
�

� �

�

1

1

Introduction

The principal objective of this book is to present the method of lines (MOL)
numerical integration of partial differential equations (PDEs), with spline
collocation (SC) approximation of the PDE boundary-value derivatives. This
approach is therefore termed spline collocation method of lines (SCMOL).
The details of SCMOL computer implementation are presented in terms

of a series of applications, first for one-dimensional (1D) PDEs, then for
two-dimensional (2D) PDEs, and finally for a series of legacy PDEs to illustrate
the broad applicability of SCMOL. The approach is not with formal mathe-
matics, for example, theorems and proofs, but rather, by examples of SCMOL
discussed in detail, including routines in R.1
In this introduction, some basic properties of splines are reviewed, including

example applications of the utilities (functions) for splines in R. The R spline
utilities are then applied to PDEs in the following chapters within the SCMOL
setting.
Splines are polynomials that can be used for the functional approximation of

a set of numerical pairs

Table 1.1 Data pairs for spline interpolation.

x1 y1
x2 y2
⋮ ⋮

xn−1 yn−1

xn yn

1 R is a quality open-source scientific programming system that can be easily downloaded from
the Internet (http://www.R-project.org/). In particular, R has (i) vector–matrix operations that
facilitate the programming of linear algebra, (ii) a library of quality ordinary differential equation
(ODE) integrators, and (iii) graphical utilities for the presentation numerical ODE/PDE solutions.
All of these features and utilities are demonstrated through the applications in this book.

Spline Collocation Methods for Partial Differential Equations: With Applications in R, First Edition.
William E. Schiesser.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Spline_Collocation

CO
PYRIG

HTED
 M

ATERIA
L

�

� �

�

2 1 Introduction

A cubic spline is of the form

p3(x) = a0 + a1x + a2x2 + a3x3 (1.1a)

The coefficients a0, a1, a2, a3 are evaluated to (i) return the original data
of Table 1.1 and (ii) provide continuity in the computed first and second
derivatives of p3(x) at x1, x2,… , xn−1, xn. The sequence in x does not have to
be uniformly spaced, which is a particularly useful feature in the SCMOL
solution of PDEs, that is, the points can be placed as required to achieve good
resolution in x.

p3(x) can be differentiated to give the first and second derivatives
dp3(x)

dx
= a1 + 2a2x + 3a3x2 (1.1b)

d2p3(x)
dx2 = 2a2 + 6a3x (1.1c)

d3p3(x)
dx3 = 6a3 (1.1d)

The derivatives of Eqs. (1.1a)–(1.1d) can then be used to approximate first, sec-
ond, and third derivatives in PDEs.
All of the operations reflected in Eqs. (1.1) are implemented in the R func-

tionsplinefun,2 which returns the coefficients a0, a1, a2, a3 for a set of n data
as listed in Table 1.1. a0, a1, a2, a3 are computed by the solution of a tridiago-
nal algebraic system of n − 1 equations. This set of n + 1 coefficients therefore
requires the specification of two additional conditions.3
A variety of additional conditions can be specified. For example, if the two

second derivatives at the end points of the data set are set to zero, so-called
natural cubic splines result. The details of the splines resulting from various
sets of two additional conditions as implemented in splinefun are given in
Appendix A1 and in [1].
The use of splinefun is illustrated with a series of examples that follows.

1.1 Uniform Grids

Application of splinefun to the function y = sin(𝜋x) is illustrated with the
following code:

#
Previous workspaces are cleared

2 Details of splinefun, including the programming options and example applications, are
available from the online documentation accessed by help(splinefun) entered at the R
prompt. Excerpts from this documentation are given in Appendix A1.
3 This gives a set of n + 1 equations in the n + 1 unknown coefficients.

�

� �

�

1.1 Uniform Grids 3

rm(list=ls(all=TRUE))
#
Define uniform grid
xl=0;xu=1;n=11;
x=seq(from=xl,to=xu,by=(xu-xl)/(n-1));

#
Define function to be approximated
u=sin(pi*x);

#
Set up spline table
utable=splinefun(x,u);

#
Compute spline approximation
us=utable(x);

#
Display comparison of function and its spline
approximation
cat(sprintf("\n x u us

diff"));
for(i in 1:n){
cat(sprintf("\n%5.2f%10.5f%10.5f%12.7f",

x[i],u[i],us[i],us[i]-u[i]));
}

Listing 1.1 Spline approximation of y = sin(𝜋x).

We can note the following details about this listing:

• Previous workspaces are cleared to avoid the unintended use of out-of-date
files.

#
Previous workspaces are cleared

rm(list=ls(all=TRUE))

• A uniform grid is defined with 11 points, 0 ≤ x ≤ 1 so that x = 0, 0.1,… , 1.

#
Define uniform grid

xl=0;xu=1;n=11;
x=seq(from=xl,to=xu,by=(xu-xl)/(n-1));

The seq utility is used for this purpose.
• The function y = sin(𝜋x) is defined on the grid in x.

#

�

� �

�

4 1 Introduction

Define function to be approximated
u=sin(pi*x);

This definition of u4 illustrates the vectorization available in R, that is, u is
an n-vector since x is an n-vector. Also, the function sin can operate on a
vector to produce a vector.

• splinefun is used to define a table of spline coefficients, for example,
a0, a1, a2, a3 in Eq. (1.1a).

#
Set up spline table
utable=splinefun(x,u);

splinefun is part of the basic R and does not have to be accessed from an
external library. Here the default spline mmf is used in which an exact cubic
polynomial is fitted to the four points at each end of the data of Table 1.1 [1],
p. 73.

• The table utable is used to compute spline approximations to u at the val-
ues of x in x.

#
Compute spline approximation
us=utable(x);

Other values of x within the interval xl to xu could be used for interpolation
between the grid points.

• The values of u, their spline approximations us, and the difference between
the two are displayed.

