
CHAPTER 1
PATTERN RECOGNITION:
FEATURE SPACE
CONSTRUCTION

In this chapter, we proceed with a more detailed discussion on the essence and con-
cepts of pattern recognition. We focus on the initial phase of the overall scheme that is
focused on feature formation and analysis as well as feature selection. Let us empha-
size that, in general, patterns come in various forms: images, voice recordings, text in
some natural language, a sequence of structured information (tuples formed according
to some key), and so on. A pattern described through a collection of features can be
regarded as a generic chunk of information. Features, generally speaking, are descrip-
tors of the patterns. Naturally, the number of features, their nature, and quality influ-
ence the quality of ensuing modeling, especially classification. In this chapter, we
look at these issues in detail.

The chapter is structured as follows. First, we formulate a theoretical basis of
the problems of pattern recognition. We introduce necessary notation and concepts
required in the ensuing discussion across the overall book. We formally define fea-
tures and pattern recognition process. Next, we present practical approaches to feature
extraction applied to visual pattern recognition. In particular, we use symbols of
printed music notation as examples of patterns. Then, we discuss some elementary
feature transformations. Finally, we present various strategies developed for feature
selection.

1.1 CONCEPTS

Formally, a standard pattern recognition problem is a task of splitting a set of
objects (patterns)

O= o1, o2,…
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into subsets composed of objects belonging to the same class

O1,O2,…,OC

such that

O=
C

l= 1
Ol and l, k 1, 2,…,C , l k Ol Ok = Ø 1 1

A task that results in the formation of subsets O1,O2,…,OC is defined by a
mapping called a classifier

Ψ O Θ (1.2)

where Θ= O1,O2,…,OC is the set of classes under consideration. For the sake of
simplicity, we assume that the mapping Ψ takes values from the set of class indices
Θ= 1, 2,…,C , that is, class labels, instead of classes themselves.

Pattern recognition is usually performed on some observed set of features that
characterize objects, rather than on objects directly. Therefore, we formulate and dis-
tinguish a mapping from the space of objects O into the space features X:

φ O X (1.3)

The mapping φ is called a features extractor. Subsequently, we consider a map-
ping from the space of features into the space of classes

ψ X Θ (1.4)

Such a mapping is called a classification algorithm or simply a classifier. It is
important to notice that the term classifier is used in different contexts: classification
of objects, classification of features characterizing objects, and, more precisely, clas-
sification of vectors of features from features space. The meaning of this term can
be inferred from the context. Therefore, in the ensuing considerations we will not dis-
tinguish explicitly which meaning is being used. A composition of the previously
mentioned two mappings constitutes the classifier: Ψ=ψ ∘φ. In other words, the
mapping O Ψ Θ can be decomposed into the two mappings realized in
series O φ X ψ Θ.

In general, a classifier Ψ is not known, that is, we do not know the class that
a pattern belongs to. However, in pattern recognition problems, it is assumed that
the classifier Ψ is known for some subset of the space of patterns called a learning
set, namely, labels of patterns are known in supervised learning task. A learning set
is a subset of the set of objects, L O for which class labels are known, that is, for
any pattern from the learning set o L, the value Ψ(o) is known. Building a classifier
Ψ O Θ with the use of known classes of objects from a learning set, that is, a
known mappingΨ L Θ is the ultimate goal of pattern recognition. A premise moti-
vating this action is that we hope that having a good enough subset of all objects
will let us construct a classifier that will be able to successfully assign correct class
labels to all patterns. Summarizing, we explore the pattern recognition problem as
a design problem aimed at the development of a classifier regarded as the following
mapping:

Ψ O Θ
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assuming that we are provided with L O, a subset of all objects with correctly
assigned class labels. Such a classifier is decomposed to a feature extractor

φ O X

and a (features) classifier (or, in other words, a classification algorithm)

ψ X Θ

as illustrated in Figure 1.1.
Both the feature extractor and the classification algorithm are built based on a

learning set L. The classifier ψ divides features space into so-called decision regions,

D l
X =ψ −1 l = x X ψ x = l for every l Θ (1.5)

and then, of course, the features extractor splits the space of objects into classes

Ol =φ
−1 D l

X =φ−1 ψ −1 l for every l Θ (1.6)

The space
of patterns

The space
of features

XO

The mapping φ
The mapping ψ

Θ

The space
of classes

OC

O2

O1

The mapping Ψ

The space
of patterns

(a)

(b)

The space
of features

XO Θ

The space
of classes

OC

O2

O1

Figure 1.1 Pattern recognition schemes: direct mapping from the space of patterns into the
space of classes (a) and composition of mappings from the space of patterns into the space
of features and from the space of features into the space of classes (b).
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or equivalently

Ol =Ψ−1 l = ψ ∘φ −1 l =φ−1 ψ −1 l for every l Θ (1.7)

We assume that the classification algorithm splits the space of feature values,
that is, it separates the space X into pairwise disjoint subsets, which cover the entire
space X:

l, k M, l k D l
X D k

X = Ø and
l M

D l
X =X (1.8)

Figure 1.2 illustrates the split of the space of features and the space of objects
done by the classifier ψ and the feature extractor φ.

Recognition of objects is usually preceded by an extraction of patterns from a
given problem. For instance, dealing with a printed text document or printed sheet
music, before proceeding with recognition of symbols, they should be isolated from
the environment. In this scenario, a pattern is typically a single symbol (say, a letter or
a musical symbol), and patterns are located on a page containing some text message or
sheet music with some piece of music. Only after the extraction from the environment
are patterns subjected to recognition. If we consider patterns that originate from an
image, the task of patterns isolation is usually called segmentation. It is preceded
by the stage of preprocessing that facilitates the process of segmentation. In other
words, preprocessing aims at introducing various modifications to the source image
(e.g., binarization, scaling, etc.) that could help extract patterns of higher quality. For
details one may consult in chapter 2 of Krig (2014) where signal preprocessing in pat-
tern recognition is addressed. It is worth noting that not all image acquisition is carried
out in a perfect environment, namely, there are a number of possible sources of noise
and data of low quality (including imbalanced classes and missing data, among
others). There has been a range of studies specifically directed to develop methods
for image preprocessing for poor quality signals, for instance, with difficult lighting
conditions (Tan and Triggs, 2010) or noise (Haris et al., 1998).

Not all pattern recognition tasks have well-defined and clearly delineated pre-
processing and symbols extraction (segmentation) stages. Automatic patterns acqui-
sition often produces excessive, undesirable symbols and ordinary garbage. Let us

The space
of patterns

The space
of features

XD
(1)=ψ–1(1)

XD
(3)=ψ–1(3)

XD
(C)

=ψ–1(C)

XD
(2)

=ψ–1(2)

X

OC
O3

O2
O1

ΘO

The space
of classes

Figure 1.2 A typical pattern recognition scheme.
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refer to such patterns as foreign patterns, in contrast to native patterns of proper,
recognized classes (cf. Homenda et al., 2014, 2016). In such a case a classification
module, which assigns all extracted symbols to designed classes (proper classes of
native symbols, labeled and present in the learning set), will produce misclassification
for every undesirable symbol and for every garbage symbol. In order to improve the
performance of the classification procedure, it is required to construct such classifiers
that could assign native symbols to correct class labels and reject undesirable and
garbage symbols.

Rejection of symbols can be formally interpreted by considering a new classO0,
to which we classify all undesirable and garbage symbols. In consequence, we can
distinguish a classification decision region, which separates foreign symbols from
useful ones through the classifier ψ :

D0
X = x X ψ x = 0 (1.9)

This new class (decision region) D0
X is a distinct subspace of the space X,

l C D l
X D 0

X = Ø and X =D 0
X

i C
D l

X (1.10)

where, of course, all former classes D l
X , l Θ are pairwise disjoint. Rejecting foreign

symbols implies a certain problem. Unlike objects of proper classes, foreign symbols
are usually not similar to one another and do not create a consistent class. They are not
well positioned in the feature space. Moreover, most often they are not available at the
stage of classifier construction. Therefore, instead of distinguishing a decision region
corresponding to a family of foreign objects, it is reasonable to separate areas outside
of decision regions of native objects (cf. Homenda et al., 2014). Of course, in such a
case, we assume that decision regions of native symbols cover only their own areas
and do not exhaust the whole feature space X. An area outside of decision regions of
native objects can be formally defined in the following form:

D0
X =X−

i C
D i

X (1.11)

This is illustrated in Figure 1.3.
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Figure 1.3 Pattern recognition with rejection.
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1.2 FROM PATTERNS TO FEATURES

From now on we will use the term pattern for objects being recognized as well as for
features describing and representing these objects. The exact meaning of this term can
be inferred from the context of its usage and, if necessary, it could be explicitly
indicated.

Let us distinguish two kinds of features characterizing patterns:

• Numerical features—features whose values form a set of real numbers

• Categorical features—features that are valued in a finite set of values

Values of categorical features can be of any type, for instance, names over some
alphabet. Since sets of values of categorical features are finite, they can be enumer-
ated, and values of categorical features can be cast on their indices. Therefore, for the
sake of simplicity, categorical features are considered to be numerical ones.

The space of features X is the Cartesian product of individual features X1,
X2,…, XM, that is, X =X1 ×X2 × ×XM . Therefore, mappings φ and ψ operate on
vectors (x1, x2,…, xM)

T. Such vectors are values of the mapping φ and arguments
of the mapping ψ . An i-th element of the vector is denoted xi, i = 1,2,…,M, and it
describes the value of the i-th feature value. For the sake of simplicity, a vector of
values of features x = x1, x2, x3,…, xM will be simply called a vector of features or
a feature vector.

Now, let us focus on patterns represented as monochrome images, say black and
white images, which are in fact rectangular tables with elements called black/white
pixels. In this book, we concentrate the discussion on scanned handwritten digits,
handwritten letters, and symbols of printed music notation, and we rarely switch to
other types of patterns. This choice is motivated by the fact that, in the context of
the methods studied here, such patterns have superior illustrative properties. However,
it should be clear that the studied methods are of a general nature and could be easily
applied to other types of patterns.

As mentioned before, pattern recognition rarely applies to patterns directly, that
is, to patterns present in their original form. In almost each case of pattern recognition,
features describing patterns are processed. This observation motivates us to discuss in
subsequent sections selected features of monochrome images. These features are
especially relevant if we consider processing of printed or handwritten letters, digits,
symbols of printed music notation, symbols of geodetic maps, and so on. It is worth
stressing that different features can be acquired and applied in order to process other
kinds of patterns, for example, those present in speech recognition, signal processing,
and others.

In our experiments with recognition of handwritten digits, letters, and symbols
of printed music notation, we used the following groups of features: numerical, vec-
torial, vectorial transformed to vectorial, and vectorial transformed to numerical.

Let us consider a treble clef, an example of a pattern taken from a dataset of
music notation symbols. A treble clef is depicted in Figure 1.4. It is a monochrome
(black and white) image. We will be referring to such a pattern in terms of a raster
scan: a rectangular collection of pixels that we locate inside a bounding box of width
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W and height H (cf. Figure 1.4). In other words, a bounding box is the smallest
rectangle part of an image enclosing a pattern. In Figure 1.4, the bounding box is
identified as a frame used in order to clearly identify the smallest rectangle of pixels
enclosing a pattern.

