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Manipulations on Matrixes

Even if matrix algebra requires some basic analytic tools in order to handle it with
confidence, the benefits are huge compared to the price paid. This chapter, and those
that follow, aim to make a review of these basic operations.

1.1 Matrix Properties

Rn and Cn represent the ensemble of all the ordered tuples of n real/complex numbers
(x,x,… ,xn). Each of these tuples can be seen as the coordinate of a point in n-
dimensional (or n-dimensional) space. Normally these tuples of n numbers are ordered
in column vectors 𝐱 = [x,x,… ,xn]T . The notation 𝐱 ∈ Rn indicates that 𝐱 is an ordered
tuple (column vector) of n real numbers that define a vector in Rn; similarly for 𝐱 ∈ Cn.
A matrix is obtained by juxtaposing a set of column vectors (tuples): 𝐗 = [𝐱,𝐱,… ,𝐱m]
obtaining 𝐗 ∈ Rn×m (or 𝐗 ∈ Cn×m if complex-valued). The (i, j) entry of X (i and j
indicate the row and column index, respectively) is indicated by [𝐗]ij = 𝐗(i, j) = xij,
depending on the context.

Typical matrixes or vectors:

𝐗 = diag(x,x, ...,xn) =
⎡⎢⎢⎢⎣

x  ⋯ 
 x ⋯ 
⋮ ⋮ ⋱ ⋮
  ⋯ xn

⎤⎥⎥⎥⎦ (diagonal matrix)

𝐈n = diag(,, ...,) = 𝐈 (n× n identity matrix)
𝐞k ∈ R

n such that [𝐞k]i = 𝛿i−k (kth element selection vector)
𝟏n = 𝟏 ∈ R

n such that [𝟏]i =  for ∀i (one vector)

𝐗( ∶ n,k) = 𝐗(∶,k) =
⎡⎢⎢⎢⎣

xk
xk
⋮

xnk

⎤⎥⎥⎥⎦ (colon notation for kth column extraction)

Function 𝛿i is the Dirac delta (𝛿 =  and 𝛿i =  for ∀i ≠ ); for signals the equivalent
notation is used: 𝛿[i].
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2 Statistical Signal Processing in Engineering

1.1.1 Elementary Operations

There are a set of elementary operations for vectors and matrixes. These properties are
collected for both real and complex valued matrixes, and differences are highlighted
whenever necessary to distinguish operation on complex matrixes as different from
real-valued ones. The reader is referred to [, ] or any textbook on linear algebra for
extensive discussions or proofs.
● Sum: for 𝐀 and 𝐁 ∈ Cn×m, sum is 𝐂=𝐀+𝐁 ∈ Cn×m with entries: cij=aij + bij. Asso-

ciative and commutative properties hold for the sum: (𝐀+𝐁) +𝐂 = 𝐀+ (𝐁+𝐂), and
𝐀+𝐁 = 𝐁+𝐀.

● Product: for 𝐀 ∈ Cn×l and 𝐁 ∈ Cl×m, the matrix 𝐂 = 𝐀𝐁 ∈ Cn×m has elements
cij =

∑l
k= aikbkj. Distributive and associative properties hold for matrix product:

(𝐀(𝐁+𝐂) = 𝐀𝐁+𝐀𝐂, and 𝐀(𝐁𝐂) = (𝐀𝐁)𝐂), but not commutative (assuming that
matrixes dimensions are appropriate): 𝐀𝐁 ≠ 𝐁𝐀, in general. Elementwise (or
Hadamard) multiplication for 𝐀 and 𝐁 ∈ Cn×m is 𝐂 = 𝐀⊙𝐁 ∈ Cn×m with cij = aijbij;
other equivalent notation is pointwise multiplication 𝐂 = 𝐀. ∗ 𝐁 that resembles the
Matlab coding.

● Block-partitioned matrix: when problems are large but still with some regularity, the
matrix accounting for the specific problem can be arranged into sub-matrixes. Each
of these sub-matrixes (or blocks) has a predefined regularity or homogeneity such as

𝐗 =
⎡⎢⎢⎢⎣

𝐗 𝐗 ... 𝐗n
𝐗 𝐗 ... 𝐗n
⋮ ⋮ ⋱ ⋮

𝐗m 𝐗m ... 𝐗mn

⎤⎥⎥⎥⎦
where the dimensions of blocks are appropriate for the problem at hand. Relevant is
that block structure is preserved and all the matrix operations are equally defined on
blocks. As an example, matrix-vector product for block-partitioned matrixes is

𝐗𝐲 =

⎡⎢⎢⎢⎢⎣
𝐗 𝐗 ... 𝐗n

𝐗 𝐗 ... 𝐗n
⋮ ⋮ ⋱ ⋮

𝐗m 𝐗m ... 𝐗mn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

𝐲

𝐲
⋮
𝐲n

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

∑n
k= 𝐗k𝐲k∑n
k= 𝐗k𝐲k

⋮∑n
k= 𝐗mk𝐲k

⎤⎥⎥⎥⎥⎦
.

Usually, it is convenient (and advisable) to preserve the block-partitioned structure
across all the matrix manipulation steps.

● Ordering properties for any 𝐀 ∈ Rn×m, or 𝐀 ∈ C
n×m if complex-valued:

Transpose matrix: 𝐀T is 𝐀T ∈ Cm×n such that [𝐀T ]ij = [𝐀]ji = aji (row/columns are
exchanged). Notice that for the product, (𝐀𝐁)T = 𝐁T𝐀T . For a symmetric matrix we
have 𝐀T = 𝐀.
Conjugate matrix: 𝐀∗ is the matrix in Cn×m such that [𝐀∗]ij = a∗

ij (complex conjugate
elementwise).
Hermitian matrix: for a square matrix 𝐀 ∈ Cn×n for which the following property
holds: aij = a∗

ji.
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Conjugate transpose (Hermitian transpose) matrix: 𝐀H is 𝐀H ∈ Cm×n such that
𝐀H = (𝐀∗)T ; therefore [𝐀H]ij = a∗

ji. As for transposition it holds that: (𝐀𝐁)H = 𝐁H𝐀H .
A matrix for which 𝐀H = 𝐀 is a Hermitian matrix (it has Hermitian symmetry).
Gram matrix: for any arbitrary matrix 𝐀 the product 𝐀T𝐀 (or 𝐀H𝐀 for complex-
valued matrix) is a Gram matrix, which is square, positive semidefinite (see below)
and symmetric (𝐀T𝐀)T = 𝐀T𝐀 (or Hermitian symmetric (𝐀H𝐀)H = 𝐀H𝐀). Similarly
𝐀𝐀T (or 𝐀𝐀H ) is a Gram matrix.

● Trace: for a square matrix 𝐀 ∈ Cn×n this is tr[𝐀] =
∑n

i= aii (sum along main diag-
onal). Assuming all square matrixes, the following properties hold true: tr[𝐀𝐁𝐂] =
tr[𝐂𝐀𝐁] = tr[𝐁𝐂𝐀] (invariance for cyclic shift) that for the special case is tr[𝐀𝐁] =
tr[𝐁𝐀]; for the sum tr[𝐀+𝐁] = tr[𝐀] + tr[𝐁].

● Lp norm: for a vector 𝐱 ∈ Cn, the Lp norm is a scalar ≥  defined as:

||𝐱||p =

( n∑
i=

|xi|p

)∕p

there are the following special cases (or notations):

||𝐱|| = ||𝐱||F (Euclidean or Frobenius norm, see below)

||𝐱|| =
n∑

i=
|xi|

||𝐱||∞ = max{|x|, |x|, ..., |xn|}
as limit ‖𝐱‖ simply counts the number of non-zero elements of 𝐱 and is used to
evaluate the sparseness of a vector.