#
Display comparison of function and its spline
approximation
cat(sprintf("\n x u us

diff"));
for(i in 1:n){

cat(sprintf("\n%5.2f%10.5f%10.5f%12.7f",
x[i],u[i],us[i],us[i]-u[i]));

}

The use of the combination cat(sprintf()) provides detailed format-
ting of the output.

Execution of the code in Listing 1.1 gives the following output:

4 The function y = sin(𝜋x) is named u in this and subsequent code since it will ultimately be the
dependent variable of a PDE. That is, in accordance with the usual convention in the literature,
the dependent variables of PDEs are designated with u.

�

� �

�

1.1 Uniform Grids 5

Table 1.2 Output from Listing 1.1.

x u us diff
0.00 0.00000 0.00000 0.0000000
0.10 0.30902 0.30902 0.0000000
0.20 0.58779 0.58779 0.0000000
0.30 0.80902 0.80902 0.0000000
0.40 0.95106 0.95106 0.0000000
0.50 1.00000 1.00000 0.0000000
0.60 0.95106 0.95106 0.0000000
0.70 0.80902 0.80902 0.0000000
0.80 0.58779 0.58779 0.0000000
0.90 0.30902 0.30902 0.0000000
1.00 0.00000 0.00000 0.0000000

This output demonstrates that the spline in splinefun returns the original
data (an important feature of splines in general).
Equations (1.1a)–(1.1d) can also give numerical approximations to the first

to third derivatives, as demonstrated by the following routine:

#
Previous workspaces are cleared
rm(list=ls(all=TRUE))

#
Define uniform grid
xl=0;xu=1;n=11;
x=seq(from=xl,to=xu,by=(xu-xl)/(n-1));

#
Define function to be approximated, and its
derivatives

u=sin(pi*x);
ux=pi*cos(pi*x);
uxx=-pî2*sin(pi*x);
uxxx=-pî3*cos(pi*x);

#
Set up spline table for function, derivatives
utable=splinefun(x,u);

#
Compute spline approximation of function
derivatives

us=utable(x);
usx=utable(x,deriv=1);

�

� �

�

6 1 Introduction

usxx=utable(x,deriv=2);
usxxx=utable(x,deriv=3);

#
Display comparison of function and its spline
approximation, and its derivatives
#
u
cat(sprintf("\n x u us

diff"));
for(i in 1:n){
cat(sprintf("\n%5.2f%10.5f%10.5f%12.7f",

x[i],u[i],us[i],us[i]-u[i]));
}

#
ux
cat(sprintf("\n x ux usx

diff"));
for(i in 1:n){
cat(sprintf("\n%5.2f%10.5f%10.5f%12.7f",

x[i],ux[i],usx[i],usx[i]-ux[i]));
}

#
uxx
cat(sprintf("\n x uxx usxx

diff"));
for(i in 1:n){
cat(sprintf("\n%5.2f%10.5f%10.5f%12.7f",

x[i],uxx[i],usxx[i],usxx[i]-uxx[i]));
}

#
uxxx
cat(sprintf("\n x uxxx usxxx

diff"));
for(i in 1:n){
cat(sprintf("\n%5.2f%10.5f%10.5f%12.7f",

x[i],uxxx[i],usxxx[i],usxxx[i]-uxxx[i]));
}

Listing 1.2 Spline approximation of y = sin(𝜋x) and the first to third derivatives.

We can note the following details about Listing 1.2:

• Previous workspaces are cleared and the same uniform grid in x as in Listing
1.1 is defined.

�

� �

�

1.1 Uniform Grids 7

• The function y = sin(𝜋x) and its first three derivatives are computed. Again,
u, ux, uxx, uxxx are n-vectors.

#
Define function to be approximated, and its
derivatives

u=sin(pi*x);
ux=pi*cos(pi*x);
uxx=-pî2*sin(pi*x);
uxxx=-pî3*cos(pi*x);

The derivatives are used to evaluate the numerical approximations from
splinefun.

• The table of spline coefficients is defined as in Listing 1.1.

#
Set up spline table for function, derivatives

utable=splinefun(x,u);

• The function us and its first three derivatives are computed from utable.

#
Compute spline approximation of function
derivatives

us=utable(x);
usx=utable(x,deriv=1);
usxx=utable(x,deriv=2);
usxxx=utable(x,deriv=3);

us, usx, usxx, usxxx are n-vectors.The argumentderiv specifies the
order of the derivative to be computed.

• The exact values of y = sin(𝜋x) and the numerical approximations are com-
pared and displayed.

#
Display comparison of function and its spline
approximation, and its derivatives
#
u

cat(sprintf("\n x u us
diff"));

for(i in 1:n){
cat(sprintf("\n%5.2f%10.5f%10.5f%12.7f",
x[i],u[i],us[i],us[i]-u[i]));

}
#

�

� �

�

8 1 Introduction

ux
cat(sprintf("\n x ux usx

diff"));
for(i in 1:n){

cat(sprintf("\n%5.2f%10.5f%10.5f%12.7f",
x[i],ux[i],usx[i],usx[i]-ux[i]));

}
#
uxx
cat(sprintf("\n x uxx usxx

diff"));
for(i in 1:n){

cat(sprintf("\n%5.2f%10.5f%10.5f%12.7f",
x[i],uxx[i],usxx[i],usxx[i]-uxx[i]));

}
#
uxxx
cat(sprintf("\n x uxxx usxxx

diff"));
for(i in 1:n){

cat(sprintf("\n%5.2f%10.5f%10.5f%12.7f",
x[i],uxxx[i],usxxx[i],usxxx[i]-uxxx[i]));

}

The output from Listing 1.2 is in Table 1.3.

