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CHAPTER 1

Conditions of Uniform Convergence

1.1 Pointwise, Absolute, and Uniform Convergence.
Convergence on a Set and Subset

Example 1. A function f (x, y), defined on X × Y , has a limit for any fixed x ∈
X as y approaches y0, that is, f (x, y) converges pointwise to a limit function 𝜑(x)
as y approaches y0, but the convergence of f (x, y) to 𝜑(x) is nonuniform on X.

Solution
Let us consider f (x, y) = xy

x2+y2 defined on [0, 1] × (0, 1] and choose y0 = 0. If
x = 0, then f (0, y) = 0 and consequently lim

y→0
f (0, y) = lim

y→0
0 = 0. If x ≠ 0, then

lim
y→0

f (x, y) = lim
y→0

xy
x2+y2 = 0. Therefore, the limit function is defined for any x ∈

[0, 1] and it is zero: 𝜑(x) = lim
y→0

f (x, y) = 0. However, the convergence to 𝜑(x)
is not uniform on X = [0, 1]. Indeed for ∀y ∈ Y = (0, 1], there exists xy = y ∈
(0, 1] such that

|f (xy, y) − 𝜑(xy)| = y2

2y2 = 1
2
↛

y→0
0,

that is, for 𝜀0 = 1
2

whatever radius 𝛿 is chosen, there exists the point xy = y ∈
(0, 1] such that |f (xy, y) − 𝜑(xy)| = y2

2y2 ≥ 𝜀0 although |y| < 𝛿. It means that the
convergence is not uniform.

Remark 1. In the case of Y = ℕ, a similar example can be formulated as follows:
a sequence of functions fn(x) converges (pointwise) on a set X, but this con-
vergence is nonuniform. One of the counterexamples is fn(x) = xn, X = (−1, 1).
Since |x| < 1, one gets lim

n→∞
fn(x) = lim

n→∞
xn = 0 = f (x), ∀x ∈ X. To show that this

convergence is nonuniform, let us pick up xn =
(

1 − 1
n

)
∈ X, for ∀n ∈ ℕ, n ≥ 2;

and for these points, we obtain

|fn(xn) − f (xn)| = (
1 − 1

n

)n
→

n→∞
e−1 ≠ 0.

Counterexamples on Uniform Convergence: Sequences, Series, Functions, and Integrals, First Edition.
Andrei Bourchtein and Ludmila Bourchtein.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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2 Chapter 1 Conditions of Uniform Convergence

1

Limit function f(x) = 0

Functions fn(x) = xn

f1
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Figure 1.1 Examples 1, 4, and 28, sequence fn(x) = xn.

In other words, for 𝜀0 = 1
4

whatever natural number N is chosen, for some
(in this case, actually, for any) n ∈ ℕ, n ≥ 2, there exists the point xn = 1 − 1

n

such that |fn(xn) − f (xn)| = (
1 − 1

n

)n
≥

1
4
, that is, the convergence is not uni-

form. (In the last inequality, we have used the fact that the sequence
(

1 − 1
n

)n

is increasing.)

Remark 2. A similar formulation can be made in the case of series: a series of
functions converges (pointwise) on a set, but this convergence is nonuniform.
The respective counterexample can be given with the series

∑∞
n=0 xn, x ∈ X =

(−1, 1). It is well known that the geometric series is convergent for |x| < 1 and∑∞
n=0 xn = 1

1−x
= f (x). To analyze the character of this convergence, first let us

find the partial sums fn(x) =
∑n

k=0 xk = 1−xn+1

1−x
and the corresponding remain-

ders rn(x) = f (x) − fn(x) =
xn+1

1−x
. Choosing now xn = 1 − 1

n+1
, ∀n ∈ ℕ, we obtain

rn(xn) =

(
1 − 1

n+1

)n+1

1 − 1 + 1
n+1

= (n + 1)
(

1 − 1
n + 1

)n+1
→

n→∞
∞.

Therefore, the convergence is nonuniform.
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1.1 Pointwise, Absolute, and Uniform Convergence. Convergence on a Set and Subset 3
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Figure 1.2 Examples 1 and 4, series
∑∞

n=0 xn.

Example 2. A series of functions converges on X and a general term of the
series converges to zero uniformly on X, but the series converges nonuniformly
on X.

Solution
Let us consider the series

∑∞
n=1

xn

n
on X = [0, 1). This series converges for ∀x ∈

X, because 0 ≤
xn

n
≤ xn, ∀n, and the geometric series

∑∞
n=1 xn is convergent for|x| < 1. We can even find the sum of the series if we recall that the function

ln (1 + x) has expansion in Taylor’s series ln (1 + x) =
∑∞

n=1 (−1)n−1 xn

n
conver-

gent on (−1, 1]. Then, replacing x by −x, we obtain ln (1 − x) = −
∑∞

n=1
xn

n
with

convergence on [−1, 1) and, in particular, on X = [0, 1). Further, the general
term un(x) =

xn

n
converges to 0 uniformly on X = [0, 1), because lim

n→∞
1
n
= 0 and

evaluation |un(x)| = |x|n
n

<
1
n

holds for ∀x ∈ X. Hence, the conditions of the
statement are satisfied. However, the series is not convergent uniformly on X
that can be shown by verifying the Cauchy criterion of the uniform conver-
gence. In fact, for ∀x ∈ X and for ∀n, p ∈ ℕ we have the following evaluation:

|||||
n+p∑

k=n+1

xk

k

||||| = xn+1

n + 1
+ · · · + xn+p

n + p
> p xn+p

n + p
.
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Figure 1.3 Examples 2, 26, 27, and 30, series
∑∞

n=1
xn

n
.

Now, for ∀n ∈ ℕ, choosing pn = n and xn = 1
n√2

∈ X, we get

|||||
n+pn∑

k=n+1

xk
n

k

||||| > n

(
1∕ n
√

2
)2n

2n
= 1

8
↛

n→∞
0,

which means that the Cauchy criterion is not satisfied and, therefore, the series
does not converge uniformly on X.

Remark 1. The series
∑∞

n=1
xn√

n
considered on X = (−1, 1) provides a similar

counterexample. First, it converges for ∀x ∈ X, because 0 ≤
|||| xn√

n

|||| ≤ |x|n, ∀n,
and the geometric series

∑∞
n=1 |x|n is convergent for |x| < 1. Second, the

inequality |un(x)| = |||| xn√
n

|||| < 1√
n

holds for ∀x ∈ X; since lim
n→∞

1√
n
= 0, it implies

the uniform convergence of xn√
n

to 0 on X. Hence, the statement conditions
hold. To analyze the nature of the convergence of the series, let us evaluate the
sum

∑n+p
k=n+1

xk√
k

for ∀n ∈ ℕ, pn = n, and xn = 1
n√3

∈ X:

||||||
n+pn∑

k=n+1

xk
n√
k

|||||| > n

(
1∕ n
√

3
)2n

√
2n

= 1
9
√

2

√
n →

n→∞
∞.
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1.1 Pointwise, Absolute, and Uniform Convergence. Convergence on a Set and Subset 5

This means that the Cauchy criterion is not satisfied and, therefore, the series
does not converge uniformly on X.

Remark 2. The converse general statement is true: if a series
∑

un(x) converges
uniformly on X, then its general term converges to zero uniformly on X.

Example 3. A sequence of functions converges on X and there exists its sub-
sequence that converges uniformly on X, but the original sequence does not
converge uniformly on X.

Solution

Let us consider the sequence fn(x) =

{
x
n
, n = 2k − 1

1
n
, n = 2k , ∀k ∈ ℕ, X = ℝ.

For any fixed x ∈ ℝ, we have two partial limits: if n = 2k − 1, then
lim
k→∞

f2k−1(x) = lim
k→∞

x
2k−1

= 0; and if n = 2k, then lim
k→∞

f2k(x) = lim
k→∞

1
2k

= 0.
Therefore, this sequence converges to 0 on ℝ: lim

n→∞
fn(x) = 0 = f (x). Note also

that the subsequence f2k(x) converges uniformly on ℝ, since the same evalua-
tion |f2k(x) − f (x)| < 𝜀 holds simultaneously for all x ∈ ℝ. Or equivalently, for
∀𝜀 > 0 there exists K𝜀 =

[
1

2𝜀

]
such that for ∀k > K𝜀 and simultaneously for all

x ∈ ℝ it follows that |f2k(x) − f (x)| < 𝜀. That is, the definition of the uniform
convergence is satisfied for f2k(x). Nevertheless, the sequence fn(x) does not
converge uniformly on ℝ. Indeed, whatever large index N we choose, there
exists the index nN = 2N − 1 > N and the real point xN = 2N − 1 such that

|f2N−1(xN ) − f (xN )| = 2N − 1
2N − 1

= 1 ↛
N→∞

0.

Hence, the convergence of fn(x) is not uniform on ℝ.

Example 4. A function f (x, y) defined on (a, b) × Y converges to a limit func-
tion 𝜑(x) as y approaches y0, and this convergence is uniform on any interval
[c, d] ⊂ (a, b), but the convergence is nonuniform on (a, b).

Solution
We can employ here the same functions used in Example 1. First, we consider
f (x, y) = xy

x2+y2 defined on (0, 1) × (0, 1) and choose y0 = 0. As in Example 1, the
limit function is zero: 𝜑(x) = lim

y→0
f (x, y) = 0, ∀x ∈ (0, 1). However, the conver-

gence to 𝜑(x) is not uniform on (0, 1), because for ∀y ∈ (0, 1) there exists xy = y
such that

|f (xy, y) − 𝜑(xy)| = y2

2y2 = 1
2
↛

y→0
0.
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6 Chapter 1 Conditions of Uniform Convergence

On the other hand, for any interval [c, d] ⊂ (0, 1), the convergence is uniform.
Indeed, for all x ∈ [c, d] and for any y > 0, it follows that

|f (x, y) − 𝜑(x)| = xy
x2 + y2 ≤

xy
x2 ≤

1
c

y.

Therefore, for any 𝜀 > 0, there exists 𝛿𝜀 = c𝜀 > 0 (which is the same for all
points in [c, d]) such that if 0 < y < 𝛿, then |f (x, y) − 𝜑(x)| ≤ 1

c
y < 𝜀 for all

x ∈ [c, d] simultaneously. It means that the convergence is uniform on [c, d].

