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CHAPTER 1

INTRODUCTION

Matrix, vector, and tensor algebras are often used in the theory of continuum mechanics in
order to have a simpler and more tractable presentation of the subject. In this chapter, the math-
ematical preliminaries required to understand the matrix, vector, and tensor operations used
repeatedly in this book are presented. Principles of mechanics and approximation methods
that represent the basis for the formulation of the kinematic and dynamic equations developed
in this book are also reviewed in this chapter. In the first two sections of this chapter, matrix
and vector notations are introduced and some of their important identities are presented. Some
of the vector and matrix results are presented without proofs with the assumption that the
reader has some familiarity with matrix and vector notations. In Section 3, the summation
convention, which is widely used in continuum mechanics texts, is introduced. This introduc-
tion is made despite the fact that the summation convention is rarely used in this book. Tensor
notations, on the other hand, are frequently used in this book and, for this reason, tensors
are discussed in Section 4. In Section 5, the polar decomposition theorem, which is funda-
mental in continuum mechanics, is presented. This theorem states that any nonsingular square
matrix can be decomposed as the product of an orthogonal matrix and a symmetric matrix.
Other matrix decompositions that are used in computational mechanics are also discussed. In
Section 6, D’Alembert’s principle is introduced, while Section 7 discusses the virtual work
principle. The finite element method is often used to obtain finite dimensional models of con-
tinuous systems that in reality have infinite number of degrees of freedom. To introduce the
reader to some of the basic concepts used to obtain finite dimensional models, discussions of
approximation methods are included in Section 8. The procedure for developing the discrete
equations of motion is outlined in Section 9, while the principle of conservation of momentum
and the principle of work and energy are discussed in Section 10. In continuum mechanics,
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2 COMPUTATIONAL CONTINUUM MECHANICS

the gradients of the position vectors can be determined by differentiation with respect to dif-
ferent parameters. The change of parameters can lead to the definitions of strain components
in different directions. This change of parameters, however, does not change the coordinate
system in which the gradient vectors are defined. The effect of the change of parameters on
the definitions of the gradients is discussed in Section 11.

1.1 MATRICES

In this section, some identities, results, and properties from matrix algebra that are used repeat-
edly in this book are presented. Some proofs are omitted, with the assumption that the reader
is familiar with the subject of linear algebra.

Definitions

An m× n matrix A is an ordered rectangular array, which can be written in the following form:

A = (ai j) =

⎡⎢⎢⎢⎢⎣
a11 a12 … a1n

a21 a22 … a2n

⋮ ⋮ ⋱ ⋮

am1 am2 … amn

⎤⎥⎥⎥⎥⎦
(1.1)

where aij is the ijth element that lies in the ith row and jth column of the matrix. Therefore,
the first subscript i refers to the row number and the second subscript j refers to the column
number. The arrangement of Equation 1 shows that the matrix A has m rows and n columns.
If m= n, the matrix is said to be square; otherwise, the matrix is said to be rectangular. The
transpose of an m× n matrix A is an n×m matrix, denoted as AT, which is obtained from A
by exchanging the rows and columns, that is, AT = (aji).

A diagonal matrix is a square matrix whose only nonzero elements are the diagonal ele-
ments, that is, aij = 0 if i≠ j. An identity or unit matrix, denoted as I, is a diagonal matrix that
has all its diagonal elements equal to one. The null or zero matrix is a matrix that has all its
elements equal to zero. The trace of a square matrix A is the sum of all its diagonal elements,
that is,

tr(A) =
n∑

i=1

aii (1.2)

This equation shows that tr(I)= n, where I is the identity matrix and n is the dimension of the
matrix.

A square matrix A is said to be symmetric if

A = AT, aij = aji (1.3)

A square matrix is said to be skew symmetric if

A = −AT, aij = −aji (1.4)
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This equation shows that all the diagonal elements of a skew-symmetric matrix must be equal
to zero. That is, if A is a skew-symmetric matrix with dimension n, then aii = 0 for i= 1, 2,… ,
n. Any square matrix can be written as the sum of a symmetric matrix and a skew-symmetric
matrix. For example, if B is a square matrix, B can be written as

B = B̄ + B̃ (1.5)

where B̄ and B̃ are, respectively, symmetric and skew-symmetric matrices defined as

B̄ = 1
2
(B + BT), B̃ = 1

2
(B − BT) (1.6)

Skew-symmetric matrices are used in continuum mechanics to characterize the rotations of
the material elements.

Determinant

The determinant of an n× n square matrix A, denoted as |A| or det(A), is a scalar quantity. In
order to be able to define the unique value of the determinant, some basic definitions have to
be introduced. The minor Mij corresponding to the element aij is the determinant of a matrix
obtained by deleting the ith row and jth column from the original matrix A. The cofactor Cij
of the element aij is defined as

Cij = (−1)i+ jMij (1.7)

Using this definition, the determinant of the matrix A can be obtained in terms of the cofactors
of the elements of an arbitrary row j as follows:

|A| = n∑
k=1

ajkCjk (1.8)

One can show that the determinant of a diagonal matrix is equal to the product of the diagonal
elements, and the determinant of a matrix is equal to the determinant of its transpose; that
is, if A is a square matrix, then |A|= |AT|. Furthermore, the interchange of any two columns
or rows only changes the sign of the determinant. It can also be shown that if the matrix has
linearly dependent rows or linearly dependent columns, the determinant is equal to zero. A
matrix whose determinant is equal to zero is called a singular matrix. For an arbitrary square
matrix, singular or nonsingular, it can be shown that the value of the determinant does not
change if any row or column is added or subtracted from another. It can be also shown that the
determinant of the product of two matrices is equal to the product of their determinants. That
is, if A and B are two square matrices, then |AB|= |A||B|.

As will be shown in this book, the determinants of some of the deformation measures used
in continuum mechanics are used in the formulation of the energy expressions. Furthermore,
the relationship between the volumes of a continuum in the undeformed state and the deformed
state is expressed in terms of the determinant of the matrix of position vector gradients. There-
fore, if the elements of a square matrix depend on a parameter, it is important to be able to
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determine the derivatives of the determinant with respect to this parameter. Using Equation 8,
one can show that if the elements of the matrix A depend on a parameter t, then

d
dt
|A| = n∑

k=1

ȧ1kC1k +
n∑

k=1

ȧ2kC2k + · · · +
n∑

k=1

ȧnkCnk (1.9)

where ȧij = daij∕dt. The use of this equation is demonstrated by the following example.

Example 1.1

Consider the matrix J defined as

J =
⎡⎢⎢⎢⎣
J11 J12 J13

J21 J22 J23

J31 J32 J33

⎤⎥⎥⎥⎦
where Jij = 𝜕ri/𝜕xj, and r and x are the vectors

r(x1, x2, x3, t) = [r1 r2 r3]T, x = [x1 x2 x3]T

That is, the elements of the vector r are functions of the coordinates x1, x2, and x3 and the
parameter t. If J= |J| is the determinant of J, prove that

dJ
dt

=
(
𝜕ṙ1

𝜕r1
+
𝜕ṙ2

𝜕r2
+
𝜕ṙ3

𝜕r3

)
J

where 𝜕ṙi∕𝜕rj = (𝜕∕𝜕rj)(dri∕dt), i, j= 1, 2, 3.

Solution: Using Equation 9, one can write

dJ
dt

=
3∑

k=1

J̇1kC1k +
3∑

k=1

J̇2kC2k +
3∑

k=1

J̇3kC3k

where Cij is the cofactor associated with element Jij. Note that the preceding equation can be
written as

dJ
dt

=
|||||||
J̇11 J̇12 J̇13

J21 J22 J23

J31 J32 J33

||||||| +
|||||||
J11 J12 J13

J̇21 J̇22 J̇23

J31 J32 J33

||||||| +
|||||||
J11 J12 J13

J21 J22 J23

J̇31 J̇32 J̇33

|||||||
In this equation,

J̇ij =
𝜕ṙi

𝜕xj

=
𝜕ṙi

𝜕r1

𝜕r1

𝜕xj

+
𝜕ṙi

𝜕r2

𝜕r2

𝜕xj

+
𝜕ṙi

𝜕r3

𝜕r3

𝜕xj

=
3∑

k=1

𝜕ṙi

𝜕rk

Jkj
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Using this expansion, one can show that

|||||||
J̇11 J̇12 J̇13

J21 J22 J23

J31 J32 J33

||||||| =
(
𝜕ṙ1

𝜕r1

)
J

Similarly, one can show that

|||||||
J11 J12 J13

J̇21 J̇22 J̇23

J31 J32 J33

||||||| =
(
𝜕ṙ2

𝜕r2

)
J,

|||||||
J11 J12 J13

J21 J22 J23

J̇31 J̇32 J̇33

||||||| =
(
𝜕ṙ3

𝜕r3

)
J

Using the preceding equations, it is clear that

dJ
dt

=
(
𝜕ṙ1

𝜕r1
+
𝜕ṙ2

𝜕r2
+
𝜕ṙ3

𝜕r3

)
J

This matrix identity is important and is used in this book to evaluate the rate of change of
the determinant of the matrix of position vector gradients in terms of important deformation
measures.

Inverse and Orthogonality

A square matrix A−1 that satisfies the relationship

A−1A = AA−1 = I (1.10)

where I is the identity matrix, is called the inverse of the matrix A. The inverse of the matrix
A is defined as

A−1 =
Ct|A| (1.11)

where Ct is the adjoint of the matrix A. The adjoint matrix Ct is the transpose of the matrix of
the cofactors (Cij) of the matrix A. One can show that the determinant of the inverse |A−1| is
equal to 1/|A|.

A square matrix is said to be orthogonal if

ATA = AAT = I (1.12)

Note that in the case of an orthogonal matrix A, one has

AT = A−1 (1.13)

That is, the inverse of an orthogonal matrix is equal to its transpose. One can also show that
if A is an orthogonal matrix, then |A|=±1; and if A1 and A2 are two orthogonal matrices that
have the same dimensions, then their product A1A2 is also an orthogonal matrix.
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Examples of orthogonal matrices are the 3× 3 transformation matrices that define the ori-
entation of coordinate systems. In the case of a right-handed coordinate system, one can show
that the determinant of the transformation matrix is +1; this is a proper orthogonal trans-
formation. If the right-hand rule is not followed, the determinant of the resulting orthogonal
transformation is equal to −1, which is an improper orthogonal transformation, such as in the
case of a reflection.

Matrix Operations

The sum of two matrices A= (aij) and B= (bij) is defined as

A + B = (aij + bij) (1.14)

In order to add two matrices, they must have the same dimensions. That is, the two matrices
A and B must have the same number of rows and same number of columns in order to apply
Equation 14.

The product of two matrices A and B is another matrix C defined as

C = AB (1.15)

The element cij of the matrix C is defined by multiplying the elements of the ith row in A by
the elements of the jth column in B according to the rule

cij = ai1b1j + ai2b2j + · · · + ainbnj =
∑

k

aikbkj (1.16)

Therefore, the number of columns in A must be equal to the number of rows in B. If A is an
m× n matrix and B is an n× p matrix, then C is an m× p matrix. In general, AB≠BA. That is,
matrix multiplication is not commutative. The associative law for matrix multiplication, how-
ever, is valid; that is, (AB)C=A(BC)=ABC, provided consistent dimensions of the matrices
A, B, and C are used.

1.2 VECTORS

Vectors can be considered special cases of matrices. An n-dimensional vector a can be written
as

a = (ai) =

⎡⎢⎢⎢⎢⎣
a1

a2

⋮

an

⎤⎥⎥⎥⎥⎦
=
[
a1 a2 · · · an

]T
(1.17)

Therefore, it is assumed that the vector is a column, unless it is transposed to make it a row.
Because vectors can be treated as columns of matrices, the addition of vectors is the same as

the addition of column matrices. That is, if a= (ai) and b= (bi) are two n-dimensional vectors,
then a+ b = (ai + bi). Three different types of products, however, can be used with vectors.
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These are the dot product, the cross product, and the outer or dyadic product. The result of the
dot product of two vectors is a scalar, the result of the cross product is a vector, and the result
of the dyadic product is a matrix. These three different types of products are discussed in the
following sections.

Dot Product

The dot, inner, or scalar product of two vectors a and b is defined as

a ⋅ b = aTb = a1b1 + a2b2 + · · · + anbn =
n∑

i=1

aibi (1.18)

Note that the two vectors a and b must have the same dimension. The two vectors a and b are
said to be orthogonal if a ⋅ b= aTb= 0. The norm, magnitude, or length of an n-dimensional
vector is defined as

|a| =√a ⋅ a =
√

aTa =

√√√√ n∑
i=1

(ai)2 (1.19)

It is clear from this definition that the norm is always a positive number, and it is equal to zero
only when a is the zero vector, that is, all the components of a are equal to zero.

