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CHAPTER 1
Disappointment Aversion, Asset Pricing

and Measuring Asymmetric Dependence
Jamie Alcocka and Anthony Hatherley

aThe University of Sydney Business School

Abstract
We develop a measure of asymmetric dependence (AD) that is consistent with investors who are averse
to disappointment in the utility framework proposed by Skiadas (1997). Using a Skiadas-consistent
utility function, we show that disappointment aversion implies that asymmetric joint return distribu-
tions impact investor utility. From an asset pricing perspective, we demonstrate that the consequence of
these preferences for the realization of a given state results in a pricing kernel adjustment reflecting the
degree to which these preferences represent a departure from expected utility behaviour. Consequently,
we argue that capturing economically meaningful AD requires a metric that captures the relative differ-
ences in the shape of the dependence in the upper and lower tail. Such a metric is better able to capture
AD than commonly used competing methods.

1.1 INTRODUCTION

The economic significance of measuring asymmetric dependence (AD), and its associated risk premium,
can be motivated by considering a utility-based framework for AD. An incremental AD risk premium is
consistent with a marginal investor who derives (dis-)utility from non-diversifiable, asymmetric charac-
teristics of the joint return distribution. The effect of these characteristics on investor utility is captured
by the framework developed by Skiadas (1997). In this model, agents rank the preferences of an act
in a given state depending on the state itself (state-dependence) as well as the payoffs in other states
(non-separability). The agent perceives potentially subjective consequences, such as disappointment
and elation, when choosing an act, b ∈  = {… ,b, c, …}, in the event that E ∈ Ω = {… ,E,F, …} is
observed,1 where  represents the set of acts that may be chosen on the set of states,  = {… , s, …},
and Ω represents all possible resolutions of uncertainty and corresponds to the set of events that defines
a 𝜎-field on the universal event .

1For example, the event E might represent a major market drawdown.
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2 ASYMMETRIC DEPENDENCE IN FINANCE

Within this context, (weak) disappointment is defined as:

(b = c on E and c ⪰ Ω = b) =⇒ b ⪰ Ec,

where the statement ‘b ⪰ Ec’ has the interpretation that, ex ante, the agent regards the consequences
of act b on event E as no less desirable than the consequences of act c on the same event (Skiadas,
1997, p. 350). That is, if acts b and c have the same payoff on E, and the consequences of act b
are generally no more desirable than the consequences of act c, then the consequence of having
chosen b conditional on E occurring is considered to be no less desirable than having chosen c when
the agent associates a feeling of elation with b and disappointment with c conditional upon the
occurrence of E.

For example, consider two stocks, X and Y, that have identical 𝛽s, equal average returns and the
same level of dependence in the lower tail. Further, suppose Y displays dependence in the upper tail that
is equal in absolute magnitude to the level of dependence in the lower tail, but X has no dependence in
the upper tail. In this example, Y is symmetric (but not necessarily elliptical), whereas X is asymmetric,
displaying lower-tail asymmetric dependence (LTAD). Within the context of the Capital Asset Pricing
Model (CAPM), the expected return associated with an exposure to systematic risk should be the same
for X and Y because they have the same 𝛽. However, in addition to this, a rational, non-satiable investor
who accounts for relative differences in upside and downside risk should prefer Y over X because,
conditional on a market downturn event, Y is less likely to suffer losses compared with X. Similarly, a
downside-risk-averse investor will also prefer Y over X. These preferences should imply higher returns
for assets that display LTAD and lower returns for assets that display upper-tail asymmetric dependence
(UTAD), independent of the returns demanded for 𝛽.

Now, let the event E represent a major market drawdown and assume that AD is not priced by the
market. In the general framework of Skiadas, an investor may prefer Y over X because Y is more likely to
recover the initial loss associated with the market drawdown in the event that the market subsequently
recovers. Disappointment aversion manifests itself in an additional source of ex-ante risk premium
over and above the premium associated with ordinary beta risk because an investor will display greater
disappointment having not invested in a stock with compensating characteristics given the drawdown
event (that is, holding X instead of Y).2

With regard to preferences in the event that E occurs, a disappointment-averse investor will prefer
Y over X because the relative level of lower-tail dependence to upper-tail dependence is greater in X
than in Y.3 More generally, this investor prefers an asset displaying joint normality with the market