Specifically, a raster scan pattern is represented as a mapping:

I 1,H × 1,W 0, 1 I i, j =
1 for black pixel

0 for white pixel
(1.12)

1.2.1 Vectorial Features

Only a very limited number of numerical features, effectively employed in pattern
recognition problems, can be derived directly from patterns. These features are dis-
cussed later in this chapter. However, many numerical features are derived indirectly
from vectorial ones.

Vectorial features are usually created based on a bounding box of a given pat-
tern (cf. Figures 1.5 and 1.6). Now, let us discuss the most prominent examples of
vectorial features of monochrome images: projections, margins, and transitions.

1. Horizontal and vertical projections:

• Horizontal projection is a vector of numbers of black pixels in rows.

• Vertical projection is a vector of numbers of black pixels in columns.

Therefore, horizontal projection is a vector (of numbers) of length equal to
the height of the bounding box (H), while vertical projection is a vector (of num-
bers) of the length equal to the width of the bounding box (W):

H

W

Figure 1.4 A treble clef, a symbol belonging to a data set of printed music notation, taken as
an example of a pattern. The pattern is surrounded by a bounding box of width W = 22 and
height H = 60 pixels. The bounding box is not part of the pattern; it has been added only for
illustrative purposes.
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ProjH i =
W

j= 1

I i, j i= 1,2,…,H

ProjV j =
H

i= 1

I i, j j = 1,2,…,W

(1.13)

2. Left, right, bottom, and top margins:

• The left margin are indices of the last white pixels preceding the first black
ones, pixel indexing starts from 1 from the left side of each row. It is zero if a
row begins with a black pixel; it is W (the width of the bounding box) if no
black pixel is in the row.

• The right margin are indices of the last black pixels, pixel indexing starts from
1 from the left side in each row; it is 0 if no black pixel is in the row.

• The bottom and top margins are defined like left and right margins, indexing
starts from 1 and goes from bottom to top in each column.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 1.5 Vectorial features: (a) original pattern, (b) horizontal projection, (c) vertical
projection, (d) left margin, (e) right margin, (f ) bottom margin, (g) top margin, (h)
horizontal transition, and (i) vertical transition. Please note that the transition values are very
small, so in order to enhance visibility, we multiplied them by 4.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 1.6 Vectorial to vectorial transformations: (a) original pattern, (b) horizontal
projection, (c) its histogram, (d) its smoothing, (e) its differentiation, (f ) vertical projection,
(g) its histogram, (h) its smoothing, and (i) its differentiation. Note: The values of the
vertical histogram are multiplied by 4.
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Hence, left and right margins are vectors (of numbers) of lengths equal to the
height of the bounding box, while bottom and top margins are vectors (of
numbers) of length equal to its width; the detailed formulas for margins are
as follows:

MargL i =

W if
W

j= 1

I i, j = 0

arg min
1 ≤ j ≤W

I i, j = 1 −1 otherwise

i= 1,2,…,H

MargR i =

0 if
W

j= 1

I i, j = 0

arg max
1 ≤ j ≤W

I i, j = 1 otherwise

i= 1,2,…,H

MargB j =
H if

H

i= 1

I i, j = 0

arg min
1 ≤ i ≤H

I i, j = 1 −1 otherwise

j= 1,2,…,W

MargT j =
0 if

H

i= 1

I i, j = 0

arg max
1 ≤ i ≤H

I i, j = 1 otherwise

j= 1,2,…,W

(1.14)

3. Horizontal and vertical transitions:

• The horizontal transition is the number of pairs of two consecutive white and
black pixels in given rows.

• The vertical transition is the number of such pairs in columns.

Like in the case of projections, transitions are vectors of numbers of respec-
tive length.

TranH 1,H 1,W H TranH j =
W

j= 2

max 0, I i, j − I i, j−1

TranV 1,W 1,H W TranV i =
H

i = 2

max 0, I i, j − I i−1, j

(1.15)

1.2.2 Transformations of Features: FromVectorial to Vectorial

An interesting collection of numerical features can be derived from vectorial features
transformed to other vectorial features. Let us present several important vectorial to
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vectorial mappings: histograms, smoothings, and differentiations. Illustrative exam-
ples of such transformations are presented in Figure 1.6:

1. A histogram and a cumulative histogram are defined on a vector V of length L.
Let us assume that elements of vectorV are integers located in an interval 1, Lh ,
that is, V i 1, Lh . Let us also consider a vector Vh of length Lh. The histo-
gram is a mapping from the vector V to the vector Vh that assigns the number of
elements that have value i in the vector V to the i-th element of Vh, that is, assigns
this number to the Vh(i), i= 1,2,…,Lh. Given these assumptions we define his-
togram Hist and cumulative histogram HistC as follows:

Vh j =
L

i= 1

1 V i = j

0 V i j
for j= 1,2,…,Lh

Vh j =
L

i= 1

1 V i ≤ j

0 V i > j
for j= 1,2,…, Lh

(1.16)

For instance, a histogram of a vertical projection is defined for each integer
number i between 0 and the number of rows (H). It counts the number of col-
umns, in which the number of black pixels is equal to i.

2. Smoothing is a mapping defined on a vector that replaces a given value by the
mean of this value and its p left and p right neighbors. Both original and result
vectors have the same length L. For instance, for p = 1 the value is replaced by
the mean of this value and its left and right neighbors in the vector. Note that, for
p = 1, the first and the last elements of the vectors do not have their left and right
neighbors, respectively. By analogy, for values of p greater than one, some
neighbors of p left and p right elements are missing for leftmost and rightmost
elements. The following formulas define smoothing mapping Smthp for
any p <L 2:

VSmth i =
1

r− l+ 1

i+ r

j= i− l

V j i= 1,2,…, L

l= max 1, i−p , r = min L, i+ p

(1.17)

3. Differentiation assigns a difference between current and previous elements of
vector V to the second and next elements of the result vector Vd:

Diff V Vd Vd i =V i −V i−1 for i = 2,3,…,L and Vd 1 = 0 (1.18)

Notice that differential values may be negative, positive, or equal to 0. The first
element of the result differential vector is arbitrarily set to 0.

1.2.3 Transformations of Features: Vectorial to Numerical

As we have already mentioned, a pattern recognition task usually employs numerical
features. We have also shown that quite a few interesting characteristics describing
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images could be gathered in the corresponding vectors. Therefore, it becomes
imperative to derive numerical characteristics from vectorial features. In this
section we discuss principal numerical characteristics of vectorial features. These
characteristics can be applied to vectors discussed in the previous sections: projec-
tions, margins, and transitions and then histograms, smoothings, and differentiations
of projections, margins, and transitions. Transformations from vectorial to numerical
features are outlined in the following text and illustrated in Figure 1.7.

1. Minimum, mean, and maximum values of a vector. These transformations can
be applied to projections, margins, and transitions. Let V be a vector of length L.
Then the following obvious formulas define these concepts:

Min value = min
1 ≤ i ≤ L

V i Mean value =
1
L

L

i= 1

V i Max value = max
1 ≤ i ≤ L

V i

(1.19)

2. Positions of minimum and maximum values are just indices of vector’s ele-
ments with the minimal and maximal values, respectively. If the minimal or
maximal value appears more than once in a vector, then the position can be cho-
sen arbitrarily. In the following formulas, the first occurrence is taken as the
position. Let V be a vector of length L, and then the following formulas define
these features:

Position of min value = arg min
1 ≤ i ≤ L

V i =min value

Position of max value = arg min
1 ≤ i ≤ L

V i =max value
(1.20)

where min value and max value are defined in (1.19).

(a) (b) (c) (d) (e)

Max
position

Max

Mean

D

Holes

Bodies

D′

Min

Min
position

Figure 1.7 Vectorial to numerical transformations: (a) original pattern, (b) numerical features
of vertical projection (min = 2, mean = 23, max = 34, min position = 22, max position = 13),
(c) directions—white lines on the black pattern (W–E = 13, N–S = 28, NE–SW = 20, NW–

SE = 11), (d) eccentricity, and (e) Euler numbers (treble clef: −2, flat: 0, sharp: 0, fermata:
2, mezzo forte: 2).
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3. The zero-order moment ρ0, the first-order raw moment ρ1, and the mean
value μ1,

ρ0 =
L

i= 1

V i ρ1 =
L

i= 1

i V i μ1 =

L

i = 1

i V i

L

i= 1

V i

=
ρ1
ρ0

and the second-order raw ρ2 and central μ2 moments of a vector V of length L,

ρ2 =
L

i= 1

i2 V i η2 =
L

i= 1

i−μ1
2 V i (1.21)

1.2.4 Numerical Features

Several important features can be extracted directly from an image. We discuss here
the following features: shape of the bounding box (height to width proportion), black-
ness, raw and central moments, eccentricity, and Euler numbers. In the following
text we present descriptions of the listed features and illustrate the discussion with
Figures 1.4 and 1.7.

1. Proportion of the bounding box is just the proportion of its heightH to widthW:

H

W
(1.22)

2. Blackness is the proportion of the number of black pixels to all pixels in the
bounding box:

H

i= 1

W

j= 1

I i, j

H W
(1.23)

3. Raw and central moments. Raw moments of an image are defined as follows:

ρkl =
H

i = 1

W

j= 1

ikjl I i, j (1.24)

where k + l is an order of a moment. Please notice that the moment of order
zero is equal to the area of the image (it is the number of black pixels) and
the first-order moments ρ10 and ρ01 define the center of the image (which
can be interpreted as the mean value or the center of gravity).

Central moments are defined by the formula

μkl =
W

i = 1

H

j= 1

i−ρ10
k j−ρ01

l I i, j (1.25)

14 CHAPTER 1 PATTERN RECOGNITION: FEATURE SPACE CONSTRUCTION
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Notice that μ00 = ρ00 and μ10 = μ01 = 0. If we compare moments of an image
with moments of horizontal and vertical projections of this image, we come to a
conclusion that they are identical, that is, the first-order moment ρ10 of an image
and the first-order moment of its horizontal projection ρ1 are equal:

ρ10 =
H

i= 1

W

j= 1

i1j0 I i, j =
H

i= 1

i
W

j= 1

I i, j =
H

i= 1

i ProjH i = ρ1 (1.26)

Alike, the first-order moment ρ01 is equal to the first-order moment ρ1 of its
vertical projection. Analogously, the second-order raw moments ρ20 and ρ02
and the second-order moments of its vertical and horizontal projections are
equal. The same correspondence concerns central moments μ20 and μ02 and
the respective moments of vertical and horizontal projection μ2.

4. Eccentricity E is defined as the proportion of the length of diameter D to the
length of diameter D perpendicular to D. Diameter D of a pattern is an interval
of the maximal length connecting two black pixels of the pattern

Length D = max
1 ≤ i, k ≤H
1 ≤ j, l ≤W

d I i, j , I k, l I i, j = 1 = I k, l (1.27)

The following formula allows a simple computation of this feature:

E =
μ20−μ02 + 4 μ211

μ00
(1.28)

where μ20, μ02, μ11 are central moments of the second order and μ00 is the
area of the pattern (equal to the number of black pixels) (cf. Hu, 1962; Sonka
et al., 1998).