● Euclidean (or Frobenius) norm (special case of Lp norm):

𝐱 ∈ C
n → ||𝐱||F =

( n∑
i=

|xi|

)∕

= (𝐱H𝐱)∕ = tr[𝐱𝐱H]∕

𝐗 ∈ C
n×n → ||𝐗||F =

( n∑
i=

n∑
j=

|aij|

)∕

‖𝐱‖
𝐐 = 𝐱T𝐐𝐱 : weighted norm of 𝐱 for a positive definite 𝐐.

The square of the Euclidean norm for vectors is typically indicated in any of the
equivalent forms:

||𝐱|| = ||𝐱||
F = 𝐱H𝐱.

● Inner product: for any two vectors 𝐱, 𝐲 ∈ Cn their inner product is a scalar defined
as 𝐱H𝐲 =

∑n
i= x∗i yi. The two vectors are orthogonal with respect to each other when

𝐱H𝐲 = . Due to the fact that the inner product is a scalar, the following equalities
hold true: 𝐱H𝐲 = (𝐱H𝐲)T = 𝐲T𝐱∗ and 𝐱H𝐲 = tr[𝐱H𝐲] = tr[𝐲𝐱H]. Recall that ‖𝐱‖

F = 𝐱H𝐱
reduces to the inner product.
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● Outer Product: for any two vectors 𝐱 ∈ Cn and 𝐲 ∈ Cm their outer product is an n×m
matrix defined as 𝐀 = 𝐱𝐲H , therefore, aij = xiy∗j . When 𝐱 = 𝐲 the outer product is 𝐀 =
𝐱𝐱H and it is a rank- Hermitian matrix. In the case where 𝐱 is a vector of random
variables (Section .), the correlation matrix follows from the outer product: 𝐑x =
E[𝐱𝐱H].

● Determinant is a metric associated to any square matrix 𝐀 ∈ Rn×n. The geometric
meaning of a determinant [] denoted as det[𝐀], or |𝐀|, is the volume of the
hypercube enclosed by the columns (or equivalently rows) of 𝐀, and det[𝐀] > 
only when columns (or rows) enclose a non-null volume, so columns (or rows) are
linearly independent. For a general context 𝐀 ∈ Cn×n the following properties hold:
det[𝐀𝐁] = det[𝐀]det[𝐁]; det[𝐀T ] = det[𝐀]; det[𝐀H] = det[𝐀]∗; det[𝛼𝐀] = 𝛼n det[𝐀];
det[𝐀+ 𝐱𝐲T ] = (+ 𝐲T𝐀−𝐱)det[𝐀] (matrix determinant lemma).

● Positive definite (Positive semidefinite) symmetric square matrix: a symmetric (or
Hermitian if complex-valued) matrix 𝐀 is positive definite if 𝐳T𝐀𝐳 >  (or 𝐳H𝐀𝐳 > )
and positive semidefinite if 𝐳T𝐀𝐳 ≥  (or 𝐳H𝐀𝐳 ≥ ) for all non-zero vectors 𝐳. Notice
that for complex-valued matrix, the quadratic form (see Section .) 𝐳H𝐀𝐳 is always
real as 𝐀 is Hermitian. A positive definite (or positive semidefinite) matrix is often
indicated by the following notation: 𝐀 ≻  (or 𝐀 ⪰ ), and if 𝐀 ≻  ⇒ det[𝐀] >  (or
𝐀 ⪰  ⇒ det[𝐀] ≥ ).

● Inverse matrix of a square matrix 𝐀 ∈ Cn×n is the matrix 𝐀− ∈ Cn×n that satis-
fies 𝐀𝐀− = 𝐀−𝐀 = 𝐈. The inverse matrix exists iff det[𝐀] ≠  (that is equivalent to
rank[𝐀] = n). When det[𝐀] =  the matrix is singular and the inverse does not exist.

The following properties hold (under the hypothesis that all the involved inverse
matrixes exist):
– (𝐀T )− = (𝐀−)T and (𝐀H)− = (𝐀−)H (or 𝐀−T and 𝐀−H to ease the notation)
– (𝐀𝐁)− = 𝐁−𝐀−

– For a positive definite matrix it holds that:

[𝐀−]ii ≥


[𝐀]ii

– det[𝐀−] = ∕det[𝐀]
– Inversion lemma:

(𝐀+𝐁𝐂𝐃)− = 𝐀− −𝐀−𝐁(𝐃𝐀−𝐁+𝐂−)−𝐃𝐀−

There are some special cases of practical interest:

(𝐀+𝐁)− = 𝐀− −𝐀−(𝐀− +𝐁−)−𝐀−

(𝜎𝐈+𝐕𝐒𝐕H)− = 
𝜎

(
𝐈−𝐕(𝐕H𝐕+ 𝜎𝐒−)−𝐕H)

(𝐀+𝜇𝐱𝐱H)− = 𝐀− − 𝐀−𝐱𝐱H𝐀−


𝜇
+ 𝐱H𝐀−𝐱

(Woodbury identity)

(𝐀−+𝐁H𝐂−𝐁)−𝐁H𝐂− = 𝐀𝐁H(𝐁𝐀𝐁H+𝐂)−
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– Inversion of a block-partitioned matrix (the dimension of the blocks are arbitrary
but appropriate):[

𝐀 𝐁
𝐂 𝐃

]−

=
[

𝐄 𝐅
𝐆 𝐇

]
where (provided that all the inverse matrixes exist)

𝐄 = 𝐀−+𝐀−𝐁𝐇𝐂𝐀−= (𝐀−𝐁𝐃−𝐂)−

𝐅 = −𝐀−𝐁𝐇 = −𝐄𝐁𝐃−

𝐆 = −𝐇𝐂𝐀− = −𝐃−𝐂𝐄
𝐇 = 𝐃−+𝐃−𝐂𝐄𝐁𝐃−= (𝐃−𝐂𝐀−𝐁)−

– Inequality of the sum:

𝐀− ⪰ (𝐀+𝐁)− ⪰ 𝟎

for symmetric positive definite 𝐀 and symmetric positive semidefinite 𝐁.
● Rank: for a matrix 𝐀 ∈ Cn×m the rank [𝐀] denotes the maximum number of linearly

independent columns or rows of the matrix: .rank [𝐀] ≤min(n,m); .rank [𝐀+𝐁] ≤
rank [𝐀] + rank [𝐁] ≤min(n,m); . rank [𝐀𝐁] ≤min(rank [𝐀] , rank [𝐁]).

● Orthogonal matrix. A matrix 𝐀 ∈ Rn×n is orthogonal if 𝐀T𝐀 = 𝐀𝐀T = 𝐈, or equiv-
alently the inner product of every pair of non-identical columns (or rows) is zero.
Therefore, for an orthogonal matrix, 𝐀− = 𝐀T . Since the columns (or rows ) of
orthogonal matrixes have unitary norm, these are called orthonormal matrixes.
Similar definitions hold for orthogonal 𝐀 ∈ Cn×n, that is, 𝐀H𝐀 = 𝐀𝐀H = 𝐈.

● Unitary matrix. A matrix 𝐀 ∈ Cn×n is called unitary if 𝐀H𝐀 = 𝐀𝐀H = 𝐈. There-
fore for an unitary matrix it holds that 𝐀− = 𝐀H . Sometimes unitary matrixes are
called orthogonal/orthonormal matrixes with an extension of the terms used for real
matrixes.

● Square-root of a matrix 𝐀 ∈ Cn×n is 𝐁 so that 𝐁H𝐁 = 𝐀. In general, square-root is
not unique as there could be any unitary matrix 𝐐 such that 𝐁H𝐈𝐁 = 𝐁H(𝐐H𝐐)𝐁 =
(𝐐𝐁)H(𝐐𝐁)= 𝐀. Common notation, with some abuse, is 𝐀∕ and 𝐀 = 𝐀H∕𝐀∕.

● Triangular matrix. A square matrix 𝐀 ∈ Cn×n with entry [𝐀]ji is upper triangular
if [𝐀]ij =  for j > i (lower triangular if [𝐀]ij =  for i > j), strictly upper triangular if
[𝐀]ij =  for j ≥ i (lower triangular for i ≥ j). The inverse of an upper (lower) triangular
matrix is upper (lower) triangular.