2An additional risk premium may be required in order to hold either X or Y relative to what the CAPM
might dictate. The consequence of holding either X or Y in the event that E occurs is that the investor
experiences greater disappointment; losses are larger than what the market is prepared to compensate
for because of the greater-than-expected dependence in both the upper and lower tail. This would
amount to a risk premium for excess kurtosis. We do not consider this explicitly here.
3We note that a preference for stocks with favourable characteristics during adverse market con-
ditions is consistent with investment decisions made following the marginal conditional stochas-
tic dominance (MCSD) framework developed by Shalit and Yitzhaki (1994). In this framework,
expected-utility-maximizing investors have the ability to increase the risk exposure to one asset at the
expense of another if the marginal utility change is positive. Shalit and Yitzhaki (1994) show that for a
given portfolio, asset X stochastically dominates asset Y if the expected payoff from X conditional on
returns less than some level, r, is greater than the equivalent payoff from Y, for all levels of r. Further
conditions on the utility function and conditions for general Nth-order MCSD are provided by Denuit
et al. (2014).
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Disappointment Aversion, Asset Pricing and Measuring Asymmetric Dependence 3

compared with either X or Y as the risk-adjusted loss given event E is lower. A risk premium is required
to entice a disappointment-averse investor to invest in either X or Y, and this premium will be greater
for X than for Y.

Ang et al. (2006) employ a similar rationale based upon Gul’s (1991) disappointment-averse utility
framework to decompose the standard CRRA utility function into upside and downside utility, which
is then proxied by upside and downside 𝛽s. In contrast to a Skiadas agent that is endowed with a family
of conditional preference relations (one for each event), Gul agents are assumed to be characterized by
a single unconditional (Savage) preference relation (Grant et al., 2001). A Skiadis-consistent AD metric
conditions on multiple market states, rather than a single condition such as that implied by downside
or upside 𝛽.

The impact of AD on the utility of an investor who is disappointment-averse in the Skiadas sense is
identified using the disappointment-averse utility function proposed by Grant, Kajii and Polak (GKP).
Define an outcome x ∈  = {… ,x, y, z, …} such that b(s) = x, that is, an act b on state s results in
outcome x. A disappointment-averse utility function that is consistent with Skiadas preferences is
given by

VE
𝛼,𝛽u

(b) = ∫s∈E
𝜈𝛼,𝛽u

(b(s),V𝛽u
(b))𝜇ds, (1.1)

with
𝜈𝛼,𝛽u

(x, 𝑤) = 𝛼𝜑(x, 𝑤) + (1 − 𝛼)𝑤

and
𝜑𝛽u

(x, 𝑤) = (x −𝑤)
(
1 + x<𝑤𝛽u

)
, (1.2)

where 𝛽u > −1 is a disappointment-aversion parameter and is an indicator function taking value 1
if the condition in the subscript is true, zero otherwise. The GKP utility function is consistent with
Skiadas disappointment4 if 𝛽u >

1
𝛼
− 2 > 0. The variable V𝛽u

(b) solves

∫
𝜑𝛽u

(
b(s),V𝛽u

)
𝜇ds = 0, (1.3)

and can be interpreted as a certainty-equivalent outcome for act b, representing the unconditional
preference relation ⪰𝛽u

over the universal event . Therefore, for all states s in event E, an agent
assigns utility for outcomes b(s) = x ≥ V𝛽u

and conversely assigns dis-utility to disappointing outcomes
b(s) = x < V𝛽u

, where the dis-utility is scaled by 1 + 𝛽u. The preference, VE
𝛼,𝛽u

(b), is then given by a
weighted sum of the utility associated with event E, given by the disappointment-averse utility function,
𝜑𝛽u

(x, 𝑤), and the utility associated with the universal event , given by the certainty equivalent, 𝑤.
The influence of AD on the utility of disappointment-averse investors can be explored using a simu-

lation study. We repeatedly estimate Equation (1.1) using simulated LTAD data and multivariate normal
data, where both data sets are mean-variance equivalent by construction. We simulate LTAD using a
Clayton copula with a copula parameter of 1, where the asset marginals are assumed to be standard nor-
mal. A corresponding symmetric, multivariate normal distribution (MVN) is generated using the same
underlying random numbers used to generate the AD data, in conjunction with the sample covariance
matrix produced by the Clayton copula data. In this way, we ensure the mean-variance equivalence of
the two simulated samples. The mean and variance–covariance matrices of the simulated samples have