5. Euler numbers 4, 6, and 9. Euler numbers of a pattern represented as a mono-
chrome image describe topological properties of the pattern regardless of its
geometrical shape. The Euler number of a binary image is the difference
between the number of connected components (NCC) and the number of holes
(NH) (Sossa-Azuela et al., 2013):

EN =NCC –NH (1.29)

A connected component is a region of black (foreground) pixels, which are
connected. A hole is a region of connected white (background) pixels enclosed
by black pixels. For instance:

• The treble clef has one connected component and three holes, EN = 1 − 3 = −2.

• The mezzo forte pattern has two connected components and no holes, EN =
2 − 0 = 2.

• The sharp has one connected component and one hole, EN = 1 − 1 = 0.

Connectivity depends on the definition of connected components. We consider
three types of connectivity:

• 4-Connectivity is computed in a 4-pixel neighborhood, that is, to a given
pixel I(i, j), connected are its horizontal I i± 1, j and vertical I i, j± 1
neighbors.

1.2 FROM PATTERNS TO FEATURES 15
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• 8-Connectivity is calculated in an 8-pixel neighborhood, that is, to a
given pixel I(i, j), connected are its horizontal, vertical, and diagonal
I i± 1, j ± 1 , I i± 1, j∓1 neighbors.

• 6-Connectivity is based in a 6-pixel neighborhood, that is, to a given pixel
I(i, j), connected are its horizontal and vertical neighbors and two neighbors
on an arbitrarily chosen diagonal, and in this study we consider right-to-left
diagonal I i± 1, j± 1 neighbors.

6. Directions: vertical (N–S, short for North–South), horizontal (W–E, short for
West–East), and diagonal (NW–SE and NE–SW). In brief, direction is the length
of the longest run of black pixels of a line in a given direction. For instance, the
formulas for vertical and NW–SE diagonal directions read as follows:

max
1 ≤ i ≤H, 1 ≤ j ≤W

max
l ≥ 0, r ≥ 0

l+ r + 1 =
r

k = − l

I i + k, j

max
1 ≤ i ≤H, 1 ≤ j ≤W

max
l ≥ 0, r ≥ 0

l+ r + 1 =
r

i= − l

I i+ k, j−k

(1.30)

with an assumption that for a given i and j, values l and r are such that the fol-
lowing obvious inequalities hold: 1 ≤ i− l ≤ i+ r ≤H and 1 ≤ j− l ≤ j+ r ≤W .

7. A peak in a vector (e.g., in a horizontal/vertical projection, margin, etc.) is an
element of this vector that is not smaller than its left and right neighbors, and at
the same time it is either not smaller than the 3/4 of the maximum in this vector,
or it is not smaller than half of the maximum in this vector, and it exceeds its left
and right neighbors by a quarter of the maximum. The following formula
defines the number of peaks in a vector V of length L assuming that
MAX= max1 ≤ i ≤ L V i is the maximal element in the vector V:

L−1

i = 2

1 V i > 3 4 MAX V i −max V i−1 ,V i+ 1 ≥ 0

1 3 4 MAX ≥V i > 1 2 MAX V i −max V i−1 ,V i+ 1 ≥ 1 4 MAX

0 otherwise

(1.31)
To sum up, a primary step of pattern recognition described in this section aims at

the generation of numerical features from images. The proposed mechanisms gener-
ate, in total, 171 features (viz., the feature vector contains 171 elements). It turned out
that for the two datasets that we have tackled in the detailed experiments (viz., hand-
written digits and printed music notation), some of the computed features were
constant, so we removed them. As a result, we obtained a list of 159 features; they
are listed in Appendix 1.A.

There are numerous papers on feature extraction in pattern recognition. Many of
them discuss very specific cases of image analysis, for instance, involving face rec-
ognition (Turk and Pentland, 1991), high-speed methods for feature extraction (Bay
et al., 2008), texture analysis (Manjunath and Ma, 1996), and real-world applications
in which we aim at matching between different views of an object or a scene
(Lowe, 2004).
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1.3 FEATURES SCALING

The values assumed by different features may vary, for instance, comparison of sal-
aries and age. Features in their natural form are called raw features or we may just say
raw values. Some raw features may weigh much more than the other features. As a
consequence, when processing raw features with certain algorithms, we risk that
heavy features will overshadow the light ones. Therefore, there is a need to scale
raw features, and this process aims at unifying ranges of their values. We consider
two types of unification: normalization to the unit interval and standardization based
on unification of mean and standard deviation. In both types of scaling, a linear trans-
formation is applied, so characteristics of patterns are preserved.

1.3.1 Features Normalization

A typical normalization linearly transforms raw values of features to the unipolar unit
interval [0, 1] or to the bipolar unit interval −1,1 . In order to give details of such
transformation, let us assume that patterns are described by features X1, X2,…, XM

and that xi,min and xi,max are the minimal and the maximal values of a feature Xi for
all patterns located in a learning set. Hence, for a value xi,j of this feature for a given

pattern oj represented as a vector of features xj = x1, j, x2, j,…, xM, j
T
, the correspond-

ing unipolar value is computed as follows:

ai, j =
xi, j−xi, min

xi, max−xi, min
(1.32)

The corresponding bipolar value is given by

bi, j = 2
xi, j−xi, min

xi, max−xi, min
−1 (1.33)

In Table 1.1, we present example values of features. Numerical features (min-
imal, maximal, and mean values, positions of minimal and maximal values) are
derived from two vectorial features: vertical projection and differential of vertical pro-
jections. We outline features of printed music notation symbols. In this example, we
consider only eight classes and take a single pattern (symbol) coming from each class.
In the consecutive segments of this table, we present raw values, parameters of raw
values of the entire learning set (minimal, maximal, mean values, and standard devi-
ation), values normalized to the unipolar and bipolar unit intervals, and standardized
values. It is worth noting that normalization and standardization may give undefined
values such as mean of differential of vertical projection. This feature is constant;
therefore, the denominators in formulas (1.32), (1.33), and (1.34) are 0.

In the normalized learning set of patterns, values fall into the unit interval.
However, when we consider patterns not belonging to the learning set, for example,
patterns subjected to recognition after the original normalization has been performed,
their feature values may be less than the minimum or greater than the maximum of
a given feature. We can easily normalize new, incoming patterns, but it may happen
that the result values will fall out of the desired unit interval. Hence, such irregularity
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must be considered in some way. In order to deal with such case, we recommend
selecting processing algorithms prone to slight variations in feature values, which with
the current advancements in the machine learning area is not a problem.

Alternatively, if there is no other option, one may truncate values located out-
side the unit interval.

1.3.2 Standardization

Standardization is another method of features unification. Standardization considers
not only raw values themselves but also dispersion of values, that is, we employ the
mean value and standard deviation of a given feature. Let the following vector

xj = x1, j, x2, j,…, xM, j
T
represent a j-th pattern. The following formula realizes a

standardization procedure,

ui, j =
xi, j−xi
σi

(1.34)

where xi is the mean of the feature Xi and σi is the standard deviation of this feature:

xi =
1
N

N

j= 1

xi, j, σi =
1
N

N

j= 1

xi, j−xi
2

(1.35)

N is the number of patterns in the learning set.
Standardized values of selected features are displayed in the bottom segment of

Table 1.1. As mentioned earlier, we outline features of one pattern (symbol) from each
of 8 classes of printed music notation. Unlike in the case of normalization, there is no
fixed interval that includes the values of a feature, so in order to process a standardized
dataset, one cannot choose a classifier that requires all features to fall into some arbi-
trarily predefined interval.

1.3.3 Empirical Evaluation of Features Scaling

In this section, we discuss the influence of feature values scaling on classification
quality. We tested two datasets: musical symbols and handwritten digits. Let us recall
that handwritten digits are examples of a well-balanced dataset. In contrast, patterns
in the dataset with musical symbols are imbalanced with regard to size, shape, and
cardinality.

There are some measures that can be taken to mitigate problems of class imbal-
ance. Even though pattern shape is a property that cannot be modified, the other two
aspects—samples cardinality and size—can be adjusted to balance an imbalanced
dataset. Therefore, we balanced values of features, that is, standardized and normal-
ized values. Also, we balanced cardinalities of classes.

The dataset of musical symbols consists of 20 classes; see Section 3.4 for
details. The majority of classes contain from 200 to 3000 samples. One class is
extremely small; it includes only 26 patterns. Based on the original dataset, we built
two balanced datasets in which all classes contain exactly 500 patterns, that is, we
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obtained two balanced datasets with 10,000 patterns in each of them. In order to con-
struct these datasets, we had to oversample less frequent classes and undersample
the frequent ones. For those classes in which there were more than 500 samples,
we randomly selected 500 patterns. With regard to rare classes, new patterns were
generated in order to reach the total of 500 patterns in a given class. We applied
two distinct methods for generation of new patterns, and hence we obtained two
balanced datasets.

The essence of the first method for samples generation is defined as follows:

Algorithm 1.1
On intervals oversampling rare class
Data: class O of patterns of cardinality N

Set of Features
NB the assumed cardinality of the balanced class

Algorithm: initialize the balanced class OB =O
repeat
pick up randomly two native patterns from O:

X = x1, x2,…, xM and Y= y1, y2,…, yM
create new pattern Z= z1, z2,…, zM such that for l= 1,2,…,M

zl is a random value from the interval [min(xl, yl), max(xl, yl)]
add Z to OB

until number of patterns in OB is not less than NB

Results: the balanced class OB of patterns

In the procedure shown earlier, we generate a number of patterns so that the
total number of patterns (original patterns plus the ones that are generated) is equal
to 500. On the input to this procedure, we pass original samples from a given rare
class. Technically, we operate on a data frame ofM features describing some patterns.
We call this method on intervals as new patterns are generated with the use of random
intervals formed between feature values of existing patterns.

The alternative method for samples generation is realized as follows:

Algorithm 1.2
Gaussian oversampling rare class
Data: class O of patterns of cardinality N

Set of Features
NB—assumed cardinality of the balanced class

Algorithm: initialize the balanced class OB =O
compute center X= x1, x2,…, xM of the class O
repeat

create new pattern Z= z1, z2,…, zM such that for l= 1,2,…,M
use Gaussian probability distribution N(μ, σ) to sample zl,

where μ and σ are computed according to (1.35)
add Z to OB

until number of patterns in OB is not less than NB

Results: the balanced class OB of patterns
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Figure 1.8 Quality of different sets of features selected with the greedy search method. The
procedure was adding features one by one: in each iteration one best feature was added. Feature
evaluation was performed using the ANOVA F-test and PBM index. We display accuracy
(vertical axis) versus feature sets cardinality (horizontal axis). Results concern sets of
features ranging from 1 to 100. Plots present accuracy measured on test sets. Plots concern
different sets: original, normalized, standardized digits, and musical symbols for the dataset
(Homenda et al., 2017). Information about the kind of data is presented in each individual plot.
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In this procedure, we use normal (Gaussian) probability distribution to approx-
imate distribution of patterns in a given class. We call this data generation procedure
Gaussian generation.

The dataset of handwritten digits consisted of 10 classes with around 1000
patterns in each class. The total number of patterns is exactly 10,000. This dataset
is balanced, and there is no need to undersample the patterns coming from the
dominant class or oversample the patterns that form a minority class.