● Kronecker (tensor) product between 𝐀 ∈ Cm×n and 𝐁 ∈ Ck×𝓁 is the block-
partitioned matrix

𝐀⊗𝐁 =
⎡⎢⎢⎢⎣

a𝐁 a𝐁 ⋯ an𝐁
a𝐁 a𝐁 ⋯ an𝐁
⋮ ⋮ ⋱ ⋮

am𝐁 am𝐁 ⋯ amn𝐁

⎤⎥⎥⎥⎦ ∈ C
mk×n𝓁

that generalizes the matrix multiplication when handling multidimensional signals.
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– Properties:

𝐈m ⊗ 𝐈n = 𝐈mn

𝐀⊗ (𝛼𝐁) = (𝛼𝐀)⊗𝐁 =𝛼 (𝐀⊗𝐁)
(𝐀⊗𝐁)H = 𝐀H ⊗𝐁H

(𝐀+𝐁)⊗𝐂 = (𝐀⊗𝐂) + (𝐁⊗𝐂)
𝐀⊗ (𝐁+𝐂) = (𝐀⊗𝐁) + (𝐀⊗𝐂)
𝐀⊗ (𝐁⊗𝐂) = (𝐀⊗𝐁)⊗𝐂

(𝐀⊗𝐁) (𝐂⊗𝐃) = 𝐀𝐂⊗𝐁𝐃
(𝐀⊗𝐁)− = 𝐀− ⊗𝐁−

det [𝐀⊗𝐁] = (det [𝐀])m (det [𝐁])n per 𝐀 ∈ C
m×m,𝐁 ∈ C

n×n

tr [𝐀⊗𝐁] = tr [𝐀] tr [𝐁]
rank [𝐀⊗𝐁] = rank [𝐀] rank [𝐁]

if 𝐀 ≻  and 𝐁 ≻  ⟹ (𝐀⊗𝐁) ≻ 

● Vectorization is related to a matrix, it is based on vec[.] operator that for a matrix
𝐀 =

[
𝐚 𝐚 ...,𝐚n

]
∈ Cm×n gives a vector with all columns ordered one after the other:

vec[𝐀] =
[
𝐚T

 𝐚T
 ...𝐚

T
N
]T ∈ Cmn. There are some properties that are useful to maintain

the block-partitioned structure of matrixes:

vec[𝛼𝐀+ 𝛽𝐁] = 𝛼vec[𝐀] + 𝛽vec[𝐁]
vec[𝐀𝐁𝐂] = (𝐂T ⊗𝐀)vec[𝐁]

vec[𝐀𝐁] = (𝐈⊗𝐀)vec[𝐁] = (𝐁T ⊗ 𝐈)vec[𝐀]

1.2 Eigen-Decompositions

Any matrix-vector multiplication 𝐀𝐱 represents a linear transformation for the vector 𝐱.
However, there are some “special” vectors 𝐱 such that their transformation 𝐀𝐱 preserves
the direction of 𝐱 up to a scaling factor; these vectors are the eigenvectors. In detail, the
eigenvectors of a symmetric matrix 𝐀 ∈ Rn×n (or a Hermitian symmetric 𝐀 ∈ Cn×n, such
that 𝐀H = 𝐀) is as a set of n vectors 𝐪, ...,𝐪n such that:

𝐀𝐪i = 𝜆i𝐪i

where the 𝐪i and 𝜆i are the (right) eigenvectors and the eigenvalues of matrix 𝐀.
Collecting all these vectors into a block-matrix

𝐀[𝐪, ...,𝐪n] = [𝐪, ...,𝐪n]diag(𝜆, ...,𝜆n)⟹ 𝐀𝐐 = 𝐐𝚲

with 𝐐 ∈ Cn×n such that 𝐐−𝐀𝐐 = 𝚲. The eigenvalues are the solutions of the
polynomial-type equation det(𝜆𝐈−𝐀) =  and, for symmetry, are real-valued (𝜆i ∈ R).
The decomposition
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𝐀 = 𝐐𝚲𝐐T =
n∑

k=
𝜆k𝐪k𝐪T

k

shows that 𝐀 can be decomposed into the sum of rank- matrixes 𝐪k𝐪T
k weighted by 𝜆k

(similarly for 𝐀 ∈ Cn×n: 𝐀 = 𝐐𝚲𝐐H =
∑n

k=𝜆k𝐪k𝐪H
k ). The eigenvectors are orthonormal

and this is stated as:

𝐐T𝐐 = 𝐈 ⇔ 𝐪T
i 𝐪j = 𝛿i−j =

{
 for i = j

 for ∀i ≠ j

(and similarly 𝐪H
i 𝐪j = 𝛿i−j). The inverse of a matrix has the same eigenvectors, but inverse

eigenvalues:

𝐀− = 𝐐𝚲−𝐐T

The kth power of a matrix is

𝐀k = (𝐐𝚲𝐐T )(𝐐𝚲𝐐T )…(𝐐𝚲𝐐T ) = 𝐐𝚲k𝐐T

and the square-root is

𝐀 = 𝐀T∕𝐀∕ → 𝐀∕ = 𝚲∕𝐐T

but notice that the square-root factorization is not unique as any arbitrary n× n
orthonormal matrix 𝐁 (i.e., 𝐁T𝐁 = 𝐈) makes the square-root factorization 𝐀 =
𝐀T∕𝐁T𝐁𝐀∕ and thus 𝐀∕ = 𝐁𝚲∕𝐐T . The geometric mean of the eigenvalues are
related to the volume of the hypercube from the columns of 𝐀

det[𝐀] =
∏n

i=𝜆i ;

the volume det[𝐀] =  when at least one eigenvalue is zero. Another very useful property
is the trace:

tr[𝐀] =
n∑

i=
[𝐀]ii =

n∑
i=
𝜆i

When a matrix is not symmetric, one can evaluate the right and left eigenvectors.
For each eigenvalue 𝜆i, a vector 𝐰i ∈ Rn can be associated such that 𝐰T

i 𝐀 = 𝜆i𝐰T
i ;

this is the left eigenvector of 𝐀 relative to the eigenvalue 𝜆i. Collecting all these
eigenvalues/(left) eigenvectors of 𝐀 it follows that: 𝐖T𝐀 = 𝚲𝐖T , where the columns
of 𝐖 are the left eigenvectors of 𝐀. Notice that (𝐰T

i 𝐀)T = 𝐀T𝐰i = 𝜆i𝐰i, thus the left
eigenvector is the (right) eigenvector for the matrix 𝐀T . For symmetric matrixes,
𝐐 = 𝐖.The same properties hold for 𝐀 ∈ Cn×n with Hermitian transposition in place of
transposition.
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The most general decomposition of an arbitrary n×m matrix into eigenvectors is
Singular Value Decomposition (SVD). The decomposition can be stated as follows: any
𝐀 ∈ Cn×m can be decomposed into orthogonal matrixes

𝐀
(m,n)

= 𝐔
(m,m)

⋅ 𝚺
(m,n)

⋅𝐕H
(n,n)

where 𝐔 and 𝐕 are orthonormal and (real-valued) singular values {𝜎k} usually ordered
for decreasing values 𝜎 ≥ 𝜎 ≥ ... ≥ 𝜎r ≥ 𝜎r+ = ...𝜎p =  with r ≤ p = min(m,n):

𝚺 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜎  ⋯ 
 𝜎 
⋮ ⋱ ⋮
  𝜎p
⋮ ⋮
  ⋯ 

⎤⎥⎥⎥⎥⎥⎥⎦
,

rectangular (for m ≠ n) and, in general, non-diagonal. Decomposition highlights that a
matrix can be decomposed into the sum of (up to) r rank- matrixes