Remark 1. The sequence fn(x) = xn on x ∈ (−1, 1) from Example 1
provides the following counterexample: a sequence of functions fn(x),
defined on (a, b), converges uniformly on any interval [c, d] ⊂ (a, b),
but the convergence is nonuniform on (a, b). The fact that the conver-
gence to the limit function f (x) = 0 is not uniform on (−1, 1) was already
proved in Example 1. Let us show that the convergence is uniform on
any [c, d] ⊂ (−1, 1). Since we can always construct the interval [−q, q],
where q = max{|c|, |d|}, such that [c, d] ⊂ [−q, q] ⊂ (−1, 1), it is suffi-
cient to prove the uniform convergence on [−q, q]. For this interval, we
get |fn(x) − f (x)| = |xn| ≤ qn, for all x ∈ [−q, q] at the same time. Since
lim
n→∞

qn = 0, that is, for any 𝜀 > 0 (it is sufficient to consider 𝜀 < 1), there exists

N𝜀 =
[

ln 𝜀

ln q

]
such that qn < 𝜀 if n > N𝜀, we can conclude that for any 𝜀 > 0 there

exists exactly the same N𝜀 =
[

ln 𝜀

ln q

]
such that when n > N𝜀, then |xn| ≤ qn < 𝜀

for all x ∈ [−q, q] simultaneously. The last sentence is the definition of the
uniform convergence on [−q, q], and consequently, on [c, d].

Remark 2. Finally, the series of Example 1
∑∞

n=0 xn, x ∈ (−1, 1) is an example
of the situation when a series of functions converges uniformly on any inter-
val [c, d] ⊂ (a, b), but the convergence is nonuniform on (a, b). It was already
shown in Example 1 that the convergence of the given series is not uniform on
(−1, 1). Let us consider an interval [−q, q] ⊂ (−1, 1), q > 0 and show that the
convergence is uniform on such an interval (this will imply the uniform con-
vergence on any interval [c, d] ⊂ (−1, 1)). Since |xn| ≤ qn for any x ∈ [−q, q] and
the numerical series

∑∞
n=0 qn is convergent (the geometrical series with |q| < 1),

according to the Weierstrass test the series
∑∞

n=0 xn converges uniformly on
[−q, q].

Remark 3. The nearly converse situation also takes place, as it is shown in
Example 5.

Example 5. A sequence fn(x) converges on X, but this convergence is nonuni-
form on a closed interval [a, b] ⊂ X.
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1.1 Pointwise, Absolute, and Uniform Convergence. Convergence on a Set and Subset 7

Solution
One of the counterexamples is fn(x) = nxe−n2x2 on X = ℝ. It is easy to show that
this sequence approaches f (x) ≡ 0 on ℝ. In fact, for x = 0 one has fn(0) = 0, ∀n
and, consequently, lim

n→∞
fn(0) = 0. For x ≠ 0, one can use the change of variable

t = nx and apply l’Hospital’s rule:

lim
n→∞

fn(x) = lim
t→±∞

t
et2 = lim

t→±∞

1
2tet2 = 0.

Consider now [a, b] ⊂ ℝ such that a ≤ 0 < b. Choosing N >
1
b

and xn = 1
n

, one
obtains the following evaluation for ∀n > N :

|fn(xn) − f (xn)| = n|xn|e−n2x2
n = e−1 ↛

k→∞
0,

which means that the convergence of fn(x) to 0 is nonuniform on such a closed
interval.

Remark 1. A similar example for a series goes as follows: a series
∑

un(x) con-
verges on a set X, but this series does not converge uniformly on a closed subin-
terval [a, b] ⊂ X. The series

∑∞
n=1

sin nx
n

provides an example. First, we show that
it is convergent on ℝ. If xk = k𝜋, ∀k ∈ ℤ, then

∑∞
n=1

sin nxk

n
=
∑∞

n=1 0 = 0. For
x ≠ k𝜋, we can apply Dirichlet’s theorem. For the partial sums Bn(x) =∑n

k=1 sin kx, the following evaluation holds:

|Bn(x)| = ||||| 1
2 sin x

2

n∑
k=1

2 sin kx sin x
2

|||||
=
||||| 1
2 sin x

2

n∑
k=1

(
cos

(
k − 1

2

)
x − cos

(
k + 1

2

)
x
)|||||

= 1
2 |||sin x

2
|||
||||cos x

2
− cos

(
n + 1

2

)
x
||||

= 1
2 |||sin x

2
|||
||||2 sin n + 1

2
x ⋅ sin n

2
x
|||| ≤ 1|||sin x

2
|||

(note that the division by sin x
2

is possible, since x ≠ k𝜋). Therefore, the sums
Bn(x) are bounded for any fixed x ≠ k𝜋. Besides, the numerical sequence
cn = 1

n
is decreasing and approaches 0 as n → ∞. Hence, all the conditions of

Dirichlet’s theorem are satisfied, and therefore the series is convergent on ℝ.
Let us show that this convergence is nonuniform on (0, 2𝜋) (and consequently

on [0, 2𝜋] or any other interval containing (0, 2𝜋)). To this end, we evaluate
the sum

∑n+p
k=n+1 uk(xn) =

∑n+p
k=n+1

sin kxn

k
in the Cauchy criterion of uniform con-

vergence. Choosing in this sum pn = n and xn = 𝜋

6n
, noting that 𝜋

6
< kxn ≤

𝜋

3
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8 Chapter 1 Conditions of Uniform Convergence

for any k such that n < k ≤ n + pn = 2n, and recalling that sin t is positive and
strictly increasing on

(
0, 𝜋

2

)
, we obtain

|||||
n+pn∑

k=n+1
uk(xn)

||||| =
||||||

2n∑
k=n+1

sin kxn

k

||||||
=

sin
(

𝜋

6
+ 𝜋

6n

)
n + 1

+
sin

(
𝜋

6
+ 2𝜋

6n

)
n + 2

+ · · · +
sin 𝜋

3

2n

>
sin 𝜋

6

n + 1
+

sin 𝜋

6

n + 2
+ · · · +

sin 𝜋

6

2n
= 1

2

( 1
n + 1

+ · · · + 1
2n

)
>

1
2

n
2n

= 1
4
.

Hence, there exists 𝜀0 = 1
4

such that for ∀n there are pn = n and xn = 𝜋

6n
∈

(0, 2𝜋) such that |||∑n+pn
k=n+1 uk(xn)

|||> 𝜀0. This means that the Cauchy criterion
is not satisfied on (0, 2𝜋) and, consequently, the series does not converge
uniformly on this interval.

At the same time, the application of Dirichlet’s theorem of uniform conver-
gence reveals that the series converges uniformly on the interval [a, 2𝜋 − a] for
any a ∈ (0, 𝜋). Indeed, since sin x

2
> 0, ∀x ∈ [a, 2𝜋 − a], we can apply the same

evaluations as above for the partial sums Bn(x) =
∑n

k=1 sin kx to obtain

|Bn(x)| ≤ 1|sin x∕2| = 1
sin x∕2

≤
1

sin a∕2
, ∀x ∈ [a, 2𝜋 − a],

that is, the sums Bn(x) are uniformly bounded on [a, 2𝜋 − a]. Since cn = 1
n

→
n→∞

0
and cn is strictly decreasing, all the conditions of Dirichlet’s theorem of uniform
convergence are satisfied. Hence, the series converges uniformly on any interval
[a, 2𝜋 − a], a ∈ (0, 𝜋).

Remark 2. For functions depending on a parameter, the corresponding formu-
lation is as follows: a function f (x, y) defined on X × Y has a limit lim

y→y0
f (x, y) =

𝜑(x) for ∀x ∈ X, but f (x, y) converges to 𝜑(x) nonuniformly on a subinterval
[a, b] ⊂ X. The function f (x, y) = x2y2

x4+y4 considered onℝ × (0,+∞)with the limit
point y0 = 0 provides the counterexample. This function converges to 𝜑(x) ≡
0 on ℝ as y → 0: for x = 0, one has f (0, y) = 0, ∀y ∈ (0,+∞) which implies
lim
y→0

f (0, y) = 0; and for x ≠ 0, one obtains by the arithmetic rules of the lim-

its lim
y→0

x2y2

x4+y4 = 0
x4 = 0. Choose now [a, b] ⊂ ℝ such that a ≤ 0 < b and evaluate

the difference |f (x, y) − 𝜑(x)| for ∀y ∈ (0, b) and xy = y ∈ [a, b]:

|f (xy, y) − 𝜑(xy)| = y4

2y4 = 1
2
↛

y→0
0.
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1.1 Pointwise, Absolute, and Uniform Convergence. Convergence on a Set and Subset 9

This result shows that the convergence is nonuniform on a chosen closed
interval.

Remark 3. A strengthened versions of these statements are presented in
Example 6.

Example 6. A sequence fn(x) converges on a set X, but it does not converge
uniformly on any subinterval of X.

Solution
To construct a counterexample, let us place all the rational numbers of the
interval [0, 1] in a specific order of a numerical sequence rn, n = 1, 2, · · ·
(this can be done, since the set of all the rational numbers of any inter-
val is countable). Define now the functions fn(x) on [0, 1] as follows:

fn(x) =
{

1, x = r1, r2, · · · , rn
0, otherwise . This sequence is monotone in n for any fixed

x ∈ [0, 1] (since fn(rn+1) = 0 < 1 = fn+1(rn+1) and fn(x) = fn+1(x), ∀x ≠ rn+1) and
bounded (since 0 ≤ fn(x) ≤ 1, ∀n ∈ ℕ, ∀x ∈ [0, 1]). Therefore, this sequence is

convergent at any fixed x ∈ [0, 1] and f (x) = lim
n→∞

fn(x) =
{

1, x ∈ ℚ
0, x ∈ 𝕀 = D(x).

The convergence is nonuniform on [0, 1] since for ∀n there exist xn = rn+1 such
that

|fn(xn) − f (xn)| = |fn(rn+1) − f (rn+1)| = 1 ↛
n→∞

0.

Let us show that the convergence is also nonuniform on any interval [a, b] ⊂
[0, 1], which will imply that the convergence is nonuniform on any interval in
[0, 1]. In fact, since any interval contains infinitely many rational points, in [a, b]
there are infinitely many points of the sequence r1, r2, r3, · · ·, which form a sub-
sequence rn1

, rn2
, rn3

, · · · , rnk
∈ [a, b], ∀k ∈ ℕ. Then for any k ∈ ℕ, there exist

nk > k and xk = rnk+1
∈ [a, b] such that

|fnk
(xk) − f (xk)| = |fnk

(rnk+1
) − f (rnk+1

)| = 1 ↛
k→∞

0,

which means that the convergence is nonuniform on [a, b].