In Figure 1.8, we present results of empirical tests done for the four datasets
described earlier: original dataset of handwritten digits, original (unmodified) dataset
of music notation, music notation dataset balanced with the on intervals method, and
music notation dataset balanced with the Gaussian method. In addition, in each indi-
vidual plot in Figure 1.8, we present (for comparative purposes) results achieved for
raw data versus normalized data versus standardized data. We display the accuracy of
SVM classifiers, which were built using sets of features of various sizes. We checked
sets of features of all cardinalities between 1 and 100. In order to select a particular set
of features, we ran a greedy search algorithm employing the ANOVA F-test and PBM
index for evaluation of features quality (cf. Section 1.4 for the details of the features
selection process).

In the experiment with the results plotted in Figure 1.8, the classes forming
learning sets were split randomly into the training and test sets in proportion
70–30%. Training sets were used to construct classifiers, while the accuracy was
evaluated on the test sets.

The results displayed in Figure 1.8 indicate that the standardization of a data-
set helps achieve better numerical accuracy. The results for raw data are worse than
for the standardized one. The results for normalized data are worse or in a few cases
similar to the results achieved with standardized data. The differences are clearly
visible for feature sets of size ranging from 10 to 50. For very large feature sets,
the classification results tend to be very similar, no matter which dataset was used.
Naturally, such large feature sets are not recommended as we see a clear effect of
overfitting that makes test accuracy drop after achieving some peak. Peaks in the
accuracy test occur for feature sets consisting of more than 20 but less than
30 features.

It is important to notice that balancing raw (not normalized and not standar-
dized) musical symbols dataset improves accuracy a lot, especially for the PBM
index. On the other hand, accuracy obtained on original (imbalanced) musical sym-
bols dataset for standardized features (both ANOVA F-measure and PBM index)
and for normalized features (PBM index) is slightly better than for balanced
datasets.

1.4 EVALUATION AND SELECTION OF FEATURES

In the previous sections of this chapter, we have presented the general idea of how to
represent patterns using features. The discussion was focused on extracting various
features from monochrome, segmented images of patterns. Up to this point we have
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avoided a very crucial topic: quality of features. In this section, we take a closer look at
this issue.

Taking up a pattern recognition task, we have to be aware of the fact that
extracted features may be of poor quality. This problem manifests itself in a few
aspects. First, we may be in possession of too many features and our processing algo-
rithm may not be able to handle them efficiently. The second apparent flaw is that
features may be redundant (duplicated), constant, or may carry utterly useless infor-
mation (such as the National Insurance Number that is unique for each person and
does not carry any predictive strength). Last, we may have heavily correlated
features or features of general poor quality (e.g., with missing values). In any case,
before actual pattern recognition it is obligatory to get to know the data we process.
When it comes to features, we need to evaluate them. The objective of this task is
to select such a subset that would be valuable for classification. In the following
section, we discuss problems of features evaluation and selection of an optimal
feature subset.

1.4.1 Correlation

It may happen that some features are very similar or even identical in the sense that, for
instance, their values are linearly dependent for the considered learning set of patterns.
A few linearly dependent features do not carry more information than only one of
them. If we have a pair of correlated features, only one of them is needed in the process
of classifier construction. Redundant features should be dropped because they do not
carry new information. Moreover, they complicate the construction of the model, and
in this way we risk constructing a poor model.

To illustrate dependence between features, let us consider mean values of ver-
tical and horizontal projections and blackness. These features are defined by formulas
(1.13) and (1.23). It is obvious that they are proportional: their values are equal to the
number of black pixels in a bounding box of a pattern divided by width, height, and
the product of width and height of the box, respectively:

Meanvert proj =

W

i= 1

H

j= 1

I i, j

W
Meanhor, proj =

W

i= 1

H

j= 1

I i, j

H
Blackness =

W

i= 1

H

j= 1

I i, j

W H
(1.36)

Hence, these three features are strictly correlated. It is sufficient to multiply
values of one feature by a constant in order to obtain the values of some other features:

Meanhor, proj =
W

H
Meanvert proj Blackness =

1
H

Meanvert proj (1.37)

and, of course, two out of these three features should be eliminated.
The strength of correlation between two features is expressed by the Pearson

correlation coefficient. To compute this coefficient, let us consider two numerical fea-
tures Xk and Xl and their values for all N patterns from the learning set: x1,k, x2,k,…, xN,k
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and x1,l, x2,l,…, xN,l, respectively. The Pearson correlation coefficient is defined
as follows:

rk, l =

N

i= 1

xi, k −xk xi, l−xl

N

i= 1

xi, k −xk
2

N

i= 1

xi, l−xl
2

(1.38)

where the mean values of these features are computed according to the formulas as

xk =
1
N

N

i = 1

xi, k, xl =
1
N

N

i= 1

xi, l (1.39)

The Pearson correlation coefficient is a number from the interval −1,1 . It
assumes the value equal to 1 for a pair of strictly correlated features, that is, a pair
of features that are in a linear relationship such that when one feature increases,
the second one increases as well. Such behavior is exhibited by any two features out-
lined in (1.36). This conclusion is trivially obtained by replacing feature values in
(1.38) with the product of the values of another feature and respective coefficient.
On the other hand, two linearly dependent features with a negative linear coefficient
produce the correlation value equal to −1. As an example of such two features, we may
give blackness and whiteness. Another example of a correlation with a negative coef-
ficient is the mean value of horizontal projection and the mean value of a cumulative
histogram of vertical projection. This pair of features has a correlation coefficient very
close to −1.

For a given set of features, we compute a correlation matrix, identify groups of
correlated features, and then eliminate all but one feature from every such group. It
should be mentioned that, typically, we do not see strictly correlated features, that
is, pairs with the absolute value of coefficients equal to 1, as in the cases outlined ear-
lier. Usually, we have strongly correlated features, that is, pairs of features such that
their absolute correlation values are high. We note that it is up to the model designer to
determine a cut threshold that allows making a decision on which pair of features is
correlated. Assuming that we have selected such threshold, say, the absolute value of
0.6, we shall investigate pairs of features correlated to a degree exceeding 0.6, and we
should drop redundant features.

Table 1.2 presents correlation coefficients between features listed before in
Table 1.1. Of course, the matrix is symmetrical and has 1s at the main diagonal. In
this matrix each pair of features with the absolute value of the correlation coefficient
greater than 0.6 is highlighted in boldface. For example, the following pairs of features
are correlated: the raw moment of the differential of vertical projection is correlated
with the position of the maximal value of vertical projection (0.64) and the first raw
moment of vertical projection with the values of vertical projection (0.65) and with the
position of the minimum value of differential of this projection (0.64). If we want to
eliminate these correlations, we should either remove the raw moment of the differ-
ential of vertical projection or two other correlated features. There is no general rule on
which one of them should be removed. If we have, for instance, evaluated the quality
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of single features (cf. Section 1.4.2 for such evaluations), then the weaker and not the
stronger one(s) may be removed.

1.4.2 Evaluation of Features: Two Approaches

Features correlation allows to identify similar features and then eliminate dependent
ones. Equally important is features evaluation with regard to their usefulness in
classification. The challenge is to find a possibly small set of features, which would
guarantee construction of a high quality classifier. Unfortunately, there is no single
suitable method of low computational cost to select the best subset of features for
all data. In practice, we distinguish two kinds of approaches for feature selection:

• Index-based methods

• Wrapper-based methods

The first family of methods relies on relatively simple indices that evaluate
features. They rely on dependencies such as relationships between the feature
and dependent variables and relationships between features themselves. The upside
of applying index-based approaches is that they require moderate computational
effort.

The so-called wrapper-based methods rely on constructing multiple models
based on various features subsets. After forming collection of classification models,
we compare their efficiency and select the best one. In order to be sure that for a
given classification method, we selected the best subset of features, and we need
to build classifiers for all possible subsets of features. In practice, however, this
is not a feasible option, especially when the full feature set is large. To limit com-
putational overhead induced by a brute force feature search, we can apply several
greedy algorithms that limit the number of checked feature subsets in some way.
Still, this method is computationally costly and time consuming. In addition, if
we switch to another classification algorithm, then in order to obtain the same
high quality model, it will be desirable to repeat the whole procedure. Even though
the mentioned negative aspects are hard to overlook, it shall be mentioned that
wrapper-based methods provide models of superior numerical quality. For this rea-
son in further parts of this chapter, we take a closer look at wrapper-based feature
search methods.

The literature of the topic offers a wide range of papers in which we find quite
elaborate examples of how appropriate feature selection ensures proper processing
abilities. One may read on unsupervised similarity-based feature selection in Mitra
et al. (2002), mutual information-based feature selection in Peng et al. (2005), feature
selection for bioinformatics data in Saeys et al. (2007) and Guyon et al. (2002), rough
set-based feature selection in Swiniarski and Skowron (2003), and more. There are
also papers in which we find elaborations on feature selection techniques directed
to be used with some particular classifier, for instance, SVM in Huang and Wang
(2006). It is also worth to consult a general-purpose surveys on feature selection,
in, for instance, Trier et al. (1996) and Kudo and Sklansky (2000).
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1.4.3 Index-Based Feature Evaluation: Single Feature Versus
Feature Set Evaluation

Let us now address an important distinction arising in a scenario when we apply
index-based methods for feature selection. Let us stress that index-based feature eval-
uation could be applied in two variants:

• To evaluate the quality of a single feature

• To evaluate the quality of a subset of k features

The first strategy, outlined in Algorithm 1.3, simply requires evaluating features
one by one.

Algorithm 1.3
Index-based evaluation of features: one-by-one scheme
Data: Set of Features for Evaluation

Learning Set of Patterns
Index for Feature Evaluation

Algorithm: for each feature in the Set of Features
evaluate feature using Index for Feature Evaluation

Results: vector with quality score for each feature in the Set of Features

If we sort the output of Algorithm 1.3, we construct feature ranking. Subse-
quently, the model designer will be able to select a subset of features individually
evaluated as the best, in the hope that such features together will provide us with a
high quality model. Selection of k (the number of features) could be performed with
a plot of index values. Looking for a knee-point present in the plot is a standard way
when making an empirically guided selection of parameters.

The second strategy evaluates features as a group. This, however, entails a cer-
tain problem as to how to select a features subset for evaluation. This issue will be
tackled later in this chapter. At this point let us focus on a description of indices
for feature evaluation in the context of single feature evaluation. Later on, this discus-
sion will be extended into the second scenario in which we evaluate subsets of
features.

1.4.4 Indices for Feature Evaluation

We turn attention to two kinds of methods of low computational complexity: statis-
tical indices for feature evaluation and indices used in clustering quality verification.

Even though clustering is an assignment with a motivation different than pattern
recognition, we see a lot of similarities between those two. Intuitively, we see an anal-
ogy between clusters and classes: we assume that classes, like clusters, gather similar
objects or, in other words, they reside in some designed subspace of the feature space.
Therefore, we perceive cluster validity indices as feasible candidates for feature
evaluation indices.