𝐀 =
r∑

k=
𝜎k𝐮k𝐯H

k

so that rank(𝐀) = r (from the first r non-zero singular values). This is a relevant property
exploited in many signal processing methods. The following main properties can be
highlighted:

𝐔H𝐔 = 𝐔𝐔H = 𝐈m

𝐕H𝐕 = 𝐕𝐕H = 𝐈n

𝐀H𝐀𝐯i = 𝜎
i 𝐯i

𝐀𝐀H𝐮i = 𝜎
i 𝐮i

𝜆i(𝐀𝐀H) = 𝜆i(𝐀H𝐀) = 𝜎
i

To summarize, columns of 𝐔 are the eigenvectors of the Gram matrix 𝐀𝐀H while
columns of 𝐕 are the eigenvectors of the Gram matrix 𝐀H𝐀. Based on the orthogo-
nality property: 𝐔H ⋅𝐀 ⋅𝐕 = 𝚺. Since rank(𝐀) = r ≤min(m,n), the following equivalent
representation is often useful to partition the columns of 𝐔 and 𝐕 related to the first
non-zero singular values:

𝐀 = 𝐔𝚺𝐕H = [ 𝐔
⏟⏟⏟
(m,r)

, 𝐔
⏟⏟⏟
(m,m−r)

]
[

𝚺 
 

][ 𝐕H


𝐕H


]
}(r,n)
}(n− r,n) = 𝐔𝚺𝐕H



Columns are orthogonal, so 𝐔H
 𝐔 = 𝐈r and 𝐕H

 𝐕 = 𝐈r , but 𝐔𝐔H
 ≠ 𝐔H

 𝐔 and 𝐕𝐕H
 ≠

𝐕H
 𝐕. SVD highlights the properties of the linear transformation 𝐀 as detailed in

Section ..
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1.3 Eigenvectors in Everyday Life

The eigenvectors of a linear transformation highlight the structure of the transformation
itself. However, there are engineering problems where analysis using eigenvectors
computation is far more common than one might imagine; there follow some classical
introductory examples.

1.3.1 Conversations in a Noisy Restaurant

In a restaurant there are N tables occupied by guests that are having conversations
within each table; the mutual interference among tables induces each table to adapt
the intensity of the voice to guarantee the intelligibility of the conversation and cope
with the interference from the other tables. Let Pi be the power of the voice at each
table with Pi ≥ ; the aim here is to evaluate the optimum power values P,P, ...,PN
at every table to guarantee intelligibility without saturating the powers (i.e., avoid the
guests having to unnecessarily talk too loudly). Tables are referred as nodes in a weighted
graph illustrated in Figure . (see Chapter ) where weights account for their mutual
interaction.

Assuming that the gain from jth node toward the i-th node is gij ≤ , the overall
interference experienced by the users of the i-th group is the sum of the signal generated
by all the tables scaled by the corresponding attenuation

∑
j≠i gijPj. What matters for

intelligibility is that the voices within the ith table should be large enough compared
to the overall interference. Namely, the ratio between the power of the signal and the
overall interference should be

Pi∑
j≠i gijPj

≥ 𝛾i

where 𝛾i is the minimum value for the i-th node to have an acceptable quality—usually
this depends on the context and is known. Rearranging the inequality for the
N nodes,

𝛾i
∑
j≠i

gijPj ≤ Pi

1

i

j

N

gij

g1i

g1N

gNj

g1j

gNi

Figure 1.1 Graph representing tables mutually interfering with inter-table gain gij ≤ .
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that in matrix form becomes

⎛⎜⎜⎜⎝
𝛾  … 
 𝛾 … 
⋮ ⋮ ⋱ ⋮
  … 𝛾N

⎞⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐃

⋅

⎛⎜⎜⎜⎝
 g … gN

g  … gN
⋮ ⋮ ⋱ ⋮

gN gN … 

⎞⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐆

⋅

⎛⎜⎜⎜⎝
P
P
⋮

PN

⎞⎟⎟⎟⎠
⏟⏟⏟

𝐩

≤

⎛⎜⎜⎜⎝
P
P
⋮

PN

⎞⎟⎟⎟⎠
⏟⏟⏟

𝐩

or equivalently

𝐀𝐩 ≤ 𝐩

where

𝐀 = 𝐃𝐆

is a square matrix with known and positive entries (matrix 𝐀 is positive) accounting for
link-gains 𝐆 and threshold signal to interference levels 𝐃. To solve, the inequality can
be rewritten as an equality with  < 𝜌 ≤  such that

𝐀𝐩 = 𝜌𝐩.

A trivial solution with all groups inactive (Pi =  for ∀i) should be avoided assuming
that 𝜌 ≠ . The solution for the vector of powers p is any eigenvector of the matrix 𝐀
associated to an eigenvalue smaller than . Notice that the eigenvectors are normalized
to have unit-norm so that optimal power configuration across nodes is independent
of any scaling factor of all nodes (called reference power). To avoid waste of power, it
is advisable to choose a small reference power as this guarantees the minimum signal
to interference level anyway. In practice, customers in a restaurant do not know 𝐀
(possibly a subset or blocks of 𝐆) and the power configuration including the scale factor
is autonomously chosen by each group to reach the global equilibrium. The computation
of the eigenvector is an iterative process (see Section .) implicitly carried out by
mutual respect among guests (if any) while fulfilling the minimal intra-group constraints
on quality 𝐃 that is eased when customers are homogeneous, and all the groups have
the same quality 𝛾 (𝐃 = 𝛾𝐈).

Inspection of the problem shows some minimal conditions for the solution. The
Gershgoring theorem helps to evaluate the conditions for the eigenvalues to be
bounded by unitary value. Let

Ri =
N∑

j=,j≠i
aij

be the sum of the ith row except the diagonal; every eigenvalue of 𝐀 indicated as 𝜆k is
fully contained within every Gersgorin disk

|𝜆k − aii| ≤ Ri =
N∑

j=,j≠i
aij
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centered in aii with radius Ri. In other words, all the eigenvalues of 𝐀 lie in the union of
the Gersgorin disks. Returning to the specific problem, aii =  and thus

|𝜆k| ≤ N∑
j=,j≠i

aij = 𝛾i
∑
j≠i

gij.

Assuming that the solution is for 𝜆max = 𝜌 ≤  as this corresponds to the strict inequality,|𝜆k| ≤ 𝜆max ≤  and thus the condition

𝛾i
∑
j≠i

gij ≤  ⟹ 𝛾i ≤
∑

j≠i gij

guarantees that there exists one solution. The existence of at least one eigenvector 𝐩
with positive entries is based on the Perron–Frobenius theorem [], fulfilled in this
case.

Notice that when there are two sets of disjointed groups as shown in Figure ., the
gain matrix becomes

𝐆 =

⎛⎜⎜⎜⎜⎜⎜⎝

 g   g 
g    g 
   g  g
  g   g

g g    
  g g  

⎞⎟⎟⎟⎟⎟⎟⎠
but since the numbering of the nodes are just conventional, these gains can be reordered
by grouping connected nodes:

�̃� =

⎛⎜⎜⎜⎜⎜⎝

 g g   
g  g   
g g    
    g g
   g  g
   g g 

⎞⎟⎟⎟⎟⎟⎠
= 𝐋⋅

⎛⎜⎜⎜⎜⎜⎝

 g   g 
g    g 
   g  g
  g   g

g g    
  g g  

⎞⎟⎟⎟⎟⎟⎠
⋅𝐋T

where the ordering matrix is symmetric

𝐋 =

⎛⎜⎜⎜⎜⎜⎜⎝

     
     
     
     
     
     

⎞⎟⎟⎟⎟⎟⎟⎠
and it swap the rows/columns  ↔ . Gain matrix �̃� has a block-partitioned structure

�̃� =
(

�̃� 𝟎
𝟎 �̃�

)
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1
2

5

g12

g15 g25

3

4

6

g36

g46

g34

Figure 1.2 Graph for two disjoint and non-interfering sets.

this highlights that the computation of the optimal solution can be decoupled into two
separated solutions for the two sets of nodes.

