the Ai values, it is easier to consider the complementary events. Thus

Ap = “the parallel system has failed”

= “all n components have failed”

= A1 ∩ A2 ∩ · · · ∩ An.

Therefore
P (Ap) = P (A1 ∩ A2 ∩ · · · ∩ An)

= P (A1)P (A2) · · ·P (An)

by independence. Now let Fp = 1 − Rp be the unreliability of the parallel
system and similarly let Fi = 1 − Ri be the unreliability of component i. Then,
since Ai and Ai are mutually exclusive and collectively exhaustive events,
we have

1 =P (S)

=P (Ai) + P (Ai)

and

Fi =P (Ai)

=1 − P (Ai).

Then
Fp =P (Ap)

=
n∏

i=1

Fi
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and
Rp =1 − Fp

=1 −
n∏

i=1

(1 − Ri). (1.9)

Thus, for parallel systems of n independent components, we have a prod-
uct law of unreliabilities analogous to the product law of reliabilities of
series systems. If we have a parallel system of five components, each with a
reliability of 0.970, then the system reliability is increased to

1 − (1 − 0.970)5 = 1 − (0.03)5

= 1 − 0.0000000243

= 0.9999999757.

However, one should be aware of a law of diminishing returns, according
to which the rate of increase in reliability with each additional component
decreases rapidly as n increases. This is illustrated in Figure 1.10, where we
have plotted Rp as a function of n. [This remark is easily formalized by noting
that Rp is a concave function of n since R′

p(n) = −(1 − R)n ln (1 − R) > 0,
and R′′

p(n) = −(1 − R)n(ln (1 − R))2 < 0.]
The basic formulas (1.8) and (1.9) for the reliability computation of series

and parallel systems can be used in combination to compute the reliability of
a system having both series and parallel parts (series–parallel systems).
Consider a series–parallel system of n serial stages where stage i consists of ni

identical components in parallel. Let the reliability of each component at stage
i be Ri. Assuming that all components are independent, system reliability Rsp

can be computed from the formula

Rsp =
n∏

i=1

[1 − (1 − Ri)
ni ]. (1.10)
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Figure 1.10. Reliability curve of a parallel redundant system
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A series–parallel system can be graphically represented by a series–parallel
reliability block diagram (RBD), in which components are combined into
blocks in series, in parallel or in the k-out-of-n configuration (which will
be introduced in the following sections). We use the following example to
illustrate the use of RBD.

Example 1.12

Consider the system shown in Figure 1.11, consisting of five stages, with n1 = n2 =
n5 = 1, and n3 = 3 and n4 = 2. Also

R1 = 0.95, R2 = 0.99, R3 = 0.70, R4 = 0.75, and R5 = 0.9.

Then

Rsp = 0.95 · 0.99 · (1 − (1 − 0.7)3) · (1 − (1 − 0.75)2) · 0.9

= 0.772.

�

Fault trees provide another way to model system reliability [HENL 1981,
MISR 1992, SAHN 1996]. A fault tree is a graphical representation of the com-
bination of events that can cause the occurrence of system failure. An event is
either a basic (primary) event or a logical combination of lower-level events.
We assume that basic events are mutually independent and that probabilities
for their occurrences are known. The occurrence of each event is denoted by
a logic 1 at that node; otherwise the logic value of the node is 0. Logic value
1 for a basic event denotes failure of the corresponding component. Each gate
has several inputs and one output. The inputs to a gate are either basic events
or the outputs of other gates. The output of an and gate is a logic 1, if and
only if, all of its inputs are logic 1. The output of an or gate is a logic 1 if one
or more of its inputs are logic 1. There is a single output of the fault tree as
a whole, called the top event, representing system failure.

Example 1.13

Consider a reliability model of alternate routing in a telephone network [BALA
1996]. The network is represented by a graph whose nodes denote the office locations

R1 R2 R3 R5

R3

R3

R4

R4

Figure 1.11. A series–parallel reliability block diagram
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Alternate routes

For A-B: A-C-B, A-D-B, A-E-B

For C-D: C-E-D

A

 B

 C

 D

 E

Figure 1.12. A communication network with five nodes

of a corporation and edges of the graph represent communication links between office
locations as shown in Figure 1.12. The measure of interest is reliability, R, a mea-
sure of the network’s ability to maintain a given set of connections. In Figure 1.12,
the network is up whenever node-pairs A–B and C–D are both connected, either
directly, or by the two-link alternate routes listed. We impose the condition that
the alternate routes of the node pair A–B should be disjoint from those of node
pair C–D. We assume that link failures are mutually independent. The fault tree is
shown in Figure 1.13.

In a fault tree such as that in Figure 1.13, reliabilities of inputs to an or gate
multiply while unreliabilities of inputs to an and gate multiply. Hence the network
reliability is given by

Rnetwork =[1 − (1 − Rab)(1 − RacRcb)(1 − RadRdb)(1 − RaeReb)]

· [1 − (1 − Rcd)(1 − RceRed)].

�

Reliability of systems with more general interconnections cannot be com-
puted with the preceding formula. In such a case, we may obtain structure
function [MISR 1992] of the system first, then compute the reliability of the
system. The structure function of a system is defined as follows.

Definition (Structure Function). Let X be a state vector of a system
with n components so that X = (x1, x2, . . . , xn) where

xi =
{

1 if component i is functioning,
0 if component i has failed.
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or

or

and and

or or or

ab

Failure

cb db ae eb cd ce edac ad

Network

Figure 1.13. Fault tree for the communication network

The structure function Φ(X) is defined by

Φ(X) =
{

1 if system is functioning,
0 if system has failed.

Using the definition of system structure function, the reliability of a system
canbe written as

R = P (Φ(X) = 1).

Example 1.14

Consider the fault tree shown in Figure 1.14. Notice that event B3 is input to two
gates; thus, the fault tree is said to have repeated (or shared) events. Such fault
trees can no longer be solved by the simple method used for the fault tree without
repeated events that we encountered in Example 1.13. For the current example,
we have

{Φ = 0} = (A1 ∪ (B1 ∩ B3)) ∩ (A2 ∪ (B2 ∩ B3))

= (A1 ∩ A2) ∪ (A1 ∩ B2 ∩ B3) ∪ (A2 ∩ B1 ∩ B3) ∪ (B1 ∩ B2 ∩ B3).