In the following sections we describe four indices: ANOVA F-test (statistical
index) and three clustering indices.
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ANOVA F-Test
The ANOVA F-test (analysis of variance) is a statistical test used to assess whether the
expected values of a quantitative variable within several predefined groups differ from
each other. This test is used to evaluate the ability of a feature to differentiate classes of
native patterns. Roughly speaking, the evaluation is described by the following
proportion:

F =
between−class variability
within−class variability

1 40

Let Ni, i= 1,2,…,C be the cardinalities of classes of native patterns, where of
courseN1 +N1 + +NC =N and xi,j stands for the value of the (considered) feature of
the j-th pattern from the i-th class, j= 1,2,…,Ni, i= 1,2,…,C. Let xi i= 1,2,…,C
and x be the mean values of the feature in respective classes and in the whole
learning set:

xi =
1
Ni

Ni

j= 1

xi, j, i= 1,2,…C, x =
1
N

C

i= 1

Ni

j= 1

xi, j (1.41)

Then the ANOVA F-test for a given feature is defined by the following formula:

F =

1
C−1

C

i= 1

Ni xi−x
2

1
N−C

C

i= 1

Ni

j= 1

xi, j−xi
2

(1.42)

It is clear that the more dispersed centers of classes and the more compact
classes inside are, the greater the value of the ANOVA F-test becomes. This obser-
vation implies that the greater the ANOVA F-test is, the easier it is to separate classes
from each other. Finally, the quality of features is consistent with the values of the
ANOVA F-test: the greater the value of this test is, the better class separation the fea-
ture provides. Interestingly, ANOVA F-test turned out to be a great match for feature
selection in natural language processing (Elssied et al., 2014).

Clustering Indices
Among a multitude of cluster validity indices, let us select a few that turned out, after a
series of empirical experiments, to be well suited to express the quality of features.
These are the McClain–Rao (MCR) index, the generalized Dunn index (GDI), and
the PBM index.

The McClain–Rao Index (MCR)
The first index considered here was proposed inMcClain and Rao (1975) and Charrad
(2014). This index expresses the ratio of two terms that is the average distance
between pairs of points of the same cluster and pairs of points of different clusters.
The following formula defines this index:

MCR=
P2 N −ΣP2 Ni

ΣP2 Ni

C

i= 1 1 ≤ k < l ≤Ni

xi, k −xi, l

1 ≤ i< j ≤C 1 ≤ k ≤Ni 1 ≤ l ≤Nj

xi, k −xi, l
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where

P2 N =N N−1 2 and ΣP2 Ni =
C

i= 1

Ni Ni−1 2 (1.43)

and P2(N) is the number of all distances computed between points of all clusters (more
precisely, the number of all sets consisting of two points from all clusters) and ΣP2(Ni)
is the number of all distances between points in the same cluster (the number of all sets
consisting of two points from the same cluster). The meaning of other symbols is anal-
ogous to the notation being used in the section devoted to the ANOVA F-test.

Considering (1.42) to be the product of two terms, we may interpret the second
term as the sum of within-cluster distances divided by the sum of between-cluster dis-
tances. The first term counts the number of the between-cluster distances divided by
the number of the within-cluster distances. The product of both terms is just a propor-
tion of the average within-cluster distance and the average between-cluster distance.

The minimum value of the index is used to indicate optimal clustering. There-
fore, the smaller the value of this index is, the better the feature quality is. Finally, for
the sake of consistency with the other indices, we reverse the rank of features formed
with the MCR.

The Generalized Dunn Index (GDI)
The Dunn index (Dunn, 1973) defines the ratio between the minimal between-cluster
distance to the maximal within-cluster distance. This index was generalized to the
GDI by using different definitions of the minimal between-cluster distance and the
maximal within-cluster distance (cf. Desgraupes, 2013). We use the version GDI41
given by the following formula (cf. Desgraupes, 2016). Of course, when applying
clustering indices for feature set evaluation in the context of classification, we replace
cluster belongingness with class memberships:

GDI41 =
min

1 ≤ k < l ≤C
xk −xl

max
1 ≤ k ≤C

max
1 ≤ i< j ≤Nk

xk, i−xk, j
(1.44)

If the dataset contains compact and well-separated clusters, the diameters of
clusters are expected to be small, and the distances between clusters are expected
to be large. Thus, the Dunn index should be maximized. Therefore, the higher the
value of this index is, the better the quality of the feature is.

The PBM Clustering Index
The third cluster validity index considered here was proposed in Bandyopadhyay
et al. (2004), and it is called PBM (after the names of the authors, Pakhira, Bandyo-
padhyay, and Maulik). Adapting the notation used in the ANOVA F-measure, the fol-
lowing the PBM index is proposed:

PBM=
DB

C

C

i= 1

Ni

j= 1

xi, j−x

C

i= 1

Ni

j= 1

xi, j−xi

2

(1.45)
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whereDB = max
1 ≤ i< j ≤C

xi−xj is the largest distance between mean values in the set of all

clusters (centers of clusters). As in the case of the ANOVA F-test, the greater the dis-
persion between clusters and the more compact each cluster is, the greater the PBM
index is. In conclusion, the greater the PBM index is, the better class separation the
feature provides and the better the feature quality is.

1.4.5 Selection between Index-Based Methods and
Wrapper-Based Methods

Let us recall that classifiers can serve as a feature evaluation method—following the
so-called wrapper-based approach to feature selection. Applying classifiers to feature
evaluation is in primal conflict with index-based feature search as it drastically
increases computational complexity. Wrappers evaluate the final product (classifica-
tion accuracy), while index-based methods are more sublime: they evaluate constitu-
ents, features making the final model.

At the same time, we have to face a realistic expectation that a computationally
inexpensive index-based method would be only valuable if its results do not fall far
behind a superior model constructed at a higher computational cost.

In the next section, we aim at a fair comparison of index-based methods for sin-
gle feature evaluation with classifier-based single feature evaluation. By analogy, in
later parts of this chapter, we aim at comparing index-based methods for multiple fea-
tures selection with classifier-based multiple features selection. In experimental tests
we analyze the consistency of a given index-based evaluation method with the accu-
racy of a trained model.

In this study we use k-NN and SVM classifiers. An extended description of
these classifiers is provided in Chapter 2.

1.4.6 Single Feature Evaluation Scheme Using Indices
and Classifiers

There are many indices used for evaluating clustering quality. We investigated more
than 20 indices in order to choose a few, which would evaluate features consistently
with classifiers; that is, we look for indices that rank features in a way similar to clas-
sifiers. Moreover, we discuss selected features in order to illustrate some properties
such as the correlation of features or the scoring results. Outlined in Table 1.3 are
results produced by classifiers SVM and k-NN (k = 1) and the ANOVA F-test and sev-
eral clustering indices: the Calinski–Harabasz index, the Baker–Hubert gamma index,
the G+ index, the GDI with parameters δ4 andΔ1 (cf. Dunn, 1973; Desgraupes, 2013),
the MCR index, the PBM index, and the point-biserial index (cf. Desgraupes, 2013,
2016). For each index listed in the first column of Table 1.3, given are 15 features
(their numbers) with the best rank, in descending order of this rank. The full names
of these features and assigned numbers are given in Appendix 1.A. In Table 1.3, we
would like to draw attention to rows corresponding to the ANOVA F-test and the
Calinski–Harabasz, which are identical, which means that these two indices are fully
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correlated (perfectly consistent) and one should be dropped. Further properties of
indices are outlined later on in this chapter.

Feature ranks are investigated to evaluate the usefulness of indices. We applied
two schemes to compute the score for pairs of indices/classifiers, both based on
computing a distance between positions of features. Then we look for indices consist-
ent with SVM and k-NN classifiers.

The Distance by Rank (DR)
The first criterion used for measuring similarity is the distance by rank (DR) score.
This score computes the sum of differences between positions of features in ranks.
Let us assume that R1 and R2 are ranks based on two indices and that R1(Xi) and
R2(Xi) are indices of the feature Xi in these ranks. This score is defined as follows:

DR R1,R2 =
M

i= 1

R1 Xi −R2 Xi 1 46

The results of the DR are shown in Table 1.4. In this table, we display the score
for these indices that were used in Table 1.3. The smaller the value of this score is, the
more similar indices are. It is equal to 0 for the two perfectly consistent indices, that is,
such indices that assign the same rank to each feature. This is the aforementioned case
of the ANOVA F-test and the Calinski–Harabasz index and the pair Gamma and
G(amma)+ indices. Apart from these two pairs, the highest similarity is encountered
for the pair of two classifiers: SVM and k-NN. With regard to similarity of a classifier
and an index, relatively low scores, less than 6000 for the SVM classifier and less than
7000 for the k-NN classifier, are encountered for the pair of perfectly consistent
ANOVA F-measure and Calinski–Harabasz index and then for the GDI-41, the
MCR, and the PBM indices. The point-biserial index is an example of an index that
exhibits high DR score values. This index (among a few others) is very inconsistent
with other indices.

The Distance by Segments Cardinality (DSC)
The second criterion used for measuring similarity is called the distance by segments
cardinality (DSC). This score is based on consecutive groups of top features in ranks
created by two compared indices. Then, cardinalities of an intersection of correspond-
ing sets of features are summed. The following formula defines the DSC:

DSC R1,R2 =
M r

i= 1

card
r i

j= 1
R−1
1 j

r i

j= 1
R−1
2 j 1 47

where R1 and R2 are ranks based on two indices, R−1
1 and R−1

2 are inverse mappings of
ranks, and r is the segment length parameter. Explicitly, R−1

1 j is the feature Xi if and

only if R1 Xi = j, and card
r i

j= 1
R−1
1 j

r i

j= 1
R−1
2 j is the number of common

features in initial segments of length r i in both ranks. Hence, this criterion
operates on initial segments of both ranks, namely, the segments of length
r, 2r, 3r,…, M r r. From (1.47) we can easily conclude that the first segments
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(of length r) are counted M/r times, the second segments (of length i) are counted
M r −1, and so on. In this way, DSC score gives priority to shorter segments.
Finally, the higher the score for a pair of indices is, the better the consistency of
indices is.

The results of the DSC applied to selected indices are outlined in Table 1.5. The
SVM classifier is compared with the k-NN classifier and with selected indices. The
parameter r is set to 10, so then segments of length tens are considered, that is, in
the first row, we have cardinalities of intersection of top 10 features in the SVM rank
and in ranks of k-NN and consecutive indices. In the second row, we have cardinalities
of top 20 features in the SVM rank, in the ranks of k-NN and consecutive indices, and
so on. Specifically, top 10 features in SVM and k-NN ranks have 6 common features,
top 10 features in SVM and ANOVA ranks have 3 common features, and so on. Let
us notice that two pairs of indices (the pair ANOVA–Calinski–Harabasz and the
pair Gamma − Gamma+) give the same results due to their perfect consistency being
observed earlier.

The final comparison to the SVM score is shown in Table 1.5 in the row labeled
“SVM DSC”. In the row labeled “k-NN DSC”, we give the final comparison to the
k-NN (k = 1) score, detailed data are dropped. Notice that the value in the column
labeled “k-NN” concerns a comparison for the k-NN rank with itself, and hence it
is maximal. In both rows with the final score, we highlight with the bold font scores
greater than an (arbitrarily) set threshold 800.