In the special case of three-dimensional vectors, the dot product of two arbitrary
three-dimensional vectors a and b can be written in terms of their norms as a ⋅b= |a| |b| cos 𝛼,
where 𝛼 is the angle between the two vectors. A vector is said to be a unit vector if its norm is
equal to one. It is clear from the definition of the norm given by Equation 19 that the absolute
value of any element of a unit vector must not exceed one. A unit vector â along the vector a
can be simply obtained by dividing the vector by its norm. That is, â= a/|a|. The dot product
b ⋅ â= |b| cos 𝛼 defines the component of the vector b along the unit vector â, where 𝛼 is the
angle between the two vectors. The projection of the vector b on a plane perpendicular to the
unit vector â is defined by the equation b − (b ⋅ â) â, or equivalently by b − (|b| cos 𝛼) â.

Cross Product

The vector cross product is defined for three-dimensional vectors only. Let a and b be two
three-dimensional vectors defined in the same coordinate system. Unit vectors along the axes
of the coordinate system are denoted by the vectors i1, i2, and i3. These base vectors are
orthonormal, that is,

ii ⋅ ij = 𝛿ij (1.20)

where 𝛿ij is the Kronecker delta defined as

𝛿ij =

{
1 i = j

0 i ≠ j
(1.21)
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The cross product of the two vectors a and b is defined as

c = a × b =
|||||||
i1 i2 i3
a1 a2 a3

b1 b2 b3

|||||||
= (a2b3 − a3b2)i1 + (a3b1 − a1b3)i2 + (a1b2 − a2b1)i3 (1.22)

which can be written as

c = a × b =
⎡⎢⎢⎢⎣
c1

c2

c3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
b1

b2

b3

⎤⎥⎥⎥⎦ (1.23)

This equation can be written as
c = a × b = ãb (1.24)

where ã is the skew-symmetric matrix associated with the vector a and is defined as

ã =
⎡⎢⎢⎢⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤⎥⎥⎥⎦ (1.25)

One can show that the determinant of the skew-symmetric matrix ã is equal to zero. That is,
|ã|= 0. One can also show that

c = a × b = −b × a = −b̃a (1.26)

In this equation, b̃ is the skew-symmetric matrix associated with the vector b. If a and b are
two parallel vectors, it can be shown that a×b= 0. That is, the cross product of two parallel
vectors is equal to zero.

Dyadic Product

Another form of vector product used in this book is the dyadic or outer product. Whereas the
dot product leads to a scalar and the cross product leads to a vector, the dyadic product leads
to a matrix. The dyadic product of two vectors a and b is written as a ⊗ b and is defined as

a⊗ b = abT (1.27)

Note that, in general, a⊗ b ≠ b⊗ a. One can show that the dyadic product of two vectors
satisfies the following identities:

(a⊗ b)c = a(b ⋅ c), a ⋅ (b⊗ c) = (a ⋅ b)cT (1.28)
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In Equation 28, it is assumed that the vectors have the appropriate dimensions. The dyadic
product satisfies the following additional properties for any arbitrary vectors u, v, v1, and v2
and a square matrix A:

(u⊗ v)T = v⊗ u
A(u⊗ v) = (Au⊗ v)
(u⊗ v)A = (u⊗ ATv)
u⊗ (v1 + v2) = u⊗ v1 + u⊗ v2

⎫⎪⎪⎬⎪⎪⎭
(1.29)

The second and third identities of Equation 29 show that (Au⊗ Av) = A(u⊗ v)AT. This result
is important in understanding the rule of transformation of the second-order tensors that will
be used repeatedly in this book. It is left to the reader as an exercise to verify the identities of
Equation 29.

Example 1.2

Consider the two vectors a = [a1 a2]T and b = [b1 b2 b3]T. The dyadic product of these
two vectors is given by

a⊗ b =

[
a1

a2

] [
b1 b2 b3

]
=
[

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

]
For a given vector c = [c1 c2 c3]T, one has

(a⊗ b)c =
[

a1b1 a1b2 a1b3

a2b1 a2b2 a3b3

] ⎡⎢⎢⎣
c1

c2

c3

⎤⎥⎥⎦
=
[

a1b1

a2b1

]
c1 +

[
a1b2

a2b2

]
c2 +

[
a1b3

a2b3

]
c3

=
[

a1

a2

]
b1c1 +

[
a1

a2

]
b2c2 +

[
a1

a2

]
b3c3 = a(b ⋅ c)

Also note that the dyadic product a⊗ b can be written as

a⊗ b =
[[

a1
a2

]
b1

[
a1
a2

]
b2

[
a1
a2

]
b3

]
= [ab1 ab2 ab3]

It follows that if R is a 2× 2 matrix, one has

R(a⊗ b) = R[ab1 ab2 ab3] = [(Ra)b1 (Ra)b2 (Ra)b3]

= (Ra⊗ b)
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Several important identities can be written in terms of the dyadic product. Some of these identi-
ties are valuable in the computer implementation of the dynamic formulations presented in this
book because the use of these identities can lead to significant simplification of the computa-
tional algorithms. By using these identities, one can avoid rewriting codes that perform the same
mathematical operations, thereby saving effort and time by producing a manageable computer
code. One of these identities that can be written in terms of the dyadic product is obtained in
the following example.

Example 1.3

In the computer implementation of the formulations presented in this book, one may require
differentiating a unit vector r̂ along the vector r with respect to the components of the vector
r. Such a differentiation can be written in terms of the dyadic product. To demonstrate this, we
write

r̂ = 1√
rTr

r = 1|r|r
where |r|=

√
rTr. It follows that

𝜕r̂
𝜕r

= 1√
rTr

(
I − 1

rTr
rrT
)

This equation can be written in terms of the dyadic product as

𝜕r̂
𝜕r

= 1√
rTr

(
I − 1

rTr
r⊗ r

)
= 1|r| (I − r̂⊗ r̂)

Projection

If â is a unit vector, the component of a vector b along the unit vector â is defined by
the dot product b ⋅ â. The projection of b along â is then defined as (b ⋅ â)â, which can be
written using Equation 28 as (b ⋅ â)â= (â ⊗ â)b. The matrix P= â ⊗ â defines a projection
matrix. For an arbitrary integer n, one can show that the projection matrix P satisfies the
identity Pn =P. This is an expected result because the vector (â ⊗ â)b=Pb is defined
along â and has no components in other directions. Other projections should not change this
result.

The projection of the vector b on a plane perpendicular to the unit vector â is defined as
b − (b ⋅ â)â, which can be written using the dyadic product as (I − â ⊗ â)b. This equation
defines another projection matrix Pp = I − â ⊗ â, or simply Pp = I − P. For an arbitrary inte-
ger n, one can show that the projection matrix Pp satisfies the identity Pn

p =Pp. Furthermore,
PPp = 0 and P+Pp = I.
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Example 1.4

Consider the vector a= [1 2 0]T. A unit vector along a is defined as

â = 1√
5

[
1 2 0

]T
The projection matrix P associated with this unit vector can be written as

P = â⊗ â = 1
5

⎡⎢⎢⎣
1 2 0
2 4 0
0 0 0

⎤⎥⎥⎦
It follows that

P2 = 1
25

⎡⎢⎢⎣
5 10 0

10 20 0

0 0 0

⎤⎥⎥⎦ = 1
5

⎡⎢⎢⎣
1 2 0

2 4 0

0 0 0

⎤⎥⎥⎦ = P

The projection matrix Pp is defined in this example as

Pp = I − â⊗ â = I − P = 1
5

⎡⎢⎢⎣
4 −2 0

−2 1 0
0 0 5

⎤⎥⎥⎦
Note that P2

p = (I − P)2 = I − 2P + P2 = I − P = Pp. Successive application of this equation
shows that Pn

p =Pp. The reader can verify this fact by the data given in this example.

1.3 SUMMATION CONVENTION

In this section, another convenient notational method, the summation convention, is discussed.
The summation convention is used in most books on the subject of continuum mechanics.
According to this convention, summation over the values of the indices is automatically
assumed if an index is repeated in an expression. For example, if an index j takes the values
from 1 to n, then in the summation convention, one has

ajj = a11 + a22 + ⋅ ⋅ ⋅ + ann (1.30)

and
aijj = ai11 + ai22 + ⋅ ⋅ ⋅ + ainn (1.31)

The repeated index used in the summation is called the dummy index, an example of which
is the index j used in the preceding equation. If the index is not a dummy index, it is called
a free index, an example of which is the index i used in Equation 31. It follows that the trace
of a matrix A can be written using the summation convention as tr(A)= aii. The dot product
between two n-dimensional vectors a and b can be written using the summation convention
as a ⋅b= aTb= aibi. The product of a matrix A and a vector b is another vector c=Ab whose
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components can be written using the summation convention as ci = aijbj. Here, i is the free
index and j is the dummy index.

Unit Dyads

The dyadic product between two vectors can also be written using the summation convention.
For example, in the case of three-dimensional vectors, one can define the base vectors ik, k= 1,
2, 3. Any three-dimensional vector can be written in terms of these base vectors using the
summation convention as a= aiii = a1i1 + a2i2 + a3i3. The dyadic product of two vectors a
and b can then be written as

a⊗ b = (aiii)⊗ (bjij) = aibj(ii ⊗ ij) (1.32)

For example, if ii = i1 = [1 0 0]T, ij = i2 = [0 1 0]T, and a and b are arbitrary three-dimensional
vectors, one can show that the dyadic product of the preceding equation can be written in the
following matrix form:

a⊗ b = aibj(ii ⊗ ij) =
⎡⎢⎢⎣
a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎤⎥⎥⎦ (1.33)

The dyadic products of the base vectors ii ⊗ ij are called the unit dyads. Using this
notation, the dyadic product can be generalized to the products of three or more
vectors. For example, the triadic product of the vectors a, b, and c can be written as
a⊗b⊗ c= (aiii)⊗ (bjij)⊗ (ckik)= aibjck(ii ⊗ ij ⊗ ik). In this book, the familiar summation
sign

∑
will be used for the most part, instead of the summation convention.

1.4 CARTESIAN TENSORS

It is clear from the preceding section that a dyadic product is a linear combination of unit dyads.
The second-order Cartesian tensor is defined as a linear combination of dyadic products. A
second-order Cartesian tensor A takes the following form:

A =
3∑

i, j=1

aij(ii ⊗ ij) (1.34)

where aij are called the components of A. Using the analysis presented in the preceding section,
one can show that the second-order tensor can be written in the matrix form of Equation 33.
Nonetheless, for a given second-order tensor A, one cannot in general find two vectors a and
b such that A= a ⊗ b.

The unit or identity tensor can be written in terms of the base vectors as

I =
3∑

i=1

ii ⊗ ii (1.35)
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Using the definition of the second-order tensor as a linear combination of dyadic products,
one can show, as previously mentioned, that the components of any second-order tensor can
be arranged in the form of a 3× 3 matrix. In continuum mechanics, the elements of tensors rep-
resent physical quantities such as moments of inertia, strains, and stresses. These elements can
be defined in any coordinate system. The coordinate systems used depend on the formulation
used to obtain the equilibrium equations. It is, therefore, important that the reader understands
the rule of the coordinate transformation of tensors and recognizes that such a transforma-
tion leads to the definition of the same physical quantities in different frames of reference or
different directions. One must also distinguish between the transformation of vectors and the
change of parameters. The latter does not change the coordinate system in which the vectors
are defined. This important difference will be discussed in more detail before concluding this
chapter.

A tensor that has the same components in any coordinate system is called an isotropic
tensor. An example of isotropic tensors is the unit tensor. It can be shown that second-order
isotropic tensors take only one form and can be written as 𝛼I, where 𝛼 is a scalar and I is
the unit or the identity tensor. Second-order isotropic tensors are sometimes called spherical
tensors.

Double Product or Double Contraction

If A is a second-order tensor, the contraction of this tensor to a scalar is defined as∑3
i=1 aii = a11 + a22 + a33 = tr(A), where tr denotes the trace of the matrix (sum of the diag-

onal elements) (Aris 1962). It can be shown that the trace of a second-order tensor is invariant
under orthogonal coordinate transformations. In addition to the trace, the determinant of
A is invariant under orthogonal coordinate transformation. This important result can also
be obtained in the case of second-order tensors using the facts that the determinant of an
orthogonal matrix is equal to ±1 and the determinant of the product of matrices is equal to
the product of the determinants of these matrices.