Note that these four events are not mutually exclusive. Therefore, we cannot directly
use axiom (A3), however, we could use SDP formula, i.e., relation (Re), to make them
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and

or or

and

1 AA1 B 3 B 2 2B

and

System

Failure

Figure 1.14. A fault tree

disjoint. Then, the reliability of the system is

R = 1 − P (Φ = 0)

= 1 − P ((A1 ∩ A2) ∪ (A1 ∩ B2 ∩ B3) ∪ (A2 ∩ B1 ∩ B3) ∪ (B1 ∩ B2 ∩ B3))

= 1 − P ((A1 ∩ A2) ∪ (A1 ∩ A2 ∩ B2 ∩ B3) ∪ (A1 ∩ A2 ∩ B1 ∩ B3)

∪(A1 ∩ A2 ∩ B1 ∩ B2 ∩ B3))

= 1 − FA1
FA2

− FA1
RA2

FB2
FB3

− RA1
FA2

FB1
FB3

− RA1
RA2

FB1
FB2

FB3

where Fx = 1 − Rx.

�

Starting with system structure function, there are two methods to obtain
system reliability: (1) the use of inclusion–exclusion formula (Rd) and (2) the
use of the SDP formula illustrated above. For an efficient implementation of
the SDP method, see Luo and Trivedi [LUO 1998]. A third, even more efficient
approach is based on the binary decision diagrams (BDDs) [ZANG 1999]. A
fourth method is based on the use of conditioning (also called factoring) to
be discussed in the next section. The BDD approach and factoring approach
do not need the structure function to begin with. Further note that reliability
of systems with standby redundancy cannot be computed using methods dis-
cussed in this chapter, but techniques to be discussed later in this book will
enable us to do so.
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Problems

1. Two towns are connected by a network of communication channels. The probabil-
ity of a channel’s failure-free operation is R, and channel failures are independent.
Minimal level of communication between towns can be guaranteed provided at
least one path containing properly functioning channels exists. Given the net-
work of Figure 1.P.1, determine the probability that the two towns will be able
to communicate. Here 	 
 denotes a communication channel.

Town
    A

Town
    B

Figure 1.P.1. A network of communication channels

2. Given three components with respective reliabilities R1 = 0.8, R2 = 0.75, and
R3 = 0.98, compute the reliabilities of the three systems shown in Figure 1.P.2.

C2

C1

C3

C1 C3

C1 C3C2

(a)

(b)

(c)

Figure 1.P.2. Reliability block diagrams

3. Determine the conditions under which an event A is independent of its subset B.

4. General multiplication rule (GMR). Given a list of events A1, A2, · · · , An (not
necessarily independent), show that

P (A1 ∩ A2 ∩ · · · ∩ An) = P [A1|(A2 ∩ A3 ∩ · · · ∩ An)]

·P [A2|(A3 ∩ · · · ∩ An)]

·P [A3|(A4 ∩ · · · ∩ An)]

· · ·

·P (An−1|An)P (An),

provided all the conditional probabilities on the right-hand side are defined.
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1

2

3

4

5

6

7

Figure 1.P.3. Lamp problem

5. Seven lamps are located as shown in Figure 1.P.3. Each lamp can fail with prob-
ability q, independently of all the others. The system is operational if no two
adjacent lamps fail. Obtain an expression for system reliability.

6. Consider a base repeater in a cellular communication system with two control
channels and three voice channels. Assume that the system is up so long as at
least one control channel and at least one voice channel is functioning. Draw
a reliability block diagram for this problem and write down an expression for
system reliability. Next, draw a fault tree model for this system. Note that this
fault tree has no repeated events and hence can be solved in a way similar to
that for a series–parallel reliability block diagram.

7. Modify the base repeater problem above so that a control can also function as a
voice channel. Draw a fault tree model for the modified problem. Notice that the
fault tree has repeated events. Derive the reliability expression using the SDP
method.

8. Return to Example 1.13 but now permitting a shared link B–C as shown in
Figure 1.P.4. Draw the fault tree for modeling the reliability for the communica-
tion network. Note that due to the shared link, the fault tree will have a shared
or repeated event. Derive an expression for system reliability using SDP method
as in Example 1.14.

1.11 BAYES’ RULE

A given event B of probability P (B) partitions the sample space S into two
disjoint subsets B and B. If we consider S′ = {B,B} and associate the prob-
abilities P (B) and P (B) to the respective points in S′, then S′ is very similar
to a sample space, except that there is a many-to-one correspondence between
the outcomes of the experiment and the elements of S′. A space such as S′

is often called an event space. In general, a list of n events B1, B2, . . . , Bn

that are collectively exhaustive and mutually exclusive form an event space,
S′ = {B1, B2, . . . , Bn}.
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For A-B: A-C-B

For C-D: C-B-D

B-C is shared.

Alternate routes

A

B

E C

D

Figure 1.P.4. A modified communication network

Returning to the event space S′ = {B,B}, note that an event A is parti-
tioned into two disjoint subsets:

A = (A ∩ B) ∪ (A ∩ B).

Then by axiom (A3):

P (A) = P (A ∩ B) + P (A ∩ B)

= P (A|B)P (B) + P (A|B)P (B)

by definition of conditional probability.
This relation is analogous to Shannon’s theorem in switching theory and

can be generalized with respect to the event space S′ = {B1, B2, . . . , Bn}:

P (A) =
n∑

i=1

P (A|Bi)P (Bi). (1.11)

This relation is also known as the theorem of total probability, and is
sometimes called the rule of elimination. This situation can be visual-
ized by constructing a tree diagram (or a probability tree) as shown in
Figure 1.15, where each branch is so labeled that the product of all branch
probabilities from the root of the tree to any node equals the probability of
the event represented by that node. Now P (A) can be computed by summing
probabilities associated with all the leaf nodes of the tree. In practice, after
the experiment, a situation often arises in which the event A is known to have
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P
(A

|B
1

)

P
(A

|B
2

) P
(A

|B
n )

P(B
n )

A

B1 B2 Bn

P(B1
)

A B1 A 2 A BnB

Figure 1.15. The theorem of total probability

occurred, but it is not known directly which of the mutually exclusive and
collectively exhaustive events B1, B2, . . . , Bn has occurred. In this situation,
we may be interested in evaluating P (Bj |A), the conditional probability that
one of these events Bj occurs, given that A occurs. By applying the definition
of conditional probability followed by the use of theorem of total probability,
we find that

P (Bj |A) =
P (Bj ∩ A)

P (A)

=
P (A|Bj)P (Bj)∑
iP (A|Bi)P (Bi)

. (1.12)

This relation is known as Bayes’ rule and is useful in many applications. This
rule also forms the basis of a statistical method called Bayesian procedure.
P (Bj |A) is sometimes called an a posteriori probability.