4Equation (1.1) is also consistent with Gul’s representation of disappointment aversion if 𝛽u > 0. If, in
addition, 𝛼 > 1∕(2 + 𝛽u), then the conditional preference relation is consistent with Skiadas disappoint-
ment (Grant et al., 2001).
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4 ASYMMETRIC DEPENDENCE IN FINANCE

the following L1- and L2-norms: ||𝜇AD − 𝜇MVN||1 < 0.0001 and ||ΣAD − ΣMVN||2 < 0.01. The certainty
equivalent is generated using 50,000 realizations of the Clayton sample and the corresponding MVN
sample for a given set of utility parameters, (𝛼, 𝛽u). Given the certainty-equivalent values, we estimate
Equation (1.1) 20,000 times, where the realizations of the outcome, x, are re-sampled with each iter-
ation using a sample size of 5,000. The certainty equivalent is computed using market realizations in
conjunction with Equation (1.3).
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(b) Non-DA utility for event F
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(c) Skiadas-DA utility for event E
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FIGURE 1.1 Simulated densities of GKP utility functions calculated when returns are symmetrically
distributed (MVN) and asymmetrically distributed. Non-disappointment-averse utility is described by
the GKP utility function (1.1) with 𝛼 = 0.5 and 𝛽 = 0. Skiadas disappointment-averse utility is
described with 𝛼 = 0.5 and 𝛽 = 1. Each of these two utility functions are calculated for both AD and
symmetric distributions for two different conditioning events, E and F. The event E is the event that
the market return is less than the certainty-equivalent market return, 𝑤m, and event F is the event
that the market return is lower than the certainty-equivalent market return, 𝑤m, less two market
return standard deviations.
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We consider two sets of utility parameters: disappointment aversion, given by 𝛼 = 0.5 and 𝛽u = 0.5,
and no disappointment aversion, given by 𝛼 = 0.5 and 𝛽u = 0.5 We define two events: E, the event that
the market return is less than the certainty-equivalent market return, 𝑤m, and F, the event that the
market return is lower than the certainty-equivalent market return, 𝑤m, less two market return standard
deviations. The density of Equation (1.1) for event E is given in Figure 1.1(a) and (c). If an investor is
not disappointment-averse, then their utility is similar regardless of the return distribution for event E.
The utility of a disappointment-averse investor drops for both AD and symmetric distributions, with
lower utility for the AD distribution than the symmetric distribution.

Further into the lower tail, the realizations of the AD distribution are much further away from
the certainty equivalent than those of the symmetric distribution. Therefore, the utility of event F is
less than that for event E. In addition, the utility of the disappointment-averse investor is lower for
the AD distribution than for the symmetric distribution (Figure 1.1(b) and (d)). That is, as the level
of tail dependence that defines our event, F, becomes even more pronounced, an investor displaying
aversion to disappointing outcomes will experience lower net utility compared with an investor whose
preferences are defined over an event spanning a much wider range of market realizations (event E,
for example). Furthermore, the characteristics of the joint return distribution will ultimately dictate
the value of the certainty equivalent, which in turn impacts the overall level of utility via the weighting
(1 − 𝛼)𝑤. Therefore, to capture economically meaningful AD requires a metric that captures the relative
differences in the shape of the dependence in the upper and lower tail.

1.2 FROM SKIADAS PREFERENCES TO ASSET PRICES

The implication of Skiadas-style preferences is that the ranking of the preferences of an act in a
given state depends on the state itself (state-dependence) as well as on the payoffs at other states
(non-separability). Following Skiadas (1997), disappointment aversion therefore uniquely satisfies

u(b) = A[f (b,u(b))], b ∈ B, (1.4)

where u is an unconditional utility, f is non-increasing in its last argument representing the conditional
utility given some fixed partition,  , and A ∶ L → ℝ is an increasing mapping where L is the set of
all random variables. Hence, the subjective consequences that define the conditional utility function
associated with the outcome of a random lottery are captured by the aggregator function, A.