If A and B are second-order tensors, the double product or double contraction is defined as

A∶B = tr(ATB) (1.36)

Using the properties of the trace, one can show that

A∶B = tr(ATB) = tr(BAT) = tr(BTA) = tr(ABT) =
3∑

i,j=1

aijbij (1.37)

where aij and bij are, respectively, the elements of the tensors A and B. If a, b, u, and v are
arbitrary vectors and A is a second-order tensor, one can show that the double contraction has
the following properties:

tr(A) = I∶A
A∶(u⊗ v) = u ⋅ (Av)
(a⊗ b)∶(u⊗ v) = (a ⋅ u)(b ⋅ v)

⎫⎪⎬⎪⎭ (1.38)
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It can also be shown that if A is a symmetric tensor and B is a skew-symmetric tensor, then
A:B= 0. It follows that if A is a symmetric tensor and B is an arbitrary tensor, the definition
of the double product can be used to show that A:B=A:BT =A:(B+BT)/2.

If A and B are two symmetric tensors, one can show that

A∶B = a11b11 + a22b22 + a33b33 + 2(a12b12 + a13b13 + a23b23) (1.39)

The preceding equation will be used in this book in the formulation of the elastic forces of
continuous bodies. These forces are expressed in terms of the strain and stress tensors. As
will be shown in Chapters 2 and 3, the strain and stress tensors are symmetric and are given,
respectively, in the following form:

𝛆 =
⎡⎢⎢⎢⎣
𝜀11 𝜀12 𝜀13

𝜀12 𝜀22 𝜀23

𝜀13 𝜀23 𝜀33

⎤⎥⎥⎥⎦ , 𝛔 =
⎡⎢⎢⎢⎣
𝜎11 𝜎12 𝜎13

𝜎12 𝜎22 𝜎23

𝜎13 𝜎23 𝜎33

⎤⎥⎥⎥⎦ (1.40)

Using Equation 39, one can write the double contraction of the strain and stress tensors as

𝛆∶𝛔 = 𝜀11𝜎11 + 𝜀22𝜎22 + 𝜀33𝜎33 + 2(𝜀12𝜎12 + 𝜀13𝜎13 + 𝜀23𝜎23) (1.41)

Because a second-order symmetric tensor has six independent elements, vector notations,
instead of tensor notations, can also be used to define the strain and stress components of
the preceding two equations. In this case, six-dimensional strain and stress vectors can be
introduced as follows:

𝛆v = [𝜀11 𝜀22 𝜀33 𝜀12 𝜀13 𝜀23]T

𝛔v = [𝜎11 𝜎22 𝜎33 𝜎12 𝜎13 𝜎23]T

}
(1.42)

where subscript v is used to denote a vector. The dot product of the strain and stress vectors is
given by

𝛆 ⋅ 𝛔 = 𝛆T𝛔 = 𝜀11𝜎11 + 𝜀22𝜎22 + 𝜀33𝜎33 + 𝜀12𝜎12 + 𝜀13𝜎13 + 𝜀23𝜎23 (1.43)

Note the difference between the results of the double contraction and the dot product of
Equations 41 and 43, respectively. There is a factor of 2 multiplied by the term that includes
the off-diagonal elements in the double contraction of Equation 41. Equation 41 arises
naturally when the elastic forces are formulated, as will be shown in Chapter 3. Therefore,
it is important to distinguish between the double contraction and the dot product despite the
fact that both products lead to scalar quantities.

Invariants of the Second-Order Tensor

Under an orthogonal transformation that represents rotation of the axes of the coordinate sys-
tems, the components of the vectors and second-order tensors change. Nonetheless, certain
vector and tensor quantities do not change and remain invariant under such an orthogonal trans-
formation. For example, the norm of a vector and the dot product of two three-dimensional
vectors remain invariant under a rigid-body rotation.
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For a second-order tensor A, one has the following three invariants that do not change under
an orthogonal coordinate transformation:

I1 = tr(A)

I2 = 1
2
{(tr(A))2 − tr(A2)}

I3 = det(A) = |A|
⎫⎪⎬⎪⎭ (1.44)

These three invariants can also be written in terms of the eigenvalues of the tensor A. For a
given tensor or a matrix A, the eigenvalue problem is defined as

Ay = 𝜆y (1.45)

where 𝜆 is called the eigenvalue and y is the eigenvector of A. Equation 45 shows that the
direction of the vector y is not affected by multiplication with the tensor A. That is, Ay can
change the length of y, but such a multiplication does not change the direction of y. For this
reason, y is called a principal direction of the tensor A. The preceding eigenvalue equation can
be written as

(A − 𝜆I)y=𝟎 (1.46)

For this equation to have a nontrivial solution, the determinant of the coefficient matrix must
be equal to zero, that is,

det(A − 𝜆I)= 0 (1.47)

This equation is called the characteristic equation, and in the case of a second-order tensor
it has three roots 𝜆1, 𝜆2, and 𝜆3. Associated with these three roots, there are three corre-
sponding eigenvectors y1, y2, and y3 that can be determined to within an arbitrary constant
using Equation 46. That is, for a root 𝜆i, i= 1, 2, 3, one can solve the system of homogeneous
equations (A− 𝜆iI)yi = 0 for the eigenvector yi to within an arbitrary constant, as demonstrated
by the following example.

Example 1.5

Consider the matrix

A =
⎡⎢⎢⎢⎣
1 −1 2

0 3 1

0 0 2

⎤⎥⎥⎥⎦
The characteristic equation of this matrix can be obtained using Equation 47 as

det(A − 𝜆I) = (1 − 𝜆)(3 − 𝜆)(2 − 𝜆) = 0

The roots of this characteristic equation define the following three eigenvalues of the
matrix A:

𝜆1 = 1, 𝜆2 = 2, 𝜆3 = 3
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Associated with these three eigenvalues, there are three eigenvectors, which can be determined
using Equation 46 as

(A − 𝜆iI)yi = 𝟎, i = 1, 2, 3

or ⎡⎢⎢⎢⎣
1 − 𝜆i −1 2

0 3 − 𝜆i 1

0 0 2 − 𝜆i

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
yi1

yi2

yi3

⎤⎥⎥⎥⎦ = 𝟎, i = 1, 2, 3

This equation can be used to solve for the eigenvectors associated with the three eigenvalues
𝜆1, 𝜆2, and 𝜆3. For 𝜆1 = 1, the preceding equation yields the following system of algebraic
equations: ⎡⎢⎢⎢⎣

0 −1 2

0 2 1

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
y11

y12

y13

⎤⎥⎥⎥⎦ = 𝟎

This system of algebraic equations defines the first eigenvector to within an arbitrary constant
as

y1 =
⎡⎢⎢⎢⎣
y11

y12

y13

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎦
For 𝜆2 = 2, one has

y2 =
⎡⎢⎢⎣
y21

y22

y23

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−3

1

−1

⎤⎥⎥⎦
The eigenvector associated with 𝜆3 = 3 can also be determined as

y3 =
⎡⎢⎢⎣
y31

y32

y33

⎤⎥⎥⎦ =
⎡⎢⎢⎣

1

−2

0

⎤⎥⎥⎦

Symmetric Tensors

In the special case of a symmetric tensor, one can show that the eigenvalues are real and the
eigenvectors are orthogonal. Because the eigenvectors can be determined to within an arbitrary
constant, the eigenvectors can be normalized as unit vectors. For a symmetric tensor, one can
then write

Ayi = 𝜆iyi, i = 1, 2, 3

yT
i yj = 𝛿ij, i, j = 1, 2, 3

}
(1.48)
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If yi, i= 1, 2, 3, are selected as orthogonal unit vectors, one can form the orthogonal matrix 𝚽
whose columns are the orthonormal eigenvectors, that is,

𝚽 = [y1 y2 y3] (1.49)

It follows that
A𝚽 = 𝚽𝛌 (1.50)

where

𝛌 =
⎡⎢⎢⎣
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎤⎥⎥⎦ (1.51)

Using the orthogonality property of 𝚽, one has

A = 𝚽𝛌𝚽T =
3∑

i=1

𝜆i(yi ⊗ yi) (1.52)

This equation, which defines the spectral decomposition of A, shows that the orthogonal trans-
formation 𝚽 can be used to transform the tensor A to a diagonal matrix as

𝚽TA𝚽 = 𝛌 =
⎡⎢⎢⎣
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎤⎥⎥⎦ (1.53)

That is, the matrices A and 𝛌 have the same determinant and the same trace. This impor-
tant result is often used in continuum mechanics to study the invariant properties of different
tensors.

Let R be an orthogonal transformation matrix. Using the transformation y=Rz in
Equation 46 and premultiplying by RT, one obtains

(RTAR − 𝜆I)z = 𝟎 (1.54)

This equation shows that the eigenvalues of a tensor or a matrix do not change under an orthog-
onal coordinate transformation. Furthermore, as previously discussed, the determinant and
trace of the tensor or the matrix do not change under such a coordinate transformation. One
then concludes that the invariants of a symmetric second-order tensor can be expressed in
terms of its eigenvalues as follows:

I1 = tr(A) = 𝜆1 + 𝜆2 + 𝜆3

I2 = 1
2
{(tr(A))2 − tr(A2)} = 𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆2𝜆3

I3 = det(A) = 𝜆1𝜆2𝜆3

⎫⎪⎪⎬⎪⎪⎭
(1.55)
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Some of the material constitutive equations used in continuum mechanics are formulated in
terms of the invariants of the strain tensor. Therefore, Equation 55 will be used in later chapters
of this book.

For a general second-order tensor A (symmetric or nonsymmetric), the invariants are
I1 = tr(A), I2 = 1

2
{(tr(A))2 − tr(A2)}, and I3 = det(A), as previously presented. One can show

that the characteristic equation of a second-order tensor can be written in terms of these invari-
ants as 𝜆3−I1𝜆

2 + I2𝜆− I3 = 0. Furthermore, by repeatedly multiplying Equation 45 n times
by A, one obtains Any= 𝜆ny. Using this identity after multiplying the characteristic equation
𝜆3 − I1𝜆

2 + I2𝜆− I3 = 0 by y, one obtains A3 − I1A2 + I2A− I3I= 0, which is the mathematical
statement of the Cayley–Hamilton theorem, which states that a second-order tensor satisfies
its characteristic equation. The simple proof provided here for the Cayley–Hamilton theorem
is based on the assumption that the eigenvectors are linearly independent. A more general
proof can be found in the literature.

For a second-order skew-symmetric tensor W, one can show that the invariants are given by
I1 = I3 = 0 and I2 = w2

12 + w2
13 + w2

23, where wij is the ijth element of the tensor W. Using these
results, the characteristic equation of a second-order tensor W can be written as 𝜆3 + I2𝜆= 0.
This equation shows that W has only one real eigenvalue, 𝜆= 0, whereas the other two eigen-
values are imaginary.

Higher-Order Tensors

In continuum mechanics, the stress and strain tensors are related using the constitutive
equations that define the material behavior. This relationship can be expressed in terms of
a fourth-order tensor whose components are material coefficients. In general, a tensor A
of order n is defined by 3n elements, which can be written as aijk… n. A lower-order tensor
can be obtained as a special case by reducing the number of indices. A zero-order tensor is
represented by a scalar, a first-order tensor is represented by a vector, and a second-order
tensor is represented by a matrix. A tensor of order n is said to be symmetric with respect to
two indices if the interchange of these two indices does not change the value of the elements
of the tensor. The tensor is said to be antisymmetric or skew symmetric with respect to two
indices if the interchange of these two indices changes only the sign of the elements of the
tensor.

As in the case of the second-order tensors, higher-order tensors can be defined using outer
products. For example, a third-order tensor T can be defined as the outer product of three
vectors u, v, and w as follows:

T = (u⊗ v⊗ w) = (tijk) (1.56)

An element of the tensor T takes the form uivjwk. Roughly speaking, in the case of
three-dimensional vectors, one may consider the third-order tensor a linear combination of a
new set of unit dyads that consist of 27 elements (3 layers, each of which has 9 elements).
Recall that the multiplication Sb of a second-order tensor S = (sij) and a vector b = (bi)
defines a vector c = (ci) according to ci =

∑3
j=1 sijbj = si1b1 + si2b2 + si3b3, which represents

a single contraction. Similarly, the multiplication Tb of a third-order tensor T = (tijk) with
a vector b = (bi) is a single contraction that defines a second-order tensor S = (sij) such
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that

sij =
3∑

k=1

tijkbk = tij1b1 + tij2b2 + tij3b3 (1.57)

Using this definition, it follows that the elements of layer or matrix l, l= 1, 2, 3 are given by
wl(u ⊗ v)=Til. Using this definition of the product or following a procedure similar to the
one used to define the elements of the second-order tensor, one can show that the elements of
the third-order tensor are defined as

tijk = (ii ⊗ ij)∶Tik (1.58)

In this equation, the third-order tensor is defined such that it maps an arbitrary vector b accord-
ing to (u⊗ v⊗ w)b = (w ⋅ b)(u⊗ v). Note that whereas a third-order tensor can in general
be written as T= (tijk), one cannot always, as in the case of second-order tensors, find vectors
u, v, and w such that T= (u ⊗ v ⊗ w).