Table 1.3 Output from Listing 1.2.

x u us diff
0.00 0.00000 0.00000 0.0000000
0.10 0.30902 0.30902 0.0000000
0.20 0.58779 0.58779 0.0000000
0.30 0.80902 0.80902 0.0000000
0.40 0.95106 0.95106 0.0000000
0.50 1.00000 1.00000 0.0000000
0.60 0.95106 0.95106 0.0000000
0.70 0.80902 0.80902 0.0000000
0.80 0.58779 0.58779 0.0000000
0.90 0.30902 0.30902 0.0000000
1.00 0.00000 0.00000 0.0000000

�

� �

�

1.1 Uniform Grids 9

Table 1.3 (Continued)

x ux usx diff
0.00 3.14159 3.14930 0.0077113
0.10 2.98783 2.98556 -0.0022759
0.20 2.54160 2.54203 0.0004266
0.30 1.84658 1.84633 -0.0002520
0.40 0.97081 0.97079 -0.0000154
0.50 0.00000 0.00000 0.0000000
0.60 -0.97081 -0.97079 0.0000154
0.70 -1.84658 -1.84633 0.0002520
0.80 -2.54160 -2.54203 -0.0004266
0.90 -2.98783 -2.98556 0.0022759
1.00 -3.14159 -3.14930 -0.0077113

x uxx usxx diff
0.00 -0.00000 -0.27309 -0.2730880
0.10 -3.04988 -3.00187 0.0480096
0.20 -5.80121 -5.86869 -0.0674824
0.30 -7.98468 -8.04528 -0.0606045
0.40 -9.38655 -9.46551 -0.0789615
0.50 -9.86960 -9.95029 -0.0806842
0.60 -9.38655 -9.46551 -0.0789615
0.70 -7.98468 -8.04528 -0.0606045
0.80 -5.80121 -5.86869 -0.0674824
0.90 -3.04988 -3.00187 0.0480096
1.00 -0.00000 -0.27309 -0.2730880

x uxxx usxxx diff
0.00 -31.00628 -27.28778 3.7184973
0.10 -29.48872 -27.28778 2.2009421
0.20 -25.08460 -21.76592 3.3186866
0.30 -18.22503 -21.76592 -3.5408860
0.40 -9.58147 -4.84776 4.7337109
0.50 -0.00000 -4.84776 -4.8477555
0.60 9.58147 14.20231 4.6208422
0.70 18.22503 14.20231 -4.0227235
0.80 25.08460 28.66824 3.5836399
0.90 29.48872 28.66824 -0.8204768
1.00 31.00628 27.28778 -3.7184973

�

� �

�

10 1 Introduction

We can note the following details about this output:

• The output for the function is repeated as in Table 1.2.
• As expected, the computed derivatives are not exact, and the errors increase

with the order of the derivative. The increasing errors are expected when
considering Eqs. (1.1a)–(1.1d) (the approximations vary from a second-order
quadratic of Eq. (1.1a) to a constant of Eq. (1.1d)).
The errors tend to be largest at the end points in x, for example, ±0.0077113
for ux, −0.2730880 for uxx. The exception is for the errors in uxxx, but
since the approximation is the constant 6a3 of Eq. (1.1d), the error is large,
even within the interval. In other words, the use of the third derivative in the
PDE applications to follow should be avoided.

One method to reduce the errors in Table 1.3 would be to use a smaller grid
spacing (more points in the grid). This is accomplished by changing n=11
in Listing 1.2 to, for example, n=21 (everything else in the code remains
unchanged). The numerical output follows.

Table 1.4 Output from Listing 1.2, n=21.

x u us diff
0.00 0.00000 0.00000 0.0000000
0.05 0.15643 0.15643 0.0000000
0.10 0.30902 0.30902 0.0000000
0.15 0.45399 0.45399 0.0000000
0.20 0.58779 0.58779 0.0000000
0.25 0.70711 0.70711 0.0000000
0.30 0.80902 0.80902 0.0000000
0.35 0.89101 0.89101 0.0000000
0.40 0.95106 0.95106 0.0000000
0.45 0.98769 0.98769 0.0000000
0.50 1.00000 1.00000 0.0000000
0.55 0.98769 0.98769 0.0000000
0.60 0.95106 0.95106 0.0000000
0.65 0.89101 0.89101 0.0000000
0.70 0.80902 0.80902 0.0000000
0.75 0.70711 0.70711 0.0000000
0.80 0.58779 0.58779 0.0000000
0.85 0.45399 0.45399 0.0000000
0.90 0.30902 0.30902 0.0000000

�

� �

�

1.1 Uniform Grids 11

Table 1.4 (Continued)

0.95 0.15643 0.15643 0.0000000
1.00 0.00000 0.00000 0.0000000

x ux usx diff
0.00 3.14159 3.14209 0.0004935
0.05 3.10291 3.10277 -0.0001456
0.10 2.98783 2.98786 0.0000261
0.15 2.79918 2.79916 -0.0000192
0.20 2.54160 2.54160 -0.0000060
0.25 2.22144 2.22143 -0.0000082
0.30 1.84658 1.84658 -0.0000061
0.35 1.42625 1.42625 -0.0000049
0.40 0.97081 0.97080 -0.0000033
0.45 0.49145 0.49145 -0.0000017
0.50 0.00000 -0.00000 -0.0000000
0.55 -0.49145 -0.49145 0.0000017
0.60 -0.97081 -0.97080 0.0000033
0.65 -1.42625 -1.42625 0.0000049
0.70 -1.84658 -1.84658 0.0000061
0.75 -2.22144 -2.22143 0.0000082
0.80 -2.54160 -2.54160 0.0000060
0.85 -2.79918 -2.79916 0.0000192
0.90 -2.98783 -2.98786 -0.0000261
0.95 -3.10291 -3.10277 0.0001456
1.00 -3.14159 -3.14209 -0.0004935

x uxx usxx diff
0.00 -0.00000 -0.03493 -0.0349290
0.05 -1.54395 -1.53776 0.0061820
0.10 -3.04988 -3.05866 -0.0087840
0.15 -4.48071 -4.48926 -0.0085487
0.20 -5.80121 -5.81333 -0.0121181
0.25 -6.97886 -6.99318 -0.0143132
0.30 -7.98468 -8.00112 -0.0164442
0.35 -8.79388 -8.81197 -0.0180931
0.40 -9.38655 -9.40587 -0.0193171
0.45 -9.74809 -9.76815 -0.0200599