Skiadas (1997) shows that for arbitrary probability, ℙ, the pair (U,ℙ) admits an additive represen-
tation if, for every event D,

b ⪰ Dc ⇔ ∫D
U(b)dℙ ≥ ∫D

U(c)dℙ, b, c ∈ B,

if U is of the form U ∶ Ω × B → ℝ.
Under certain conditions, the aggregate consequence of these preferences for the realization of a

given state results in a pricing kernel adjustment, reflecting the degree to which these preferences repre-
sent a departure from expected utility behaviour. To consider the Skiadas preferences in an asset-pricing

5We retain 𝛼 = 0.5, meaning that although the agent does not display either Skiadas (1997) or Gul
(1991) disappointment aversion conditional on E, the net utility continues to be a weighted average
of the local utility and the certainty equivalent. This implies that if all returns are equal to the asset’s
certainty equivalent, then x −𝑤 in the expression for 𝜑 is zero. Therefore, 𝛼𝜑 = 0, but (1 − 𝛼)𝑤 is
non-zero, so the agent continues to generate some utility in this instance.
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framework, we draw upon the insights of Kraus and Sagi (2006) and the derivations therein. Let
 = (1, … ,T) be a sequence of sigma algebras over T periods, such that 1 = {Ω, ∅},t ⊆ t+1 and
T contain all subsets of Ω.

Unique partitions of Ω, denoted t, are assumed to generate each of the t filtrations. Elements
of t are referred to as date-t events, while arbitrary atoms of the date-t partition, at ∈ t, are referred
to as date-t macro states, where at+1 ∈ t+1 =⇒ at+1 ⊆ at for one and only one at ∈ t. State prices are
computed by maximizing the expected utility over all future t + 1 macro states, at+1 for a given pair of
date-t consumption, ct and date t + 1 realization of wealth, 𝑤i

t+1. The expected utility is given by

∑
at+1⊆at

𝜋(at+1|at)U
gi

t
t (ct, 𝑤

i
t+1, at+1) = ugi

t
(ct) + 𝛽

∑
at+1⊆at

𝜋(at+1|at)𝜑
gi

t
t (V

g′
1
★

t+1 , … ,V
g′n★
t+1 ), (1.5)

where 0 < 𝛽 < 1 is a constant, 𝜋(at+1|at) is the conditional probability of realizing macro state at+1 given
current macro state at, Ut(ct, 𝑤

i
t+1, at+1) is the contribution of (ct, 𝑤

i
t+1) to the agent’s utility in state at+1,

u(ct) is the time-independent utility of date-t consumption, gi
t is the agent’s current preference state and

V∗
t+1 is the indirect utility function for date t + 1 realization of wealth, given by

V★
t+1(𝑤

i
t, at+1) ≡ max

(ct ,𝑤̃
i
t+1

)∈B(𝑤i
t)

∑
at+1⊆at

𝜋(at+1|at)Ut(ct, 𝑤
i
t+1, at+1),

where B(𝑤i
t) is the agent’s budget set. The aggregator, 𝜑t, accounts for the date t + 1 preference states,

g′
1, … , g′

n, conditional on attaining macro state at+1. When the aggregator, 𝜑t, is chosen to be consistent
with agents displaying hyperbolic absolute risk aversion,6 the system of time (t + 1) state-prices can be
derived from the solution to the agent’s maximum utility optimization problem:

𝜙(at+1|at) = 𝜋(at+1|at)M̃t+1

= 𝜋(at+1|at)𝛽

(
C̃t+1

Ct

)−𝛾(
R̃R

t+1

RR
t

)𝛾[
1 −

𝛿t+1

Q̃t+1 + 1

]−𝛾

. (1.6)

Here, M̃t+1 is the state-price deflator, Ct is aggregate market consumption, RR
t is a measure of aggregate

relative risk aversion, C̃t+1 and R̃R
t+1 are random variables reflecting aggregate consumption and risk

aversion at time t + 1 conditional upon information at date t, 𝛾 and 𝛽 are constants, and Q̃t+1 is a
function of the aggregate variables as well as a wealth-consumption ratio. The variable 𝛿t+1 ≡ 𝛿(at+1|at)
is a state-dependent function representing the aggregate departure from expected utility behaviour. With
𝛿t+1 = 0, M̃t+1 reduces to the Lucas (1978) model under certain simplifying assumptions on the relation
between aggregate risk aversion and aggregate consumption.