1.3.2 Power Control in a Cellular Communication System

In cellular systems, every mobile device (e.g., a smart phone) is connected to a base-
station deployed at the center of every cell (see Figure .) that in turn adjusts its
transmission power to control both the received power and the interference toward the
other cells (inter-cell interference). The interference superimposes on the background
noise with power 𝜎. The problem definition is the same as above except that every
user with power Pi is connected to the serving base-station with intra-cell gain gii and
is interfering with all the other cells. Once again, what matters is the ratio between
the power of the signal reaching the serving base-station and the interference arising
from all the other mobile devices (gray lines in figure), each camped in its own base-
station, augmented by some background noise; the signal to interference and noise ratio
(SINR) is

SINRi =
giiPi∑

j≠i gijPj + 𝜎 .

To guarantee a reliable communication, the SINR should be above a predefined relia-
bility value

SINRi ≥ 𝛾i.

The overall problem can be now defined as

𝛾i

(∑
j≠i

GijPj + qi

)
≤ Pi

where Gij = gij∕gii and qi = 𝜎∕gii. In compact notation, this is

𝐃(𝐆𝐏+𝐪) ≤ 𝐩 ⟶ (𝐈−𝐃𝐆)𝐩 ≥ 𝐃𝐪
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cell#i

Pi

Pj

giiPi

gjiPj

cell#j

Figure 1.3 Mutual interference in a cellular communication system.

and the solution is

𝐩 ≥ (𝐈−𝐃𝐆)−𝐃𝐪

with positive values 𝐩 provided that the inverse (𝐈−𝐃𝐆)− is a positive matrix (proof
now is not straightforward as Perron–Frobenius properties do not hold).

In practical systems, the solution is not obtained by directly solving the power
distribution among the users within all the cells, but rather by iterative methods that
assign the power to users in every cell and, based on this choice, the base-stations
exchange the information on the experienced power and interference with others to
change and refine the power assignments accordingly. All this must be carried out
dynamically to compensate for the power losses/gains of the mobile devices gij that
are changing their propagation settings. In other words, every cell measures the SINRi,
and the base-station, from the measurements of the ensemble of other SINRj with j ≠ i
(typically the surrounding cells), orders a local correction of Pi for the devices within
the serving cell (inner power control loop) while an exchange with the other base-
stations defines the macro-corrections (outer power control loop). The overall system is
quite complex, but the final scope is to solve the system 𝐩 ≥ (𝐈−𝐃𝐆)−𝐃𝐪 iteratively by
message exchange. Sometimes the solution cannot be attained as there are conditions
in the system of equations 𝐩 ≥ (𝐈−𝐃𝐆)−𝐃𝐪 that push some terminals with a very
low SINR (being placed in a very bad propagation situation with gii ≃ —e.g., a mobile
device in an elevator) to raise intolerably the power of the network to let these bad-users
have positive values. Even if this is a solution of the system, it increases the interference
for all the others and the average transmission power (and battery usage) due to a few
bad-users. In these situations, it is convenient to drop the calls of these few users with
a large benefit to all the others.
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1.3.3 Price Equilibrium in the Economy

In a system with N manufacturing units that exchange their products, the equilibrium
prices guarantee that every manufacturer has a profit. Let the j-th manufacturer sell a
fraction aij to the i-th manufacturer; in closed system (without any exchange outside of
the set of N entities), we expect that all production will be sold (including the internal-
usage ajj) so that

N∑
i=

aij = ,

and goods are preferably delivered to others (aij ≥ ). If the selling-price is Pj then the
i-th manufacturer spends aijPj toward j-th; the total expenses by the i-th is the sum over
all the acquired goods:

∑N
j= aijPj. In the case of zero-profit, the expenses should equal

the incomes so that

N∑
j=

aijPj = Pi

In compact notation, this is

𝐀𝐩 = 𝐩

and the price of equilibrium is the eigenvector with positive entries associated to the
unit eigenvalue of matrix 𝐀. Any scaling factor is irrelevant as the model is zero-
profit, provided that all the manufacturing units adapt the pricing accordingly, possibly
converging to values that correspond to the same eigenvector.

To be more realistic, the model should account for some profit

Pi −
N∑

j=
aijPj ≥ 𝛾i

so that

(𝐈−𝐀)𝐩 ≥

⎛⎜⎜⎜⎝
𝛾
𝛾
⋮
𝛾N

⎞⎟⎟⎟⎠ = 𝜸

with an analytical relationship similar to power control as 𝐩 ≥ (𝐈−𝐀)−𝜸. Interestingly,
when perturbing the solution by increasing (or decreasing) the profit in one of the man-
ufacturers, all the others will change and the (new) equilibrium is attained iteratively by
adapting prices and profits. Daily experience shows that a fast adaptation is mandatory
when the market is changing, and some of the players are quick reacting at the expense
of the others, pushing the profit of some to be 𝛾i < .
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1.4 Derivative Rules

A set of variables 𝐱 = [x, x,⋯ ,xn]T ordered in a vector can be used to represent the
n ↦  mapping that is indicated with the compact notation

𝜙(𝐱) = 𝜙(x, x,⋯ ,xn),

and similarly for 𝜙(𝐗) if depending on the set of mn variables ordered in a matrix 𝐗
of size m× n. It is convenient to preserve the compact matrix notation in optimization
problems; below are the rules for evaluating derivatives. A few definitions on notation
are mandatory:

Derivative wrt a vector 𝐱 (gradient wrt all the n variables)

𝜕

𝜕𝐱
𝜙(𝐱) =

⎡⎢⎢⎢⎢⎢⎣

𝜕𝜙(𝐱)
𝜕x
𝜕𝜙(𝐱)
𝜕x
⋮

𝜕𝜙(𝐱)
𝜕xn

⎤⎥⎥⎥⎥⎥⎦
,

is an n×  vector with all the partial derivatives with respect to the n variables.
Assuming that there are m multivariate functions ordered into a vector 𝝓(𝐱) =
[𝜙(𝐱) 𝜙(𝐱) ⋯ 𝜙m(𝐱)]T , it is convenient to arrange the multivariate functions into a
row and have the derivative wrt 𝐱 ordered column-wise into the n×m matrix of partial
derivative wrt 𝐱:

𝜕

𝜕𝐱
𝝓T (𝐱) =

[
𝜕𝜙(𝐱)
𝜕𝐱 ⋯ 𝜕𝜙m(𝐱)

𝜕𝐱

]
=
⎡⎢⎢⎢⎣

𝜕𝜙(𝐱)
𝜕x

⋯ 𝜕𝜙m(𝐱)
𝜕x

⋮ ⋱ ⋮
𝜕𝜙(𝐱)
𝜕xn

⋯ 𝜕𝜙m(𝐱)
𝜕xn

⎤⎥⎥⎥⎦
Derivative wrt matrix 𝐗 of size m× n, in compact notation it is the matrix of

derivatives

𝜕

𝜕𝐗
𝜙(𝐗) =

⎡⎢⎢⎢⎣
𝜕𝜙(𝐗)
𝜕x

⋯ 𝜕𝜙(𝐗)
𝜕xn

⋮ ⋱ ⋮
𝜕𝜙(𝐗)
𝜕xm

⋯ 𝜕𝜙(𝐗)
𝜕xmn

⎤⎥⎥⎥⎦
partial derivatives are ordered in the same way as the columns of 𝐗.
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1.4.1 Derivative with respect to 𝐱 ∈Rn

Two relevant cases of derivative are considered herein:
● 𝜙(𝐱) = 𝐱T𝐚 and 𝜙(𝐱) = 𝐚T𝐱