Example 1.6

Let T= (tijk)= (u ⊗ v ⊗ w) be a third-order tensor and u, v, and w be three-dimensional vec-
tors. The third-order tensor T has 27 elements defined by the products w1(u⊗ v), w2(u⊗
v), and w3(u⊗ v). It follows that

Tik = wk(u⊗ v) = wk

⎡⎢⎢⎢⎣
u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

⎤⎥⎥⎥⎦
The element t13k of the tensor T can be defined as

t13k = (i1 ⊗ i3)∶Tik = tr{(i1 ⊗ i3)TTik}

where

(i1 ⊗ i3) =
⎡⎢⎢⎣
0 0 1
0 0 0
0 0 0

⎤⎥⎥⎦
Using the preceding three equations, one obtains

t13k = (i1 ⊗ i3)∶Tik = tr{(i1 ⊗ i3)TTik} = u1v3wk

Other elements of the tensor T can be determined in a similar manner.

The double product or double contraction can also be applied to third-order tensors. Let T
and S be, respectively, third- and second-order tensors and a, b, c, u, and v be arbitrary vec-
tors. For such tensors, one can verify the following properties based on the double contraction
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(Bonet and Wood, 1997):

T∶(a⊗ b) = (Tb)a
(a⊗ b⊗ c)∶(u⊗ v) = (u ⋅ b)(v ⋅ c)a
(a⊗ S)∶T = (S∶T)⊗ a

(S⊗ a)∶T = S(Ta)

⎫⎪⎪⎬⎪⎪⎭
(1.59)

Using the first of these equations, one can show that the double contraction of a third-order
tensor T by a second-order tensor S can be evaluated in terms of their components as

T∶S =
3∑

i,j,k=1

tijksjkii (1.60)

An important example of a third-order tensor is the alternating tensor 𝚪, which, when
applied to a vector v =[v1 v2 v3]T, maps this vector to a skew-symmetric matrix associated
with this vector, that is,

𝚪v = −ṽ (1.61)

where

ṽ =
⎡⎢⎢⎣

0 −v3 v2

v3 0 −v1

−v2 v1 0

⎤⎥⎥⎦ (1.62)

The components Γijk of 𝚪 are defined as

Γijk = ii ⋅ (ij × ik) (1.63)

From this equation, it is clear that Γijk = 0 if any indices are repeated; Γijk = 1 for an even
permutation of i, j, and k; {(i, j, k), (j, k, i), (k, i, j)}; and Γijk =−1 for any other permutation.
Using the first equation in Equation 59, one can show that, for any two arbitrary vectors u and
v, the alternating tensor 𝚪 can be introduced using another definition as

𝚪∶(u⊗ v) = (𝚪v)u = −ṽu = u × v (1.64)

Equation 61 can also be written in component form as ṽij =
∑3

k=1 Γijkvk because for a fixed
k, only terms that do not have repeated indices will appear. For example, if the summation
convention is used, Γij2ṽij = Γ132ṽ13 + Γ312ṽ31 = −ṽ13 + ṽ31 = 2v2. One can follow the same
procedure for the other two components for the vector v and show that vk = − 1

2

∑3
i,j=1 Γijkṽij =

− 1
2

∑3
i,j=1 Γkijṽij =

1
2

∑3
i,j=1 Γikjṽij (Aris, 1962). The alternating tensor 𝚪 is another example of

an isotropic tensor. Furthermore, one can show that the cross product between the two vectors
in Equation 64 can be written as u × v =

∑3
i,j=1 uivj(ii × ij) =

∑3
i,j,k=1 Γijkuivjik.

In a similar manner to the third-order tensor, a fourth-order tensor F can be defined as

F = (u1 ⊗ u2 ⊗ u3 ⊗ u4) = (fijkl) (1.65)
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where um, m= 1, 2, 3, 4, is an arbitrary vector. As in the case of third-order tensors, one can
write u4m (u1 ⊗ u2 ⊗ u3)=Fim, where u4m is the mth component of the vector u4. It can then
be shown that the coefficients fijkl can be written as

fijkl = (ii ⊗ ij)∶F∶(ik ⊗ il) (1.66)

More generally, if F = (fijkl) is a fourth-order tensor and v = (vi) is a vector, one has the
single contraction, Fv = T, where T = (tijk) is a third-order tensor whose elements are
defined as

tijk =
3∑

l=1

fijklvl = fijk1v1 + fijk2v2 + fijk3v3 (1.67)

Similarly, the double contraction F∶S = B of the fourth-order tensor F = (fijkl) and a
second-order tensor S = (sij) defines a second-order tensor B = (bij) whose elements are
defined as bij =

∑3
k,l=1 fijklbkl. Using this definition, one can show that

F∶(u1 ⊗ u2) = (Fu2)u1 (1.68)

which results in a second-order tensor. The double product of fourth- and second-order ten-
sors is important because it will be used to define the product that appears in the constitutive
equations of the materials.

Alternatively, a fourth-order tensor F can be defined as the outer product of two
second-order tensors A and B as F=A ⊗ B. In this case, the elements of the tensor F can
be defined in terms of the elements of the tensors A and B as fijkl =AijBkl. Furthermore,
FT = (A⊗B)T = (B⊗A), and for arbitrary second-order tensors S1 and S2, one has the
following identity: S1 : FT: S2 = S2 : F : S1 = (F : S1) : S2.

1.5 POLAR DECOMPOSITION THEOREM

The polar decomposition theorem states that any square nonsingular matrix can be decom-
posed as the product of an orthogonal matrix and a symmetric matrix. According to this
theorem, the square matrix J can have one of the following two decompositions:

J = RU, J = VR (1.69)

where R is an orthogonal matrix and U and V are nonsingular symmetric matrices. Note that
if the decomposition in the first equation is proved, the proof of the decomposition of the
second equation follows because V= JRT =RURT. Therefore, it is sufficient to prove the first
decomposition.

Although the proof of the polar decomposition theorem is outlined in this section for 3× 3
matrices, the generalization to square matrices with higher dimensions is straightforward. In
order to prove the polar decomposition theorem, we define the following symmetric matrix:

C = JTJ (1.70)
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Because C is symmetric, its eigenvalues are real and its eigenvectors are orthogonal. Fur-
thermore, in addition to the symmetry property, the property of positive definiteness of C is
required. The matrix C is said to be positive definite if for all nonzero vectors a, aTCa is pos-
itive. It can be shown that the eigenvalues of a positive definite matrix are positive. Let 𝜆1, 𝜆2,
and 𝜆3 be the eigenvalues of the symmetric positive definite matrix C and let 𝚽 be the matrix
whose columns are the eigenvectors of C associated with the eigenvalues 𝜆1, 𝜆2, and 𝜆3. Using
the orthogonality property of the eigenvectors, one has

𝚽TC𝚽 =
⎡⎢⎢⎣
λ1 0 0

0 λ2 0

0 0 λ3

⎤⎥⎥⎦ (1.71)

One can define the following matrix:

U = 𝚽
⎡⎢⎢⎢⎣
√
λ1 0 0

0
√
λ2 0

0 0
√
λ3

⎤⎥⎥⎥⎦𝚽
T (1.72)

Again using the orthogonality of the eigenvectors, one can show that

U2 = 𝚽
⎡⎢⎢⎢⎣
λ1 0 0

0 λ2 0

0 0 λ3

⎤⎥⎥⎥⎦𝚽
T = C, U−1 = 𝚽

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1√
λ1

0 0

0
1√
λ2

0

0 0
1√
λ3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝚽T (1.73)

The matrix R that appears in the polar decomposition theorem can now be defined as

R = JU−1 (1.74)

One can show that this matrix is an orthogonal matrix. To this end, we write

RTR = U−1JTJU−1 = U−1CU−1 = U−1U2U−1 = I (1.75)

which shows that R is indeed an orthogonal matrix. Using the positive definiteness property,
one can show that the matrices R, U, and V that appear in the polar decomposition theorem
are unique.

The result of the polar decomposition theorem, which states that a matrix can be written
as the product of an orthogonal matrix and a symmetric matrix, can be used to explain some
of the fundamental problems associated with some finite element formulations. In continuum
mechanics, as will be discussed, the position field can be used to define the matrix of position
vector gradients. This matrix can be written as the product of an orthogonal matrix and a sym-
metric matrix. The orthogonal matrix defines the rotation of the material elements. That is, the
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rotation field can be defined using the matrix of position vector gradients, which is determined
from the displacement or position field. In some finite element formulations, the displacement
and rotation fields arc interpolated independently, and as a consequence, the geometry is not
uniquely defined (Ding et al., 2014). The result of the polar decomposition theorem shows
that the use of such independent interpolations for the displacements and rotations can lead
to a redundancy problem. In computational mechanics, such a redundancy can lead to seri-
ous fundamental and numerical problems. In Chapters 5 and 6, two nonlinear finite element
formulations are introduced. The two formulations define unique displacement and rotation
fields, and therefore, the problem of coordinate redundancy is not an issue when these two
nonlinear formulations are used.

Other Decompositions

There are several other techniques that can be used in the decomposition of matrices. One of
these techniques is the QR decomposition, which is based on the Householder transformation.
Using this technique, a square matrix A can be written as A=QR, where Q is an orthogonal
matrix and R is an upper triangular matrix. The Householder transformation operates on the
columns of the matrix A to produce a set of orthonormal vectors. For example, if A is a 3× 3
matrix, one can make the first column a unit vector and use this unit vector with the other
two columns to produce an orthogonal triad that consists of three orthonormal vectors. This
triad defines a coordinate system and the orthogonal matrix Q. One can show that the use
of this procedure leads to the upper triangular matrix R defined as R=QTA. The way the
orthogonal matrix Q is defined here gives a physical interpretation for the QR decomposi-
tion of 3× 3 matrices. In the next chapter, it will be shown that the matrix of position vector
gradients plays an important role in the formulation of the kinematic and strain equations.
One can show that the matrix Q, which results from the QR decomposition of the matrix of
position vector gradients, is associated with a coordinate system, called the tangent frame, fre-
quently used in computational mechanics (Sugiyama et al., 2006). Furthermore, the triangular
matrix R, whose diagonal elements define the principal values, provides an alternate upper
triangular form instead of the symmetric matrix U that results from the polar decomposition
theorem. The matrix U in continuum mechanics, when obtained from the decomposition of
the matrix of position vector gradients, describes the deformations of the continuum and can
be used to determine the strain components because such strain components are not affected
by the orthogonal matrix that results from the polar decomposition or the QR decomposition.
The QR decomposition and the Householder transformation have been used in other areas of
computational mechanics as reported in the literature (Kim and Vanderploeg, 1986; Shabana,
2001).

1.6 D’ALEMBERT’S PRINCIPLE

The virtual work method represents a powerful technique that can be used to formulate the
equations of motion of the continuum. This method is based on D’Alembert’s principle, which
is the foundation for the skillful approaches developed by Lagrange. In this section, we review
the particle and rigid-body mechanics to demonstrate the use of D’Alembert’s principle in
formulating the dynamic equations of motion.
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Particle Mechanics

A continuum consists of an infinite number of particles or material points that can move rel-
ative to each other if the rigid-body assumptions cannot be applied. The dynamic equations
of particles can be obtained using Newton’s second law of motion, which states that the force
acting on a particle is equal to the rate of change of momentum. Newton’s second law can be
written in vector form as F= ṗ. In this equation, F is the resultant of the forces acting on the
particle and p is the particle momentum defined as p=mv, where m and v are, respectively, the
mass and the absolute velocity vector of the particle. If the mass m is assumed to be constant,
the preceding two equations lead to

F = ṗ = m
dv
dt

= ma (1.76)

In this equation, a is the absolute acceleration vector of the particle. In general, three scalar
equations are required to describe the particle dynamics. This is mainly due to the fact that,
in the case of unconstrained motion, the particle has three degrees of freedom in the spatial
analysis because it is represented by a point that has no dimensions. In the case of planar
motion, only two equations are required because, in this case, the particle has only two degrees
of freedom.