If, in Equation (1.6), we set 𝛿(at+1|at) = f (g′
1, … , g′

n), where f is defined in Equation (1.4), we see
that deviations from expected utility depend on the collective incremental experiences associated with
state at+1 being realized. This observation has several implications for measuring AD, in that any mea-
sure of AD will need to suppose that two incremental characteristics matter for asset pricing. First,
it must measure AD over and above the level of dependence that is consistent with ordinary beta.
This supposes that an incremental risk premium may be required to hold an asset that displays LTAD
with the market beyond what would typically be expected if the assets were jointly normal. The con-
sequence of holding a tail-dependent asset is that the investor experiences a sense of disappointment
that losses are larger than what the market is prepared to compensate for. Second, any measure of

6Chosen by Kraus and Sagi (2006) for tractability.
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AD must incorporate differences in tail dependence across the upper and lower tail. This is consistent
with an investor preferring UTAD to LTAD, as a stock with UTAD is more likely to recover the
initial loss associated with market drawdowns in the event that the market subsequently bounces.
The consequence of the investor holding a LTAD asset can therefore be expected to elicit a sense of
disappointment that they did not invest in a stock with compensating characteristics (i.e., UTAD) given
the drawdown event.

1.3 CONSISTENTLY MEASURING ASYMMETRIC DEPENDENCE

To measure the relevant characteristics embodied within Skiadas’s framework of preferences, we
propose a metric that captures the asymmetry of dependence in the upper and lower tail, across a
range of market events, over and above the level of dependence that is consistent with ordinary beta.
We measure AD using an adjusted version of the J statistic, originally proposed by Hong et al. (2007).
JAdj is a non-parametric and 𝛽-invariant statistic that measures AD using conditional correlations across
opposing sample exceedances. Several alternative metrics have been used to assess non-linearities in
the dependence between asset returns, including extreme value theory (Poon et al., 2004), higher-order
moments (Harvey and Siddique, 2000), downside beta (Ang et al., 2006), copula function parameters
(Genest et al., 2009; Low et al., 2013) and the J statistic itself. However, many of these metrics have
difficulty capturing the level and price of AD in asset return distributions independently of other
price-sensitive factors such as the CAPM beta.

To illustrate, we concoct an approximate AD distribution by simulating N = 25,000 pairs of ran-
dom variables (x, y) where xi ∼ N(𝜇S, 𝜎S) and yi = 𝛽xi + 𝜖i, where 𝜖i ∼ N(0, (xi + 𝜇S)𝛼), with 𝜇S = 0.25
and 𝜎S = 0.15. When 𝛼 = 0, no AD is present and (x, y) are bivariate normal with linear dependence
equal to 𝛽. Higher LTAD is proxied by increasing 𝛼 > 0, and higher UTAD is proxied by decreasing
𝛼 < 0. A sample of N = 500 simulated data points is given in Figure 1.2.
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FIGURE 1.2 Scatter plot of simulated bivariate data with asymmetric dependence (a) and symmetric
dependence (b) that is used to test different downside-risk metrics. The N = 500 sample is a random
draw of bivariate data (x, y) where xi ∼ N(𝜇S, 𝜎S) and yi = 𝛽xi + 𝜖i, where 𝜖i ∼ N(0, (xi + 𝜇S)𝛼), with
𝜇S = 0.25, 𝜎S = 0.15 and 𝛽 = 2.0. In (a), 𝛼 = 2 so the sample displays LTAD. In (b), 𝛼 = 0 so no AD is
present and (x, y) are bivariate normal with linear dependence equal to 𝛽. Higher LTAD is proxied by
increasing 𝛼 > 0, and higher UTAD is proxied by decreasing 𝛼 < 0.
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Ordinary least-squares estimates of the CAPM beta and the downside beta, and IFM estimates7

of the Clayton copula parameter of LTAD, are provided in Figure 1.3 for various combinations
of 𝛼 and 𝛽.

The CAPM beta and the downside beta are largely insensitive to AD and their estimates of linear
dependence are not confounded by the presence of AD.8 The Clayton copula parameter is unable to
uniquely identify either the presence or level of AD or of linear dependence. This seems to be due to
the fact that the Clayton copula parameter attempts to fit both dimensions of dependence with a single
parameter. As a result, the copula measure of AD is sensitive to the value of linear dependence and to
the value of 𝛼. Almost all Archimedean copulae, including multi-parameter copulae, will similarly be
unable to determine AD separately from linear dependence, unless one parameter is especially dedicated
to estimating linear dependence. To the best of our knowledge, a copula with these characteristics is yet
to be described in the literature.