𝜕𝐱T𝐚
𝜕𝐱

=

⎡⎢⎢⎢⎢⎢⎣

𝜕𝐱T 𝐚
𝜕x

𝜕𝐱T 𝐚
𝜕x
⋮

𝜕𝐱T 𝐚
𝜕xn

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

a
a
⋮
an

⎤⎥⎥⎥⎦ = 𝐚

𝜕𝐚T𝐱
𝜕𝐱

=
⎡⎢⎢⎢⎣

a
a
⋮
an

⎤⎥⎥⎥⎦ = 𝐚

Special cases: ) 𝜕

𝜕𝐱 𝐱
T = 𝜕

𝜕𝐱 𝐱 = 𝐈n; ) 𝜕

𝜕𝐱 tr[𝐱𝐚T ] = 𝜕

𝜕𝐱 tr[𝐚𝐱T ] = 𝐚.
● 𝜙(𝐱) = 𝐱T𝐀𝐱(quadratic function) with 𝐀 = [𝐚𝟏,𝐚𝟐,⋯ ,𝐚𝐧]

𝜕𝐱T𝐀𝐱
𝜕𝐱

=

⎡⎢⎢⎢⎢⎢⎣

𝐱T 𝜕𝐀𝐱
𝜕x

+ 𝜕𝐱T 𝐀
𝜕x

𝐱

𝐱T 𝜕𝐀𝐱
𝜕x

+ 𝜕𝐱T 𝐀
𝜕x

𝐱
⋮

𝐱T 𝜕𝐀𝐱
𝜕xn

+ 𝜕𝐱T 𝐀
𝜕xn

𝐱

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

𝐱T 𝜕𝐀𝐱
𝜕x

𝜕𝐀𝐱
𝜕x
⋮

𝐱T 𝜕𝐀𝐱
𝜕xn

⎤⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝐱T 𝜕𝐀𝐱
𝜕𝐱

+

⎡⎢⎢⎢⎢⎢⎣

𝜕𝐱T 𝐀
𝜕x

𝐱
𝜕𝐱T 𝐀
𝜕x

𝐱
⋮

𝜕𝐱T 𝐀
𝜕xn

𝐱

⎤⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝜕𝐱T 𝐀
𝜕𝐱 𝐱

Considering the first term, it is a gradient of multiple functions wrt the vector so that

𝐀𝐱 =
⎡⎢⎢⎢⎣

𝐀(,∶)𝐱
𝐀(,∶)𝐱

⋮
𝐀(n,∶)𝐱

⎤⎥⎥⎥⎦
𝜕𝐀𝐱
𝜕xk

= 𝐚k = 𝐀(∶,k)

Therefore

⎡⎢⎢⎢⎢⎢⎣

𝐱T 𝜕𝐀𝐱
𝜕x

𝐱T 𝜕𝐀𝐱
𝜕x
⋮

𝐱T 𝜕𝐀𝐱
𝜕xn

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝐱T𝐚

𝐱T𝐚
⋮

𝐱T𝐚n

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝐚T

 𝐱

𝐚T
 𝐱
⋮

𝐚T
n 𝐱

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝐚T



𝐚T

⋮
𝐚T

n

⎤⎥⎥⎥⎥⎦
𝐱 = 𝐀T𝐱
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similarly for the second term

𝜕𝐱T𝐀
𝜕xk

= 𝜕(𝐀T𝐱)T

𝜕xk
=
(
𝜕𝐀T𝐱
𝜕xk

)T

⇒

⎡⎢⎢⎢⎢⎢⎣

𝜕𝐱T

𝜕x
𝐀𝐱

𝜕𝐱T

𝜕x
𝐀𝐱
⋮

𝜕𝐱T

𝜕xn
𝐀𝐱

⎤⎥⎥⎥⎥⎥⎦
= ... = 𝐀𝐱.

To summarize,

𝜕𝐱T𝐀𝐱
𝜕𝐱

= (𝐀+𝐀T )𝐱

Furthermore, if 𝐀 is symmetric (𝐀 = 𝐀T ) it reduces to

𝜕𝐱T𝐀𝐱
𝜕𝐱

= 𝐀𝐱.

1.4.2 Derivative with respect to 𝐱 ∈Cn

Considering the scalar complex-valued variable x = xR + jxI , any function𝜙(x) ∶ C↦ C

could be managed by considering the variable as represented by a vector with two
components (real and imaginary part of x) h(.) ∶ R×R↦ C such that h(xR,xI) = 𝜙(x)
and therefore the formalism defined for the derivative with respect to a ×  vector in
R could be used (i.e., any complex-valued variable is represented as two real-valued
variables). However, one could define a mapping g ∶ C×C↦ C such that g(x,x∗) =
𝜙(x), where the variables x and x∗ are treated as two different variables and the function
is analytic (see []). The derivative wrt a complex variable is 

𝜕𝜙(x)
𝜕x

= 


(
𝜕𝜙(x)
𝜕xR

− j𝜕𝜙(x)
𝜕xI

)

 Since

h(xR,xI ) = g(x,x∗)

taking the partial derivative of both

⎧⎪⎨⎪⎩
𝜕h
𝜕xR

= 𝜕g
𝜕x

𝜕x
𝜕xR

+ 𝜕g
𝜕x∗

𝜕x∗

𝜕xR

𝜕h
𝜕xI

= 𝜕g
𝜕x

𝜕x
𝜕xI

+ 𝜕g
𝜕x∗

𝜕x∗

𝜕xI

and the following equalities 𝜕x
𝜕xR

= 𝜕x∗

𝜕xR
= , 𝜕x

𝜕xI
= j and 𝜕x∗

𝜕xI
= −j, solving for 𝜕g

𝜕x
and 𝜕g

𝜕x∗
gives:

⎧⎪⎨⎪⎩
𝜕g
𝜕x

= 


(
𝜕h
𝜕xR

− j 𝜕h
𝜕xI

)
𝜕g
𝜕x∗

= 


(
𝜕h
𝜕xR

+ j 𝜕h
𝜕xI

)
Derivative wrt x is equivalent to consider x∗ as constant, similarly for x∗.
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Below are a few simple cases of derivatives with respect a complex variable:

𝜕x
𝜕x

= 


(
𝜕x
𝜕xR

− j 𝜕x
𝜕xI

)
= 


(+ ) = 

𝜕x∗
𝜕x

= 


(
𝜕x∗
𝜕xR

− j𝜕x∗
𝜕xI

)
= 


(− ) = 

𝜕|x|

𝜕x
= 𝜕xx∗

𝜕x
= 𝜕x
𝜕x

x∗ + x𝜕x∗
𝜕x

= x∗

Let us consider the case of n complex variables (𝐱 ∈ Cn), and following the same
ordering as for real-valued multivariate variables we have
● 𝜙(𝐱) = 𝐚H𝐱 =

∑n
i= a∗

i xi

𝜕𝐚H𝐱
𝜕xk

= 


(
𝜕

𝜕xR,k
− j 𝜕

𝜕xI,k

) n∑
i=

a∗
i xi = a∗

k →
𝜕𝐚H𝐱
𝜕𝐱

=

⎡⎢⎢⎢⎢⎣
a∗



a∗

⋮
a∗

n

⎤⎥⎥⎥⎥⎦
= 𝐚∗

● 𝜙(𝐱) = 𝐱H𝐚 =
∑n

i= aix∗i

𝜕𝐚H𝐱
𝜕xk

= 


(
𝜕

𝜕xR,k
− j 𝜕

𝜕xI,k

) n∑
i=

aix∗i =  →
𝜕𝐱H𝐚
𝜕𝐱

= 𝟎

● 𝜙(𝐱) = 𝐱H𝐀𝐱 where 𝐀 has Hermitian symmetry (𝐀H = 𝐀)
Due to the fact that the kth entry is:

𝜕𝜙(𝐱)
𝜕xk

= 𝐱H 𝜕𝐀𝐱
𝜕xk

+ 𝜕𝐱H

𝜕xk
𝐀𝐱 = 𝐱H𝐚k + 𝟎

we have:

𝜕𝐱H𝐀𝐱
𝜕𝐱

=

⎡⎢⎢⎢⎢⎢⎣

𝐱H 𝜕𝐀𝐱
𝜕x

+ 𝜕𝐱H

𝜕x
𝐀𝐱

𝐱H 𝜕𝐀𝐱
𝜕x

+ 𝜕𝐱H

𝜕x
𝐀𝐱

⋮
𝐱H 𝜕𝐀𝐱

𝜕x
+ 𝜕𝐱H

𝜕x
𝐀𝐱

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝐱H𝐚

𝐱H𝐚
⋮

𝐱H𝐚n

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝐚T

 𝐱∗

𝐚T
 𝐱∗
⋮

𝐚T
n 𝐱∗

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝐚T



𝐚T

⋮
𝐚T

n

⎤⎥⎥⎥⎥⎦
𝐱∗ =𝐀T𝐱∗ =(𝐀𝐱)∗

the last equality holds for Hermitian symmetry.