Rigid-Body Kinematics

Rigid bodies are assumed to have dimensions, and therefore, they differ from particles.
Nonetheless, a rigid body can be assumed to consist of an infinite number of particles. In
this special case of continuum, the distances between the particles of the rigid body remain
constant. As a consequence, the displacements of the points on the rigid body are constrained
such that there is no relative motion between two points along the line joining them. Using this
condition of rigidity, the number of degrees of freedom of a continuum can be significantly
reduced. In the case of spatial analysis, a rigid body has six degrees of freedom that describe
three independent translations and three independent rotations. In the case of planar motion,
the rigid body has only three degrees of freedom: two describe the body translation and one
describes the rotation of the body. For instance, as shown in Figure 1, the configuration of
the rigid body in planar motion can be described using the vector rO and the angle 𝜃. The
vector rO defines the location of the reference point that represents the origin of a selected
body coordinate system, whereas the angle 𝜃 defines the body rotation. Using these three
coordinates, one can show that the global position vector of an arbitrary point on the body
can be written as

r = rO + u (1.77)

In this equation, u is the vector that defines the position of the point with respect to the reference
point Ō. Because the coordinates of the arbitrary point in the body coordinate system remain
constant by virtue of the rigidity assumption, the vector u can be expressed in terms of these
constant coordinates as

u =

[
x̄1 cos 𝜃 − x̄2 sin 𝜃

x̄1 sin 𝜃 + x̄2 cos 𝜃

]
(1.78)
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Figure 1.1 Rigid-body coordinates

where x̄1 and x̄2 are the constant coordinates of the arbitrary point defined in the body coordi-
nate system. The preceding equation can be written in matrix form as

u = Aū (1.79)

where

A =
[

cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

]
, ū=

[
x̄1

x̄2

]
(1.80)

Substituting Equation 79 into Equation 77 one obtains

r = rO + Aū (1.81)

In this equation, A represents the transformation matrix that defines the orientation of
the selected body coordinate system. This transformation matrix is orthogonal, that is,
AAT =ATA= I. Equation 81 shows that the position vector of an arbitrary point on the body
is a function of the three coordinates rO and 𝜃 that can change throughout the body motion.
Therefore, these coordinates depend on time. If these coordinates are determined, the global
position of any point on the body, or equivalently the body configuration, can be determined
using the preceding equation. An equation in the same form as Equation 81 can be obtained
in the case of spatial motion of rigid bodies, as will be demonstrated in Chapter 6. In the case
of spatial motion, three-dimensional vectors instead of two-dimensional vectors are used, and
the transformation matrix A is expressed in terms of three independent rotation parameters
instead of one parameter.

The absolute velocity of an arbitrary point on the rigid body can be obtained by differenti-
ating Equation 81 with respect to time. This leads to

ṙ = ṙO + �̇�A𝜃ū (1.82)
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where A𝜃 = 𝜕A/𝜕𝜃 is the partial derivative of the transformation matrix A with respect to the
angle 𝜃. In deriving Equation 82, ̇̄u is assumed to be zero because the case of a rigid body is
considered. One can define the following angular velocity vector:

�̄� =
[
0 0 �̇�

]T
(1.83)

Using this definition, the absolute velocity vector of Equation 82 can be written, after extending
the vectors to three-dimensional form by adding zeros, as

ṙ = ṙO + A(�̄� × ū) (1.84)

The planar transformation matrix is defined when the preceding equation is used as

A =
⎡⎢⎢⎣
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎦ (1.85)

Equation 84 can also be rewritten using vectors defined in the global coordinate system as

ṙ = ṙO + 𝛚 × u (1.86)

In this equation, 𝛚 = A�̄�, and u = Aū. In the case of the simple planar motion, 𝛚 = �̄�. In the
more general case of spatial rigid-body motion, the absolute velocity vector takes the same
form as Equations 84 and 86 except for the definition of the transformation matrix A and the
angular velocity vectors 𝛚 and �̄�, which must be formulated using three rotation parameters
instead of one, as described in Chapter 6.

The absolute acceleration of an arbitrary point on a rigid body in a planar motion can be
obtained by differentiating Equation 82 with respect to time. This leads to

r̈ = r̈O + �̈�A𝜃ū − �̇�2Aū (1.87)

In deriving this equation, the fact that A𝜃𝜃 = 𝜕2A/𝜕𝜃2 =−A is utilized. This identity applies
only to planar transformation; it is a special case of a more general identity that applies to
spatial transformation matrices (Roberson and Schwertassek, 1988; Shabana, 2013). Using
three-dimensional vectors to represent this planar motion and introducing the following defi-
nition for the angular acceleration:

�̄� =
[
0 0 �̈�

]T
, (1.88)

one can show that the absolute acceleration vector of Equation 87 can be written as

r̈ = r̈O + A(�̄� × ū) + A{�̄� × (�̄� × ū)} (1.89)

Alternatively, this equation can be written using vectors defined in the global coordinate
system as

r̈ = r̈O + 𝛂 × u + 𝛚 × (𝛚 × u) (1.90)
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In this equation, 𝛂 = A�̄�, and other vectors are as defined previously in this section. Again,
Equations 89 and 90 are also applicable to the spatial rigid-body motion. The only difference is
in the definition of the transformation matrix and the angular velocity and angular acceleration
vectors, which depend on three rotation parameters instead of one as will be discussed in
Chapter 6.

Application of D’Alembert’s Principle

D’Alembert’s principle is the foundation for the skillful development of the principle of virtual
work made by Lagrange. D’Alembert’s principle states that the inertia forces can be treated
as the applied external forces. This principle can be used to conveniently derive the equations
of motion of rigid bodies by invoking Newton’s second law and assuming that the rigid body
consists of a large number of particles. To demonstrate the use of this principle, we consider
the planar motion of a rigid body. Assuming that the body consists of a large number of par-
ticles, the equations of motion of an infinitesimal material volume on the rigid body can be
written as

(𝜌dV)r̈ = dF (1.91)

In this equation, dm= 𝜌dV is the mass of the infinitesimal volume dV, 𝜌 is the mass density
of the body, r̈ is the absolute acceleration vector defined by Equation 87, and dF is the body
force per unit volume. In the Newton–Euler formulation of the equations of motion, the origin
of the body coordinate system (reference point) is assumed to be attached to the body center
of mass. In this case, the vector ū defines the position of the arbitrary point with respect to the
body center of mass. It follows that

∫V
𝜌ūdV = 𝟎 (1.92)

Using this identity and the fact that the angular velocity and angular acceleration do not
depend on the spatial coordinates, substitution of Equation 87 into Equation 91, and integration
leads to

mr̈O = F (1.93)

where m is the total mass of the body, and F is the vector of resultant forces acting on the body.
Both are defined as

m = ∫V
𝜌dV , F = ∫V

dF (1.94)

Equation 93 is the Newton equation for the rigid body. The vector of resultant forces F also
includes the effect of other concentrated forces. Equation 93 for the planar motion includes
two scalar equations. Because the unconstrained body in planar motion has three degrees of
freedom, an additional moment equation is needed. Because D’Alembert’s principle states that
the inertia forces can be treated as the external forces, one can equate the moment of the inertia
force 𝜌dV r̈ with the moment of the applied forces dF about any point, we select to be the center
of mass. Following this procedure and integrating, one obtains

∫V
u × (𝜌dV r̈) = ∫V

u × dF + M (1.95)
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In this equation, M is the external moment applied to the body. Using Equations 87 and 92,
one can show that the preceding equation reduces to one nontrivial equation associated with
the rotation about the X3-axis and is given by

IO�̈� = MO (1.96)

In this equation, IO = ∫V𝜌(x̄
2
1 + x̄2

2)dV defines the mass moment of inertia of the body about
its center of mass, and MO is the third component of the vector ∫Vu × dF + M. Equation 96
is called Euler equation. Equations 93 and 96 are the two equations that govern the planar
motion of the rigid body.

A similar procedure based on D’Alembert’s principle can be used to obtain the equations
that govern the spatial motion of rigid bodies. These equations are called the Newton–Euler
equations and are given by[

mI 𝟎
𝟎 Ī𝜃𝜃

] [
r̈O

�̄�

]
=
[

F
M̄O − �̄� × (Ī𝜃𝜃�̄�)

]
(1.97)

In this equation, m is the total mass of the body, I is the identity matrix, F is the vector of
the resultant forces defined in the global coordinate system, M̄O is the vector of the resultant
moments defined in the body coordinate system, and Ī𝜃𝜃 is the constant symmetric inertia
tensor defined in the body coordinate system. The inertia tensor Ī𝜃𝜃 is defined as

Ī𝜃𝜃 =

⎡⎢⎢⎢⎢⎢⎢⎣

∫V
𝜌(x̄2

2 + x̄2
3)dV Symmetric

− ∫V
𝜌x̄1x̄2dV ∫V

𝜌(x̄2
1 + x̄2

3)dV

− ∫V
𝜌x̄1x̄3dV − ∫V

𝜌x̄2x̄3dV ∫V
𝜌(x̄2

1 + x̄2
2)dV

⎤⎥⎥⎥⎥⎥⎥⎦
(1.98)

where x̄1, x̄2, and x̄3 are the components of the vector ū that defines the position of the arbi-
trary point with respect to the origin of the body coordinate system. Equation 97 shows that
Newton–Euler equations do not include inertia coupling between the body translation and
rotation. This is mainly due to the use of the body center of mass as the reference point.

The analysis presented in this section shows that starting with Newton’s second law,
D’Alembert’s principle can be used to obtain Euler equations of motion of the rigid body
by equating the moments of the inertia forces to the moments of the applied forces. The
application of D’Alembert’s principle also allows for systematically eliminating the constraint
forces, thereby obtaining a minimum number of motion equations equal to the number of
degrees of freedom of the system. This subject is covered in more detail in books on
computational and analytical dynamics.

The analysis presented in this section also shows that in the special case of rigid-body
motion, precise description of the finite rotation of the body is important in the formulation
of the dynamic equations. This description of the finite rotation becomes even more important
when the body undergoes deformation coupled with a rigid-body motion. Therefore, in the
case of deformable bodies, it is important to select a set of coordinates that correctly describe
the rigid-body motion when computational methods are used to develop finite dimensional
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models. The coordinates selected must define a unique displacement and rotation field and
must lead to zero strain under an arbitrary rigid-body displacement. This subject will be dis-
cussed in more detail when large displacement finite element formulations are introduced in
later chapters.

Continuum Forces

In the case of rigid bodies, the mass density and volume remain constant. However, in the case
of a continuum subjected to arbitrary displacements, the mass density and volume change. For
this reason, in continuum mechanics, it is important to distinguish between the mass density
𝜌o and the volume V in the reference undeformed configuration and the mass density 𝜌 and
the volume v in the current deformed configuration. Nevertheless, the definitions and basic
principles used in rigid-body dynamics can be generalized to the case of a general continuum
by considering the continuum to consist of an infinite number of points that can move relative
to each other. For example, the inertia force of a material point of an infinitesimal mass 𝜌dv
on the continuum in the current configuration can be written as (𝜌dv)r̈, where r̈ is the abso-
lute acceleration vector of the material point. Using this expression for the inertia force of the
material point, the inertia force for the continuum can be defined as ∫v𝜌r̈dv. Using a similar
procedure, the kinetic energy of the continuum can be written as (1∕2) ∫v𝜌ṙTṙdv. In the next
chapter, the relationship between the mass density and volume in the reference configuration
and in the current configuration will be defined. This relationship will allow us to carry out
the integration using the known properties and dimensions in the undeformed reference con-
figuration. For instance, the use of the principle of conservation of mass obtained in the next
chapter allows one to write the inertia force as ∫V𝜌or̈dV , where 𝜌o and V are, respectively, the
mass density and volume in the undeformed reference configuration.

In a similar manner, one can define the body forces acting on the continuum. Let fb be
the distributed body force per unit volume acting on the continuum at the material points.
Examples of these forces are gravity and magnetic forces. The sum of the body forces acting on
the continuum can be defined as ∫vfbdv. The effect of the traction forces that include tangential
friction forces and normal reaction and pressure can be obtained by integration over the area.
If fs is the vector of distributed surface forces that act on a surface area s, the surface forces
acting on the continuum can be defined using the integral ∫sfsds.