Remark 1. The corresponding example for a series that converges on X, but
does not converge uniformly on any subinterval of X, can be easily constructed
using the sequence of the given counterexample as partial sums of the series.

For instance, the series
∑

un(x) with the terms un(x) =
{

1, x = rn
0, x ≠ rn

defined on

[0, 1] has the partial sums fn(x) of the above counterexample and, consequently,
this series converges on [0, 1], but does not converge uniformly on any subin-
terval of [0, 1].
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10 Chapter 1 Conditions of Uniform Convergence

Remark 2. Another example of this type, albeit for a sequence of continuous
on X functions fn(x), is given in Example 26 of Chapter 2.

Example 7. A series
∑

un(x) converges uniformly on an interval, but it does
not converge absolutely on the same interval.

Solution
The series

∑∞
n=1 (−1)n x2+n

n2 converges uniformly on the interval [−a, a], ∀a > 0.
In fact, for any fixed x ∈ ℝ, this is an alternating series, which converges by
Leibniz’s test: lim

n→∞
x2+n

n2 = 0 and x2+n
n2 is strictly decreasing in n for any fixed x ∈

ℝ. For alternating series, the remainder can be evaluated through its first term:|rn(x)| ≤ |un+1(x)| = x2+n+1
(n+1)2 . Therefore, for all x ∈ [−a, a], we get

|rn(x)| ≤ x2 + n + 1
(n + 1)2 ≤

a2

(n + 1)2 + 1
n + 1

→
n→∞

0,

which implies the uniform convergence of the series on [−a, a]. However,
the series of the absolute values

∑∞
n=1|un(x)| = ∑∞

n=1
x2+n

n2 diverges for any x:
for x = 0, the series

∑∞
n=1

1
n

is harmonic and divergent; for ∀x ≠ 0, the series∑∞
n=1

(
x2

n2 +
1
n

)
is the sum of the two series—

∑∞
n=1

x2

n2 and
∑∞

n=1
1
n

—where the
former is convergent (p-series with p = 2) and the latter is divergent (the
harmonic series), which implies the divergence of the sum. Hence, the given
series is convergent on ℝ, uniformly convergent on [−a, a], ∀a > 0, but it does
not possess absolute convergence at any point.

Remark. The converse situation is considered in Example 8.

Example 8. A series
∑

un(x) converges absolutely on an interval, but it does
not converge uniformly on the same interval.

Solution
The series

∑∞
n=0 (−1)nxn converges absolutely on the interval X = [0, 1), because

for ∀x ∈ [0, 1) the series
∑∞

n=0|un(x)| = ∑∞
n=0 xn is the geometric series with

the nonnegative ratio less than 1. However, the convergence is not uniform on
[0, 1), because for ∀n we can choose xn = 1 − 1

n+1
∈ [0, 1) that gives the follow-

ing evaluation:

|rn(xn)| = ||||| (−1)n+1xn+1
n

1 + xn

||||| =
(

1 − 1
n+1

)n+1

1 + 1 − 1
n+1

→
n→∞

1
2

e−1 ≠ 0.
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Figure 1.4 Example 7, series
∑∞

n=1 (−1)n x2+n

n2
.

Example 9. A series
∑

un(x) converges absolutely and uniformly on [a, b], but
the series

∑|un(x)| does not converge uniformly on [a, b].

Solution
Let us consider the series

∑∞
n=0 un(x) =

∑∞
n=0 (−1)n(1 − x)xn on [0, 1]. If x = 1,

then un(1) = 0 and the series converges at this point. If x ≠ 1, then for each
fixed x we have the geometric series with the ratio q = −x, and since |q| =|x| < 1, the series is convergent. The series of the absolute values

∑∞
n=0|un(x)| =∑∞

n=0(1 − x)xn is convergent on [0, 1] for the very same reasons.
Let us analyze the uniform convergence of the original series. Since this series

is alternating, we have the following evaluation for its remainder rn(x) for any n:

|rn(x)| ≤ |un+1(x)| = (1 − x)xn+1,∀x ∈ [0, 1].

Note that the continuous function h(x) = (1 − x)xn+1 is positive on (0, 1) and at
the end points h(0) = h(1) = 0. Therefore, h(x) achieves its global maximum in
some interior point of [0, 1]. Solving the critical point equation

h′(x) = (n + 1)xn − (n + 2)xn+1 = xn[(n + 1) − (n + 2)x] = 0,
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12 Chapter 1 Conditions of Uniform Convergence

we find the only critical point xn = n+1
n+2

on (0, 1), which is the global maximum
point of h(x) on [0, 1]. Thus, for ∀x ∈ [0, 1],

|rn(x)| ≤ (1 − x)xn+1 ≤ (1 − xn)xn+1
n

= 1
n + 2

(
1 − 1

n + 2

)n+1
→

n→∞
0 ⋅ e−1 = 0,

that is, the convergences is uniform on [0, 1].
Finally, let us show that the series

∑∞
n=0|un(x)| = ∑∞

n=0(1 − x)xn does not con-
verge uniformly on [0, 1]. It is sufficient to show that the convergence is nonuni-
form on [0, 1), so let us evaluate the remainder r̃n(x) for x ∈ [0, 1):

r̃n(x) =
∞∑

k=n+1
|uk(x)| = (1 − x)xn+1

1 − x
= xn+1.

Choosing now the points xn = 1
n+1√2

∈ [0, 1) for each n, we obtain r̃n(xn) =(
1

n+1√2

)n+1
= 1

2
↛

n→∞
0, which shows that the convergence is nonuniform on

[0, 1) and, consequently, on [0, 1].

Remark. The converse general statement is true: if a series
∑∞

n=0|un(x)| con-
verges uniformly on [a, b], then the series

∑∞
n=0 un(x) converges absolutely and

uniformly on [a, b].

Example 10. A series
∑

un(x) converges absolutely and uniformly on X, but
there is no bound of the general term un(x) on X in the form |un(x)| ≤ an, ∀n
such that the series

∑
an converges.

Solution
One of the counterexamples is the series

∑∞
n=1 un(x) with the general term

un(x) =
{

0, x ∈ [0, 2−n−1] ∪ [2−n, 1]
1
n

sin2(2n+1𝜋x), x ∈ (2−n−1, 2−n) defined on X = [0, 1]. Note that

un(x) ≥ 0 for ∀x ∈ [0, 1], so the convergence and absolute convergence is
the same thing for this series. At the points x = 0, x = 2−n, ∀n ∈ ℕ, and
for ∀x ∈

[
1
2
, 1
]
, we get un(x) = 0, ∀n ∈ ℕ and the series converges to zero.

If x ∈
(

0, 1
2

)
, x ≠ 2−n, n ≥ 2, then each of such points lies in only one of

the intervals (2−n−1, 2−n), because these intervals have no common points:
(2−n−1, 2−n) ∩ (2−n−2, 2−n−1) = ∅, ∀n ∈ ℕ. Therefore, there is only one nx
such that x ∈ (2−nx−1, 2−nx ). Then unx

(x) = 1
nx

sin2(2nx+1𝜋x) and un(x) = 0,
∀n ≠ nx and, consequently,

∑∞
n=1 un(x) = unx

(x), which shows the (absolute)
convergence of this series on [0, 1].
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Figure 1.5 Examples 9 and 10 (second counterexample), series
∑∞

n=0 (−1)n(1 − x)xn.

Applying the Cauchy criterion and employing similar reasoning, we can
also prove that the convergence is uniform. Indeed, since for any fixed
x ∈ [0, 1] at most only one term in the entire series is nonzero and this
term satisfies the inequality |unx

(x)| = ||| 1
nx

sin2(2nx+1𝜋x)||| ≤ 1
nx

, we obtain the

following evaluation |||∑n+p
k=n+1 uk(x)

||| ≤ 1
n+1

<
1
n

, which holds for ∀n, p ∈ ℕ

and simultaneously for ∀x ∈ [0, 1]. Hence, for ∀𝜀 > 0, there exists N𝜀 =
[

1
𝜀

]
such that for ∀n > N𝜀, ∀p ∈ ℕ and simultaneously for all x ∈ [0, 1], it follows
that |||∑n+p

k=n+1 uk(x)
||| < 1

n
< 𝜀, that is, the series converges uniformly on [0, 1]

according to the Cauchy criterion of the uniform convergence.
Nevertheless, the functions un(x) do not admit majoration on [0, 1] by the

constants an such that the series
∑∞

n=1 an converges. Indeed, for ∀n ∈ ℕ, the
inequality |un(x)| ≤ 1

n
is exact (in the sense that 1

n
is the lowest upper bound

for |un(x)|) on [0, 1], because there exists the point xn = 3 ⋅ 2−n−2 ∈ (2−n−1, 2−n)
such that un(xn) =

1
n

sin2
(

3
2
𝜋

)
= 1

n
, and the series

∑∞
n=1

1
n

diverges.
Another interesting counterexample is the series of Example 9:

∑∞
n=0 un(x) =∑∞

n=0 (−1)n(1 − x)xn on [0, 1]. It was shown in Example 9 that this series
converges absolutely and uniformly on [0, 1]. For each fixed n, the function|un(x)| > 0, ∀x ∈ (0, 1), and |un(0)| = |un(1)| = 0. Therefore, the continuous
function |un(x)| achieves its global maximum in an interior point of [0, 1],
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Figure 1.6 Example 10, series
∑∞

n=1 un(x), un(x) =

{
0, x ∈ [0, 2−n−1] ∪ [2−n, 1]

1

n
sin2(2n+1𝜋x), x ∈ (2−n−1, 2−n)

.

which can be found by solving the critical point equation:

|un(x)|′ = (xn − xn+1)′ = nxn−1 − (n + 1)xn

= (n + 1)xn−1
( n

n + 1
− x

)
= 0.

The unique solution on (0, 1) is xn = n
n+1

and, consequently,

|un(x)| ≤ max
[0,1]

|un(x)| = |un(xn)| = 1
n + 1

(
1 − 1

n + 1

)n
.