(Continued)

�

� �

�

12 1 Introduction

Table 1.4 (Continued)

0.50 -9.86960 -9.88991 -0.0203103
0.55 -9.74809 -9.76815 -0.0200599
0.60 -9.38655 -9.40587 -0.0193171
0.65 -8.79388 -8.81197 -0.0180931
0.70 -7.98468 -8.00112 -0.0164442
0.75 -6.97886 -6.99318 -0.0143132
0.80 -5.80121 -5.81333 -0.0121181
0.85 -4.48071 -4.48926 -0.0085487
0.90 -3.04988 -3.05866 -0.0087840
0.95 -1.54395 -1.53776 0.0061820
1.00 -0.00000 -0.03493 -0.0349290

x xuxx usxxx diff
0.00 -31.00628 -30.05671 0.9495706
0.05 -30.62454 -30.05671 0.5678318
0.10 -29.48872 -28.61192 0.8768047
0.15 -27.62679 -28.61192 -0.9851220
0.20 -25.08460 -23.59703 1.4875760
0.25 -21.92475 -23.59703 -1.6722802
0.30 -18.22503 -16.21706 2.0079710
0.35 -14.07656 -16.21706 -2.1405061
0.40 -9.58147 -7.24569 2.3357781
0.45 -4.85045 -7.24569 -2.3952380
0.50 -0.00000 2.43523 2.4352332
0.55 4.85045 2.43523 -2.4152171
0.60 9.58147 11.87787 2.2964074
0.65 14.07656 11.87787 -2.1986812
0.70 18.22503 20.15889 1.9338574
0.75 21.92475 20.15889 -1.7658589
0.80 25.08460 26.48141 1.3968090
0.85 27.62679 26.48141 -1.1453810
0.90 29.48872 30.41790 0.9291820
0.95 30.62454 30.41790 -0.2066345
1.00 31.00628 30.05671 -0.9495706

�

� �

�

1.1 Uniform Grids 13

We can conclude generally that the errors in Table 1.4 have been reduced
with the change n=11 to n=21. This suggests the question of how the errors
vary with n. This question can be addressed empirically (from the observed
numerical output for increasing n).
For n=11,21,31,41,51, selected errors are summarized in Table 1.5.

Table 1.5 Summary of errors for n=11,21,31,41,51.

derivative x n error
usx 0 11 0.0077113

21 0.0004935
31 0.0000979
41 0.0000310
51 0.0000127

0.5 11 -0.0000000
0.5 21 -0.0000000
0.5 31 0.0000000
0.5 41 0.0000000
0.5 51 0.0000000

usxx 0 11 -0.2730880
21 -0.0349290
31 -0.0103934
41 -0.0043912
51 -0.0022499

0.5 11 -0.0806842
0.5 21 -0.0203103
0.5 31 -0.0090227
0.5 41 -0.0050744
0.5 51 -0.0032474

We can note the following details about Table 1.5:

• Quantitative relationships between the error and the number of points n
are not apparent. For example, an order relationship such as error = O(Δxp),
whereΔx is the grid spacing, does not apply for ux, x=0.5 (the error does
not vary with grid spacing).

• Generally, some form of convergence appears to occur in the sense that the
errors decrease with increasing n.

• The accuracy decreases with successive differentiation, for example, the
errors for usxx are greater than for usx.

�

� �

�

14 1 Introduction

• Theerrors at the boundaries, for example, x = 0, are larger than at the inte-
rior points, for example, x = 0.5.

These results, although specific to the function y = sin(𝜋x), suggest that
some experimentation with the grid interval (value of n) can be used
to infer accuracy of the spline approximation, even when exact values
are not available (the usual case in PDE applications). For example, for
x=0.5, n=11, usxx=-9.95029 (Table 1.3) and for x=0.5, n=21,
usxx=-9.88991 (Table 1.4) suggests an accuracy of -9.95029 -
(-9.88991)= -0.06038, which can be inferred merely by changing n and
comparing numerical results.5 Exact values of the function and its derivatives
and the associated exact errors are not required for an error analysis (and
are generally unavailable anyway). Rather, the errors can be estimated from
approximate results.
To summarize, the preceding results indicate the calculation of derivatives

of tabulated data pairs using splinefun is straightforward. This is further
demonstrated next with the test function y = eax.
The routine for this case is the same as in Listing 1.2 except that

#
Define function to be approximated, and its
derivatives

a=1;
u=exp(a*x);

ux=a*exp(a*x);
uxx=â2*exp(a*x);
uxxx=â3*exp(a*x);

is used in place of

#
Define function to be approximated, and its
derivatives

u=sin(pi*x);
ux=pi*cos(pi*x);
uxx=-pî2*sin(pi*x);
uxxx=-pî3*cos(pi*x);

The rate of change of y = eax is defined by the parameter a, which can be varied
to test the spline approximations as discussed next.
The output is in Table 1.6.
Since the function and its derivatives are the same (for a = 1), the reduction

in the accuracy of successive derivatives is clear from Table 1.6. Also, the error

5 This form of error analysis is termed h refinement since the grid spacing in the numerical
analysis literature is frequently designated as h.