Example 1.15

Measurements at the North Carolina Super Computing Center (NCSC) on a certain
day, indicated that the source of incoming jobs is 15% from Duke, 35% from Uni-
versity of North Carolina (UNC), and 50% from North Carolina State (NC State).
Suppose that the probabilities that a job initiated from these universities is a mul-
titasking job are 0.01, 0.05, and 0.02, respectively. Find the probability that a job
chosen at random at NCSC is a multitasking job. Also find the probability that a
randomly chosen job comes from the University of North Carolina, given that it is
a multitasking job.

Define the events Bi = “job is from university i” (i = 1, 2, 3 for Duke, UNC, and
NC State, respectively), and A = “job uses multitasking.” Then, by the theorem of
total probability, we obtain

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

= (0.01) · (0.15) + (0.05) · (0.35) + (0.02) · (0.5)

= 0.029.



Trim Size: 6.125in x 9.25in 60Trivedi c01.tex V3 - 05/23/2016 11:51am Page 41�

� �

�

1.11 BAYES’ RULE 41

Now the second event of interest is [B2|A], and from Bayes’ rule:

P (B2|A) =
P (A|B2)P (B2)

P (A)

=
0.05 · 0.35

0.029

= 0.603.

Note that the knowledge that the job uses multitasking increases the chance that it
came from UNC from 35% to about 60%.

�

Example 1.16

A binary communication channel carries data as one of two types of signals denoted
by 0 and 1. As a result of noise, a transmitted 0 is sometimes received as a 1 and a
transmitted 1 is sometimes received as a 0. For a given channel, assume a probability
of 0.94 that a transmitted zero is correctly received as a zero and a probability of
0.91 that a transmitted one is received as a one. Further assume a probability of
0.45 of transmitting a 0. If a signal is sent, determine the

1. Probability that a 1 is received.

2. Probability that a 0 is received.

3. Probability that a 1 was transmitted given that a 1 was received.

4. Probability that a 0 was transmitted given that a 0 was received.

5. Probability of an error.

Define events T0 = “a 0 is transmitted” and event R0 = “a 0 is received.” Then let
T1 = T 0 = “a 1 is transmitted” and R1 = R0 = “a 1 is received.” Then the events
of interest under items 1, 2, 3, and 4 are respectively given by R1, R0, [T1|R1],
and [T0|R0]. An error in the transmitted signal is the union of the two disjoint
events [T1 ∩ R0] and [T0 ∩ R1]. The operation of a binary communication chan-
nel may be visualized by a channel diagram shown in Figure 1.16. In the given
problem, we have P (R0|T0) = 0.94, P (R1|T1) = 0.91, and P (T0) = 0.45. From these
we get

P (R1|T0) = P (R0|T0) = 1 − P (R0|T0) = 0.06,

P (R0|T1) = P (R1|T1) = 1 − P (R1|T1) = 0.09,

P (T1) = P (T 0) = 1 − P (T0) = 0.55.

Now from the theorem of total probability:

P (R0) =P (R0|T0)P (T0) + P (R0|T1)P (T1)

=(0.94) · (0.45) + (0.09) · (0.55)

=0.423 + 0.0495

=0.4725,
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P (R1) =P (R0)

=1 − P (R0)

=1 − 0.4725

=0.5275.

Using Bayes’ rule, we have

P (T1|R1) =
P (R1|T1)P (T1)

P (R1)

=
0.91 · 0.55

0.5275

=0.9488,

P (T0|R0) =
P (R0|T0)P (T0)

P (R0)

=
0.94 · 0.45

0.4725

=0.8952.

Now:
P (T1|R0) =P (T 0|R0)

=1 − P (T0|R0)

=0.1048,

P (T0|R1) =1 − P (T1|R1)

=0.0512

T0P(T0) P(R0|T0)

T1

R0

R1

P(R0)

P(R1)P(T1) P(R1|T1)

P(R 0|
T 1)

P(R
1 |T

0 )

Figure 1.16. A channel diagram
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and
P (“error”) =P (T1 ∩ R0) + P (T0 ∩ R1)

=P (T1|R0)P (R0) + P (T0|R1)P (R1)

=0.1048 · 0.4725 + 0.0512 · 0.5275

=0.0765.

Alternately, the error probability can be evaluated by

P (“error”) =P (T1 ∩ R0) + P (T0 ∩ R1)

=P (R0|T1)P (T1) + P (R1|T0)P (T0)

=0.09 · 0.55 + 0.06 · 0.45 = 0.0765.

[Quiz: Construct an appropriate sample space for this problem.]

�

Example 1.17

A given lot of VLSI chips contains 2% defective chips. Each chip is tested before
delivery. The tester itself is not totally reliable so that

P (“tester says chip is good”|“chip is actually good”) = 0.95,

P (“tester says chip is defective”|“chip is actually defective”) = 0.94.

If a tested device is indicated to be defective, what is the probability that it is
actually defective?

By Bayes’ rule, we have

P (“chip is defective”|“tester says it is defective”)

=
P (“tester says defective”|“chip defective”)P (“chip defective”)

P (“tester says defective”|“chip defective”)P (“chip defective”)
+P (“tester says defective”|“chip is good”)P (“chip is good”)

=
0.94 · 0.02

0.94 · 0.02 + 0.05 · 0.98

=
0.0188

0.0188 + 0.049

=
0.0188

0.0678

= 0.2772861.