Since lim
n→∞

(
1 − 1

n+1

)n
= e−1 and the series

∑∞
n=0

1
n+1

diverges, according to the

comparison test, the series
∑∞

n=0
1

n+1

(
1 − 1

n+1

)n
also diverges. Note that for

each n, the majorant term an = 1
n+1

(
1 − 1

n+1

)n
is exact (i.e., the minimum pos-

sible) for |un(x)| on [0, 1]. Therefore, there is no convergent majorant series∑∞
n=0 an such that |un(x)| ≤ an.

Remark. The converse general statement is true and represents the famous
Weierstrass M-test.
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1.2 Uniform Convergence of Sequences and Series
of Squares and Products

Example 11. A sequence fn(x) converges uniformly on X to a function f (x),
but f 2

n (x) does not converge uniformly on X to f 2(x).

Solution
The sequence fn(x) = ln nx

n+1
converges on X = (0,+∞) to f (x) = ln x, because

lim
n→∞

ln nx
n+1

= ln
(
lim
n→∞

n
n+1

)
x = ln x. The following evaluation shows that this

convergence is uniform:

|fn(x) − f (x)| = ||||ln nx
n + 1

− ln x
|||| = ||||ln n

n + 1
|||| < 𝜀.

So for ∀𝜀 > 0, there exists N𝜀 =
[

1
e𝜀−1

]
, which depends only on 𝜀, such that for

∀n > N𝜀 and simultaneously for all x ∈ X we have |fn(x) − f (x)| < 𝜀.
Due to arithmetic properties of the limits, the sequence f 2

n (x) also converges
to f 2(x) = ln2x for any fixed x ∈ X (it can also be shown directly: lim

n→∞
ln2 nx

n+1
=(

ln
(
lim
n→∞

n
n+1

)
x
)2

= ln2x). However, this convergence is not uniform. In fact,
for each x ∈ X, we get

|f 2
n (x) − f 2(x)| = ||||ln2 nx

n + 1
− ln2x

||||
=
||||ln nx

n + 1
− ln x

|||| ⋅ ||||ln nx
n + 1

+ ln x
||||

= ln n + 1
n

⋅
||||ln nx2

n + 1
|||| .

Choosing now xn = 1
nen ∈ X, we obtain

|f 2
n (xn) − f 2(xn)| = ln n + 1

n
⋅
||||ln n

(n + 1)n2e2n

||||
= ln n + 1

n
⋅ ln(n(n + 1)e2n)

= ln n + 1
n

⋅ ln n(n + 1) + 2n ln n + 1
n

> 1

for sufficiently large n (since the first term is positive and the limit of the second
equals two: lim

n→∞
2n ln n+1

n
= lim

n→∞
2 ln

(
1 + 1

n

)n
= 2 ln e = 2, that is, 2n ln n+1

n
>

1 for large n). Therefore, the convergence is not uniform: for 𝜀0 = 1 whatever
N is chosen, it can be found that ñ > N and corresponding xñ ∈ X such that|f 2

ñ (xñ) − f 2(xñ)| > 𝜀0 = 1.
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Remark 1. Naturally, the following example can also be constructed:
sequences fn(x) and gn(x) converge uniformly on X to f (x) and g(x), respec-
tively, but fn(x)gn(x) does not converge uniformly on X to f (x)g(x). In the
case fn(x) = gn(x), we have the original example with the square of function.
For different sequences, we can use the same fn(x) = ln nx

n+1
and slightly

different gn(x) = ln nx
2n+5

. The sequence gn(x) converges to g(x) = ln x
2
, and this

convergence is uniform on X = (0,+∞) due to the evaluation

|gn(x) − g(x)| = ||||ln nx
2n + 5

− ln x
2
||||

=
||||ln 2n

2n + 5
|||| = ln

(
1 + 5

2n

)
→

n→∞
0.

Consequently, fn(x)gn(x) converges to f (x)g(x) = ln x ln x
2

for each fixed x ∈ X
due to arithmetic rules of the limits. However, this convergence is not uniform
on X, as it is shown below: for each x ∈ X, we have

|fn(x)gn(x) − f (x)g(x)| = ||||ln nx
n + 1

ln nx
2n + 5

− ln x ln x
2
||||

=
||||ln nx

n + 1
ln nx

2n + 5
− ln nx

n + 1
ln x

2

+ ln nx
n + 1

ln x
2
− ln x ln x

2
||||

=
||||ln nx

n + 1
ln 2n

2n + 5
+ ln x

2
ln n

n + 1
|||| ,

and for the special choice of the points xn = 1
nen ∈ X, we obtain

|fn(xn)gn(xn) − f (xn)g(xn)| = ||||ln 1
(n + 1)en ln 2n

2n + 5
+ ln 1

2nen ln n
n + 1

||||
=
||||(n + ln(n + 1)) ln

(
1 + 5

2n

)
+ (n + ln 2n) ln

(
1 + 1

n

)||||
= 5

2
⋅

2n
5

ln
(

1 + 5
2n

)
+ ln(n + 1)

2n∕5
2n
5

ln
(

1 + 5
2n

)
+ n ln

(
1 + 1

n

)
+ ln 2n

n
n ln

(
1 + 1

n

)
→

n→∞

5
2
⋅ 1

+ 0 ⋅ 1 + 1 + 0 ⋅ 1 = 7
2
.

In the evaluation of the last limit, we have used the following auxiliary limits:

lim
n→∞

n
𝛼

ln
(

1 + 𝛼

n

)
= lim

n→∞
ln
(

1 + 𝛼

n

)n∕𝛼
= ln e = 1, ∀𝛼 ≠ 0
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according to the second remarkable limit, and

lim
t→∞

ln(𝛼t + 𝛽)
t

= lim
t→∞

𝛼∕(𝛼t + 𝛽)
1

= 0, ∀𝛼 > 0,∀𝛽

due to l’Hospital’s rule. Therefore, for 𝜀0 = 1 whatever N is chosen, there is
ñ > N and corresponding xñ ∈ X such that |fñ(xñ)gñ(xñ) − f (xñ)g(xñ)|> 𝜀0 = 1,
that is, the convergence is nonuniform.

Remark 2. The following general statement is true for the sum and difference:
if fn(x) and gn(x) converge uniformly on X to f (x) and g(x), respectively, then
fn(x) ± gn(x) converges uniformly on X to f (x) ± g(x).

Remark 3. The following general statement is true for the product: if fn(x)
and gn(x) converge uniformly on X to f (x) and g(x), respectively, and f (x)
and g(x) are bounded on X, then fn(x) ⋅ gn(x) converges uniformly on X to
f (x) ⋅ g(x). (Note the requirement of boundedness of the limit functions in this
formulation.)

Example 12. Sequences fn(x) and gn(x) converge nonuniformly on X to f (x)
and g(x), respectively, but fn(x) ⋅ gn(x) converges to f (x) ⋅ g(x) uniformly on X.

Solution
Consider the sequences fn(x) =

1
n
√

x
and gn(x) = nxe−nx on X = (0,+∞). Both

sequences converge to 0 for any fixed x ∈ X:

lim
n→∞

fn(x) = lim
n→∞

1
n
√

x
= 0 = f (x);

lim
n→∞

gn(x) = lim
n→∞

nxe−nx = lim
t→+∞

t
et = lim

t→+∞

1
et = 0 = g(x).

Therefore, lim
n→∞

fn(x) ⋅ gn(x) = 0.
Let us investigate the nature of the convergence of these sequences. For fn(x),

choosing xn = 1
n2 ∈ X, we obtain

|fn(xn) − f (xn)| = 1
n
√

xn
= n

n
= 1 ↛

n→∞
0,

that is, this convergence is nonuniform on X. Similarly, choosing xn = 1
n
∈ X,

we can show the nonuniform convergence of gn(x) on X:

|gn(xn) − g(xn)| = nxne−nxn = 1 ⋅ e−1 ↛
n→∞

0.
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Finally, for fn(x) ⋅ gn(x), we have |fn(x)gn(x) − f (x)g(x)| = √
xe−nx. The derivative

of the right-hand side is

(
√

xe−nx)x =

(
1

2
√

x
− n

√
x

)
e−nx = n√

x
e−nx

( 1
2n

− x
)
.

Therefore, the point xn = 1
2n

∈ X is the only local (and global) maximum of√
xe−nx on X. Consequently,

|fn(x)gn(x) − f (x)g(x)| ≤ max
(0,+∞)

√
xe−nx =

√
xne−nxn = 1√

2n
e−1∕2 →

n→∞
0,

that is, fn(x) ⋅ gn(x) converges uniformly on X to 0.

Example 13. A sequence f 2
n (x) converges uniformly on X, but fn(x) diverges

on X.

Solution
Consider the sequence fn(x) = (−1)n n+1

n
x on X = (0, 1]. The sequence of squares

f 2
n (x) =

(n+1)2

n2 x2 converges uniformly on (0, 1] to x2, because

|f 2
n (x) − x2| = |||| (n + 1)2

n2 x2 − x2|||| = x2 2n + 1
n2 ≤

2
n
+ 1

n2 →
n→∞

0.

However, there is no limit of fn(x) for any fixed x ∈ (0, 1], since two partial limits
give different results: f2n(x) =

2n+1
2n

x →
n→∞

x and f2n+1(x) = − 2n+2
2n+1

x →
n→∞

−x.

Remark 1. The same sequence can be used to exemplify the following
situation: a sequence |fn(x)| converges uniformly on X, but fn(x) diverges on
X. Indeed, although fn(x) = (−1)n n+1

n
x does not converge on X = (0, 1], the

sequence |fn(x)| = n+1
n

x converges uniformly to x on X = (0, 1]:

||fn(x)| − x| = ||||n + 1
n

x − x
|||| = 1

n
|x| ≤ 1

n
→

n→∞
0.