�

� �

�

1.1 Uniform Grids 15

Table 1.6 Output for the function y = eax , a = 1.

x u us diff
0.00 1.00000 1.00000 0.0000000
0.10 1.10517 1.10517 0.0000000
0.20 1.22140 1.22140 0.0000000
0.30 1.34986 1.34986 0.0000000
0.40 1.49182 1.49182 0.0000000
0.50 1.64872 1.64872 0.0000000
0.60 1.82212 1.82212 0.0000000
0.70 2.01375 2.01375 0.0000000
0.80 2.22554 2.22554 0.0000000
0.90 2.45960 2.45960 0.0000000
1.00 2.71828 2.71828 0.0000000

x ux usx diff
0.00 1.00000 1.00026 0.0002555
0.10 1.10517 1.10510 -0.0000692
0.20 1.22140 1.22142 0.0000177
0.30 1.34986 1.34985 -0.0000056
0.40 1.49182 1.49182 0.0000003
0.50 1.64872 1.64872 -0.0000005
0.60 1.82212 1.82212 -0.0000038
0.70 2.01375 2.01376 0.0000095
0.80 2.22554 2.22550 -0.0000408
0.90 2.45960 2.45975 0.0001463
1.00 2.71828 2.71773 -0.0005526

x uxx usxx diff
0.00 1.00000 0.99030 -0.0097019
0.10 1.10517 1.10663 0.0014559
0.20 1.22140 1.21975 -0.0016548
0.30 1.34986 1.34891 -0.0009520
0.40 1.49182 1.49053 -0.0012956
0.50 1.64872 1.64739 -0.0013349
0.60 1.82212 1.82050 -0.0016196
0.70 2.01375 2.01244 -0.0013094
0.80 2.22554 2.22232 -0.0032249
0.90 2.45960 2.46267 0.0030664
1.00 2.71828 2.69693 -0.0213550

(Continued)

�

� �

�

16 1 Introduction

Table 1.6 (Continued)

x uxxx usxxx diff
0.00 1.00000 1.16329 0.1632873
0.10 1.10517 1.16329 0.0581164
0.20 1.22140 1.29159 0.0701854
0.30 1.34986 1.29159 -0.0582707
0.40 1.49182 1.56857 0.0767480
0.50 1.64872 1.56857 -0.0801486
0.60 1.82212 1.91944 0.0973222
0.70 2.01375 1.91944 -0.0943117
0.80 2.22554 2.40353 0.1779934
0.90 2.45960 2.40353 -0.0560688
1.00 2.71828 2.34257 -0.3757088

in the computed derivatives is greater at the boundaries x = 0, 1 than at the
interior points, as before with sin(𝜋x). Since the function changes more rapidly
at x = 1 than at x = 0, the errors are greater at x = 1.
The last point of greater variation at x = 1 can be demonstrated by using a

larger value of a. For a = 2, the numerical output is

Table 1.7 Output for the function y = eax , a = 2.

x u us diff
0.00 1.00000 1.00000 0.0000000
0.10 1.22140 1.22140 0.0000000
0.20 1.49182 1.49182 0.0000000
0.30 1.82212 1.82212 0.0000000
0.40 2.22554 2.22554 0.0000000
0.50 2.71828 2.71828 0.0000000
0.60 3.32012 3.32012 0.0000000
0.70 4.05520 4.05520 0.0000000
0.80 4.95303 4.95303 0.0000000
0.90 6.04965 6.04965 0.0000000
1.00 7.38906 7.38906 0.0000000

�

� �

�

1.1 Uniform Grids 17

Table 1.7 (Continued)

x ux usx diff
0.00 2.00000 2.00460 0.0045955
0.10 2.44281 2.44155 -0.0012576
0.20 2.98365 2.98395 0.0003043
0.30 3.64424 3.64412 -0.0001189
0.40 4.45108 4.45106 -0.0000235
0.50 5.43656 5.43654 -0.0000249
0.60 6.64023 6.64007 -0.0001672
0.70 8.11040 8.11074 0.0003389
0.80 9.90606 9.90444 -0.0016219
0.90 12.09929 12.10491 0.0056194
1.00 14.77811 14.75661 -0.0215021

x uxx usxx diff
0.00 4.00000 3.82687 -0.1731250
0.10 4.88561 4.91217 0.0265622
0.20 5.96730 5.93594 -0.0313577
0.30 7.28848 7.26736 -0.0211146
0.40 8.90216 8.87143 -0.0307319
0.50 10.87313 10.83818 -0.0349520
0.60 13.28047 13.23238 -0.0480843
0.70 16.22080 16.18106 -0.0397388
0.80 19.81213 19.69302 -0.1191094
0.90 24.19859 24.31641 0.1178172
1.00 29.55622 28.71751 -0.8387162

x uxxx usxxx diff
0.00 8.00000 10.85298 2.8529819
0.10 9.77122 10.85298 1.0817599
0.20 11.93460 13.31420 1.3795979
0.30 14.57695 13.31420 -1.2627549
0.40 17.80433 19.66744 1.8631082
0.50 21.74625 19.66744 -2.0788190
0.60 26.56094 29.48678 2.9258419
0.70 32.44160 29.48678 -2.9548224
0.80 39.62426 46.23387 6.6096075
0.90 48.39718 46.23387 -2.1633128
1.00 59.11245 44.01101 -15.1014368

�

� �

�

18 1 Introduction

The larger variation in eax and the resulting larger errors are clear in Table 1.7
when compared with Table 1.6. Again, these errors could be reduced by using
a larger value of n. However, a reduction in the errors could also possibly be
accomplished by concentrating the grid points near x = 1.That is, we could take
advantage of the basic feature of splines that the grid spacing can be variable.

1.2 Variable Grids

To investigate this alternative, we consider first an example of how a variable
grid can be produced. This is illustrated by the following code:

n=11;x=rep(0,n);
x[1]=0;xin=1/(n-1);
cat(sprintf("\n x[1] = %6.4f xin = %6.4f",

x[1],xin));
for(i in 2:n){

x[i]=x[i-1]+xin/i;
cat(sprintf("\n i = %2d x = %6.4f dx = %6.4f",

i,x[i],x[i]-x[i-1]));
}

Listing 1.3 Generation of a variable grid.