�

Example 1.18

We have seen earlier how to compute the reliability of series–parallel systems. How-
ever, many systems in practice do not conform to a series–parallel structure. As an
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C4C1

C3 C5

C2A B

Figure 1.17. A non-series–parallel system

example, consider evaluating the reliability R of the five-component system shown in
Figure 1.17. The system is said to be functioning properly only if all the components
on at least one path from point A to point B are functioning properly.

Define for i = 1, 2, . . . , 5 event Xi = “component i is functioning properly,” and
let Ri = reliability of component i = P (Xi). Let X = “system functioning properly”
and let R = “system reliability” = P (X). It is clear that X is union of four events:

X = (X1 ∩ X4) ∪ (X2 ∩ X4) ∪ (X2 ∩ X5) ∪ (X3 ∩ X5). (1.13)

These four events are not mutually exclusive. Therefore, we cannot directly use
axiom (A3). Note, however, that we could use relation (Rd), which does apply to
a union of intersecting events. But this method is computationally tedious for a
relatively long list of events. We could use the sum of disjoint products (SDP)
method (Relation Re) in this case. We illustrate the use of yet another method
known as factoring or conditioning in this case. Observe that using the theorem of
total probability, we have

P (X) = P (X|X2)P (X2) + P (X|X2)P (X2)

= P (X|X2)R2 + P (X|X2)(1 − R2). (1.14)

Now to compute P (X|X2), we observe that since component C2 is functioning,
the status of components C1 and C3 are irrelevant. Thus, under this condition,
the system is equivalent to two components C4 and C5 in parallel. Therefore using
formula (1.9) we get

P (X|X2) = 1 − (1 − R4)(1 − R5). (1.15)

To compute P (X|X2), we observe that since component C2 is known to have mal-
functioned, the resulting equivalent system is a series–parallel one whose reliability
is easily computed:

P (X|X2) = 1 − (1 − R1R4)(1 − R3R5). (1.16)
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Combining equations (1.14)–(1.16), we have

R = [1 − (1 − R4)(1 − R5)]R2 + [1 − (1 − R1R4)(1 − R3R5)](1 − R2)

= 1 − R2(1 − R4)(1 − R5) − (1 − R2)(1 − R1R4)(1 − R3R5).

�

Problems

1. A technique for fault-tolerant software, suggested by Randell [RAND 1978], con-
sists of a primary and an alternate module for each critical task, together with
a test for determining whether a module performed its function correctly. Such
a construct is called a recovery block. Define the following events:

A = “primary module functions correctly.”

B = “alternate module functions correctly.”

D = “detection test following the execution of the primary performs its
task correctly.”

Assume that event pairs A and D as well as B and D are independent but events
A and B are dependent. Derive an expression for the failure probability of a
recovery block [HECH 1976]. (Hint: Use a tree diagram.)

2. Consider the non-series–parallel system of four independent components shown
in Figure 1.P.5. The system is considered to be functioning properly if all com-
ponents along at least one path from input to output are functioning properly.
Determine an expression for system reliability as a function of component relia-
bilities. Also draw an equivalent fault tree model for the reliability block diagram
described above.

C2C1

C3 C4

Input Output

Figure 1.P.5. Another non-series–parallel system

3. A lot of components contains 0.6% defectives. Each component is subjected to
a test that correctly identifies a defective, but about 2 in every 100 good com-
ponents is also indicated defective. Given that a randomly chosen component
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is declared defective by the tester, compute the probability that it is actually
defective.

4. A certain firm has plants A, B, and C producing respectively 35%, 15%, and
50%, of the total output. The probabilities of a nondefective product are, respec-
tively, 0.75, 0.95, and 0.85. A customer receives a defective product. What is the
probability that it came from plant C?

5. Consider a trinary communication channel [STAR 1979] whose channel diagram
is shown in Figure 1.P.6. For i = 1, 2, 3 let Ti denote the event “digit i is trans-
mitted” and let Ri denote the event “digit i is received.” Assume that a 3 is
transmitted 3 times more frequently than a 1, and a 2 is sent twice as often as 1.
If a 1 has been received, what is the expression for the probability that a 1 was
sent? Derive an expression for the probability of a transmission error.

T3 R3

T1

T2

R1

R2

P(R1|T1)

1−β

1−γ

α / 2

β / 2

γ / 2

α / 2

β / 2

γ / 2

=1−α

Figure 1.P.6. A trinary communication channel: channel diagram

6. Of all the graduate students in a university, 70% are women and 30% are men.
Suppose that 20% and 25% of the female and male population, respectively,
smoke cigarettes. What is the probability that a randomly selected graduate
student is

(a) A woman who smokes?

(b) A man who smokes?

(c) A smoker?

7. Compute the reliability of the system discussed in Example 1.18 (Figure 1.17),
starting from equation (1.13), first using the inclusion-exclusion formula (Rd)
and then using the SDP formula (Re). Also draw the fault tree model of this
system.

8. Yet another method of evaluating the reliability of the system such as that dis-
cussed in Example 1.16 is to use the methods of switching theory. Noting that
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X1, X2, X3, X4, X5 are Boolean variables and X is a switching function of these
variables, we can draw a truth table with 25 = 32 rows. Rows of the truth table
represent a collection of mutually independent and collectively exhaustive events.
Each row represents an elementary event that is an intersection of independent
events and hence its probability can be computed. For example, the elemen-
tary event X1 ∩ X2 ∩ X3 ∩ X4 ∩ X5 is assigned the probability (1 − R1)R2(1 −
R3)R4R5. Computing P (X) now reduces to adding up probabilities of rows of
the truth table with 1s in the function column. Use this method to compute
the reliability of the system in Figure 1.17. This method is called the state
enumeration method or the Boolean truth table method.

1.12 BERNOULLI TRIALS

Consider a random experiment that has two possible outcomes, “success” and
“failure” (or “hit” and “miss,” or “good” and “defective,” or “digit received
correctly” and “digit received incorrectly”) or the like. Let the probabilities of
the two outcomes be p and q, respectively, with p + q = 1. Now consider the
compound experiment consisting of a sequence of n independent repetitions
of this experiment. Such a sequence is known as a sequence of Bernoulli
trials. This abstract sequence models many physical situations of interest
to us:

1. Observe n consecutive executions of an if statement, with success =
“then clause is executed” and failure = “else clause is executed.”