TABLE 1.5 Features ranking with distance by segments cardinality: compared are initial
segments of ranks created by classifiers and an index

Segment—Index k-NN ANOVA C-H G G+ GDI M-R PBM P-B

SVM—[1–10] 6 3 3 0 0 1 3 3 0
SVM—[1–20] 11 8 8 0 0 4 7 6 0
SVM—[1–30] 15 13 13 3 3 8 15 14 0
SVM—[1–40] 24 17 17 6 6 12 20 18 0
SVM—[1–50] 34 24 24 10 10 19 27 26 2
SVM—[1–60] 44 33 33 17 17 30 37 36 3
SVM—[1–70] 53 41 41 27 27 41 46 44 7
SVM—[1–80] 65 51 51 37 37 51 54 53 22
SVM—[1–90] 77 63 63 49 49 64 65 61 37
SVM—[1–100] 88 77 77 59 59 81 79 75 52
SVM—[1–110] 102 89 89 74 74 95 92 87 65
SVM—[1–120] 114 105 105 90 90 111 105 100 83
SVM—[1–130] 126 120 120 106 106 126 122 117 102
SVM—[1–140] 138 137 137 121 121 135 136 133 121
SVM—[1–150] 149 149 149 141 141 143 150 150 141
SVM DSC 1046 930 930 740 740 921 958 923 635
k-NN DSC 1200 860 860 715 715 917 886 849 687

SVMDSC denotes scores of distance by segments cardinality for the SVM classifier and given indices. k-NNDSC denotes
scores for k-NN (k = 1) and given indices. Indices are taken from Table 1.4, and their abbreviations are in the first row.
The bold font is used to highlight relatively high scores.
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Finally, the analysis of the DR and the DSC scores allows to recommend
five indices for dealing with features selection: the ANOVA F-measure, the
Calinski–Harabasz, GDI-41, the MCR, and the PBM indices. Notice that both the
DR and the DSC scores recommend the same indices to be consistent with classifiers.
Since the ANOVA F-measure and the Calinski–Harabasz index are perfectly consist-
ent, we decided to drop the Calinski–Harabasz index and leave four others.

1.4.7 Selection of Subsets of Features

Needless to say, a successful classification process in most cases requires many fea-
tures, not only a single one. Therefore, we need to select a number of them from a
wider spectrum. One may be tempted to expect that selecting a number of features
with the highest individual evaluation will guarantee the best choice. Unfortunately,
evaluation of single features is not the best indicator of the predictive power of a model
based on more than one feature. The aforementioned feature interactions influence a
design of the classifier.

Let us reiterate that a subset of features, say, k features, with the best individual
evaluation does not guarantee the best evaluation within other subsets with the same
cardinality. Namely, it is necessary to test all subsets including k features out of M in
order to have the best set of k features. Since the number of all k subsets of cardinality k
out of M features, given in (1.48), is factorial, roughly estimating the complexity of
such a method is exponential, so then such method is useless in practice for problems
of higher dimensionality:

M

k
=

M

M−k k
(1.48)

In the next section, we discuss some approximation methods that can be used in
selecting the best subset of features out of a wider range of them. Such approximation
methods, in fact, do not guarantee the best set to be identified, but we can expect that a
set close to the optimal one could be selected.

Index-Based Feature Selection Methods
The most straightforward method for feature selection, conceptually speaking, is to
generate subsets of features based on a full set of features, evaluate all generated
subsets using some index, and select a subset with the highest score. As a quality
evaluation index, we can use any of the clustering indices discussed before. Natu-
rally, they are fit to evaluate not only a single feature but also a set of features. This
straightforward procedure is outlined in Algorithm 1.4.

Algorithm 1.4
Index-based evaluation of a given set of features
Data: Set of Features for Evaluation

Learning Set of Patterns
Index for Feature Set Evaluation

Algorithm: evaluate the Set of Features using Index for Feature Set Evaluation
Results: quality score for the given Set of Features
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Wrapper-Based Feature Selection Methods
Wrapper-based methods rely on comparing the quality of multiple classifiers built on
different sets of features. In the following text we formulate two algorithms to be used
in the wrapper-based evaluation of sets of features. These algorithms are executed
multiple times to form a wide collection of models, out of which the best one is
selected.

Algorithm 1.5
Classifier-based evaluation of a given set of features
Data: Set of Features

Learning Set of Patterns
Classification Method
Classifier Evaluation Method

Algorithm: split Learning Set of Patterns into Training and Test Sets
build classifier for given

Classification Method and Training Set
for Training and Test Sets do

evaluate constructed classifier
using given Classifier Evaluation Method

use evaluation of classifier as evaluation of features
Results: quality score of the given Set of Features

This algorithm works as follows. First, we construct a classifier using a given
classification method and the training set of patterns. Once the classifier has been
built, the classifier evaluation method produces scores on the training set and the test
set. Finally, both scores are involved in evaluation of the set of features.

This algorithm is usually extended with a cross-validation technique, which
allows to average classifier construction. We rewrite Algorithm 1.5 with a small update
in order to underline that the cross-validation concerns the training set and that the test
set is used only for classifier evaluation. Again, we skip details of cross-validation
techniques in order to keep clarity of narration. It is worth noting that Algorithm 1.5
is a special case of Algorithm 1.6 with the number of cross-validation folds equal to 1.

Algorithm 1.6
Classifier-based evaluation of a set of features with cross-validation
Data: Set of Features

Learning Set of Patterns
Classification Method
Classifier Evaluation Method
r—number of cross-validation folds

Algorithm: split Learning Set of Patterns into Training and Test Set
repeat r times
begin

use Training Set to build a fold
build a classifier using given Classification Method

and the current fold
end
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build the final classifier based on obtained r results
evaluate constructed classifier

using given Classifier Evaluation Method
and Training and Test Sets

use evaluation of classifier as evaluation of features
Results: quality score of the given Set of Features

Algorithms 1.5 and 1.6 provide methods for evaluation of feature sets using a
classifier of choice. Typically, they could be employed as a component of the wrap-
per-based feature selection method that generates sets of features and then employs
evaluation algorithms for feature sets to select the best one. Of course, saying the
best set of features, we mean that such a set of features gets the best evaluation on
the given learning set of patterns. We also hope that this set of features will allow
to construct such a classifier that will occur to be the best one among the others in
future applications.

In the addressed schemes the classifier is built based on a training set (a subset of
the learning set used for model construction). Next, we evaluate classifier perfor-
mance on a test set. The test set, in other words, is a holdout set of patterns unseen
at the stage of classifier construction. Finally, the scores obtained on train and test sets
can be combined in any way to get an evaluation of the set of features. For the sake
of clarity, we do not discuss details such as proportion between cardinalities of the
training and test sets, quality evaluation method, relation between evaluation of the
training set and the test set of patterns, and so on. Among early researches on wrap-
per-based feature selection, we may refer to Kohavi and John (1997).

1.4.8 Feature Subsets Generation

As mentioned before, building classifiers for multiple sets of features requires long
computation time, and, of course, it is definitely useless for systematic searching in
large spaces of features. Therefore, instead of classifiers, we discuss employment
of indices to evaluate the quality of sets of features. We collate the results with clas-
sical wrapper-based methods relying on classifiers only. We place a strong emphasis
on comparison between wrapper-based methods, and therefore this discussion is
placed in the section devoted to wrapper-based feature search methods.

However, no matter if we use a classifier or an index, still one problem remains
unsolved: how to generate subsets of features that need to be checked.

In subsequent sections let us discuss several methods that could be used in gen-
erating an optimal set of features. Saying an optimal set of features, we mean that
performance of such set will be as good as possible. It is important to underline that
such a set of features may not guarantee the best performance among other sets. This is
for several reasons such as cost reduction of the features selection process. There is no
one universal and objective method that could be used to find the best set of features.

Naïve (Brute Force) Selection
We begin this discussion with recalling the naïve (brute force) method. More specif-
ically, we may use the naïve (brute force) selection, that is, investigation of all non-
empty subsets of the set of features in order to select the best one. Of course, this
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method, formulated in Algorithm 1.7, guarantees selection of the best set in terms of
the learning set of patterns. But such a set of features may be less successful when it is
used to process patterns not belonging to the learning set.

Algorithm 1.7
Naive (brute force) selection of the best subset of features
Data: Set of Features

Learning Set of Patterns
either Index for Feature Set evaluation
or Classification Method and Classifier Evaluation Method

Algorithm: for each nonempty subset of the Set of Features do
call Algorithm 4 or 5 or 6 to evaluate this subset of features

choose the subset with the best evaluation
Results: the subset of the Set of Features with the best evaluation

However, computational complexity of the naïve selection is exponential, and
therefore it can be used only for a small set of features, that is, for a smallM. Therefore,
in practice, it is useless for more than 10 features. Saying it useless, we mean that
although the running time of such a method is finite, it is so long that we will not
get results in a reasonable time. In such cases, instead of the exact naïve method, dif-
ferent approximations are applied. In the following text we discuss four methods,
three greedy ones and a method with a limited expansion.

Greedy Selection by Rank of Single Features
The first attempt to select an approximated best set of k features is just using the
top k features from the rank provided by any quality measure of single features. We
may use any measure to evaluate single features, for instance, those discussed in
Section 1.4, that is, a classifier, the ANOVA F-test, the GDI-41, the MCR, and the
PBM indices. Using single features ranking would be appropriate for a raw clas-
sification task, where the highest quality result is not the prime issue. Unfortu-
nately, if high classification accuracy is a prime objective, this simple method
is not sufficient. Therefore, we need to utilize more sophisticated selection in order
to produce a set of features of better quality.

When we apply the single feature rank selection procedure and our objective is
to choose k features; we select top k features. They were evaluated individually as the
best, but we do not know how they cooperate with one another. In contrast, when we
use greedy forward/backward selection (that will be described in the following
two sections), we add/remove features one by one. We do not look at the quality
of individual features. Instead, in each round of the selection procedure, we add/
remove such one feature so that the new set of features becomes the best.

Greedy Forward Selection
We are looking for the approximately best set of features of given cardinality, say, k
features out of allM ones. In this scheme, we start with an empty set, and then we keep
adding one feature in each iteration. Assume that we have l features already selected.
Then, for every feature f from the set of M − l nonselected ones, evaluated is the set
with feature f added, that is, the set of l + 1 features. After this, the set with the best
evaluation is taken as the set of l + 1 selected features. Finally, the feature f included in
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a newly created set is deleted from the set of nonselected ones. This method is for-
mally described in Algorithm 1.8.

Algorithm 1.8
Greedy forward selection of the best subset of features
Data: SofF (Set of Features)

NofFtoS (Number of Features to Select)
Learning Set of Patterns
either Index for Feature Set Evaluation
or Classification Method and Classifier Evaluation Method

Algorithm: initiate SofSF (Set of Selected Features) as the empty set
initiate SofRF (Set of Remaining Features) as SofF
while cardinality of SofSF is less than NofFtoS do
begin
for every feature f in SofRF do

evaluate the set SofSF f of features
using Algorithm 1.4 or 1.5 or 1.6

choose the feature fmax for which SofSF f gets the best
evaluation

add fmax to SofSF
remove fmax from SofRF

end
Results: the subset of features of cardinality Number of Features to Select

(NofFtoS)

Greedy forward selection is an iterative process running until the set of selected
features reaches the required cardinality. In practice, this conditionmay be replacedwith
another one based on an intuitive expectation that the quality of the classification model
will be increasing along with growing cardinality of the set of selected features. Based
on this assumption, the stopping criterionwould involve a very intuitive condition based
on the quality of the classificationmodel evaluated on the learning set, that is, the quality
measured on the training set or on the testing set or on a combination of both measures.
Once the required quality has been reached, the iterative process can be stopped.