Remark 2. Note that the inequality ||fn(x)| − |f (x)|| ≤ |fn(x) − f (x)| ensures
the validity of the converse general statement: if fn(x) converges uniformly on
X to f (x), then |fn(x)| converges uniformly on X to |f (x)|.
Remark 3. The following example also takes place: a sequence f 2

n (x) con-
verges uniformly on X and fn(x) converges on X, but the convergence of
fn(x) is nonuniform. Consider the sequence fn(x) on [0, 1] similar to that

analyzed in Example 6: fn(x) =
{

1, x = r1, r2, · · · , rn
−1, otherwise , where rn is the sequence
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of all the rational points in [0, 1] ordered in some way. This sequence is
monotone in n for any fixed x ∈ [0, 1] (since fn(rn+1) = −1 < 1 = fn+1(rn+1)
and fn(x) = fn+1(x), ∀x ≠ rn+1) and bounded (since −1 ≤ fn(x) ≤ 1, ∀n ∈ ℕ,
∀x ∈ [0, 1]). Therefore, this sequence is convergent at any fixed x ∈ [0, 1]

and f (x) = lim
n→∞

fn(x) =
{

1, x ∈ ℚ
−1, x ∈ 𝕀 . The sequence of the squares consists of

the same constant function f 2
n (x) = 1, ∀n ∈ ℕ and, therefore, it converges

uniformly on [0, 1] to f 2(x) = 1. At the same time, using the same reasoning
as in Example 6, one can show that the convergence of fn(x) is nonuniform on
[0, 1] and on any subinterval of [0, 1].

Example 14. A sequence fn(x) ⋅ gn(x) converges uniformly on X to 0, but nei-
ther fn(x) nor gn(x) converges to 0 on X.

Solution
The sequences fn(x) = nx + (−1)nnx and gn(x) = nx − (−1)nnx are divergent for
every fixed x ∈ X = (0,+∞):

f2n(x) = 4nx →
n→∞

+∞, f2n+1(x) = 0 →
n→∞

0;

g2n(x) = 0 →
n→∞

0, g2n+1(x) = (4n + 2)x →
n→∞

+∞.

However, fn(x) ⋅ gn(x) = n2x2 − n2x2 = 0 converges uniformly to 0 on X.
Another interesting counterexample includes the sequences fn(x) ={ nx

n+1
, x ∈ ℚ ∩ X

x
n
, x ∈ 𝕀 ∩ X and gn(x) =

{ x
n
, x ∈ ℚ ∩ X

nx
n+1

, x ∈ 𝕀 ∩ X defined on X = (0, 1].

Both sequences converge on X to nonzero functions f (x) = lim
n→∞

fn(x) ={
x, x ∈ ℚ ∩ X
0, x ∈ 𝕀 ∩ X and g(x) = lim

n→∞
gn(x) =

{
0, x ∈ ℚ ∩ X
x, x ∈ 𝕀 ∩ X , respectively. At the

same time, lim
n→∞

fn(x)gn(x) = lim
n→∞

x2

n+1
= 0, for ∀x ∈ (0, 1] and this convergence

is uniform on X, since the estimate

|fn(x)gn(x) − 0| = x2

n + 1
≤

1
n + 1

→
n→∞

0

holds simultaneously for all x ∈ (0, 1].

Example 15. A sequence fn(x) converges uniformly on X to a function f (x),
fn(x) ≠ 0, f (x) ≠ 0, ∀x ∈ X, but 1

fn(x)
does not converge uniformly on X to 1

f (x)
.

Solution
The sequence fn(x) =

nx
n+2

converges uniformly on X = (0, 1) to f (x) = x:

|fn(x) − f (x)| = |||| nx
n + 2

− x
|||| = 2

n + 2
|x| < 2

n + 2
< 𝜀
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and the last inequality holds for ∀𝜀 > 0 and simultaneously for all x ∈ X if we
choose ∀n > N𝜀 =

[
2
𝜀

]
. On the other hand,

|||| 1
fn(x)

− 1
f (x)

|||| = ||||n + 2
nx

− 1
x
|||| = 2

n
1|x| ,

and for xn = 1
n
∈ X, it follows that ||| 1

fn(xn)
− 1

f (xn)
||| = n 2

n
= 2, which means that the

convergence is nonuniform.

Example 16. A sequence fn(x) is bounded uniformly on ℝ and converges
uniformly on [−a, a], ∀a > 0, to a function f (x), but the numerical sequence
sup
x∈ℝ

fn(x) does not converge to sup
x∈ℝ

f (x).

Solution
Consider the sequence fn(x) = e−(x−n)2 , which is defined and uniformly
bounded on ℝ: 0 < e−(x−n)2

≤ 1, ∀n, ∀x ∈ ℝ. This sequence converges to
zero on ℝ, since for any fixed x ∈ ℝ one has (x − n)2 →

n→∞
+∞ and, conse-

quently, lim
n→∞

e−(x−n)2 = lim
t→+∞

e−t = 0. Hence, f (x) ≡ 0 on ℝ and, consequently,
sup
x∈ℝ

f (x) = 0. On the other hand, sup
x∈ℝ

fn(x) = 1, ∀n ∈ ℕ, since fn(x) ≤ 1 and
fn(n) = 1. This means that sup

x∈ℝ
fn(x) = 1 does not converge to sup

x∈ℝ
f (x) = 0. It

just remains to prove the uniform convergence of fn(x) on [−a, a], ∀a > 0. For
any fixed a > 0, there exists the natural number Na > a. Then for ∀n > Na, one
gets (x − n)2 ≥ (a − n)2 for each x ∈ [−a, a]. Therefore,|fn(x) − f (x)| = e−(x−n)2

≤ e−(a−n)2

for all x ∈ [−a, a]. Since exp (−(a − n)2) →
n→∞

0, the last inequality guarantees
the uniformity of the convergence on [−a, a], where a > 0 is arbitrary. Note,
however, that the convergence of fn(x) is not uniform on ℝ, which is evident if
one chooses xn = n leading to|fn(xn) − f (xn)| = e−(n−n)2 = 1.

Remark 1. Two other interesting counterexamples are fn(x) = arctan x
n

and
fn(x) =

2nx
n2+x2 . For instance, for the first function the reasoning can be as follows.

First, note that the sequence is uniformly bounded on ℝ (|||arctan x
n
||| < 𝜋

2
,

∀n ∈ ℕ and ∀x ∈ ℝ). Second, it converges to zero for any fixed x ∈ ℝ
( lim

n→∞
arctan x

n
= 0). Further, this convergence is uniform on [−a, a], ∀a > 0 due

to the evaluation

|fn(x) − f (x)| = ||||arctan x
n
|||| = arctan |x|

n
≤ arctan a

n
,
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22 Chapter 1 Conditions of Uniform Convergence

that holds for all x ∈ [−a, a] (here we used the properties that arctan t is an odd
and a strictly increasing function). Since lim

n→∞
arctan a

n
= 0, the last evaluation

implies the uniform convergence. Hence, all the conditions of the example are
satisfied, but still the sequence sup

x∈ℝ
fn(x) does not converge to sup

x∈ℝ
f (x), because

sup
x∈ℝ

arctan x
n
= 𝜋

2
for any n, while sup

x∈ℝ
f (x) = sup

x∈ℝ
0 = 0. Note, that just like in the

first counterexample, the convergence of fn(x) is not uniform on ℝ: for any n
one can choose xn = n to obtain

|fn(xn) − f (xn)| = arctan n
n
= arctan 1 = 𝜋

4
≠ 0.

Remark 2. The following general statement is true: if a sequence fn(x)
is bounded uniformly on ℝ and converges uniformly on ℝ to a function
f (x), then the numerical sequence sup

x∈ℝ
fn(x) converges to sup

x∈ℝ
f (x). (Note

the requirement of uniform convergence on ℝ to the limit function in this
formulation.)

Remark 3. The condition of uniform convergence of a sequence fn(x) to a func-
tion f (x) on X is equivalent to the condition lim

n→∞
sup
x∈X

|fn(x) − f (x)| = 0.

Example 17. Suppose each function fn(x) maps X on Y and function g(y)
is continuous on Y ; the sequence fn(x) converges uniformly on X, but the
sequence gn(x) = g(fn(x)) does not converge uniformly on X.

Solution
Let us consider the sequence fn(x) = ln nx

n+1
on X = (0,+∞) and function g(y) =

ey. Each of the functions fn(x) maps (0,+∞) on the entire real line and the func-
tion g(y) is continuous on ℝ. In Example 11, it was shown that the sequence
fn(x) converges uniformly on X to the function f (x) = ln x. The corresponding
sequence gn(x) = g(fn(x)) =

nx
n+1

converges for any fixed x ∈ (0,+∞):

lim
n→∞

gn(x) = lim
n→∞

nx
n + 1

= x = g(f (x)),

but this convergence is not uniform. In fact,

|gn(x) − g(f (x))| = |||| nx
n + 1

− x
|||| = 1

n + 1
x

and choosing xn = (n + 1) ∈ X, one gets

|gn(xn) − g(f (xn))| = xn

n + 1
= 1.
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1.2

1

0.8

0.6

Limit function f(x) = 0
Functions fn(x)Pn= (xn, fn(xn)) = (n, 1)

0.4

0.2

1

f1 f2 f3

P3P2P1

2 3 4 5 6

Figure 1.9 Example 16, sequence fn(x) = e−(x−n)2
.

Remark. The following example also takes place: suppose functions fn(x) map
X on Y and function g(y) is continuous on Y ; the sequence fn(x) converges
nonuniformly on X, but the sequence gn(x) = g(fn(x)) converges uniformly
on X. In the trivial case, one can use an arbitrary nonuniformly convergent
sequence fn(x) and the constant function g(y) ≡ 1. For a nonconstant function
g(y), one can use the above sequence fn(x) =

nx
n+1

defined on X = (0,+∞) and
the function g(y) = ln y.

Example 18. A series
∑

u2
n(x) converges uniformly on X, but the series∑

un(x) does not converge uniformly on X.

Solution
In Remark 1 to Example 5, it was shown that the series

∑∞
n=1

sin nx
n

converges
nonuniformly on ℝ. However, the series

∑∞
n=1

sin2nx
n2 converges uniformly on ℝ

according to the Weierstrass test: sin2nx
n2 ≤

1
n2 , ∀x ∈ ℝ and the majorant series∑∞

n=1
1
n2 converges.

Example 19. A series
∑

u2
n(x) converges uniformly on X, but the series∑

un(x) does not converge (even pointwise) on X.
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4

3.5

3

2.5

2

1.5

1

0.5

1 2 3

f3
f2

f1

4 5 6 7 8 9 10

Partial sum f100
1Partial sums fn = x + kk= 1

∑n

Figure 1.10 Examples 19, 20, and 21, series
∑∞

n=1
1

x+n
.