2. Examine components produced on an assembly line, with success =
“acceptable” and failure = “defective.”

3. Transmit binary digits through a communication channel, with success
= “digit received correctly” and failure = “digit received incorrectly.”

4. Consider a computer system that allocates a finite quantum (or time
slice) to a job scheduled for processor service, in an attempt to give
fast service to requests for trivial processing. Observe n time slice ter-
minations, with success = “job has completed processing” and failure =
“job still requires processing and joins the tail end of the ready queue
of processes.” This situation may be depicted as in Figure 1.18.

Job arrival

Ready queue

Job completion
CPU

Figure 1.18. A CPU queue with time slicing
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Let 0 denote failure and 1 denote success. Let Sn be the sample space of an
experiment involving n Bernoulli trials, defined by

S1 = {0, 1},
S2 = {(0, 0), (0, 1), (1, 0), (1, 1)},
Sn = {2n n-tuples of 0s and 1s}.

The probability assignment over the sample space S1 is already specified:
P (0) = q ≥ 0, P (1) = p ≥ 0, and p + q = 1. We wish to assign probabilities to
the points in Sn.

Let Ai = “success on trial i” and Ai = “failure on trial i,” then P (Ai) = p
and P (Ai) = q. Now consider s an element of Sn such that s = (1,1,. . .,1,0,0,
. . .,0) (k 1s and (n − k) 0s). Then the elementary event {s} can be written as

{s} = A1 ∩ A2 · · · ∩ Ak ∩ Ak+1 ∩ · · · ∩ An

and

P (s) = P (A1 ∩ A2 · · · ∩ Ak ∩ Ak+1 ∩ · · · ∩ An)

= P (A1)P (A2) · · ·P (Ak)P (Ak+1) · · ·P (An)

by independence. Therefore

P (s) = pkqn−k. (1.17)

Similarly, any sample point with k 1s and (n − k) 0s is assigned probability
pkqn−k. Noting that there are

(
n
k

)
such sample points, the probability of

obtaining exactly k successes in n trials is

P (k) =
(n

k

)
pkqn−k, k = 0, 1, . . . , n. (1.18)

We may verify that (1.18) is a legitimate probability assignment over the
sample space Sn since

n∑
k=0

(n

k

)
pkqn−k = (p + q)n

= 1

by the binomial theorem.
Consider the set of events {B0, B1, . . . , Bn} where Bk = {s ∈ Sn such that

s has exactly k 1s and (n − k) 0s}. It is clear that this is a mutually exclusive
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and collectively exhaustive family of events. Furthermore

P (Bk) =
(n

k

)
pkqn−k ≥ 0 and

n∑
k=0

P (Bk) = 1.

Therefore, this collection of events is an event space with (n + 1) events.
Compare this with 2n sample points in Sn. Thus, when in a physical situation,
if we are concerned not with the actual sequence of successes and failures but
merely with the number of successes and the number of failures, it is profitable
to use the event space rather than the original sample space.

Example 1.19

Consider a binary communication channel transmitting coded words of n bits each.
Assume that the probability of successful transmission of a single bit is p (and the
probability of an error is q = 1 − p), and that the code is capable of correcting up
to e (where e ≥ 0) errors. For example, if no coding or parity checking is used, then
e = 0. If a single error correcting Hamming code is used then e = 1. For more details
on this topic, see Hamming [HAMM 1980]. If we assume that the transmission of
successive bits is independent, then the probability of successful word transmission is

Pw = P (“e or fewer errors in n trials”)

=
e∑

i=0

(n

i

)
(1 − p)ipn−i.

�

Example 1.20

In connection with reliability computation, we have considered series and parallel
systems. Now we consider a system with n components that requires k (≤ n) or
more components to function for the correct operation of the system. Such systems
are often called k-out-of-n systems. If we let k = n, then we have a series system;
if we let k = 1, then we have a system with parallel redundancy. Assume that all n
components are statistically identical and function independently of each other. If
we let R denote the reliability of a component (and q = 1 − R gives its unreliability),
then the experiment of observing the statuses of n components can be thought of
as a sequence of n Bernoulli trials with the probability of success equal to R. Now
the reliability of the system is

Rk|n = P (“k or more components functioning properly”)

= P (
n⋃

i=k

{“exactly i components functioning properly”})

=
n∑

i=k

P (“exactly i components functioning properly”)
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=
n∑

i=k

P (i),

Rk|n =

n∑
i=k

(n

i

)
Ri(1 − R)n−i. (1.19)

Verify that R1|n = Rp:

R1|n =
n∑

i=1

(n

i

)
Ri(1 − R)n−i

=

n∑
i=0

(n

i

)
Ri(1 − R)n−i −

(n

0

)
R0(1 − R)n

= [R + (1 − R)]n − (1 − R)n

= 1 − (1 − R)n.

Verify that Rn|n = Rs:

Rn|n =
n∑

i=n

(n

i

)
Ri(1 − R)n−i

=
(n

n

)
Rn(1 − R)0

= Rn.

�

As another special case of formula (1.19), consider a system with
triple modular redundancy, often known as TMR or a triplex system (see
Figure 1.19). In such a system there are three components, two of which
are required to be in working order for the system to function properly
(i.e., n = 3 and k = 2). This is achieved by feeding the outputs of the three
components into a majority voter. Then

RTMR =
3∑

i=2

(
3
i

)
Ri(1 − R)(3−i)

=
(

3
2

)
R2(1 − R) +

(
3
3

)
R3(1 − R)0

= 3R2(1 − R) + R3

and thus
RTMR = 3R2 − 2R3. (1.20)
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R

R
Input Output

Voter

R

2|3

Figure 1.19. A triple modular redundant system

Note that

RTMR =

⎧⎪⎨
⎪⎩

> R if R > 1
2 ,

= R if R = 1
2 ,

< R if R < 1
2 .

Thus TMR increases reliability over the simplex system only if the simplex
reliability is greater than 0.5; otherwise this type of redundancy actually
decreases reliability.

It should be noted that the voter output simply corresponds to the major-
ity, and therefore it is possible for two or more malfunctioning units to agree,
producing an erroneous voter output. Additional detection logic is required
to avoid this situation. Also, the unreliability of the voter will further degrade
the TMR reliability.