We can note the following details of Listing 1.3:

• A grid of n=11 points is declared with the rep utility.

n=11;x=rep(0,n);

• The first (leftmost) point is defined. Then an increment is computed.

x[1]=0;xin=1/(n-1);
cat(sprintf("\n x[1] = %6.4f xin = %6.4f",

x[1],xin));

• A for is used to step through points i = 2,3,…,n.

for(i in 2:n){
x[i]=x[i-1]+xin/i;
cat(sprintf("\n i = %2d x = %6.4f

dx = %6.4f",i,x[i],x[i]-
x[i-1]));

}

A particular value of the grid point, x[i], is computed from the previous
point, u[i-1], plus an increment, xin/i. This increment decreases with
increasing i, thereby giving a grid with a decreasing spacing.

�

� �

�

1.2 Variable Grids 19

The output from this code follows (Table 1.8).

Table 1.8 Output from Listing 1.3.

x[1] = 0.0000 xin = 0.1000

i = 2 x = 0.0500 dx = 0.0500
i = 3 x = 0.0833 dx = 0.0333
i = 4 x = 0.1083 dx = 0.0250
i = 5 x = 0.1283 dx = 0.0200
i = 6 x = 0.1450 dx = 0.0167
i = 7 x = 0.1593 dx = 0.0143
i = 8 x = 0.1718 dx = 0.0125
i = 9 x = 0.1829 dx = 0.0111
i = 10 x = 0.1929 dx = 0.0100
i = 11 x = 0.2020 dx = 0.0091

We can note the following details about this output:

• The grid spacing varies from 0.1000 at x = 0 to 0.0091 at x = 0.2020.
• The interval in x is not correct since it should be 0 ≤ x ≤ 1. This can be cor-

rected by using a normalizing factor as

x[1]=0;xin=(1/0.2020)/(n-1);
.
.
.

x[i]=x[i-1]+xin/i;

in Listing 1.3. The resulting output is in Table 1.9.
The grid spacing is again variable (by more than a factor of 1∕10, 0.4950 to
0.0450) and the interval in x is 0 ≤ x ≤ 1.
This discussion is presented in some detail to illustrate how a variable grid
might be generated. The approach can be generalized as

x[1]=0;xin=c/(n-1);
.
.
.

x[i]=x[i-1]+xin/(îp);

where c is a normalizing constant (e.g., 1/0.2020) and p is a power of the
grid index i. For p < 1, the grid spacing varies more slowly with x than for

�

� �

�

20 1 Introduction

Table 1.9 Output from Listing 1.3 with 0 ≤ x ≤ 1.

x[1] = 0.0000 xin = 0.4950

i = 2 x = 0.2475 dx = 0.2475
i = 3 x = 0.4125 dx = 0.1650
i = 4 x = 0.5363 dx = 0.1238
i = 5 x = 0.6353 dx = 0.0990
i = 6 x = 0.7178 dx = 0.0825
i = 7 x = 0.7885 dx = 0.0707
i = 8 x = 0.8504 dx = 0.0619
i = 9 x = 0.9054 dx = 0.0550
i = 10 x = 0.9549 dx = 0.0495
i = 11 x = 0.9999 dx = 0.0450

p = 1, and forp > 1, it variesmore rapidly. An important detail is that the
grid spacing varies smoothly with x (as in Table 1.9), since an abrupt change
in the spacing can cause problems with the spline approximation.

The variable grid in Table 1.9 is now used as an input to splinefun. This
requires only a change in the grid definition code in Listing 1.2 (with the use
of eax).

#
Previous workspaces are cleared
rm(list=ls(all=TRUE))

#
Define grid
xl=0;xu=1;n=11;ng=2;

#
Uniform grid
if(ng==1){
x=seq(from=xl,to=xu,by=(xu-xl)/(n-1));
for(i in 2:n){

cat(sprintf("\n i = %2d x = %6.4f dx = %6.4f",
i,x[i],x[i]-x[i-1]));

}
}

#
Variable grid
if(ng==2){

�

� �

�

1.2 Variable Grids 21

x=rep(0,n);
x[1]=0;xin=(1/0.2020)/(n-1);
cat(sprintf("\n x[1] = %6.4f xin = %6.4f",

x[1],xin));
for(i in 2:n){

x[i]=x[i-1]+xin/i;
cat(sprintf("\n i = %2d x = %6.4f dx = %6.4f",

i,x[i],x[i]-x[i-1]));
}

}
#
Define function to be approximated, and its
derivatives

a=2;
u=exp(a*x);

ux=a*exp(a*x);
uxx=â2*exp(a*x);
uxxx=â3*exp(a*x);

#
Set up spline table for function, derivatives

utable=splinefun(x,u);
#
Compute spline approximation of function
derivatives

us=utable(x);
usx=utable(x,deriv=1);

usxx=utable(x,deriv=2);
usxxx=utable(x,deriv=3);

#
Display comparison of function and its spline
approximation, and its derivatives
#
u
cat(sprintf("\n x u us

diff"));
for(i in 1:n){
cat(sprintf("\n%7.4f%10.5f%10.5f%12.7f",

x[i],u[i],us[i],us[i]-u[i]));
}

#
ux
cat(sprintf("\n x ux usx

diff"));

�

� �

�

22 1 Introduction

for(i in 1:n){
cat(sprintf("\n%7.4f%10.5f%10.5f%12.7f",

x[i],ux[i],usx[i],usx[i]-ux[i]));
}

#
uxx
cat(sprintf("\n x uxx usxx

diff"));
for(i in 1:n){
cat(sprintf("\n%7.4f%10.5f%10.5f%12.7f",

x[i],uxx[i],usxx[i],usxx[i]-uxx[i]));
}

#
uxxx
cat(sprintf("\n x uxxx usxxx

diff"));
for(i in 1:n){
cat(sprintf("\n%7.4f%10.5f%10.5f%12.7f",

x[i],uxxx[i],usxxx[i],usxxx[i]-uxxx[i]));
}

Listing 1.4 Spline approximation of y = eax and the first to third derivatives, uniform and
variable grids.