Expressions for the internal elastic forces due to the continuum deformations will be devel-
oped in this book. These expressions will be written in terms of the strain and stress compo-
nents, which are introduced in Chapters 2 and 3, respectively. As will be shown, D’Alembert’s
principle and Lagrange’s techniques can still be used to obtain the equations of motion of the
continuum. Nonetheless, the internal elastic forces can be expressed using different deforma-
tion and stress measures. It is important, however, that the resulting work of the elastic forces
and the strain energy remain constant under an arbitrary rigid-body transformation. For this
reason, the important concept of the objectivity will be a subject of discussion in this book.

1.7 VIRTUAL WORK PRINCIPLE

As previously mentioned, D’Alembert’s principle represents the foundation for the skillful
virtual work method developed by Lagrange. The virtual work principle can be used to
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systematically derive the equations of motion of complex systems. In this principle, the
concept of the virtual displacement, which represents an infinitesimal change in coordinates
that is consistent with the constraints imposed on the motion of the system, is important.
During this virtual change, time is assumed to be frozen. For a vector r, the virtual change
is denoted as 𝛿r. Given a system that consists of np particles, the equations of motion of a
particle i in the system can be written using Newton’s second law as

mir̈i = Fi
e + Fi

c, i = 1, 2, … , np (1.99)

In this equation, mi is the mass of the particle, ri is the global position vector, Fi
e is the vector

of applied forces acting on the particle, and Fi
c is the vector of constraint forces. Multiply-

ing the preceding equation by the virtual change in the position vector of the particle, one
obtains

mir̈i ⋅ 𝛿ri = Fi
e ⋅ 𝛿ri + Fi

c ⋅ 𝛿ri, i = 1, 2, … , np (1.100)

This equation, which is called the Lagrange–D’Alembert equation, can be written as

𝛿Wi
i = 𝛿Wi

e + 𝛿Wi
c (1.101)

where 𝛿Wi
i is the virtual work of the inertia forces, 𝛿Wi

e is the virtual work of the applied forces,
and 𝛿Wi

c is the virtual work of the constraint forces. These expressions for the virtual work are
defined for particle i as

𝛿Wi
i = mir̈i ⋅ 𝛿ri, 𝛿Wi

e = Fi
e ⋅ 𝛿ri, 𝛿Wi

c = Fi
c ⋅ 𝛿ri (1.102)

Using Equation 101, one can write

np∑
i=1

𝛿Wi
i =

np∑
i=1

𝛿Wi
e +

np∑
i=1

𝛿Wi
c (1.103)

which can be written as
𝛿Wi = 𝛿We + 𝛿Wc (1.104)

where

𝛿Wi =
np∑
i=1

𝛿Wi
i , 𝛿We =

np∑
i=1

𝛿Wi
e, 𝛿Wc =

np∑
i=1

𝛿Wi
c (1.105)

represent, respectively, the virtual work of the system inertia forces, the virtual work of the
system applied forces, and the virtual work of the system constraint forces. Because the con-
straint forces acting on two particles are equal in magnitude and opposite in direction and
because the virtual change in a specified (prescribed) coordinate is equal to zero, one must
have 𝛿Wc = 0. This equation and Equation 104 lead to the principle of virtual work, which
can be stated mathematically as

𝛿Wi = 𝛿We (1.106)
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This principle states that the virtual work of the system inertia forces must be equal to the
virtual work of the system applied forces. Note that in Equation 106, the constraint forces
are systematically eliminated. Note also that although 𝛿Wc = 0, 𝛿Wi

c ≠ 0 if the particle i is
subjected to constraints.

Relationship with D’Alembert’s Principle

A simple example can be used to demonstrate the relationship between the principle of virtual
work and D’Alembert’s principle. To this end, we consider the derivation of the equations of
motion of a planar rigid body. The virtual work of the inertia forces of the rigid body can be
written as

𝛿Wi = ∫V
𝜌r̈ ⋅ 𝛿rdV (1.107)

where r and r̈ are given, respectively, by Equations 81 and 87. The virtual change 𝛿r can be
written as

𝛿r = 𝛿rO + A𝜃ū𝛿𝜃 (1.108)

This equation can be written using matrix notation as

𝛿r =
[
I A𝜃ū

] [𝛿rO

𝛿𝜃

]
(1.109)

where I is the 2× 2 identity matrix. The acceleration vector of Equation 87 can also be
written as

r̈ =
[
I A𝜃ū

] [r̈O

�̈�

]
− �̇�2Aū (1.110)

Substituting Equations 109 and 110 into Equation 107 and using Equation 92, which is the
result of using the center of mass as the reference point, one obtains

𝛿Wi =
[
𝛿rT

O 𝛿𝜃
] [mI 𝟎

𝟎 IO

] [
r̈O

�̈�

]
(1.111)

where m is the mass of the rigid body and IO is the mass moment of inertia about the center of
mass that was used in Equation 96.

The virtual work of all the applied forces and moments acting on the body can be written
as

𝛿We = FT𝛿rO + MO𝛿𝜃 =
[
𝛿rT

O 𝛿𝜃
] [ F

MO

]
(1.112)

Substituting Equations 111 and 112 into the principle of virtual work of Equation 106, one
obtains [

𝛿rT
O 𝛿𝜃

]{[mI 𝟎
𝟎 IO

] [
r̈O

�̈�

]
−
[

F

MO

]}
= 0 (1.113)

In the case of unconstrained motion of the planar rigid body, rO and 𝜃 represent three inde-
pendent coordinates, and therefore, the coefficients of their virtual change in the preceding
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equation must be identically equal to zero. This leads to the following system of equations of
motion: [

mI 𝟎
𝟎 IO

] [
r̈O

�̈�

]
−
[

F

MO

]
=
[𝟎

0

]
(1.114)

This matrix equation has three scalar equations, which are the planar Newton–Euler equations
previously obtained in this chapter (see Equations 93 and 96) using D’Alembert’s principle.

Although D’Alembert’s principle and the virtual work principle lead to the same equations,
it is important to note that in the virtual work principle, scalar quantities are used and there is
no need to use cross products to define moments. The forces and moments are defined using
the scalar virtual work expressions. In the case of constrained motion, D’Alembert’s principle
and the virtual work principle also lead to the same results. Both principles can be used to
systematically eliminate the constraint forces and obtain a number of equations equal to the
number of degrees of freedom of the system. Nonetheless, the principle of virtual work is much
easier to use, particularly when complex systems are considered.

1.8 APPROXIMATION METHODS

Solids and fluids have an infinite number of degrees of freedom because their particles can
have arbitrary displacements with respect to each other. The dynamics of such systems is
described using partial differential equations that depend on time and the spatial coordinates.
These general partial differential equations, which are applicable to any solid or fluid material,
are derived in Chapter 3. Only for very simple problems, one can find a closed-form solution
for these partial differential equations. For most problems, however, one resorts to numerical
methods to obtain the solution of the partial differential equations. Approximation methods
such as the finite difference and finite element methods are often used to solve the partial dif-
ferential equations by transforming these equations into a finite set of ordinary differential or
algebraic equations that can be solved using computer and numerical methods. In some of the
numerical techniques based on the Rayleigh–Ritz method, physical variables such as position,
displacement, velocity, and/or acceleration are approximated using interpolation functions that
have finite order. The coefficients of the interpolating functions in the case of dynamics can be
expressed in terms of coordinates that depend on time. In order to demonstrate the use of this
procedure, the two-dimensional beam shown in Figure 2 is considered. It is assumed that the
position of the material points on the beam can be described using the following polynomials:

r =

[
r1

r2

]
=

[
a0 + a1x1 + a2x2 + a3x1x2 + a4(x1)2 + a5(x1)3

b0 + b1x1 + b2x2 + b3x1x2 + b4(x1)2 + b5(x1)3

]
(1.115)

where x1 and x2 are the beam local coordinates defined in the beam coordinate system shown
in Figure 2 and ai and bi, i= 0, 1, 2,… , 5, are the polynomial coefficients. The procedure
used in computational methods such as the finite element method is to replace the polynomial
coefficients with a set of coordinates that have physical meaning. This can be accomplished by
developing a set of algebraic equations that relate the polynomial coefficients to the new set of
coordinates. These algebraic equations can be solved to determine the polynomial coefficients
in terms of the new coordinates. In the beam example considered in this section, there are
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Figure 1.2 Two-dimensional beam

12 polynomial coefficients, and therefore, 12 coordinates can be used to replace the coefficients
ai and bi in Equation 115. To this end, the preceding equation can be written as

r =
[

r1

r2

]
=
[

1 x1 x2 x1x2 (x1)2 (x1)3 0 0 0 0 0 0
0 0 0 0 0 0 1 x1 x2 x1x2 (x1)2 (x1)3

]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2

a3

a4

a5

b0

b1

b2

b3

b4

b5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1.116)

The coefficients ai and bi, i= 0, 1, 2,… , 5, can be replaced by coefficients that represent
position and gradient coordinates. To this end, we choose a set of coordinates associated with
the position and gradient coordinates of the two endpoints of the beam. For the first endpoint
at A, we use

r1 = r(0, 0) =
[

e1
e2

]
, r1

x1
= rx1

(0, 0) =
[

e3
e4

]
, r1

x2
= rx2

(0, 0) =
[

e5
e6

]
(1.117)

and for the second endpoint at B, we use

r2 = r(l, 0) =
[

e7
e8

]
, r2

x1
= rx1

(l, 0) =
[

e9
e10

]
, r2

x2
= rx2

(l, 0) =
[

e11
e12

]
(1.118)
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In this equation, l is the length of the beam and rxk
= 𝜕r∕𝜕xk, k= 1, 2. There are 12 coordinates

in Equations 117 and 118, and therefore, these coordinates, which have physical meaning,
can be used to replace the coefficients ai and bi, i= 0, 1, 2, … , 5, in Equation 116. Using
Equations 116–118, one can show that the position vector r can be written in terms of the
coordinates of Equations 117 and 118 as (Omar and Shabana, 2001):

r = S(x)e(t) (1.119)

where e= e(t)= [e1 e2 … e12]T is a vector of time-dependent coefficients or coordinates,
which consist of position and gradient coordinates, t is time, x= [x1 x2]T, and S=S(x) is a
matrix called the shape function matrix that depends on the local coordinates x1 and x2 and is
given by

S =
[

s1 0 s2 0 s3 0 s4 0 s5 0 s6 0
0 s1 0 s2 0 s3 0 s4 0 s5 0 s6

]
(1.120)

The elements si, i= 1, 2, … , 6, which appear in this equation, are given by

s1 = 1 − 3𝜉2 + 2𝜉3, s2 = l(𝜉 − 2𝜉2 + 𝜉3), s3 = l𝜂(1 − 𝜉)
s4 = 3𝜉2 − 2𝜉3, s5 = l(−𝜉2 + 𝜉3), s6 = l𝜉 𝜂

}
(1.121)

where 𝜉 = x1/l and 𝜂 = x2/l.
The procedure described in this section to approximate a field using polynomials and

replace the polynomial coefficients using coordinates that can have physical meaning is a
fundamental step in the finite element formulation. The choice of the coordinates to consist of
absolute position and gradient coordinates is the basis of a finite element formulation called
the absolute nodal coordinate formulation (ANCF). This formulation, which is discussed in
Chapter 5, can be used to correctly describe an arbitrary rigid-body displacement including
arbitrary rotations. Using the absolute position and gradient coordinates, ANCF does not
impose any restriction on the amount of rotation or deformation within the element, and there-
fore, it is suited for the large-deformation analysis. Efficient solution of small-deformation
problems, on the other hand, requires the use of a more elaborate procedure in order to
eliminate displacement modes, which have a negligible effect on the solution. In the literature,
small-deformation problems are often solved using the floating frame of reference (FFR)
formulation, which is discussed in Chapter 6. In the FFR formulation, which can be considered
a generalization of the Newton–Euler equations used in rigid-body dynamics, a different
set of coordinates is used to define a local linear deformation problem that allows reducing
systematically the number of degrees of freedom.