Further, downside and upside 𝛽s are also likely to be confounded with the CAPM 𝛽, so that any
risk premium empirically associated with downside 𝛽, upside 𝛽, or even the difference in upside and
downside 𝛽, is likely to reflect both the compensation for systematic risk and asymmetries in upside and
downside risk. Ang et al. (2006) are careful to avoid this confounding by ensuring that the CAPM 𝛽

and the upside/downside 𝛽s are not included in the same cross-sectional regression.

1.3.1 The Adjusted J Statistic
The J statistic of Hong et al. (2007) is able to identify AD and allows the use of critical values to
establish a hypothesis test on the presence of AD. We introduce the 𝛽-invariant adjusted J statistic, in
order to establish the AD premium separately from the CAPM 𝛽 premium while retaining the integrity
of the dependence structure. We obtain 𝛽-invariance by unitizing 𝛽 for each data set before a modi-
fied version of the J statistic is computed. In particular, given {Rit,Rmt}T

t=1 (Figure 1.4(a)), we first let
R̂it = Rit − 𝛽Rmt (Figure 1.4(b)), where Rit and Rmt are the continuously compounded return on the
ith asset and the market, respectively, and 𝛽R̂it ,Rmt

= cov(Rit,Rmt)∕𝜎2
Rmt

. This initial transformation sets
𝛽R̂it ,Rmt

= 0, making it possible to standardize the data without contaminating the linear relation between
the variables (Figure 1.4(c)).9 Standardization yields RS

mt and R̂S
it and ensures that the standard devia-

tion of the market model residuals, a measure of idiosyncratic risk, is identical for all data sets.10 We
then re-transform the data to have 𝛽R̂it ,Rmt

= 1 by letting R̃mt = RS
mt and R̃it = R̂S

it + RS
mt (Figure 1.4(d)).

Therefore, all data display the same 𝛽 after these transformations,11 forcing the output of JAdj to be
invariant to the overall level of linear dependence, as well as being independent of idiosyncratic risk.

7For full details of the inference function for margins (IFM) method of estimating copula parameters,
see Joe (1997).
8The unadjusted J statistic of Hong et al. (2007) is similar to the difference between upside and down-
side beta, 𝛽+ − 𝛽−, if only one exceedance (𝛿 = 0) is used. The notable difference is that the J statistic
determines the squared differences in correlations, whereas the upside/downside 𝛽s scale the unsquared
differences by market semi-variance. The adjustment of the J statistic, described in Section 1.3.1,
removes the influence of 𝛽 altogether.
9We are careful to avoid look-ahead bias by ensuring that at time t, only historical data up to time t is
employed to estimate the 𝛽R̂it ,Rmt

used to standardize the data.
10From the market model, the total variance of a stock’s returns can be written as 𝜎2

T
= 𝛽2𝜎2

M + 𝜎2
𝜖 , where

𝜎2
M is the market’s variance and 𝜎2

𝜖 is the variance of the idiosyncratic component of returns. Since we
set 𝛽 = 0, 𝜎2

T
= 𝜎2

𝜖 . Hence, standardizing at this point is equivalent to dividing out the idiosyncratic
component of transformed returns.
11At this point, R̃mt ∼ N(0,1) whereas R̃it ∼ N(0,

√
2) assuming marginal distributions are normal.

This holds for all stocks.
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(f) Downside beta estimates for
𝛼 = 0.5, 𝛽 ∈ (−0.75,0.75)
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FIGURE 1.3 Estimates of linear dependence and AD. We estimate the CAPM beta, downside beta and
the Clayton copula parameter using N = 10,000 simulated pairs of data (x, y), where yi = 𝛽xi + 𝜖i,
with xi ∼ N(0.25, 0.15) and 𝜖i ∼ N(0, (xi + 0.25)𝛼). Higher levels of linear dependence are
incorporated with higher values of 𝛽 and higher levels of LTAD are incorporated with higher levels of
𝛼. Figure parts (a), (d) and (g) provide estimates for varying levels of linear dependence but with no
AD (𝛼 = 0). Figure parts (b), (e) and (h) provide estimates for varying degrees of AD with constant
linear dependence (𝛽 = 1). Figure parts (c), (f) and (i) provide estimates for varying degrees of linear
dependence with constant AD (𝛼 = 0.5).
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(d) Second transformation