In the above example, we assumed that the n successive trials have the
same probability of success. Now consider nonhomogeneous Bernoulli tri-
als, where probability of success changes with each trial. In the reliability
context, let Ri denote the reliability of the ith component for i = 1,...,n. Then
the calculation is a bit more complicated [SAHN 1996]:

Rk|n = 1 −
∑
|I|≥k

(∏
i∈I

(1 − Ri)

) (∏
i/∈I

Ri

)
, (1.21)

where I ranges over all choices i1 < i2 < ... < im such that k ≤ m ≤ n.
Let us still consider the TMR system with n = 3 and k = 2. However, the

individual reliabilities are not identical any longer. Then, by formula (1.21),
we have

R2|3 = 1 − (1 − R1)(1 − R2)R3 − R1(1 − R2)(1 − R3)

−(1 − R1)R2(1 − R3) − (1 − R1)(1 − R2)(1 − R3)

= R1R2 + R1R3 + R2R3 − 2R1R2R3 (1.22)

Example 1.21 [DOSS 2000]

Consider a BTS (base transceiver system) sector/transmitter system shown in
Figure 1.20. It consists of three RF (radio frequency) carriers (transceiver and
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Transceiver 1

Transceiver 2

Transceiver 3

Power Amp 1

Power Amp 2

Power Amp 3

2:1 Combiner Duplexer 1

Pass-Thru Duplexer 2

Path 1

Path 2

Path 3

(XCVR 1)

(XCVR 2)

(XCVR 3)

Figure 1.20. BTS sector/transmitter

XCVR1

XCVR2

XCVR3 Pass-Thru Duplexer 2

2|3

Figure 1.21. Reliability block diagram when 2:1 combiner and duplexer 1 are up

power amplifier) on two antennas. In order for the system to be operational, at
least two functional transmitter paths are needed.

We use the factoring method to arrive at the reliability block diagram for the
system. Observe that the failure of the 2:1 combiner or duplexer 1 would disable both
path 1 and path 2, which would lead to system failure. So, we condition on these
components. When both these components are functional, the system reliability is
given by the RBD shown in Figure 1.21. As noted before, failure of any one of
these two components results in system failure. Hence, the overall system reliability
is captured by the RBD shown in Figure 1.22. If we let Rx, Rp, Rd, and Rc be
the reliabilities of an XCVR, a pass-thru, a duplexer, and a combiner, then the
reliabilities of XCVR1, XCVR2, XCVR3 with the “pass-thru” and duplexer 2, and
the 2:1 combiner with duplexer 1 are R1 = Rx, R2 = Rx, R3 = RxRpRd, and R4 =
RcRd, respectively. Therefore, by formula (1.22), the overall system reliability is
given by

R = (R1R2 + R1R3 + R2R3 − 2R1R2R3)R4

= (1 + 2RpRd − 2RxRpRd)R2
xRcRd

For a detailed discussion of various SDP methods and the factoring method of
reliability computation see Rai et al. [RAI 1995].

�
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XCVR1

XCVR2

XCVR3 Pass-Thru Duplexer 2

2:1 Combiner2|3 Duplexer 1A B

Figure 1.22. System reliability block diagram

Next, we consider generalized Bernoulli trials. Here we have a sequence
of n independent trials, and on each trial the result is exactly one of the
k possibilities b1, b2, . . . , bk. On a given trial, let bi occur with probability
p

i
, i = 1, 2, . . . , k such that

pi ≥ 0 and
k∑

i=1

p
i
= 1.

The sample space S consists of all kn n-tuples with components b1, b2, . . . , bk.
To a point s ∈ S

s = (b1, b1, . . . , b1,︸ ︷︷ ︸
n1

b2, b2, . . . , b2,︸ ︷︷ ︸
n2

. . . , bk, . . . , bk︸ ︷︷ ︸
nk

)

we assign the probability of pn1
1

pn2
2

· · · pnk
k

, where
∑k

i=1 ni = n. This is the
probability assigned to any n-tuple having ni occurrences of bi, where i =
1, 2, · · · , k. The number of such n-tuples are given by the multinomial coeffi-
cient [LIU 1968]: (

n
n1 n2 · · · nk

)
=

n!
n1!n2! · · ·nk!

.

As before, the probability that b1 will occur n1 times, b2 will occur n2 times,
. . ., and bk will occur nk times is given by

P (n1, n2, . . . , nk) =
n!

n1!n2! · · ·nk!
pn1
1 pn2

2
· · · pnk

k
(1.23)

and ∑
ni≥0

P (n1, n2, . . . , nk) = (p
1
+ p

2
+ · · · + p

k
)n

= 1

(where
∑

ni = n) by the multinomial theorem.
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CPU

k

p1

p2

pk
I/O

I/O 1

I/O 2

Figure 1.23. A CPU to I/O device queuing scheme

If we let k = 2, then generalized Bernoulli trials reduce to ordinary
Bernoulli trials where b1 = “success,” b2 = “failure,” p

1
= p, p

2
= q = 1 − p,

n1 = k, and n2 = n − k.
Two situations of importance are examples of generalized Bernoulli trials:

1. We are given that at the end of a CPU (central processing unit) burst,
a program will request service from an I/O device i with probability p

i
,

where i = 1, 2, . . . , k and
∑

ipi
= 1. If we assume that successive CPU

bursts are independent of each other, then the observation of n CPU
burst terminations corresponds to a sequence of generalized Bernoulli
trials. This situation may be pictorially visualized by the queuing net-
work shown in Figure 1.23.

2. If we observe n consecutive independent executions of a switch statement
(see below), then we have a sequence of generalized Bernoulli trials where
p

i
is the probability of executing the statement group Si on an individual

trial.

switch( I ) {

case 1: S1;

case 2: S2;

...

case k: Sk;

}
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Example 1.22

Out of every 100 jobs received at a server, 50 are of class 1, 30 of class 2, and 20 of
class 3. A sample of 30 jobs is taken with replacement.

1. Find the probability that the sample will contain 10 jobs of each class.

2. Find the probability that there will be exactly 12 jobs of class 2.

This is an example of generalized Bernoulli trials with k = 3, n = 30, p
1

= 0.5, p
2

=
0.3, and p

3
= 0.2. The answer to part (1) is

P (10, 10, 10) =
30!