1.9 DISCRETE EQUATIONS

The principle of virtual work and approximation techniques can be used to determine a set
of discrete ordinary differential equations that govern the dynamics of the continuum. As
will be shown in Chapter 3, the motion of the continuum is governed by partial differential
equations that depend on the spatial coordinates x and time t. The principle of virtual work
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and the approximation techniques can be used to systematically convert the partial differen-
tial equations to a set of discrete ordinary differential equations. To demonstrate this standard
procedure, consider a deformable body that may undergo arbitrary displacements. The global
position vector of an arbitrary point on the body is defined by the vector r. The mass of an
infinitesimal volume dv of the body is 𝜌dv, where 𝜌 is the mass density in the current config-
uration. It follows that the inertia force of this infinitesimal volume is (𝜌dv)r̈, where r̈ is the
absolute acceleration vector. Therefore, the virtual work of the inertia forces of the body can
be written as follows:

𝛿Wi = ∫v
𝜌r̈T𝛿rdv (1.122)

Using the approximation techniques, the virtual displacement 𝛿r can be expressed in terms of
the virtual changes of a finite set of coordinates q, as previously demonstrated in the case of
rigid bodies. That is,

𝛿r = S𝛿q (1.123)

In this equation, S is an appropriate matrix that relates the virtual change of r(x, t) to the virtual
change in the coordinates q(t). Note that, whereas r(x, t) depends on both coordinates x and
time t, the coordinates q(t) depend only on time. As will be shown in this book, the matrix S
depends, in general, on both x and q, as in the case of the small-deformation FFR formulation
discussed in Chapter 6. That is, one can write S=S(x, q(t)). However, in other formulations,
such as ANCF discussed in Chapter 5, one can write S as a function of x only, as demonstrated
in the preceding section. Therefore, in large displacement formulations, one can in general
write the absolute velocity and acceleration vectors as

ṙ = Sq̇, r̈ = Sq̈ + γ (1.124)

In this equation, 𝛄 = Ṡq̇ is a vector, which is quadratic in the first derivatives of the coordinates.
If the matrix S is only a function of x, the vector 𝛄 is identically zero. Substituting Equations
and 123 and 124 into Equation 122, one obtains

𝛿Wi = ∫v
𝜌 (Sq̈ + 𝛄)T(S𝛿q)dv (1.125)

The terms in this equation can be rearranged. This leads to

𝛿Wi = ∫v
𝜌{q̈T(STS) + 𝛄TS}dv𝛿q (1.126)

This equation can be written as

𝛿Wi = (Mq̈ − Qv)T𝛿q (1.127)

where

M = ∫v
𝜌STSdv, Qv = − ∫v

𝜌ST𝛄dv (1.128)
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In this equation, M is the symmetric mass matrix, and Qv is the vector of Coriolis and cen-
trifugal forces. Depending on the set of coordinates selected, some nonlinear finite element
formulations, as will be discussed in this book, lead to a constant mass matrix and zero cen-
trifugal and Coriolis forces, while other formulations lead to a nonlinear mass matrix and
nonzero centrifugal and Coriolis forces. The use of Equation 128 to evaluate the inertia forces
leads to what is known in the literature as a consistent mass formulation. In some structural
finite element formulations, lumped mass techniques are used to formulate the inertia forces
by representing the inertia of the body using discrete bodies or masses instead of using the
distributed inertia representation of Equation 128. In the finite element formulations discussed
in this book, the mass matrix cannot, in general, be diagonal, even in the case in which lumped
mass techniques are used. Furthermore, in the large-deformation finite element formulation
presented in Chapter 5, one cannot use lumped masses, because the use of such a lumping
scheme does not lead to correct modeling of the rigid-body dynamics.

Similarly, by using Equation 123, the virtual work of the applied forces can be written as

𝛿We = QT
e 𝛿q (1.129)

Using Equations 127 and 129 and the principle of virtual work, which states that 𝛿Wi = 𝛿We,
one obtains the following equation:

(Mq̈ − Qe − Qv)T𝛿q = 0 (1.130)

If the elements of the vector q are independent, the preceding equation leads to the discrete
ordinary differential equations of the system given as

Mq̈ = Qe + Qv (1.131)

However, if the elements of the vector q are not totally independent because of kinematic
relationships between the coordinates, one can always write the coordinates q in terms of a
reduced set of independent coordinates qi. In this case, one can write the following relation-
ship between the virtual changes of the system coordinates and the virtual changes of the
independent coordinates:

𝛿q = B𝛿qi (1.132)

In this equation, B is a velocity transformation matrix that can be defined using the kinematic
relationship between the coordinates. Substituting the preceding equation into Equation 130
and using the argument that the elements of the vector qi are independent, one obtains the
following reduced system of ordinary differential equations:

BT(Mq̈ − Qe − Qv) = 𝟎 (1.133)

The vector of accelerations can also be expressed in terms of the independent accelerations,
leading to a number of equations equal to the number of independent coordinates (degrees of
freedom). To this end, one can use Equation 132 to write

q̇ = Bq̇i, q̈ = Bq̈i + Ḃq̇i (1.134)
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Substituting these equations into Equation 133, one obtains a set of equations solely expressed
in terms of the independent accelerations. These equations are given as

(BTMB)q̈i = BT(Qe + Qv − MḂq̇i) (1.135)

In this equation, (BTMB) is the generalized inertia matrix associated with the independent
coordinates and BT(Qe + Qv − MḂq̇i) is the vector of generalized forces that include applied,
centrifugal, and Coriolis forces.

The procedure described in this section for writing the dynamic equations in terms of the
independent coordinates or the degrees of freedom is called the embedding technique. The
dynamic equations can also be formulated in terms of redundant coordinates using the tech-
nique of Lagrange multipliers. The subject of constrained dynamics is discussed in more detail
in the multibody system dynamics literature (Roberson and Schwertassek, 1988; Shabana,
2013).

1.10 MOMENTUM, WORK, AND ENERGY

The study of the computational finite element method requires a sound understanding of
the basic analytical mechanics principles. If correctly derived, the equations of motion must
satisfy these principles. Violations of these mechanics principles are a clear indication of
inconsistencies in formulating the dynamic equations of motion. Among the principles
of mechanics that will be discussed in this section are the principle of linear and angular
momentum and the principle of work and energy. Correct and consistent formulations of
the finite element equations of motion must automatically satisfy these principles. When
these equations of motion are numerically solved, the violations in these principles must be
within the range of the error tolerance of the numerical integration method used. Nonetheless,
some finite element formulations lead to energy drift as a result of being inconsistent.
For example, the use of a nonunique rotation field can lead to violations of the principle
of work and energy as evident by many of the results presented in the finite element
literature.

Linear and Angular Momentum

The linear momentum of a body is defined as

Ml = ∫v
𝜌ṙdv (1.136)

where Ml is the vector of linear momentum, 𝜌 and v are, respectively, the mass density and
volume of the body in the current configuration, and r is the position vector of an arbitrary
point on the body. Newton’s second law states that the rate of change of the linear momentum
is equal to the resultant of the forces acting on the body, that is,

Ṁl =
d
dt

(
∫v
𝜌ṙdv

)
= F (1.137)
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where F is the resultant of the forces acting on the body. In the case of rigid bodies, the volume
is assumed to remain constant; as a result, the preceding equation, when a centroidal body
coordinate system is used, defines the Newton equation, mr̈O = F, where m is the total mass
of the body and r̈O is the acceleration of the body center of mass. If the resultant of the forces
acting on the body is equal to zero, one obtains the principle of conservation of the linear
momentum, which is written as

Ml = cl (1.138)

In this equation, cl is a constant vector.
The vector of the angular momentum of the body is defined as

Ma = ∫v
𝜌(r × ṙ) dv (1.139)

In the case of rigid bodies, the rate of change of the angular momentum is given by

Ṁa = d
dt

(
∫v
𝜌(r × ṙ) dv

)
= ∫v

𝜌(r × r̈) dv (1.140)

Using Newton’s equation and D’Alembert’s principle, one can show that, in the case of rigid
bodies, the rate of change of angular momentum is equal to the resultant of the moment applied
to the body. If the resultant of the moments is equal to zero, one obtains the principle of con-
servation of angular momentum, which is expressed mathematically as

Ma = ca (1.141)

where ca is a constant vector.

Work and Energy

According to D’Alembert’s principle, the work of the inertia forces is equal to the work of the
applied forces. This statement can be written mathematically in the following form:

∫v
𝜌(r̈ ⋅ dr) dv = F ⋅ dr (1.142)

Using the identity r̈k = ṙk(dṙk∕drk), k= 1, 2, 3, one can show that

r̈ ⋅ dr = ṙ ⋅ dṙ (1.143)

Substituting this equation into Equation 142 one obtains

∫v
𝜌(ṙ ⋅ dṙ)dv = F ⋅ dr (1.144)



�

� �

�

INTRODUCTION 39

Integrating this equation from t0 to t and using the rigid-body assumption, one can show that

1
2 ∫v

𝜌(ṙ ⋅ ṙ)dv − T0 = ∫
t

t0

F ⋅ dr (1.145)

where T0 is the kinetic energy of the body at the initial configuration. The preceding equation
is a statement of the principle of work and energy. This equation shows that the change in
the body kinetic energy is equal to the work done by the applied forces. This principle is
derived using the equations of motion of the body. Therefore, any set of equations of motion, if
correctly and consistently derived, must satisfy the principle of work and energy. As previously
mentioned, some of the nonlinear finite element formulations proposed in the literature for
the large displacement analysis fail to automatically satisfy this principle. The nonlinear finite
element formulations presented in later chapters of this book automatically satisfy the principle
of work and energy, and their use does not require taking special measures when the equations
of motion are integrated numerically.

1.11 PARAMETER CHANGE AND COORDINATE TRANSFORMATION

In continuum mechanics, it is important to differentiate between two different transformations.
The first is the change of parameters and the second is the coordinate transformation of vectors.
Understanding the difference between these two transformations is crucial in understanding
the definitions of the strain components that will be introduced in the next chapter. This subject
is also important in the large-deformation finite element formulation discussed in this book.

Change of Parameters

In order to explain the difference between the change of parameters and the coordinate trans-
formation of vectors, we consider the vector r, which is expressed in terms of three coordinates
x1, x2, and x3. The vector r can then be written as

r =
[
r1 r2 r3

]T = r(x1, x2, x3) (1.146)

Assume that the components of this vector are defined in the coordinate system X1X2X3. The
matrix of gradients of this vector obtained by differentiation with respect to the parameters x1,
x2, and x3 is given by

J =
[
rx1

rx2
rx3

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕r1

𝜕x1

𝜕r1

𝜕x2

𝜕r1

𝜕x3

𝜕r2

𝜕x1

𝜕r2

𝜕x2

𝜕r2

𝜕x3

𝜕r3

𝜕x1

𝜕r3

𝜕x2

𝜕r3

𝜕x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1.147)

It is important to realize that x1, x2, and x3 represent coordinate lines, and the vector rxi
, i= 1,

2, 3, which is a gradient vector defined by differentiation with respect to the coordinate xi,
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represents the change in the vector r as a result of a small change in the coordinate xi. The
vector rxi

is not necessarily a unit vector, and a measure of the deviation from a unit vector is
defined as (rT

xi
rxi

− 1). A measure of the angle between two gradient vectors can be obtained
using the dot product rT

xi
rxj

, i≠ j. Therefore, equations such as (rT
xi

rxi
− 1) and rT

xi
rxj

, i≠ j, can
be used to measure the deformation and shear effects at material points of the continuum.

The vector r defined in the same coordinate system X1X2X3 can be written in terms of
another set of parameters x̄1, x̄2, and x̄3, which are related to the parameters x1, x2, and x3 by
the relation

x = x̄(x1, x2, x3) (1.148)

where x= [x1 x2 x3]T and x̄ =
[
x̄1 x̄2 x̄3

]T
. Using differentiation with respect to the

parameters x̄1, x̄2, and x̄3, the matrix of gradients can be written as

J̄ =
[
rx̄1

rx̄2
rx̄3

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕r1

𝜕x̄1

𝜕r1

𝜕x̄2

𝜕r1

𝜕x̄3

𝜕r2

𝜕x̄1

𝜕r2

𝜕x̄2

𝜕r2

𝜕x̄3

𝜕r3

𝜕x̄1

𝜕r3

𝜕x̄2

𝜕r3

𝜕x̄3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1.149)

In this case, the vector rx̄ i
, i= 1, 2, 3, represents a gradient vector obtained by differentiation

with respect to the coordinate x̄i. Again, the vector rx̄ i
is not necessarily a unit vector, and a

measure of the deviation from a unit vector is given by (rT
x̄i

rT
x̄i
− 1). A measure of the angle

between two gradient vectors can be obtained using the dot product rT
x̄i

rT
x̄j

, i≠ j. Note that the

relationship between J and J̄ is given by

J̄ = 𝜕r
𝜕x̄

= 𝜕r
𝜕x
𝜕x
𝜕x̄

= J
𝜕x
𝜕x̄

(1.150)

Although we assume in this section that parameters are defined along the orthogonal axes
of coordinate systems, the relationship of Equation 150 is general and governs the definition of
the gradients when defined using different parameters, including the case of curvilinear coor-
dinates. It is important, however, to point out that the use of different sets of parameters leads
to the definition of different gradient vectors. Nonetheless, these gradient vectors, regardless
of what set of parameters is used, are defined in the same coordinate system in which the vec-
tor r is defined. That is, the differentiation of a vector does not change the coordinate system
in which this vector is defined.