FIGURE 1.4 JAdj data transformations. To calculate the JAdj statistic with a random sample,
{Rit,Rmt}T

t=1, as in (a), we let R̂it = Rit − 𝛽Rmt where Rit is the continuously compounded return on the
ith asset, Rmt is the continuously compounded return on the market and 𝛽 = cov(Rit,Rmt)∕𝜎2

Rmt
. This

transformation forces 𝛽R̂it ,Rmt
= 0, as in (b). We standardize the transformed data, yielding RS

mt and R̂S
it

in (c). Finally, we re-transform the data to have 𝛽 = 1 by letting R̃mt = RS
mt and R̃it = R̂S

it + RS
mt in (d).

The solid line through the middle of each plot is given to illustrate how the linear trend changes with
each transformation.

JAdj is given by
JAdj = [sign([𝜌̃+ − 𝜌̃−]𝟏)]T(𝜌̃+ − 𝜌̃−)′Ω̃−1(𝜌̃+ − 𝜌̃−), (1.7)

for 𝜌̃+ = {𝜌̃+(𝛿1), 𝜌̃+(𝛿2), … , 𝜌̃+(𝛿N)} and 𝜌̃− = {𝜌̃−(𝛿1), 𝜌̃−(𝛿2), … , 𝜌̃−(𝛿N)}, where 𝟏 is an N × 1 vector
of ones, Ω̂ is an estimate of the variance–covariance matrix (Hong et al., 2007) for the difference vector
(𝜌̃+ − 𝜌̃−) and

𝜌̃+(𝛿) = corr
(
R̃mt, R̃it|R̃mt > 𝛿, R̃it > 𝛿

)
, (1.8)

𝜌̃−(𝛿) = corr
(
R̃mt, R̃it|R̃mt < −𝛿, R̃it < −𝛿

)
. (1.9)



Trim Size: 170mm x 244mm Alcock c01.tex V1 - 01/11/2018 1:59pm Page 11�

� �

�

Disappointment Aversion, Asset Pricing and Measuring Asymmetric Dependence 11

The null hypothesis for the significance of the adjusted J statistic is that dependence is symmetric
across the joint distribution, that is: 𝜌+(𝛿i) = 𝜌−(𝛿i), i = 1, … ,N. Under the null, |JAdj| ∼ 𝜒2

N follow-
ing Hong et al. (2007).12 Where dependence is symmetric across upper and lower tails, JAdj will be near
zero. Conversely, any strong asymmetries in dependence between upper and lower tails will result in a
significant, non-zero JAdj. A positive (negative) JAdj is indicative of UTAD (LTAD), over and above the
tail dependence implied by ordinary 𝛽.

We demonstrate the suitability of the adjusted J statistic in capturing LTAD and UTAD, as well as
the 𝛽-invariance of JAdj in Figure 1.5, estimated using the same simulations as above. In its own right,
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(a) J estimates for 𝛼 = 0, 𝛽 ∈
(−0.75,0.75).
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(b) J estimates for 𝛽 = 1, 𝛼 ∈
(−0.75,0.75).
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(c) J estimates for 𝛼 = 0.5, 𝛽 ∈
(−0.75,0.75).
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(d) Adjusted J estimates for
𝛼 = 0, 𝛽 ∈ (−0.75,0.75).
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(e) Adjusted J estimates for
𝛽 = 1, 𝛼 ∈ (−0.75,0.75).
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(f) Adjusted J estimates for
𝛼 = 0.5, 𝛽 ∈ (−0.75,0.75).

FIGURE 1.5 Estimates of linear dependence and AD. We estimate the J statistic (Hong et al., 2007) and
the adjusted J statistic using N = 10,000 simulated pairs of data (x, y), where yi = 𝛽xi + 𝜖i, with
xi ∼ N(0.25,0.15) and 𝜖i ∼ N(0, (xi + 0.25)𝛼). Higher levels of linear dependence are incorporated
with higher values of 𝛽 and higher levels of LTAD are incorporated with higher levels of 𝛼. Figure
parts (a) and (d) provide estimates for varying levels of linear dependence but with no AD (𝛼 = 0).
Figure parts (b) and (e) provide estimates for varying degrees of AD with constant linear dependence
(𝛽 = 1). Figure parts (c) and (f) provide estimates for varying degrees of linear dependence with
constant AD (𝛼 = 0.5).