Solution
Consider the series

∑∞
n=1

1
x+n

on X = [0,+∞). This series is divergent at each
point x ∈ X, since lim

n→∞
1∕n

1∕(x+n)
= 1 and the harmonic series

∑∞
n=1

1
n

is divergent.
At the same time, the series

∑∞
n=1

1
(x+n)2 converges uniformly on X = [0,+∞)

due to the Weierstrass test: 1
(x+n)2 ≤

1
n2 , ∀x ∈ X and the majorant series

∑∞
n=1

1
n2

converges.

Remark. If
∑

un(x) diverges, it may happen that
∑∞

n=1 u2
n(x) also diverges. For

instance, the series
∑∞

n=1
1√

x+
√

n
diverges at each point x ∈ X = [0, 1] according

to the comparison test: lim
n→∞

1∕
√

n
1∕(

√
x+

√
n)
= 1 and the series

∑∞
n=1

1√
n

is divergent.
Due to the very same arguments, the series of squares also diverges on X =
[0, 1]: lim

n→∞
1∕n

1∕(
√

x+
√

n)2
= 1 and the series

∑∞
n=1

1
n

is divergent.

Example 20. A series
∑

un(x)vn(x) converges uniformly on X, but at least one
of the series

∑
un(x) or

∑
vn(x) does not converge uniformly on X.

Solution
Consider un(x) =

1
x+n

and vn(x) =
1

x2+n2 on X = [0,+∞). The series∑∞
n=1 un(x)vn(x) converges uniformly on X due to the Weierstrass test:
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1Partial sums gn=∑n
k = 1

=
6
π21∑∞n = 1

1.8

1.5

1.2

0.9

0.6

Exact sum

0.3

1 2 3 4 5

g3
g2

g1

6 7 8 9 10

n2

(x + k)2

Figure 1.11 Example 19, series of squares
∑∞

n=1
1

(x+n)2
.

|un(x)vn(x)| = 1
x + n

1
x2 + n2 ≤

1
n3 , ∀x ∈ [0,+∞)

and
∑ 1

n3 is a convergent series. The same reasoning shows the uniform con-
vergence of the series

∑∞
n=1 vn(x) on X:

|vn(x)| = 1
x2 + n2 ≤

1
n2 , ∀x ∈ [0,+∞)

and
∑ 1

n2 is a convergent series. However, the series
∑∞

n=1 un(x) diverges on X,
since lim

n→∞
1∕n

1∕(x+n)
= 1 and the series

∑ 1
n

is divergent.

Example 21. A series
∑

un(x)vn(x) converges uniformly on X, but neither∑
un(x) nor

∑
vn(x) converges (even pointwise) on X.

Solution
Consider un(x) =

1
x+n

and vn(x) =
1√

x+
√

n
on X = [0,+∞). The series∑∞

n=1 un(x)vn(x) converges uniformly on X due to the Weierstrass test:

|un(x)vn(x)| = 1
x + n

1√
x +

√
n
≤

1
n3∕2 , ∀x ∈ [0,+∞)
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and
∑ 1

n3∕2 is a convergent series. However, both
∑∞

n=1 un(x) and
∑∞

n=1 vn(x)
diverge on X according to the comparison test: lim

n→∞
1∕n

1∕(x+n)
= 1 and the series∑ 1

n
diverges; lim

n→∞

1∕
√

n
1∕(

√
x+

√
n)
= 1 and the series

∑ 1√
n

diverges.

Example 22. Series
∑

un(x) and
∑

vn(x) converge nonuniformly on X, but∑
un(x)vn(x) converges uniformly on X.

Solution
The series

∑∞
n=1

sin nx
n

converges nonuniformly on ℝ (see Remark 1 to Example
5), and so does the series

∑∞
n=1

sin nx√
n

(applying for the latter series the same
reasoning as for the former in Remark 1 to Example 5). However, the series∑∞

n=1
sin2nx

n3∕2 converges uniformly on ℝ according to the Weierstrass test: sin2nx
n3∕2 ≤

1
n3∕2 , ∀x ∈ ℝ and the majorant series

∑∞
n=1

1
n3∕2 converges.

Example 23. A series
∑

un(x) converges uniformly on X, but
∑

u2
n(x) does not

converge uniformly on X.

Solution
The uniform convergence of the series

∑∞
n=1 un(x) =

∑∞
n=1 (−1)n xn

3√n
on

X = (0, 1) can be proved by applying Abel’s theorem. In fact, the series∑
(−1)n 1

3√n
converges by Leibniz’s test of alternating series (and this con-

vergence is uniform on X, since the series does not depend on x), and the
sequence xn is monotone in n for each x ∈ (0, 1) and is uniformly bounded,
since xn < 1, ∀x ∈ (0, 1), ∀n ∈ ℕ.

On the other hand, the convergence of the series
∑∞

n=1 u2
n(x) =

∑∞
n=1

x2n

n2∕3 is
nonuniform on X = (0, 1). In fact, this series converges on X = (0, 1), since
u2

n(x) =
x2n

n2∕3 ≤ x2n, ∀n ∈ ℕ, and the series
∑

x2n is convergent by being a geo-
metric series with the ratio in (0, 1). At the same time, applying the Cauchy
criterion of the uniform convergence with pn = n and xn =

(
1 − 1

4n

)
∈ X, one

obtains|||||
n+pn∑

k=n+1
u2

k(xn)
||||| =

n+pn∑
k=n+1

x2k
n

k2∕3 > n
x4n

n

(2n)2∕3 = n1∕3

41∕3

(
1 − 1

4n

)4n
→

n→∞
+∞,

that is, the series
∑

u2
n(x) converges nonuniformly on X = (0, 1).

Remark 1. If, in the given counterexample, one changes the set X to (0, 1],
then

∑∞
n=1 un(x) =

∑∞
n=1 (−1)n xn

3√n
converges uniformly on X = (0, 1] (due to the
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sinkx
k∑ n

k = 1Partial sums fn=

Partial sum f100

Partial sum f200

2

1.5

1

0.5

0.5 1
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f1

1.5 2 2.5 3

Figure 1.12 Examples 22, 5, and 18, series
∑∞

n=1
sin nx

n
.

√
sinkx

k
∑ n

k = 1Partial sums gn=

Partial sum g100

Partial sum g200

4

3.5

0.5

1

1.5
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2.5

3
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g3

g2

g1

1.5 2 2.5 3

Figure 1.13 Examples 22 and 24, series
∑∞

n=1
sin nx√

n
.
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sin2kx
k3/2

∑n

k = 1
Partial sums hn=

Partial sum h100

Partial sum h200

2

0.5

1

1.5

0.5 1

h3

h2

h1

1.5 2 2.5 3

Figure 1.14 Example 22, series of products
∑∞

n=1
sin2 nx

n3∕2
.

same reasoning as before), but
∑∞

n=1 u2
n(x) =

∑∞
n=1

x2n

n2∕3 diverges at x = 1 since∑∞
n=1 u2

n(1) =
∑∞

n=1
1

n2∕3 is a divergent p-series.

Remark 2. Evidently, the following more general example can also be con-
structed: both series

∑
un(x) and

∑
vn(x) converge uniformly on X, but

the series
∑

un(x)vn(x) does not converge uniformly on X. In the particular
case un(x) = vn(x), the counterexample is already provided above. Let us
consider the case when un(x) ≠ vn(x). For instance, using the same argu-
ments as before, one can prove that both

∑∞
n=1 un(x) =

∑∞
n=1 (−1)n xn

3√n
and∑∞

n=1 vn(x) =
∑∞

n=1 (−1)n xn√
n

converge uniformly on X = (0, 1), but the series∑∞
n=1 un(x)vn(x) =

∑∞
n=1

x2n

n5∕6 converges nonuniformly on X = (0, 1). For the last
series, its convergence follows from the evaluation x2n

n5∕6 ≤ x2n, ∀n ∈ ℕ and the
convergence of the geometric series

∑∞
n=1 x2n for ∀x ∈ (0, 1), while the nonuni-

formity can be shown by the Cauchy criterion, choosing as above pn = n and
xn =

(
1 − 1

4n

)
∈ X:

|||||
n+pn∑

k=n+1
uk(xn)vk(xn)

||||| =
2n∑

k=n+1

x2k
n

k5∕6 > n
x4n

n

(2n)5∕6 = n1∕6

25∕6

(
1 − 1

4n

)4n
→

n→+∞
∞.
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Figure 1.15 Example 23, series
∑∞

n=1 (−1)n xn

3
√

n
.

Partial sum g200
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Partial sums gn=∑ n

k = 1
x2k
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Pn= (xn, gn(xn)), xn= 1– 1
4n

Figure 1.16 Example 23, series of squares
∑∞

n=1
x2n

n2∕3
.
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Example 24. A series
∑

un(x) converges uniformly on X, but
∑

u2
n(x) does not

converge (even pointwise) on X.

Solution
The series

∑∞
n=1 un(x) =

∑∞
n=1

sin nx√
n

is uniformly convergent on X = [a, 𝜋 − a],

∀a ∈
(

0, 𝜋
2

)
, which can be shown using the same considerations as

for
∑∞

n=1
sin nx

n
in Remark 1 to Example 5. Let us prove that the series∑∞

n=1 u2
n(x) =

∑∞
n=1

sin2nx
n

is divergent on X. Note that the series
∑∞

n=1
cos 2nx

n
is

uniformly convergent on X just like the series in Remark 1 to Example 5. The
series of squares can be rewritten in the form

∑∞
n=1 u2

n(x) =
∑∞

n=1
1−cos 2nx

2n
, that

is, the general term u2
n(x) is the difference of the general term of the divergent

harmonic series and uniformly convergent series. This implies the divergence
of the series

∑∞
n=1

sin2nx
n

at each point of X.

Remark. Naturally, the following more general situation also takes place: both
series

∑
un(x) and

∑
vn(x) converge uniformly on X, but the series

∑
un(x)vn(x)

does not converge (even pointwise) on X. In the particular case un(x) = vn(x),
the counterexample is given above. Let us consider the case when un(x) ≠ vn(x).
For instance, using the same arguments as before, one can prove that both∑∞

n=1
cos nx

3√n
and

∑∞
n=1

cos nx
4√n

converge uniformly on X = [a, 𝜋 − a], ∀a ∈
(

0, 𝜋
2

)
,

but the series
∑∞

n=1 un(x)vn(x) =
∑∞

n=1
cos2nx
n7∕12 diverges at each point of X, because

its general term can be represented in the form cos2nx
n7∕12 = 1

2n7∕12 +
cos 2nx
2n7∕12 , where the

first summand is a general term of the divergent p-series, while the second is a
general term of the uniformly convergent series.