As a special case, the curve shown in Figure 3 is considered. The position of points on
this curve can be defined in the coordinate system X1X2X3 and can be written in terms of one
parameter s as r= r(s). Because there is only one parameter, there is only one gradient vector,
defined as

rs =
𝜕r
𝜕s

(1.151)

This gradient vector defines the tangent vector, as shown in Figure 3, and if s is selected as the
arc length, rs is a unit vector. One may choose other parameters, such as 𝛼1 and 𝛼2, and define
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rsr

X2

X1

X1

X3

X2

X3

Figure 1.3 Space curve

the gradient vector by differentiation with respect to these new parameters. This leads to other
definitions of the gradient vector as

r𝛼1
= 𝜕r
𝜕𝛼1

, r𝛼2
= 𝜕r
𝜕𝛼2

(1.152)

Clearly, the three gradient vectors defined in Equations 151 and 152 are different expressions
for the tangent vector, for example,

r𝛼1
= 𝜕r
𝜕𝛼1

= 𝜕r
𝜕s

𝜕s
𝜕𝛼1

(1.153)

which shows that r𝛼1
and rs are two parallel vectors that differ by a scalar multiplier that

depends on the relationship between the two parameters 𝛼1 and s. This simple example shows
that the change of parameters does not lead to a change in the coordinate system because the
resulting gradient vectors are defined in the X1X2X3 coordinate system in which the vector r
is defined.

Although in the simple one-dimensional example the change of parameters does not change
the orientation of the gradient vector, when two or more parameters are used, the change
of parameters can lead to a change of the orientation of the gradient vectors but does not
change the coordinate system in which these gradient vectors are defined. This is clear from
Equation 150, which shows that the columns of the gradient matrix J̄ are linear combinations
of the columns of the gradient matrix J.

Coordinate Transformation

The analysis presented thus far in this section shows that the change of parameters does not
imply a change of the coordinate system in which the gradient vectors are defined. That is, if
x1, x2, and x3 are coordinates along the orthogonal axes of the coordinate system X1X2X3 and
x̄1, x̄2, and x̄3 are the coordinates along the axes of another coordinate system X̄1X̄2X̄3, then,
in general, rxi

= 𝜕r∕𝜕xi ≠ Rrx̄ i
, i= 1, 2, 3, where R is the matrix that defines the orientation
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of the coordinate system X̄1X̄2X̄3 with respect to the coordinate system X1X2X3. The gradient
vector rxi

can be written in terms of components defined in the coordinate system X̄1X̄2X̄3 as

r̄xi
= RTrxi

, i = 1, 2, 3 (1.154)

In the analysis presented in this book, it is important to understand the difference between
the change of parameters and the transformation between two coordinate systems, particularly
when the large-deformation ANCF finite elements presented in Chapter 5 are discussed.

Deformation and Strains

In continuum mechanics, strains are used as measure of the deformation. The strains at a point
on the continuum are defined using dot products of gradient vectors, and therefore, their values
in a certain direction are independent of the coordinate system used. As will be shown in the
following chapter, the strain components are used as measure of the stretch and shear. For
example, a stretch strain component is defined as (rxi

⋅ rxi
− 1)∕2, where rxi

= 𝜕r∕𝜕xi is the
gradient vector in the direction of the parameter xi. Clearly, the strain measure (rxi

⋅ rxi
− 1)∕2

is independent of the coordinate system as well as of a rigid-body coordinate transformation;
this is clear from the dot product definition. Furthermore, this definition of the strain is unique
since it measures the change at a point on the continuum in a specific direction defined by the
coordinate line xi, which can represent a straight or curved line.

The deformation on the other hand is not unique and depends on the choice of the coordinate
system. For this reason, deformations are not often used in the general continuum mechanics
developments. In order to provide an explanation, one can consider the slider crank mechanism
shown in Figure 4. This mechanism is widely used in many applications including engines. As
the crankshaft of the mechanism rotates and the piston moves, the connecting rod can be sub-
jected to excessive forces that will produce deformation. A magnification of the deformation
of the connecting is shown in Figure 4b. Regardless of the coordinate system used, the strains
at an arbitrary point on the connecting rod have unique values since they are defined in terms
of the dot product of gradient vectors. The deformation definition, however, is not unique. As
shown in Figure 5, different coordinate systems can be used to measure the deformation. The
figure shows the deformation 𝛿 of the mid-point defined in different coordinate systems. It
is clear that these deformation measures have very different values. In fact, the deformation
of some points, such as the end points of the connecting rod, can be zero in some coordinate

(a) (b)

Crankshaft

Connecting rod
Piston

Figure 1.4 Slider crank mechanism
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Figure 1.5 Deformation measurement.

systems and can assume a very large value in other coordinate systems. The strain measures,
on the other hand, are absolute and do not depend on the choice of the coordinate systems.

Position Vector Gradients and Rigid Body Kinematics

It can be shown that the rigid body kinematic equations can be written as a linear polynomial
in the spatial coordinates if the concept of the position vector gradients is used. That is, a
polynomial similar to Equation 115 with a lower order can be used to describe the rigid body
motion provided appropriate constraints are imposed on the position vector gradients. Using
Equations 81 and 85, one can show that Equation 81 can be written as

r = rO + Aū =
[

a0 + a1x1 + a2x2
b0 + b1x1 + b2x2

]
(1.155)

In this equation,

rO =
[

a0
b0

]
,

[
x̄1
x̄2

]
=
[

x1
x2

]
, rx1

=
[

a1
b1

]
=
[

cos 𝜃
sin 𝜃

]
, rx2

=
[

a2
b2

]
=
[
−sin 𝜃
cos 𝜃

]
(1.156)

This equation shows that the rigid body kinematic equations can be written in the form of the
linear polynomials of Equation 115. Since in the case of unconstrained planar motion the rigid
body has three degrees of freedom, the six coefficients a0, a1, a2, b0, b1, and b2 must be related
by three algebraic equations. It is clear from Equation 156 that these three algebraic constraint
equations imposed on the gradient vectors are

rT
x1

rx1
= 1, rT

x2
rx2

= 1, rT
x1

rx2
= 0 (1.157)

These constraint equations imply that in the case of rigid body motion, the position vector
gradients remain orthogonal unit vectors, and in this special case, the transformation matrix
that defines the orientation of the body coordinate system can be written as A =

[
rx1

rx2

]
.

A similar procedure can be used in the spatial analysis to show that the three-dimensional
rigid body kinematic equations can be written in the form of linear polynomials in the spatial
coordinates. It is important to note that the spatial coordinates x1 and x2 are defined with respect
to the body coordinate system and assume their constant initial values regardless of the amount
of displacement and rotation of the rigid body. That is, when the polynomial representation
is used, the spatial coordinates always assume constant values and the motion of the body
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or the finite element is defined by the time dependent coefficients of the polynomial used, or
alternatively, by the element nodal coordinates used to replace the polynomial coefficients. It is
also clear from Equations 155 and 156 that the rigid body kinematics can be expressed as linear
functions of the angles. Furthermore, the position vector gradients in Equation 156 are written
in terms of trigonometric functions which have infinite orders. Therefore, finite elements, in
which the element displacement field is written as linear functions of angles, cannot correctly
describe rigid body motion and such finite elements cannot be used with the nonincremental
solution procedures often used in multibody system dynamics.

PROBLEMS

1. Find the sum of the following two matrices:

A =
⎡⎢⎢⎣
−3 4 −1
2 0 5
−4 1 3

⎤⎥⎥⎦ , B =
⎡⎢⎢⎣

2 1 0
2 3 4
−4 −2 −3

⎤⎥⎥⎦
Find also the trace of these two matrices as well as the trace of their product.

2. Find the product of the following three matrices:

A1 =
⎡⎢⎢⎣
1 0 0

0 cos 𝜙 − sin 𝜙

0 sin 𝜙 cos 𝜙

⎤⎥⎥⎦ , A2 =
⎡⎢⎢⎣

cos 𝜃 0 sin 𝜃

0 1 0

− sin 𝜃 0 cos 𝜃

⎤⎥⎥⎦ ,
A3 =

⎡⎢⎢⎣
cos 𝜓 − sin 𝜓 0

sin 𝜓 cos 𝜓 0

0 0 1

⎤⎥⎥⎦
3. Find the determinant and the inverse of the following two matrices:

A =
⎡⎢⎢⎣
−3 4 −1
0 1 2
0 0 3

⎤⎥⎥⎦ , B =
⎡⎢⎢⎣
1 0 0
1 1 0
1 1 1

⎤⎥⎥⎦
4. Show that the following two matrices are orthogonal:

A1 =
⎡⎢⎢⎣

cos 𝜃 0 sin 𝜃

0 1 0
− sin 𝜃 0 cos 𝜃

⎤⎥⎥⎦ , A2 = I + ṽ sin 𝜃 + 2ṽ2sin2
(
𝜃

2

)
where 𝜃 is an angle, v is a three-dimensional unit vector, ṽ is the skew-symmetric matrix
associated with the unit vector v, and I is the identity matrix.

5. Show that the determinant of a 3× 3 matrix does not change if a row or a column is
subtracted or added to another.
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6. Show that the matrices in Problem 2 are orthogonal and that their product is an orthogonal
matrix.

7. Find the norm of the columns of the matrices of Problem 3.

8. Prove the identities given in Equations 28 and 29 for three-dimensional vectors.

9. Prove Equation 32 for three-dimensional vectors.

10. Show that if A is a symmetric tensor and B is a skew-symmetric tensor, then A : B= 0.

11. If A, B, and C are second-order tensors, show that the double product satisfies the identity
A : (BC)= (ACT): B= (BTA) : C.

12. If A and B are two symmetric tensors, show that

A ∶ B = A11B11 + A22B22 + A33B33 + 2(A12B12 + A13B13 + A23B23)

13. Find the invariants, eigenvalues, and eigenvectors of the following two matrices:

A =
⎡⎢⎢⎣
−3 4 −1

4 0 5
−1 5 3

⎤⎥⎥⎦ , B =
⎡⎢⎢⎣
2 1 0
1 3 −2
0 −2 −3

⎤⎥⎥⎦
Verify that the three invariants of each of these matrices can be written in terms of the
eigenvalues.

14. Find the projection matrices P and Pp associated with the unit vector

â =
[
1∕
√

3 1∕
√

3 1∕
√

3
]T

.

15. Show that the components of a third-order tensor T can be written as tijk = (ii ⊗ ij): Tik,
where ii, ij, and ik are base vectors.

16. Prove the properties of Equation 59.

17. Show that the component vk of any vector v can be written as vk = −(1∕2)Γijkṽij =
−(1∕2)Γkijṽij = (1∕2)Γikjṽij, where 𝚪= (Γijk) is the third-order alternating tensor and
ṽ = (ṽij) is the skew-symmetric matrix associated with the vector v.

18. Show that the cross product between the two vectors u and v can be written as
u × v =

∑3
i, j=1 uivj(ii × ij) =

∑3
i, j, k=1 Γijkuivjik, where ii, ij, and ik are base vectors and

𝚪= (Γijk) is the third-order alternating tensor.

19. Show that the components of a fourth-order tensor F can be written as fijkl = (ii ⊗ ij)∶ F ∶
(ik ⊗ il), where ii, ij, ik, and il are base vectors.

20. Find the polar decomposition of the matrix

A =
⎡⎢⎢⎣
2 1 3
0 1 −2
0 0 2

⎤⎥⎥⎦
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21. Derive Euler equation of motion using Equation 95.

22. Using D’Alembert’s principle, derive the equation of motion of a pendulum connected to
the ground at one of its ends by a pin joint. Assume that the pendulum rod has length l, mass
m, and mass moment of inertia about the center of mass IO. The pendulum is subjected to
an external moment M. Consider the effect of gravity. Explain how D’Alembert’s principle
can be used to systematically eliminate the reaction forces in this problem.

23. Solve Problem 22 using the principle of virtual work. Discuss the relationship between
D’Alembert’s principle and the principle of virtual work.

24. Verify the shape functions of Equation 121.