12The transformations described represent (non-singular) affine transformations that may ultimately be
expressed as linear transformations (Webster, 1995). Birkhoff and Lane (1997) show that a non-singular
linear transformation of the space, V, is an isomorphism of the vector space, V, to itself. The assump-
tions used by Hong et al. (2007) to derive an asymptotic distribution for the J statistic therefore hold for
the transformed returns {R̃1t, R̃2t}. |JAdj| ∼ 𝜒2

N then follows the proof described in Hong et al. (2007).
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JAdj captures both LTAD and UTAD between a stock and the market. To isolate upside and downside
risk for the purposes of our regression analysis, we compute

JAdj+ = JAdj
JAdj>0, (1.10)

JAdj− = JAdj
JAdj<0. (1.11)

We capture a family of conditional preferences, consistent with those of the Skiadas agent, by
employing a range of exceedances in the calculation of JAdj. Adjusting J to be 𝛽-invariant enables iden-
tification of the price paid by disappointment-averse agents in addition to the ordinary 𝛽 risk premium.
JAdj− and JAdj+ capture disappointment and elation premia distinctly.

Further, as a non-parametric measure of AD, the JAdj statistic facilitates the separation of the
actual price of tail dependence from the effect of non-normal marginal return characteristics. JAdj is
also consistent with the work of Stapleton and Subrahmanyam (1983) and Kwon (1985), who suggest
a means of deriving a linear relation between 𝛽 and expected return without the need for multivariate
normal assumptions. JAdj is also consistent with the evidence that correlations tend to be larger in the
lower tail of the joint return distribution compared with the upper tail (Longin and Solnik, 2001; Ang
and Chen, 2002). LTAD exists provided that dependence in the lower tail exceeds dependence in the
upper tail. Normality in the opposite tail is not required by this definition, which precludes parametric
alternatives such as the H statistic (Ang and Chen, 2002) for the purposes of our investigation.

Another advantage of transforming the data in the way described above is that the standard
deviation of market model residuals is forced to be the same across data sets. Controlling for the
effects of idiosyncratic risk is important given (and despite) the debate over whether idiosyncratic risk
is relevant in an asset-pricing context (Goyal and Santa-Clara, 2003; Bali et al., 2005). It is sometimes
argued that idiosyncratic risk should be priced whenever investors fail to hold sufficiently diversified
portfolios (Merton, 1987; Campbell et al., 2001; Fu, 2009). However, when tail risk is characterized
by dependence that increases during down markets, the ability to diversify will be affected and the
ability to protect the portfolio from risk will be reduced. Hence, downside risk may be mistakenly
identified as idiosyncratic risk. Where this occurs, we expect idiosyncratic risk to increase as downside
risk increases. Standardizing market model residuals allows us to distinguish between downside risk
and other firm-specific risks.

Note that because tail risk is estimated by analysing the difference in correlation beyond N
exceedances, the occurrence of net AD may be contingent upon a relatively small number of positive
or negative joint returns. As a result, any measure of AD will suffer from a high likelihood of Type II
errors, making it difficult to detect AD unless large data sets are utilized. Consequently, we present
conservative estimates of AD between equity returns and the market.

1.4 SUMMARY

Skiadas (1997) offers an alternative framework to the standard von Neumann–Morgenstern expected
utility theory, in which subjective consequences (disappointment, elation, regret, etc.) are incorporated
indirectly through the properties of the decision maker’s preferences rather than through explicit inclu-
sion among the formal primitives.

Individuals with Skiadas preferences are endowed with a family of conditional preference relations,
one for each event (Grant et al., 2001). Preferences are state-dependent, as in the Gul (1991) framework,
and because consequences are treated implicitly through the agent’s preference relations, preferences can
be regarded as ‘non-separable’ in that the ranking of an act given an event may depend on subjective
consequences of these acts outside the event.

We demonstrate that AD influences the utility of disappointment-averse investors and establish
the conditions under which this implies a market price for LTAD and UTAD. Using a comprehensive
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set of simulations, we demonstrate that many of the commonly employed risk metrics are unable to
adequately capture the salient distributional characteristics of AD. We further propose a 𝛽-invariance
metric to capture AD consistent with Skiadas preferences and demonstrate its suitability using simulated
AD data sets.
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