1.4.3 Derivative with respect to the Matrix 𝐗 ∈Rm×n

Derivation is essentially the same as for a vector as it is just a matter of ordering.
However, there are some essential relationships that are often useful in optimization
problems []:

𝜕

𝜕𝐗
tr[𝐗] = 𝐈
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𝜕

𝜕𝐗
tr[𝐀𝐗] = 𝐀T

𝜕

𝜕𝐗
tr[𝐀𝐗−] = −(𝐗−𝐀𝐗−)T

𝜕

𝜕𝐗
tr[𝐗n] = n(𝐗n−)T

𝜕

𝜕𝐗
tr[exp[𝐗]] = exp[𝐗]

𝜕

𝜕𝐗
det[𝐗] = det[𝐗](𝐗−)T

𝜕

𝜕𝐗
lndet[𝐗] = (𝐗−)T

𝜕

𝜕𝐗
det[𝐗n] = ndet[𝐗]n(𝐗−)T

𝜕

𝜕𝐗
tr[𝐗T𝐀𝐗𝐁] = 𝐀𝐗𝐁+𝐀T𝐗𝐁T

𝜕

𝜕𝐗
tr[𝐗𝐗T ] = 𝐗

1.5 Quadratic Forms

A quadratic form is represented by the following expression:

𝜓(𝐱) = 𝐱T𝐑𝐱 = tr[𝐑𝐱𝐱T ] = ||𝐱||
𝐑

with 𝐱 ∈ RN and 𝐑 ∈ RN×N . Function 𝜓(𝐱) is a scalar and therefore 𝜓(𝐱)T = (𝐱T𝐑𝐱)T =
𝐱T𝐑T𝐱 = 𝜓(𝐱) = 𝐱T𝐑𝐱: in a quadratic form 𝐑 must be symmetric. Moreover 𝐑 is
positive definite 𝐑 ≻ 𝟎 if 𝜓(𝐱) >  (or positive semidefinite if 𝐑 ⪰ 𝟎) for each 𝐱 ≠ 𝟎.

For any arbitrary block-partitioning of 𝐑, it is possible to write:

𝜓(𝐱) = 𝐱T𝐑𝐱 = [𝐱T
 ,𝐱

T
 ]

[
𝐑 𝐑
𝐑T

 𝐑

][
𝐱
𝐱

]
= 𝐱T

 𝐑𝐱 + 𝐱T
 𝐑𝐱 + 𝐱T

 𝐑T
𝐱 + 𝐱T

 𝐑𝐱

If 𝐑 ⪰ 𝟎, this implies 𝐑 ⪰ 𝟎 and 𝐑 ⪰ 𝟎; it is easy to verify this assertion considering
𝐱 = 𝟎 or 𝐱 = 𝟎.
When 𝐱 is fixed, the constrained quadratic form is minimized (with respect to 𝐱) for

�̂� = −𝐑−
 𝐑𝐱

while the value of the form for �̂� = [�̂�T
 ,𝐱

T
 ]

T is

𝜓(�̂�) = 𝐱T
 (𝐑 −𝐑T

𝐑
−
 𝐑)𝐱 ≥ 

the quantity 𝐑 −𝐑T
𝐑

−
 𝐑 is indicated as the Shur complement of the block-

partitioned matrix 𝐑.
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1.6 Diagonalization of a Quadratic Form

Consider the generic quadratic form (see Figure . for N = )

𝜓(𝐱) = 𝐱T𝐑𝐱− 𝐩T𝐱+𝜓

with 𝐑T = 𝐑 full-rank symmetric and positive definite, and 𝜓 ≥  is a constant. By
nullifying the gradient of the quadratic form it is possible to identify the coordinates
of its minimum:

𝜕𝜓(𝐱)
𝜕𝐱

= 𝐑𝐱− 𝐩 =  ⇒ 𝐱min = 𝐑−𝐩

there corresponds a value of 𝜓 as

𝜓min = 𝜓(𝐱 = 𝐑−𝐩) = 𝐩T𝐑−𝐑𝐑−𝐩−𝐩T𝐑−𝐩+𝜓 = 𝜓 −𝐩T𝐑−𝐩.

Often it is useful to refer the quadratic form to its principal axis with the origin placed
at the coordinates of the minimum and an appropriate rotation to have 𝐀 replaced by a
diagonal matrix.

Diagonalization is obtained as a two step procedure. First the new variable is the one
wrt the translated reference

𝐲 = 𝐱− 𝐱min

so that the quadratic form becomes

𝜓(𝐱) = (𝐱− 𝐱min)T𝐑(𝐱− 𝐱min)+𝜓 −𝐩T𝐑−𝐩
𝜓(𝐲) = 𝐲T𝐑𝐲+𝜓min

wrt the new variable 𝐲. As second step, the eigenvector decomposition of 𝐑 = 𝐔𝚲𝐔T

yields

𝜓(𝐲) = 𝐲T (
𝐔𝚲𝐔T)𝐲+𝜓min =

(
𝐔T𝐲

)T 𝚲
(
𝐔T𝐲

)
+𝜓min

The transformation:

𝐳 = 𝐔T𝐲

corresponds to a rotation of the reference system 𝐲 in order to align wrt the principal
axes of the quadratic form as in Figure .. In the new coordinate system, the quadratic
form is diagonal:

𝜓(𝐳) = 𝐳T𝚲𝐳+𝜓min =
m∑

i=
𝜆iz

i +𝜓min.
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x1, min x1, min

x2,min

x1

x2

z1

z2

y1

y2

U

x1

x2

x2,min

z1z2

y1

y2

U

Figure 1.4 Quadratic form and its diagonalization.

This diagonalized form allows an interpretation of the eigenvalues of the quadratic
form as being proportional to the curvature of the quadratic form when evaluated along
the principal axes as

𝜕𝜓(𝐳)
𝜕z

k
= 𝜆k

Further deductions are possible based on this simple geometrical representation.
Namely, for a positive definite matrix, all the eigenvalues are positive and the quadratic
form is a paraboloid (or hyper-paraboloid for N > ); the contour lines (the convex hull
for 𝜓(𝐱) ≤ �̃� = cost) are ellipses (as in the Figure .) that are stretched according to
the ratio between the corresponding eigenvalues. When all eigenvalues are equal, these
contour lines are circles.

1.7 Rayleigh Quotient

Given two quadratic forms 𝜓𝐀(𝐱) = 𝐱H𝐀𝐱 and 𝜓𝐁(𝐱) = 𝐱H𝐁𝐱 (for generality, 𝐱 ∈ CN ),
their ratio

V (𝐱) = 𝐱H𝐀𝐱
𝐱H𝐁𝐱

is indicated as a Rayleigh quotient. The optimization (max/min) of functions like V (𝐱)
is sometimes necessary and requires some specific considerations.