For ng=1 a uniform grid is used (the output is in Table 1.7) and for ng=2 a
variable grid is used. The output for ng=2 follows.

Table 1.10 Output for the function y = eax , a = 2, n = 11, ng = 2.

x u us diff
0.0000 1.00000 1.00000 0.0000000
0.2475 1.64058 1.64058 0.0000000
0.4125 2.28207 2.28207 0.0000000
0.5363 2.92299 2.92299 0.0000000
0.6353 3.56309 3.56309 0.0000000
0.7178 4.20235 4.20235 0.0000000
0.7885 4.84083 4.84083 0.0000000
0.8504 5.47859 5.47859 0.0000000
0.9054 6.11570 6.11570 0.0000000
0.9549 6.75221 6.75221 0.0000000
0.9999 7.38816 7.38816 0.0000000

�

� �

�

1.2 Variable Grids 23

Table 1.10 (Continued)

x ux usx diff
0.0000 2.00000 2.05688 0.0568850
0.2475 3.28116 3.26995 -0.0112076
0.4125 4.56414 4.56707 0.0029304
0.5363 5.84598 5.84545 -0.0005361
0.6353 7.12617 7.12639 0.0002166
0.7178 8.40470 8.40470 0.0000029
0.7885 9.68166 9.68168 0.0000179
0.8504 10.95719 10.95726 0.0000707
0.9054 12.23141 12.23122 -0.0001861
0.9549 13.50442 13.50513 0.0007133
0.9999 14.77632 14.77382 -0.0025024

x uxx usxx diff
0.0000 4.00000 3.07122 -0.9287777
0.2475 6.56232 6.73035 0.1680358
0.4125 9.12828 8.99071 -0.1375689
0.5363 11.69196 11.66786 -0.0241047
0.6353 14.25234 14.20721 -0.0451373
0.7178 16.80939 16.77906 -0.0303371
0.7885 19.36332 19.33390 -0.0294229
0.8504 21.91438 21.89290 -0.0214782
0.9054 24.46281 24.42823 -0.0345759
0.9549 27.00883 27.03774 0.0289033
0.9999 29.55264 29.34267 -0.2099619

x uxxx usxxx diff
0.0000 8.00000 14.78289 6.7828905
0.2475 13.12464 14.78289 1.6582549
0.4125 18.25655 21.63137 3.3748219
0.5363 23.38392 21.63137 -1.7525503
0.6353 28.50469 31.17082 2.6661338
0.7178 33.61879 31.17082 -2.4479661
0.7885 38.72664 41.35348 2.6268371
0.8504 43.82876 41.35348 -2.4752784
0.9054 48.92562 52.71191 3.7862934
0.9549 54.01766 52.71191 -1.3057497
0.9999 59.10527 51.21573 -7.8895430

�

� �

�

24 1 Introduction

A comparison of Tables 1.7 and 1.10 indicates the errors in the spline approx-
imations are reduced for x near the right end x = 1, where eax changes more
rapidly but are increased at the left end x = 0 due to the larger grid spacing.
Thus, some experimentation and evaluation is required when using a variable
grid. For example, smaller variations in the grid spacing at both ends could be
used to reduce end effects.
The preceding discussion of uniform and variable grid spline differentiation

can now be used to develop SCMOL for PDEs. This is done subsequently
through example applications.

1.3 Stagewise Differentiation

An alternative approach to computing numerical derivatives is by successive
differentiation, termed stagewise differentiation. This is illustrated by the fol-
lowing code applied to eax:

#
Previous workspaces are cleared
rm(list=ls(all=TRUE))

#
Define uniform grid
xl=0;xu=1;n=11;
x=seq(from=xl,to=xu,by=(xu-xl)/(n-1));

#
Define function to be approximated, and its
derivatives

a=1;
u=exp(a*x);

uxx=â2*exp(a*x);
#
Set up spline tables for u, ux; compute uxx
by stagewise differentiation
utable=splinefun(x,u);
usx=utable(x,deriv=1);
uxtable=splinefun(x,usx);
usxx=uxtable(x,deriv=1);

#
Display comparison of exact and spline derivatives
#
uxx
cat(sprintf("\n x uxx usxx

diff"));

�

� �

�

1.3 Stagewise Differentiation 25

for(i in 1:n){
cat(sprintf("\n%6.4f%10.5f%10.5f%12.7f",

x[i],uxx[i],usxx[i],usxx[i]-uxx[i]));
}

Listing 1.5 Stagewise differentiation of eax .

We can note the following details about Listing 1.5:

• Previous workspaces are removed and a uniform grid in x with 11 points is
defined.

#
Previous workspaces are cleared

rm(list=ls(all=TRUE))
#
Define uniform grid

xl=0;xu=1;n=11;
x=seq(from=xl,to=xu,by=(xu-xl)/(n-1));

• eax and its second derivative are computed and placed in two n-vectors, u,
uxx.

#
Define function to be approximated, and its
derivatives

a=1;
u=exp(a*x);

uxx=â2*exp(a*x);

• splinefun operates on u to produce a spline table, utable, which is then
used to calculate the first derivative,usx.splinefun then operates onusx
to produce a spline table, uxtable, which is then used to calculate the sec-
ond derivative, usxx. usx.

#
Set up spline tables for u, ux; compute uxx
by stagewise differentiation

utable=splinefun(x,u);
usx=utable(x,deriv=1);
uxtable=splinefun(x,usx);
usxx=uxtable(x,deriv=1);

Two successive calls to splinefun demonstrate the stagewise differentia-
tion (note the use of deriv=1 for each stage). In principle, the successive
differentiation can be continued to calculate higher-order derivatives, but in

�

� �

�

26 1 Introduction

practice, the additional error at each stage of the differentiation will eventu-
ally give inaccurate derivatives.