Greedy Backward Selection
Algorithm 1.9 formulates greedy backward selection. Instead of starting from an empty
set and then incrementally adding features, this method starts with a full set of features
and iteratively reduces its size. At the beginning, we give the full set ofM features. Then,
in each turn, we evaluate all subsets obtained by removing one feature from the current
set. After that, the current set of features is replaced with the subset with the best eval-
uation. This process is repeated until we skim the set of features to a desired size or until
another stopping condition is satisfied. After each iteration we inspect the quality of
features. When the quality starts to decrease substantially, the process should be halted
without waiting for other stopping criteria to be met. Greedy backward selection can be
used in a case when the initial full set of features is not very large. When we want to
select a small subset of features out of a large set of all features, forward selection is less
run time consuming than backward selection.
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It will be shown later on that, in general, reducing a big set of features increases
quality evaluation on the test set. This is a consequence of the phenomenon of over-
fitting. Therefore, the halting condition based on quality evaluation would be carefully
defined, when applied to big sets of features.

Algorithm 1.9
Greedy backward selection of the best subset of features
Data: SofF (Set of Features)

NofFtoS (Number of Features to Select)
Learning Set of Patterns
either Feature Evaluation Method
or Classification Method with Classifier Evaluation Method

Algorithm: initiate SofSF (Set of Selected Features) as SofF (Set of Features)
while cardinality of SofSF is less than NofFtoS do
begin

for every feature f in SofSF do
evaluate the set SofSF −{f} of features
using Algorithm 1.4 or 1.5 or 1.6

choose the feature fmax for which SofSF −{f} gets the best evaluation
remove fmax from SofSF

end
Results: the subset of features of cardinality Number of Features to Select

(NofFtoS)

Greedy Forward Selection with Limited Expansion
Greedy forward selection with limited expansion extends simple forward selection.
In each iteration of this algorithm, l the best sets of k features are processed,
where l is the expansion width. Each such set is incremented with each available
feature and then the l best sets are selected. Specifically, for each set of cardinality
k, out of the l best ones, M − k sets are created by inserting one not selected
feature. In total, l∗(M − k) new sets of cardinality k + 1 are obtained. Then, after
deleting duplicated sets, new k best sets are selected. The details are presented
in Algorithm 1.10.

Algorithm 1.10
Greedy forward selection with limited expansion
Data: SofF (Set of Features)

NofFtoS (Number of Features to Select)
l—Width of Limited Expansion
Stop Condition
Learning Set of Patterns
either Feature Evaluation Method
or Classification Method with Classifier Evaluation Method

Algorithm: for i = 1 to l do
Initialize SofSFi (i-th Set of Selected Features) as empty set

while Stop Condition is not satisfied do
begin
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initialize PLofSofF (Pending List of Sets of Features) as empty list
for i = 1 to l do
begin

initialize SofRF (Set of Remaining Features) as SofF – SofSFi
for each feature f in SofRF do
add SofSFi f to the PLofSofF

end
delete duplicates from the PLofSofF
evaluate sets of features from the PLofSofF

using Algorithm 1.4 or 1.5 or 1.6
for i = 1 to l do

replace SofSFi (i-th Set of Selected Features) by
i-th top set from PLofSofF

end
Results: the l best subset of selected features

Notice that for the parameter l = 1, the greedy forward search with limited
expansion turns into a simple greedy forward search. On the other hand, when at each
turn the parameter l is equal toM − k—that is, it is equal to the number of features not
used yet in the current set of selected features—this algorithm turns into the naïve
selection.

Notes on Computational Complexity
As mentioned earlier, computational complexity of the presented search algorithms
significantly differs, which determines their usefulness in practical applications.
Let us take a closer look at this problem. Evaluation of created subsets of features
is the dominant operation in methods formulated in Algorithms 1.7–1.10. Therefore,
run time of such an algorithm is proportional to the number of executions of this oper-
ation. Evaluation of a set of features is performed by Algorithm 1.4 (index-based) or
Algorithm 1.5 (classifier, no cross-validation) or Algorithm 1.6 (classifier with cross-
validation). Execution of Algorithm 1.6 is, roughly speaking, about r times longer
than execution of Algorithm 1.5, where r is the number of cross-validation folds.

Having this in mind, let us estimate the number of executions of different
subset search algorithms that in fact is equivalent to asymptotical complexity:

• Greedy selection by rank of single features requires each feature to be evaluated
once. Hence complexity is of rank M, that is, O(M).

• Naïve (brute force) selection requires evaluation of each subset of the set of
features, which makes complexity to be exponential, that is, O(2M).

• In greedy forward selection and greedy backward selection in each turn con-
secutivelyM,M−1,M−2,M−3,…, sets of features are evaluated, which raises
(pessimistic) square complexity: O(M2).

• Greedy forward selection with limited expansion requires evaluation of k times
more sets than simple greedy forward selection for constant k and k <<M, so
then the rank of complexity is O(kM2), where k is width of limited expansion.
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Therefore, from the perspective of complexity, any of the previously mentioned
methods is a reasonable choice except the naïve method, which may be applied only
for small sets of features.

Illustrative Experiment
In this experiment, Algorithm 1.10 was employed to test methods for features selec-
tion. We tested the run time for different evaluation methods and then the quality of a
classifier built on selected features. The experiment was carried out on the data set of
handwritten digits (LeCun et al., 1998).

Besides the previously mentioned asymptotical complexity estimation, in prac-
tice important are run time of a dominant operation and proportion between the run
time of the dominant and all operations. In our case, the evaluation of a set of features
is the dominant operation. We used two types of evaluators: classifiers and clustering
indices. In Table 1.6, the run times of Algorithm 1.10 are given. This algorithm was
executed for different classification models and evaluation methods for the purpose
of the characteristics outlined in Figures 1.10 and 1.11, that is, in each case (evaluation
method) selected were sets of features of consecutive cardinality 1, 2, 3, 4,…, 100. In
the case of the k-NN method, we took 1 neighbor and there was no cross-validation
involved. In the case of the SVM classifier, the following parameters were set:
Gaussian kernel function, γ = 0 0625 and C = 1, with 10-fold cross-validation, cf.
Section 2.3.

In practice, the final set of features is of cardinality 20–40, much less than the
set of 100 features, considered according to the prepared characteristics given in
Figures 1.10 and 1.11. Therefore, the computation time of forward selection methods
should be divided by a proper factor, say, 5 for the SVM selector and 2.5 for other
selectors. Anyway, it is worth drawing attention to the fact that the range of time
is huge even if these factors are taken into account. These ranges begin with one/a
few hours (ANOVA F-test), 15 or so hours (k-NN and indices), and up to 15 or so
days (SVM). Hence, we can conclude that performance time is an important factor
that should be taken into consideration. Of course, the choice of an evaluation method
determines not only its run time but also the quality of the final classifier constructed
with selected features.

In Figure 1.9 we present values of indices for the best sets of features for three
values of expansion limit and for cardinality of features sets ranging from 1 to 100.
Results concern a dataset of handwritten digits. Displayed are values of ANOVA
F-test, PBM index, GDI-41 index and accuracy values of SVM classifier built at

TABLE 1.6 Performance time of Algorithm 1.10 on the MNIST dataset (LeCun et al., 1998) for
three clustering indices and two classifiers

ANOVA MCR PBM k-NN SVM

k = 1 1.5 15 17 7 135
k = 3 4.5 47 50 20 400
k = 5 7.5 70 80 33 650

Given is performance time in hours needed to compute data for characteristics outlined in Figures 1.10 and 1.11.
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the best sets of features selected with three values of expansion limit (1, 3, and 5)
(cf. Algorithm 1.10).

Let us recall that the higher the value of indices/accuracy, the better the quality
of the set of features is. In cases of PBM and GDI-41 Indices and SVM classifiers,
quality is growing along with increasing expansion limit and cardinality of best sets
of features and, amazingly, ANOVA F-test behaves in the opposite way: quality
falls at the same time. In all four cases, around interval [20,30], there is an
inflection region (ANOVA F-test, PBM index, and SVM) and maximum region
(GDI-41 index).

In Figures 1.10 and 1.11, the quality of classifiers constructed on the basis of
features sets selected with various methods is displayed. For each feature set an SVM
classifier with parameters set to Gaussian kernel function, γ = 0 0625 and C = 1, with
10-fold cross-validation, was constructed. Results at the training set and at the test
set are given for selected indices and for the SVM classifier used for feature sets
evaluation.

Note that SVM parameters were the same for each tested set of features, that is,
no parameters tuning was done. Parameters tuning is performed empirically. This in
fact means that additional repetitions of model construction procedures would be
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Figure 1.9 Evaluation of sets of features with ANOVA F-test, PBM index, GDI-41 index, and
SVM classifier. Sets of features were selected with greedy forward with expansion limited to 1,
3, and 5. Displayed are scores of indices at the whole learning set of patterns and SVM classifier
accuracy at the training set of patterns (vertical axis) as a function of cardinality of features sets
ranging from 1 to 100 (horizontal axis). Results concern a dataset of handwritten digits.

44 CHAPTER 1 PATTERN RECOGNITION: FEATURE SPACE CONSTRUCTION

0003364859.3D 44 24/1/2018 4:13:32 PM



1.0

0.9

0.8

0.7
1 11 21 31 41 51 61 71 81 91

1.0

0.9

0.8

0.7
1 11 21 31 41 51 61 71 81 91

1.0

0.9

0.8

0.7
1 11 21 31 41 51 61 71 81 91

1.0

0.9

0.8

0.7
1 11 21 31 41 51 61 71 81 91

1.0

0.9

0.8

0.7
1 11 21 31 41 51 61 71 81 91

1.0

0.9

0.8

0.7
1 11 21 31 41 51 61 71 81 91

1.0

0.9

0.8

0.7
1 11 21 31 41 51 61 71 81 91

1.0

0.9

0.8

0.7
1 11 21 31 41 51 61 71 81 91

Music symbols

PBM index
selector

training set

k_back = 1

Index rankMusic symbols

PBM index
selector
test set

PBM index
selector
test set

k_back = 3

k_back = 5

k_back = 1

Index rankMusic symbols

ANOVA F-test
selector
test set

k_back = 3

k_back = 5

k_back = 1

Index rankMusic symbols

ANOVA F-test
selector

training set
k_back = 3

k_back = 5

k_width = 1
Index rank

k_width = 3
k_width = 5

Handwritten
digits

PBM index
selector

training set

k_width = 1

Index rank

k_width = 3

k_width = 5

Handwritten
digits

ANOVA F-test
selector

training set

ANOVA F-test
selector
test set

k_width = 1

Index rank

k_width = 3

k_width = 5

k_width = 1
Index

k_width = 3
k_width = 5

k_back = 1

Index rank

k_back = 3

k_back = 5

Handwritten
digits

Handwritten
digits

Figure 1.10 Quality of classification using SVM classifier constructed based on selected sets
of features. Sets of features were selected using the ANOVA F-test and PBM index.
Classification accuracy (vertical axis) is measured at the training set and at the test set for
three values of expansion limit and for the best features in the individual index rank,
cardinality of features sets ranging from 1 to 100 (horizontal axis). The first two rows of
graphs concern F-ANOVA; the last two rows—PBM. Results concern handwritten digits
and musical symbols datasets.
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Figure 1.11 Quality of classification using the SVM classifier constructed based on selected
sets of features. Sets of features were selected using the GDI-41 index and SVM classifier.
Classification accuracy (vertical axis) is measured at the training set and at the test set for
three values of expansion limit and for the best features in the individual index rank,
cardinality of features sets ranging from 1 to 100 (horizontal axis). The first two rows of
graphs concern F-ANOVA; the last two rows, PBM. Results concern handwritten digits and
musical symbols datasets.
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needed to select optimal parameters. This additional effort did not seem to be
reasonable when the focus of this section was not on SVM itself, but on feature
selection. Of course, tuned parameters may increase the quality of the final classifier,
and it is recommended to perform parameters optimization for final model
construction.