Let 𝐁 ≻ 𝟎 be positive definite in order to avoid meaningless conditions (i.e., 𝜓𝐁(𝐱) = 
for some value of 𝐱); it is possible to have the square-root decomposition as 𝐁 =
𝐁H∕𝐁∕, and by using the transformation

𝐲 = 𝐁∕𝐱
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(that is invertible 𝐱 = 𝐁−∕𝐲) we obtain:

V (𝐱) = 𝐱H𝐀𝐱
(𝐁∕𝐱)H𝐁∕𝐱

=
𝐲H(𝐁−H∕𝐀𝐁−∕)𝐲

𝐲H𝐲
=

𝐲H𝐐𝐲
𝐲H𝐲

The solution that maximizes/minimizes V (𝐱) can be found by the optimization of
𝜓𝐐(𝐲) = 𝐲H𝐐𝐲 for 𝐐 = 𝐁−H∕𝐀𝐁−∕ subject to the constraints of 𝐲 with unitary
norm (see also Section .). Alternatively, by using the eigenvector decomposition of
𝐐 = 𝐕𝚲𝐕H it is possible to write:

V (𝐱) = 𝐲H𝐐𝐲
𝐲H𝐲

=
∑

k 𝜆k|𝐲H𝐯k|

𝐲H𝐲

moreover, the following property holds:

𝜆min(𝐐) ≤ V (𝐱) ≤ 𝜆max(𝐐)

for the following choices

V (𝐱) = 𝜆min(𝐐)⇔ 𝐲 = 𝐯min → 𝐱min = 𝐁−∕𝐯min
V (𝐱) = 𝜆max(𝐐)⇔ 𝐲 = 𝐯max → 𝐱max = 𝐁−∕𝐯max

To summarize, the max/min of V (𝐱) is obtained from the eigenvectors corresponding
to the max/min of 𝐁−H∕𝐀𝐁−∕:

𝐱 = 𝐁−∕eigmax∕min{𝐁−H∕𝐀𝐁−∕}.

1.8 Basics of Optimization

Optimization problems are quite common in engineering and having an essential
knowledge of the main tools is vital. To exemplify, several times it is necessary to identify
the coordinates of minimum (or maximum) of a function 𝜙(𝐱) wrt 𝐱 ∈ RN subject to
(s.t.) some conditions like g(𝐱) = ,⋯ ,gM(𝐱) = . The overall minimization can be cast
as follows:

min
𝐱
{𝜙(𝐱)} s.t. 𝐠(𝐱) =

⎡⎢⎢⎣
g(𝐱)
⋮

gM(𝐱)

⎤⎥⎥⎦ = 𝟎

This is a constrained optimization that is solved by using the Lagrange multipliers
method. The objective function is redefined including the constraints

L(𝐱,𝝀) = 𝜙(𝐱) +
M∑

k=
𝜆kgk(𝐱) = 𝜙(𝐱) +𝝀T𝐠(𝐱)
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where the set of (unknown) terms 𝜆k are called multipliers. The optimization of L(𝐱,𝝀)
is now wrt a total of N +M unknowns and it is carried out by evaluating the gradient
with respect to 𝐱 and 𝝀:

⎧⎪⎨⎪⎩
𝜕L(𝐱,𝝀)
𝜕𝐱

= 𝟎

𝜕L(𝐱,𝝀)
𝜕𝝀

= 𝟎
⇒

⎧⎪⎨⎪⎩
𝜕𝜙(𝐱)
𝜕𝐱

+𝝀T 𝜕𝐠(𝐱)
𝜕𝐱

= 𝟎

𝐠(𝐱) = 𝟎

Notice that the second set of equations is the constraint condition. The solution of
the system of equations should eliminate the multipliers and it requires some ability
in manipulating equations. A comprehensive discussion on optimization methods can
be found in the reference [] with proof of a unique solution in the case of convex
optimization. However, some examples widely used within the book can help to clarify
the Lagrange multiplier method.

1.8.1 Quadratic Function with Simple Linear Constraint (M=1)

If 𝜙(𝐱) = 𝐱T𝐀𝐱 is quadratic function, the optimization with a linear constraint is
formulated as:

min
𝐱
{𝐱T𝐀𝐱} s.t. 𝐜T𝐱 = 

It can be shown that this problem is convex. The formulation with the Lagrangian
multiplier is:

L(𝐱,𝜆) = 𝐱T𝐀𝐱+ 𝜆(𝐜T𝐱− )

that optimized yields

𝜕L(𝐱,𝜆)
𝜕𝐱

=  ⇒ 𝐀𝐱+ 𝜆𝐜 =  ⇒ 𝐱 = −𝜆

𝐀−𝐜

Using the constraint 𝐜T𝐱 = , there is the solution for the multipliers

𝐜T𝐱 =  ⇒ −𝜆

𝐜T𝐀−𝐜 =  ⇒ 𝜆 = − 

𝐜T𝐀−𝐜

(notice that 𝐜T𝐀−𝐜 is a scalar) that substituted gives the solution:

𝐱opt =
𝐀−𝐜

𝐜T𝐀−𝐜
.

1.8.2 Quadratic Function with Multiple Linear Constraints

Let the quadratic form 𝜙(𝐱) = 𝐱H𝐀𝐱 with complex-valued entries and Hermitian sym-
metric 𝐀H = 𝐀; the minimization is subject to M constraints 𝐜H

m𝐱 = dm with m =
,⋯ ,M, and it is a quadratic function minimization with multiple linear constraints:

min
𝐱
{𝐱H𝐀𝐱} s.t. 𝐂𝐱 = 𝐝.
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Due to the fact that the optimization is generalized here to the case of complex variables,
the total number of constraints is M. In fact the single constraint expression can be
written as:

𝛿m = 𝛿R,m + j𝛿I,m = 𝐜H
m𝐱− dm = 

The Lagrangian function with M constraint conditions (𝝀 ∈ CM×) is:

L(𝐱,𝝀) = 𝐱T𝐀𝐱+
M∑

m=
(𝜆R,m𝛿R,m + 𝜆I,m𝛿I,m)

It is useful to recall that the constraints can be written as

(𝜆R,m𝛿R,m + 𝜆I,m𝛿I,m) =


(𝜆∗m𝛿m + 𝜆m𝛿

∗
m)

to highlight the formulas of the derivatives for complex-valued variables (see Section
..). Therefore

L(𝐱,𝜆) = 𝐱H𝐀𝐱+ 

(𝝀H𝜹+ 𝜹H𝝀) = 𝐱H𝐀𝐱+ 


𝝀H(𝐂𝐱−𝐝) + 


(𝐂𝐱−𝐝)H𝝀

and setting the gradient to zero (see Section ..):

𝜕L(𝐱,𝝀)
𝜕𝐱

= (𝐀𝐱)∗ + 

𝐂T𝝀∗ = (𝐀𝐱)∗ + 


(𝐂H𝝀)∗ = 𝟎

whose solution is

𝐱 = − 

𝐀−𝐂𝐻𝝀

which, inserted into the constraints 𝐂𝐱 = 𝐝, gives the solution for the multipliers:

− 

𝐂𝐀−𝐂H𝜆 = 𝐝 → 𝜆 = −(𝐂𝐀−𝐂H)−𝐝

Back-substituting into the problem leads to the general solution for the constrained
optimization problem:

𝐱opt = 𝐀−𝐂H(𝐂𝐀−𝐂H)−𝐝.

Appendix A: Arithmetic vs. Geometric Mean

Let x, ...xN be a set of positive values; the arithmetic mean is always larger than the
geometric mean:

N∑
k=

xk

N
≥

( N∏
k=

xk

)∕N

the equality is for x = x = ... = xN .
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The inequality holds for any weighted average with weighting 𝜆k ≥ :

N∑
k=

𝜆kxk ≥

N∏
k=

x𝜆k
k ,

the equality is still for x = x = ... = xN . In some cases it is convenient (or stems from
the problem itself, e.g., in information theory related problems) to adopt logarithms:

log

( N∑
k=

𝜆kxk

)
≥

N∑
k=

𝜆k logxk

By extension, the following inequalities hold:√
x

 +⋯+ x
N

N
≥

x +⋯+ xN
N

≥ N
√

x⋯xN ≥
N


x
+⋯+ 

xN
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