10! · 10! · 10!
· 0.510 · 0.310 · 0.210

= 0.003278.

The answer to part (2) is obtained more easily if we collapse class 1 and class 3
together and consider this as an example of an ordinary Bernoulli trial with p = 0.3
(success corresponds to a class 2 job), q = 1 − p = 0.7 (failure corresponds to a class
1 or class 3 job). Then the required answer is as follows:

P (12) =

(
30

12

)
· 0.312 · 0.718

=
30!

12! · 18!
· 0.312 · 0.718

= 0.07485.

�

Example 1.23

So far, we have assumed that a component is either functioning properly or it has
malfunctioned. Sometimes it is useful to consider more than two states. For example,
a diode functions properly with probability p

1
, develops a short circuit with probabil-

ity p
2
, and develops an open circuit with probability p

3
such that p

1
+ p

2
+ p

3
= 1.

Thus there are two types of malfunctions, an open circuit and a closed circuit. In
order to protect against such malfunctions, we investigate three types of redundancy
schemes (refer to Figure 1.24): (a) a series connection, (b) a parallel connection, and
(c) a series–parallel configuration.

First we analyze the series configuration. Let s1, s2, and s3 respectively denote
the probabilities of correct functioning, a short circuit, and an open circuit for
the series configuration as a whole. The experiment of observing n diodes corre-
sponds to a sequence of n generalized Bernoulli trials. Let n1 diodes be functioning
properly, n2 diodes be short-circuited, and n3 diodes be open-circuited. Then the
event “the series configuration is functioning properly” is described by “none of
the diodes is open-circuited and at least one of the diodes is functioning prop-
erly.” This event consists of the sample points {(n1, n2, n3)|n1 ≥ 1, n2 ≥ 0, n3 = 0,
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1 D D D2 3 nD

1 D D D2 3 nD

. . .

D

D

D

1

2

n

. . .

 . . . . . . . . 

. .

. .

D D Dn21

(c) Series-parallel configuration

(a) Series cofiguration

(b) Parallel configuration

Figure 1.24. (a) Series configuration; (b) parallel configuration; (c) series–parallel
configuration

n1 + n2 = n}. Therefore

s1 =
∑

n1≥1
n2≥0

n1+n2=n

p(n1, n2, 0)

=
∑(

n

n1, n2, 0

)
p
1

n1p
2

n2p
3

0

=
∑

n1≥1

n!

n1!(n − n1)!
p
1

n1p
2

n−n1

=
n∑

n1=0

(
n

n1

)
p
1

n1p
2

n−n1 − n!

0!n!
p
1

0p
2

n

= (p
1

+ p
2
)n − p

2

n

= (1 − p
3
)n − p

2

n.

Note that (1 − p
3
)n is the probability that none of the diodes is open and p

2
n is the

probability that all diodes are short-circuited. Similarly

s2 = P (“Series combination is short-circuited”)

= P (“All diodes are short-circuited”)
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= P ({(n1, n2, n3)|n2 = n})

= p
2

n.

Also

s3 = P (“Series combination is open-circuited”)

= P (“At least one diode is open-circuited”)

= p({(n1, n2, n3)|n3 ≥ 1, n1 + n2 + n3 = n})

= 1 − P ({(n1, n2, n3)|n3 = 0, n1 + n2 = n})

= 1 −
∑

n1+n2=n

(
n

n1, n2

)
p
1

n1p
2

n2

= 1 − (p
1

+ p
2
)n

= 1 − (1 − p
3
)n

= 1 − P (“no diodes are open-circuited”).

Check that s1 + s2 + s3 = 1.
Next, consider the parallel configuration, with Pi (i = 1, 2, 3) respectively denot-

ing the probabilities of properly functioning, short-circuit, and open-circuit situa-
tions. Then,

P1 = P (“parallel combination working properly”)

= P (“at least one diode functioning and none of them short-circuited”)

= P ({(n1, n2, n3)|n1 ≥ 1, n2 = 0, n1 + n3 = n})

= (1 − p
2
)n − p

3

n

= P (“no diodes short-circuited”) − P (“all diodes are open-circuited”),

P2 = P ({(n1, n2, n3)|n2 ≥ 1, n1 + n2 + n3 = n})

= 1 − (1 − p
2
)n,

P3 = P ({(n1, n2, n3)|n3 = n})

= p
3

n.

To analyze the series–parallel configuration, we first reduce each one of the series
configurations to an “equivalent” diode with respective probabilities s1, s2, and s3.
The total configuration is then a parallel combination of two “equivalent” diodes.
Thus the probability that series–parallel diode configuration functions properly is
given by

R1 = (1 − s2)
2 − s3

2

= s1
2 + 2s1s3

= s1(s1 + 2s3)
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= [(1 − p
3
)n − p

2

n][(1 − p
3
)n − p

2

n + 2 − 2(1 − p
3
)n]

= [(1 − p
3
)n − p

2

n][2 − (1 − p
3
)n − p

2

n].

�

For an example of use of this technique in the context of availability analysis
of VAXcluster systems, see Ibe et al. [IBE 1989]. For further study of multi-
state components (as opposed to two-state or binary components) and their
reliability analysis, see Zang et al. [ZANG 1999].

Problems

1. Consider the following program segment:

if B then
repeat S1 until B1

else
repeat S2 until B2

Assume that P (B = true) = p, P (B1 = true) = 3
5
, and P (B2 = true) = 2

5
.

Exactly one statement is common to statement groups S1 and S2: write (“good
day”). After many repeated executions of the preceding program segment, it
has been estimated that the probability of printing exactly three “good day”
messages is 3

25
. Derive the value of p.

2. Given that the probability of error in transmitting a bit over a communication
channel is 8 × 10−4, compute the probability of error in transmitting a block
of 1024 bits. Note that this model assumes that bit errors occur at random,
but in practice errors tend to occur in bursts. Actual block error rate will be
considerably lower than that estimated here.