Example 25. Both series
∑

un(x) and
∑

vn(x) are nonnegative for ∀x ∈ X,
lim
n→∞

un(x)
vn(x)

= 1 and one of these series converges uniformly on X, but another
series does not converge uniformly on X.

Solution
Consider the two nonnegative series

∑∞
n=1 un(x) =

∑∞
n=1

x2

n4+x4 and
∑∞

n=1 vn(x) =∑∞
n=1

x2

n4+x2 on X = ℝ. The limit of the general terms equals 1: lim
n→∞

un(x)
vn(x)

=

lim
n→∞

n4+x2

n4+x4 = 1 for ∀x ∈ ℝ. Also, the series
∑∞

n=1
x2

n4+x4 converges uniformly on

X = ℝ by the Weierstrass test, since un(x) =
1

2n2

2n2x2

n4+x4 ≤
1

2n2 , ∀x ∈ ℝ and the
series

∑ 1
2n2 converges. Therefore, all the statement conditions hold. At the

same time, the second series
∑∞

n=1
x2

n4+x2 converges on X = ℝ since x2

n4+x2 ≤
x2

n4 ,
∀x ∈ ℝ and the series

∑ 1
n4 converges. However, the convergence of the second



Trim Size: 6.125in x 9.25in Single Column Bourchtein c01.tex V2 - 12/28/2016 6:12pm Page 31�

� �

�

1.3 Dirichlet’s and Abel’s Theorems 31

Partial sum g200

Partial sum g100

3

2.5

2

1.5

1

1 1.5 2 2.5 3

0.5

0.5

g3

g2

g1

g3

g2

g1

Partial sums gn=∑n
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k

Figure 1.17 Example 24, series of squares
∑∞

n=1
sin2 nx

n
.

series is nonuniform since its general term does not converge to 0 uniformly:
for xn = n2, one gets vn(xn) =

x2
n

n4+x2
n
= 1

2
↛

n→∞
0.

Remark. For numerical series and for the pointwise convergence of series of
functions, the corresponding general statement is true and represents a partic-
ular case of the Comparison test for nonnegative series: if both series

∑
un(x)

and
∑

vn(x) are nonnegative for ∀x ∈ X, lim
n→∞

un(x)
vn(x)

= const > 0 and one of these
series converges on X, then another series also converges on X.

1.3 Dirichlet’s and Abel’s Theorems

Remark to Examples 26–29. In the following four examples, the conditions of
Dirichlet’s theorem, which provides sufficient conditions for the uniform con-
vergence of the series

∑
un(x)vn(x), are analyzed. It is shown that none of the

three conditions stated in the theorem can be dropped. At the same time, these
conditions are not necessary: all of them can be violated for an uniformly con-
vergent series.
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Example 26. The partial sums of
∑

un(x) are bounded for ∀x ∈ X, and the
sequence vn(x) is monotone in n for each fixed x ∈ X and converges uniformly
on X to 0, but the series

∑
un(x)vn(x) does not converge uniformly on X.

Solution
Let un(x) = xn and vn(x) =

1
n

be defined on X = (0, 1). The series
∑∞

n=1 un(x) =∑∞
n=1 xn converges on X, since this is a geometric series with the ratio in (0, 1).

Therefore, the partial sums of this series are bounded for each fixed x ∈ X.
However, the boundedness is not uniform as is seen from the evaluation of the
partial sums at the points xn = 1 − 1

n
, n > 1 lying in X:

n∑
k=1

xk
n =

xn

1 − xn
(1 − xn

n) =
1 − 1∕n

1∕n

(
1 −

(
1 − 1

n

)n)
= (n − 1)

(
1 −

(
1 − 1

n

)n)
→

n→∞
+∞,

that is, the first condition in Dirichlet’s theorem is weakened. The remaining
two conditions hold: vn(x) =

1
n

is monotone and vn(x) =
1
n

→
n→∞

0 (and the last
convergence is uniform, because vn does not depend on x).

The series of the products
∑∞

n=1 un(x)vn(x) =
∑∞

n=1
xn

n
converges on (0, 1),

since 0 <
xn

n
≤ xn,∀n ∈ ℕ and the geometric series converges for ∀x ∈ (0, 1).

However, this convergence is nonuniform, which can be shown by the Cauchy
criterion: choosing pn = n and x̃n = 1 − 1

2n
∈ X, ∀n ∈ ℕ, one obtains:|||||

n+pn∑
k=n+1

uk(x̃n)vk(x̃n)
||||| =

2n∑
k=n+1

x̃k
n

k
> n

x̃2n
n

2n
= 1

2

(
1 − 1

2n

)2n
→

n→+∞

1
2

e−1 ≠ 0.

Example 27. The partial sums of
∑

un(x) are uniformly bounded on X, and
the sequence vn(x) converges uniformly on X to 0, but the series

∑
un(x)vn(x)

does not converge uniformly on X.

Solution
Let un(x) =

(−1)n√
n

and vn(x) = (−1)n xn√
n

be defined on X = (0, 1). The series∑∞
n=1 un(x) =

∑∞
n=1

(−1)n√
n

converges by Leibniz’s test and, consequently, its
partial sums are bounded (and this boundedness is uniform on X, because
the general term does not depend on x). The sequence vn(x) = (−1)n xn√

n
con-

verges uniformly on X to 0 due to the following evaluation:
||||(−1)n xn√

n

|||| ≤ 1√
n

,

∀x ∈ (0, 1) and 1√
n

→
n→+∞

0. Thus, both conditions of the statement hold, but
the series of the products

∑∞
n=1 un(x)vn(x) =

∑∞
n=1

xn

n
converges nonuniformly

on (0, 1) as was shown in Example 26. Note that the sequence vn(x) = (−1)n xn√
n
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is not monotone in n, that is, the condition of the monotonicity of vn(x) in
Dirihlet’s theorem is violated.

Example 28. The partial sums of
∑

un(x) are uniformly bounded on X, and
the sequence vn(x) is monotone in n for each fixed x ∈ X and converges on X
to 0, but the series

∑
un(x)vn(x) does not converge uniformly on X.

Solution
Consider un(x) = (−1)n and vn(x) = xn on X = (0, 1). The partial sums∑n

k=1 uk(x) are uniformly bounded on X: ||∑n
k=1 uk(x)|| = ||∑n

k=1 (−1)k|| ≤ 1,
for ∀n ∈ ℕ and ∀x ∈ (0, 1). The sequence vn(x) = xn is decreasing in n and
vn(x) = xn →

n→+∞
0 for each fixed x ∈ (0, 1). Thus, the conditions of the statement

are satisfied. However, the series of the products converges nonuniformly.
In fact,

∑∞
n=1 un(x)vn(x) =

∑∞
n=1 (−1)nxn is a convergent geometric series on

(0, 1) (the ratio −x ∈ (−1, 0)), but the evaluation of its residual shows that this
convergence is nonuniform: choosing xn = 1 − 1

n+1
∈ (0, 1), one obtains

|||||
∞∑

k=n+1
(−1)kxk

n

||||| =
||||| (−1)n+1xn+1

n

1 + xn

|||||
= 1

2 − 1
n+1

(
1 − 1

n + 1

)n+1
→

n→+∞

1
2

e−1 ≠ 0.

0.5
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3
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P4
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n
1Pn= (xn, fn(xn)), xn= 1–   

Partial sums fn=∑n
k = 1xk 

Exact sum∑∞n = 1x
n = x

1– x

Figure 1.18 Examples 26, 29, and 33, series
∑∞

n=1 un(x) =
∑∞

n=1 xn.
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Note that the third condition of Dirichlet’s theorem (the uniform convergence
of vn(x)) is weakened in the above statement, and the chosen sequence vn(x) =
xn converges nonuniformly to 0 on X = (0, 1), since for xn = 1 − 1

n
∈ (0, 1),∀n ∈

ℕ it follows |vn(xn)| = (
1 − 1

n

)n
→

n→+∞
e−1 ≠ 0.

Example 29. The partial sums of
∑

un(x) are not uniformly bounded on X,
and the sequence vn(x) is not monotone in n and does not converge uniformly
on X to 0, but still the series

∑
un(x)vn(x) converges uniformly on X.

Solution
Consider un(x) = xn and vn(x) =

(−1)n

xn2 on X = (0, 1). Let us check the condi-
tions of the statement. First, the partial sums of

∑∞
n=1 un(x) =

∑∞
n=1 xn are not

uniformly bounded on X (see for details Example 26). Second, the sequence
vn(x) is not monotone in n (it is alternating for each fixed x ∈ (0, 1)). Finally,
vn(x) =

(−1)n

xn2 converges to 0 for each fixed x ∈ (0, 1), but this convergence is
not uniform, because choosing xn = 1

n2 , ∀n ∈ ℕ one obtains ||| (−1)n

xnn2

||| = 1 ↛
n→+∞

0.
In this way, all the conditions in Dirichlet’s theorem are violated. Neverthe-
less, the series

∑∞
n=1 un(x)vn(x) =

∑∞
n=1 (−1)n xn−1

n2 converges uniformly on (0, 1)

2n
1~ ~ ~Pn= (xn, gn(xn)), xn= 1–   

xk

kPartial sums gn=∑n
k = 1 uk vk =∑n

k = 1

xn

nExact sum∑∞n = 1    = – ln(1 – x)

0.5

1

1.5

2

2.5

P1

g2

g1

g3

P2

P3

10.90.80.70.60.50.30.20.1 0.4

Figure 1.19 Examples 26, 27, 30, 31, and 32, series
∑∞

n=1 un(x)vn(x) =
∑∞

n=1
xn

n
.



Trim Size: 6.125in x 9.25in Single Column Bourchtein c01.tex V2 - 12/28/2016 6:12pm Page 35�

� �

�

1.3 Dirichlet’s and Abel’s Theorems 35

according to the Weierstrass test: |||(−1)n xn−1

n2

||| ≤ 1
n2 , for ∀n ∈ ℕ and ∀x ∈ (0, 1),

and the majorant series
∑ 1

n2 converges.