• The exact and numerical second derivatives, and their difference, are dis-
played.

#
Display comparison of exact and spline derivatives
#
uxx
cat(sprintf("\n x uxx usxx

diff"));
for(i in 1:n){

cat(sprintf("\n%6.4f%10.5f%10.5f%12.7f",
x[i],uxx[i],usxx[i],usxx[i]-uxx[i]));

}

The output from Listing 1.5 is in Table 1.11, along with the second derivative
by direct differentiation from Table 1.6.

Table 1.11 Output for the function y = eax , a = 1,
n = 11, usxx by direct and stagewise differentiation.

Stagewise differentiation

x uxx usxx diff
0.00 1.00000 0.99301 -0.0069892
0.10 1.10517 1.10498 -0.0001877
0.20 1.22140 1.22201 0.0006029
0.30 1.34986 1.34954 -0.0003202
0.40 1.49182 1.49198 0.0001514
0.50 1.64872 1.64858 -0.0001371
0.60 1.82212 1.82239 0.0002701
0.70 2.01375 2.01310 -0.0006504
0.80 2.22554 2.22675 0.0012137
0.90 2.45960 2.45950 -0.0001065
1.00 2.71828 2.70213 -0.0161501

Direct differentiation (from Table 1.6)

x uxx usxx diff
0.00 1.00000 0.99030 -0.0097019

�

� �

�

Appendix A1 – Online Documentation for splinefun 27

Table 1.11 (Continued)

0.10 1.10517 1.10663 0.0014559
0.20 1.22140 1.21975 -0.0016548
0.30 1.34986 1.34891 -0.0009520
0.40 1.49182 1.49053 -0.0012956
0.50 1.64872 1.64739 -0.0013349
0.60 1.82212 1.82050 -0.0016196
0.70 2.01375 2.01244 -0.0013094
0.80 2.22554 2.22232 -0.0032249
0.90 2.45960 2.46267 0.0030664
1.00 2.71828 2.69693 -0.0213550

The comparison in Table 1.11 indicates that stagewise differentiation gives
smaller errors than direct differentiation (this conclusion is for eax only and
does not constitute a general result or proof).This validation is important since
stagewise differentiation can be used to implement several types of PDEbound-
ary conditions (BCs), as explained in examples to follow.
The preceding discussion of spline differentiation will now be used as the

basis for the SCMOL integration of PDEs.

Appendix A1 – Online Documentation for splinefun

The technical details and options of splinefun are provided in the
following online documentation produced at the R prompt by entering
help(splinefun).

splinefun {stats} R Documentation

Interpolating Splines

Description

Perform cubic (or Hermite) spline interpolation of
given data points, returning either a list of points
obtained by the interpolation or a function
performing the interpolation.

�

� �

�

28 1 Introduction

Usage

splinefun(x, y = NULL,
method = c("fmm", "periodic", "natural",
"monoH.FC"),
ties = mean)

spline(x, y = NULL, n = 3*length(x), method = "fmm",
xmin = min(x), xmax = max(x), xout, ties = mean)

splinefunH(x, y, m)
Arguments

x,y
vectors giving the coordinates of the points to be
inter-polated. Alternatively a single plotting
structure can be specified: see xy.coords.

m
(for splinefunH()): vector of slopes m[i] at the
points (x[i],y[i]); these together determine the
Hermite ?spline? which is piecewise cubic, (only) once
differentiable continuously.

method
specifies the type of spline to be used. Possible val-
ues are "fmm","natural", "periodic" and "monoH.FC".

n
if xout is left unspecified, interpolation takes place
at n equally spaced points spanning the interval
[xmin, xmax].

xmin, xmax
left-hand and right-hand endpoint of the interpolation
interval (when xout is unspecified).

xout
an optional set of values specifying where interpola-
tion is to take place.

�

� �

�

Appendix A1 – Online Documentation for splinefun 29

ties

Handling of tied x values. Either a function with a
single vector argument returning a single number
result or the string "ordered".

Details

The inputs can contain missing values that are
deleted, so at least one complete (x, y) pair is
required. If method = "fmm", the spline used is that
of Forsythe, Malcolm and Moler (an exact cubic is fit-
ted through the four points at each end of the data,
and this is used to determine the end conditions).
Natural splines are used when method = "natural", and
periodic splines when method = "periodic".

The new (R 2.8.0) method "monoH.FC" computes a mono-
tone Hermite spline according to the method of Fritsch
an Carlson. It does so by determining slopes such that
the Hermite spline, determined by (x[i],y[i],m[i]), is
monotone (increasing or decreasing) iff the data are.

These interpolation splines can also be used for
extrapolation, that is prediction at points outside
the range of x. Extrapolation makes little sense for
method = "fmm"; for natural splines it is linear using
the slope of the interpolating curve at the nearest
data point.

Value

spline returns a list containing components x and y
which give the ordinates where interpolation took
place and the interpolated values.

splinefun returns a function with formal arguments x
and deriv, the latter defaulting to zero. This func-
tion can be used to evaluate the interpolating cubic
spline (deriv=0), or its derivatives (deriv=1,2,3) at

�

� �

�

30 1 Introduction

the points x, where the spline function interpolates
the data points originally specified. This is often
more useful than spline.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
The New S Language. Wadsworth & Brooks/Cole.

Forsythe, G. E., Malcolm, M. A. and Moler, C. B.
(1977) Computer Methods for Mathematical Computations.
Prentice-Hall

Fritsch, F. N. and Carlson, R. E. (1980) Monotone
piecewise cubic interpolation, SIAM Journal on Numeri-
cal Analysis 17, 238–246.

Reference

1 Forsythe, G.E., M.A. Malcolm, and C.B. Moler (1977), Computer Methods for
Mathematical Computations, Prentice-Hall, Englewood Cliffs, NJ, pp. 70–79.