3. In order to increase the probability of correct transmission of a message over
a noisy channel, a repetition code is often used. Assume that the “message”
consists of a single bit, and that the probability of a correct transmission on a
single trial is p. With a repetition code of rate 1/n, the message is transmitted a
fixed number (n) of times and a majority voter at the receiving end is used for
decoding. Assuming n = 2k + 1, k = 0, 1, 2 . . ., determine the error probability
Pe of a repetition code as a function of k.

4. An application requires that at least two processors in a multiprocessor sys-
tem be available with more than 95% probability. The cost of a processor with
60% reliability is $1000, and each 10% increase in reliability will cost $800.
Determine the number of processors (n) and the reliability (p) of each processor
(assume that all processors have the same reliability) that minimizes the total
system cost.

5. � Show that the number of terms in the multinomial expansion:

[
k∑

i=1

(p
i
)

]n

is

(
n + k − 1

n

)
.
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Note that the required answer is the number of unordered sets of size n chosen
from a set of k distinct objects with repetition allowed [LIU 1968].

6. A communication channel receives independent pulses at the rate of 12 pulses
per microsecond (12 μs−1). The probability of a transmission error is 0.001 for
each pulse. Compute the probabilities of

(a) No errors per microsecond

(b) One error per microsecond

(c) At least one error per microsecond

(d) Exactly two errors per microsecond

7. Plot the reliabilities of a k out of n system as a function of the simplex reliability
R (0 ≤ R ≤ 1) using n = 3 and k = 1, 2, 3 [parallel redundancy, TMR (triple
modular redundancy), and a series system, respectively].

8. Determine the conditions under which diode configurations in Figures 1.24(a)–(c)
will improve reliability over that of a single diode. Use n = 2 to simplify the
problem.

9. Consider a system with n capacitors in parallel. For the system to function prop-
erly, at least k-out-of-n capacitors should be functioning properly. A capacitor
can fail in two modes: open and short (circuit). If a capacitor develops an open
circuit, and the number of remaining working capacitors is greater than or equal
to k, then the system still functions properly. If any one capacitor develops a
short circuit then the system fails immediately. Given the probability of a capaci-
tor functioning properly p1=0.3, the probability of a capacitor developing a short
circuit p2=0.4, the probability of a capacitor developing an open circuit p3=0.3,
n=10 and k=7, calculate the probability of the system functioning properly.

10. Consider an example of n nonhomogeneous Bernoulli trials where a failure can
occur on each trial independently, with a probability 1 − e−αi for the ith trial
[KOVA 2000]. Prove that over n trials,

(a) P (“no failure occurs”) = e−[n(n+1)/2]α.

(b) P (“no more than one failure occurs”) = e−[n(n+1)/2]α
[

eα−e(n+1)α

1−eα − n + 1
]
.

Review Problems

1. In the computation of TMR reliability, we assumed that when two units have
failed they will both produce incorrect results and, hence after voting, the wrong
answer will be produced by the TMR configuration. In the case that the two
faulty units produce the opposite answers (one correct and the other incorrect)
the overall result will be correct. Assuming that the probability of such a com-
pensating error is c, derive the reliability expression for the TMR configuration.

2. See Ramamoorthy and Han [RAMA 1975]. In order to use parallel redundancy
in digital logic, we have to associate an online detector with each unit giving us
detector–redundant systems. However, a detector may itself fail. Compare the
reliability of a three-unit detector–redundant system with a TMR system (with-
out online detectors). Assume the reliability of a simplex unit is r, the reliability
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of a detector is d and the reliability of a voter is v. A detector redundant system
is said to have failed when all unit–detector pairs have failed and a unit–detector
pair is a series combination of the unit and its associated detector.

3. In manufacturing a certain component, two types of defects are likely to occur
with respective probabilities 0.05 and 0.1. What is the probability that a ran-
domly chosen component

(a) does not have both kinds of defects?

(b) is defective?

(c) has only one kind of defect given that it is found to be defective?

4. Assume that the probability of successful transmission of a single bit over a
binary communication channel is p. We desire to transmit a 4-bit word over the
channel. To increase the probability of successful word transmission, we may
use 7-bit Hamming code (4 data bits + 3 check bits). Such a code is known
to be able to correct single-bit errors [HAMM 1980]. Derive the probabilities of
successful word transmission under the two schemes and derive the condition
under which the use of Hamming code will improve reliability.

5. We want to compare two different schemes of increasing reliability of a system
using redundancy. Suppose that the system needs s identical components in
series for proper operation. Further suppose that we are given m · s components.
Out of the two schemes shown in Figure 1.P.7, which one will provide a higher
reliability? Given that the reliability of an individual component is r, derive
the expressions for the reliabilities of two configurations. For m = 3 and s = 2,
compare the two expressions.

1

1

2

2

s

s

1 2

2

s

s1

Scheme I: Redundancy at the system level

Scheme II: Redundancy at the subsystem level

Parallel
m chains

...

m components

....

 . . . . . . 

. .

 . . . . . . 

Figure 1.P.7. Comparison of two redundancy schemes
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6. In three boxes there are capacitors as shown in the following table:

Capacitance Number in box

(in μF ) 1 2 3

1.0 10 90 25

0.1 50 30 80

0.01 70 90 120

An experiment consists of first randomly selecting a box (assume that each box
has the same probability of selection) and then randomly selecting a capacitor
from the chosen box.

(a) What is the probability of selecting a 0.1 μF capacitor, given that box 3 is
chosen?

(b) If a 0.1 μF capacitor is chosen, what is the probability that it came from
box 1?

(c) List all nine conditional probabilities of capacitor selections, given certain
box selections.

7. For the fault tree shown in Figure 1.P.8

E1

Failure
System

or

and

or or

E E5

E2 E3 E4

2

Figure 1.P.8. A fault tree



Trim Size: 6.125in x 9.25in 60Trivedi c01.tex V3 - 05/23/2016 11:51am Page 62�

� �

�

62 INTRODUCTION

(1) Write down the structure function.

(2) Derive reliability expressions by

(a) State enumeration method
(b) Method of inclusion–exclusion
(c) Sum of disjoint products method
(d) Conditioning on the shared event E2

8. For the BTS sector/transmitter of Example 1.21, draw the equivalent fault
tree, and derive reliability expressions by means of state enumeration,
inclusion–exclusion, and SDP methods.
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