It is clearly visible that the SVM classifier based on features selected with
the SVM classifier outperforms classifiers constructed based on indices. First,
the maximal accuracy for the SVM selector overheads the other selectors by a
few percent points. The second highlight is that the maximal accuracy is gained
for smaller sets of features than in other cases. Third, characteristics for the
SVM selector are more regular and smoother than for the other selectors, espe-
cially at the test set. However, time needed to execute a feature search with
SVM as an evaluation method is huge. Observing characteristics displayed in Fig-
ures 1.10 and 1.11, we compare accuracy at the training set ranging from 0.9 to
0.98. What we can see is that cardinalities of optimal feature sets computed with
the PBM and the ANOVA F-test are about 1.5 times greater than the cardinality of
a set extracted with the SVM selector.

Also, the PBM and the ANOVA F-test-based models achieve maximal accuracy
at the test set for feature sets that are twice as large as for the SVM selector. Having
this in mind and referring to Table 1.6, we see that the run time of a procedure utilizing
McClain and PMB is 10 times greater than a procedure based on the ANOVA F-test
selector. Moreover, the run time of a procedure utilizing SVM is 50 (!) times greater
than that of a procedure based on the ANOVA F-test selector. Therefore, we can
conclude that the choice of features selector is a matter of a trade-off between model
quality and its construction cost.

As an outcome of the experiments concerning greedy feature search, we have
discovered suitable sets of features describing the datasets of handwritten digits
and symbols of printed music notation. For the handwritten digits, we selected a
set made up of 24 features, whereas for the musical symbols, they are described
by 20 features. All these features are listed in Appendix 1.B. The order in which
the features appear is according to the ranking realized by the SVM classifier used
for evaluation of features.

1.5 CONCLUSIONS

It is needless to say that selecting proper features is an elementary and necessary
assignment in any pattern recognition task. It determines the quality of models pro-
duced at later stages. In visual pattern recognition, feature selection is heavily deter-
mined by the kind of processed data. Here, we focus on characters and presented
methodology that fits well in this category of problem. However, the discussed
approaches may not be the best if we would wish to process substantially different
data coming from a different domain, for instance, high-resolution colored scans
obtained by high-end medical equipment. As it is for many other technical aspects
of pattern recognition, the choice of methods is usually data driven.
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APPENDIX 1.A

The list of 159 features used in experiments with handwritten digits and symbols
of music notation recognition. Constant features were removed from the full list of
171 features

1 Projection V—Raw—Min—Value
2 Projection V—Raw—Min—Position
3 Projection V—Raw—Max—Value
4 Projection V—Raw—Max—Position
5 Projection V—Raw—Mean
6 Projection V—Raw—First moment
7 Projection V—Raw—Peaks count
8 Projection V—Differential—Min—Value
9 Projection V—Differential—Min—

Position
10 Projection V—Differential—Max—Value
11 Projection V—Differential—Max—

Position
12 Projection V—Differential—Mean
13 Projection V—Differential—First moment
14 Projection V—Differential—Peaks count
15 Projection H—Raw—Min—Value
16 Projection H—Raw—Min—Position
17 Projection H—Raw—Max—Value
18 Projection H—Raw—Max—Position
19 Projection H—Raw—Mean
20 Projection H—Raw—First moment
21 Projection H—Raw—Peaks count
22 Projection H—Differential—Min—Value
23 Projection H—Differential—Min—

Position
24 Projection H—Differential—Max—Value
25 Projection H—Differential—Max—

Position
26 Projection H—Differential—Mean
27 Projection H—Differential—First moment
28 Projection H—Differential—Peaks count
29 Histogram V—Raw—Min—Position
30 Histogram V—Raw—Max—Value
31 Histogram V—Raw—Max—Position
32 Histogram V—Raw—Mean
33 Histogram V—Raw—First moment
34 Histogram V—Raw—Peaks count
35 Histogram V—Differential—Min—Value
36 Histogram V—Differential—Min—

Position
37 Histogram V—Differential—Max—Value
38 Histogram V—Differential—Max—

Position

39 Histogram V—Differential—First moment
40 Histogram V—Differential—Peaks count
41 Histogram H—Raw—Min—Position
42 Histogram H—Raw—Max—Value
43 Histogram H—Raw—Max—Position
44 Histogram H—Raw—Mean
45 Histogram H—Raw—First moment
46 Histogram H—Raw—Peaks count
47 Histogram H—Differential—Min—Value
48 Histogram H—Differential—Min—

Position
49 Histogram H—Differential—Max—Value
50 Histogram H—Differential—Max—

Position
51 Histogram H—Differential—First moment
52 Histogram H—Differential—Peaks count
53 Cumulative Histogram V—Raw—Min—

Value
54 Cumulative Histogram V—Raw—Max—

Value
55 Cumulative Histogram V—Raw——

Max—Position
56 Cumulative Histogram V—Raw—Mean
57 Cumulative Histogram V—Raw—First

moment
58 Cumulative Histogram V—Raw—Peaks

count
59 Cumulative Histogram H—Raw—Min—

Value
60 Cumulative Histogram H—Raw—Max—

Value
61 Cumulative Histogram H—Raw—Max—

Position
62 Cumulative Histogram H—Raw—Mean
63 Cumulative Histogram H—Raw—First

moment
64 Cumulative Histogram H—Raw—Peaks

count
65 Transitions V—Raw—Min—Value
66 Transitions V—Raw—Min—Position
67 Transitions V—Raw—Max—Value
68 Transitions V—Raw—Max—Position
69 Transitions V—Raw—Mean
70 Transitions V—Raw—First moment
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71 Transitions V—Differential—Min—
Value

72 Transitions V—Differential—Min—
Position

73 Transitions V—Differential—Max—
Value

74 Transitions V—Differential—Max—
Position

75 Transitions V—Differential—First
moment

76 Transitions H—Raw—Min—Value
77 Transitions H—Raw—Min—Position
78 Transitions H—Raw—Max—Value
79 Transitions H—Raw—Max—Position
80 Transitions H—Raw—Mean
81 Transitions H—Raw—First moment
82 Transitions H—Differential—Min—

Value
83 Transitions H—Differential—Min—

Position
84 Transitions H—Differential—Max—

Value
85 Transitions H—Differential—Max—

Position
86 Transitions H—Differential—First

moment
87 Offsets L—Raw—Min—Value
88 Offsets L—Raw—Min—Position
89 Offsets L—Raw—Max—Value
90 Offsets L—Raw—Max—Position
91 Offsets L—Raw—Mean
92 Offsets L—Raw—First moment
93 Offsets L—Raw—Peaks count
94 Offsets L—Differential—Min—Value
95 Offsets L—Differential—Min—Position
96 Offsets L—Differential—Max—Value
97 Offsets L—Differential—Max—Position
98 Offsets L—Differential—Mean
99 Offsets L—Differential—First moment
100 Offsets L—Differential—Peaks count
101 Offsets R—Raw—Min—Value
102 Offsets R—Raw—Min—Position
103 Offsets R—Raw—Max—Value
104 Offsets R—Raw—Max—Position
105 Offsets R—Raw—Mean
106 Offsets R—Raw—First moment
107 Offsets R—Raw—Peaks count
108 Offsets R—Differential—Min—Value
109 Offsets R—Differential—Min—Position
110 Offsets R—Differential—Max—Value

111 Offsets R—Differential—Max—Position
112 Offsets R—Differential—Mean
113 Offsets R—Differential—First moment
114 Offsets R—Differential—Peaks count
115 Offsets T—Raw—Min—Value
116 Offsets T—Raw—Min—Position
117 Offsets T—Raw—Max—Value
118 Offsets T—Raw—Max—Position
119 Offsets T—Raw—Mean
120 Offsets T—Raw—First moment
121 Offsets T—Raw—Peaks count
122 Offsets T—Differential—Min—Value
123 Offsets T—Differential—Min—Position
124 Offsets T—Differential—Max—Value
125 Offsets T—Differential—Max—Position
126 Offsets T—Differential—Mean
127 Offsets T—Differential—First moment
128 Offsets T—Differential—Peaks count
129 Offsets B—Raw—Min—Value
130 Offsets B—Raw—Min—Position
131 Offsets B—Raw—Max—Value
132 Offsets B—Raw—Max—Position
133 Offsets B—Raw—Mean
134 Offsets B—Raw—First moment
135 Offsets B—Raw—Peaks count
136 Offsets B—Differential—Min—Value
137 Offsets B—Differential—Min—Position
138 Offsets B—Differential—Max—Value
139 Offsets B—Differential—Max—Position
140 Offsets B—Differential—Mean
141 Offsets B—Differential—First moment
142 Offsets B—Differential—Peaks count
143 Directions—0
144 Directions—135
145 Directions—90
146 Directions—45
147 Directions—WE—Y
148 Directions—NS—X
149 Raw moments—First—m10
150 Raw moments—First—m01
151 Central moments—Second—m20
152 Central moments—Second—m11
153 Central moments—Second—m02
154 Height/width
155 Blackness level
156 Eccentricity
157 Euler number 4
158 Euler number 8
159 Euler number 6
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APPENDIX 1.B

Lists of features selected for in experiments with handwritten digits recognition
(left list) and symbols of music notation (right list)

1 Raw moments—First—m01 1 Height/width
2 Central moments—Second—m02 2 Offsets T—Raw—Min—Position
3 Offsets L—Differential—Max—Position 3 Central Moments—Second—m11
4 Euler number 4 4 Projection V—Raw—Max—Value
5 Offsets R—Raw—Min—Position 5 Offsets R—Raw—First moment
6 Offsets L—Differential—Min—Position 6 Offsets R—Raw—Mean
7 Directions—45 7 Euler number 4
8 Offsets L—Differential—Max—Value 8 Central moments—Second—m02
9 Offsets R—Differential—First moment 9 Directions—135
10 Offsets T—Differential—Max—Value 10 Transitions H—Raw—Max—Value
11 Raw Moments—first—m10 11 Central moments—Second—m20
12 Height/width 12 Offsets R—Raw—Min—Position
13 Cumulative Histogram V—Raw—First

moment
13 Directions—45

14 Offsets L—Differential—Min—Value 14 Offsets L—Raw—Max—Value
15 Offsets L—Differential—First moment 15 Projection V—Differential—Max—

Value
16 Central Moments—Second—m20 16 Projection H—Differential—Peaks count
17 Offsets T—Raw—Min—Position 17 Raw moments—First—m01
18 Projection V—Raw—Max—Value 18 Offsets L—Raw—Mean
19 Offsets R—Differential—Max—Value 19 Cumulative histogram V—Raw—first

Moment
20 Cumulative Histogram V—Raw—Max—

Position
20 Cumulative histogram H—Raw—Peaks

Count
21 Projection H—Differential—Min —Value
22 Directions—90
23 Offsets B—Differential—Min—Position
24 Offsets L—Raw—Max—Value
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