Remark. The functions un(x) =
x
n

and vn(x) = (−1)nx considered on X = (0, 10]
exhibit even “wilder” behavior. In fact, the partial sums of the series

∑∞
n=1

x
n

are
not bounded at any point x ∈ (0, 10] since this series is positive and divergent at
each x ∈ (0, 10]. The sequence (−1)nx is not monotone in n and diverges at each
x ∈ (0, 10]. Nevertheless, the series

∑∞
n=1 un(x)vn(x) =

∑∞
n=1 (−1)n x2

n
converges

uniformly on (0, 10] since the following evaluation of the residual (resulting
from Leibniz’s test for alternating series)

|rn(x)| = |||||
∞∑

k=n+1
(−1)k x2

k

||||| ≤
||||(−1)n+1 x2

n + 1
|||| ≤ 100

n + 1
→

n→+∞
0

is true for all x ∈ (0, 10] simultaneously.

Remark to Examples 30–33. In the next four examples, we analyze the
sufficient conditions of Abel’s theorem for the uniform convergence of the
series

∑
un(x)vn(x). The situation here is quite similar to that for Dirichlet’s

xn2

(–1)n

n3
1~ ~Qn= (xn, vn(xn)) = (    , (–1)nn)

n2
1Pn= (xn, vn(xn)) = (   , (–1)n)

0.90.80.70.60.50.30.20.1
–0.5
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–1.5

1.5

–2

2

–2.5

2.5

–3

3 Limit function v(x) = 0

Functions vn(x) =

P4

Q2

Q3

v3

v1

v2

P2

P3

0.4 1

Figure 1.20 Examples 29 and 33, sequence vn(x) =
(−1)n

xn2
.



Trim Size: 6.125in x 9.25in Single Column Bourchtein c01.tex V2 - 12/28/2016 6:12pm Page 36�

� �

�

36 Chapter 1 Conditions of Uniform Convergence
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Figure 1.21 Examples 29 and 33, series
∑∞

n=1 un(x)vn(x) =
∑∞

n=1 (−1)n xn−1

n2
.

theorem: none of the three conditions can be dropped, but, at the same time,
all of them can be violated for an uniformly convergent series.

Example 30. A series
∑

un(x) converges on X, and a sequence vn(x) is mono-
tone in n for each fixed x ∈ X and uniformly bounded on X, but the series∑

un(x)vn(x) does not converge uniformly on X.

Solution
For un(x) = xn−1 and vn(x) =

x
n

on X = (0, 1), the series
∑∞

n=1 un(x) =
∑∞

n=1 xn−1

is convergent at each point x ∈ (0, 1), since this is a geometric series with the
ratio in (0, 1), and the sequence vn(x) =

x
n

is monotone in n and uniformly
bounded on X: ||| x

n
||| ≤ 1

n
≤ 1, ∀n ∈ ℕ, ∀x ∈ X. Thus, all the statement condi-

tions are satisfied. However, the series
∑∞

n=1 un(x)vn(x) =
∑∞

n=1
xn

n
converges

nonuniformly on (0, 1) (see Example 26 for details). Note, that in the statement
conditions, the first condition of Abel’s theorem (the uniform convergence of∑

un(x)) is weakened, and the chosen series
∑∞

n=1 un(x) =
∑∞

n=1 xn−1 converges
nonuniformly on X = (0, 1), which can be seen from the evaluation of the
series residual for xn = 1 − 1

n
∈ X, ∀n > 1:|||||

∞∑
k=n+1

xk−1
n

||||| =
xn

n

1 − xn
= n ⋅

(
1 − 1

n

)n
→

n→+∞
∞.
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Example 31. A series
∑

un(x) converges uniformly on X, and a sequence vn(x)
is uniformly bounded on X, but the series

∑
un(x)vn(x) does not converge uni-

formly on X.

Solution
Consider un(x) =

(−1)n

n
and vn(x) = (−1)nxn on X = (0, 1). The series∑∞

n=1 un(x) =
∑∞

n=1
(−1)n

n
converges by Leibniz’s test, and this convergence

is uniform since un(x) does not depend on x. The uniform boundedness of
vn(x) = (−1)nxn is also easily verified: |(−1)nxn| ≤ 1, for ∀n ∈ ℕ, ∀x ∈ (0, 1).
Thus, all the statement conditions hold. However, as was shown in Example
26, the series

∑∞
n=1 un(x)vn(x) =

∑∞
n=1

xn

n
converges nonuniformly on (0, 1).

Note that the condition of monotonicity of vn(x) in Abel’s theorem is omitted
in this example and, consequently, the choice of the nonmonotone sequence
vn(x) = (−1)nxn resulted in nonuniform convergence of the series of the
products.

Example 32. A series
∑

un(x) converges uniformly on X, and a sequence vn(x)
is monotone in n for each fixed x ∈ X, but the series

∑
un(x)vn(x) does not

converge uniformly on X.

Solution
For un(x) =

xn−1

n2 and vn(x) = nx on X = (0, 1), all the statement conditions
are satisfied. In fact, the sequence vn(x) = nx is monotone in n for each fixed
x ∈ (0, 1), and the series

∑∞
n=1 un(x) =

∑∞
n=1

xn−1

n2 converges uniformly on (0, 1)
according to the Weierstrass test: ||| xn−1

n2

||| ≤ 1
n2 , ∀x ∈ (0, 1) and the series

∑ 1
n2 is a

convergent p-series. However, the series
∑∞

n=1 un(x)vn(x) =
∑∞

n=1
xn

n
converges

nonuniformly on (0, 1) (see details in Example 26). Note that the condition of
uniform boundedness of vn(x) in Abel’s theorem is omitted in the statement.
The chosen sequence vn(x) = nx is not bounded for any x ∈ (0, 1), and this led
to nonuniform convergence of the series

∑
un(x)vn(x).

Remark. The following strengthened version of this example can also be
constructed: a series

∑
un(x) converges uniformly on X, and a sequence

vn(x) is monotone and bounded in n for each fixed x ∈ X, but the series∑
un(x)vn(x) does not converge uniformly on X. The counterexample can

be provided by un(x) =
x2

(1+x)n and vn(x) =
n2

(3n2+2)x
on X = (0,+∞). The series∑∞

n=0 un(x) =
∑∞

n=0
x2

(1+x)n converges on X as a geometric series with the ratio
1

1+x
∈ (0, 1), ∀x ∈ X. To show the uniformity of this convergence on X, let us

consider the residual

rn(x) =
∞∑

k=n+1

x2

(1 + x)k
=

x2

(1+x)n+1

1 − 1
1+x

= x
(1 + x)n
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and solve the critical point equation for each n > 1 fixed:

r′n(x) =
1 − (n − 1)x
(1 + x)n+1 = 0

that gives xn = 1
n−1

. Since the derivative r′n(x) is positive at the left of xn and neg-
ative at the right, the critical point xn is the maximum on X and, consequently,
for each fixed n one gets the following evaluation of the residual:

rn(x) ≤ max
(0,+∞)

|rn(x)| = rn(xn) =
1

n − 1

(
1 + 1

n − 1

)−n
→

n→∞
0 ⋅ e−1 = 0,

that is, the series
∑∞

n=0 un(x) converges uniformly on X.
As for the sequence vn(x) =

n2

(3n2+2)x
, for each fixed x ∈ X, its terms are mono-

tonic (vn+1(x) > vn(x)) and bounded (|vn(x)| = n2

(3n2+2)x
<

1
3x

). Thus, all the con-
ditions of the statement are satisfied.

Nevertheless, the series
∑∞

n=0 un(x)vn(x) =
∑∞

n=0
n2

3n2+2
x

(1+x)n converges
nonuniformly on X. Indeed, the convergence on X follows from the inequality
0 <

n2

3n2+2
x

(1+x)n <
1
3

x
(1+x)n and the convergence of the geometric series

∑ x
(1+x)n

for each fixed x ∈ X. Applying now the Cauchy criterion with pn = n and
xn = 1

n
, one obtains|||||

n+pn∑
k=n+1

uk(xn)vk(xn)
||||| =

2n∑
k=n+1

k2

3k2 + 2
xn

(1 + xn)k
>

n
4

xn

(1 + xn)2n

= n
4

1
n

(
1 + 1

n

)−2n
→

n→∞

1
4

e−2 ≠ 0,

which means that the convergence is nonuniform on X = (0,+∞). Note that
although vn(x) is bounded for each fixed x ∈ X, it is not uniformly bounded on
X, since for xn = 1

3n2+2
∈ X one gets vn(xn) = n2 →

n→∞
+∞.

Example 33. A series
∑

un(x) does not converge uniformly on X, and a
sequence vn(x) is not monotone in n and is not uniformly bounded on X, but
still the series

∑
un(x)vn(x) converges uniformly on X.

Solution
Consider un(x) = xn and vn(x) =

(−1)n

xn2 on X = (0, 1). Let us check the conditions
of the statement. First, using the same reasoning as in Example 30, one can
prove that the series

∑∞
n=1 xn converges nonuniformly on (0, 1). Then, the

sequence vn(x) is not monotone in n (it is alternating for each fixed x ∈ (0, 1)).
Finally, vn(x) =

(−1)n

xn2 converges to 0 for each fixed x ∈ (0, 1), but this sequence
does not bounded uniformly on (0, 1), since for xn = 1

n3 ∈ (0, 1) one has|vn(xn)| = n →
n→+∞

∞. Thus, all the conditions of Abel’s theorem are violated.

Nevertheless, the series
∑∞

n=1 un(x)vn(x) =
∑∞

n=1 (−1)n xn−1

n2 converges uniformly
on (0, 1) according to the Weierstrass test as was shown in Example 29.
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Remark. The conditions of Abel’s theorem are violated even stronger for
the functions un(x) =

x
n

and vn(x) = (−1)n
√

nx considered on X = (0, 2].
In fact, the series

∑∞
n=1

x
n

diverges at each x ∈ (0, 2]. The sequence
(−1)n

√
nx is not monotone in n and is unbounded at each x ∈ (0, 2] because|vn(x)| = |(−1)n

√
nx| = √

nx →
n→+∞

+∞, ∀x ∈ (0, 2]. Nevertheless, the series∑∞
n=1 un(x)vn(x) =

∑∞
n=1 (−1)n x2√

n
converges uniformly on (0, 2] as is seen from

the evaluation of the residual (following from Leibniz’s test for alternating
series)

|rn(x)| = ||||||
∞∑

k=n+1
(−1)k x2√

k

|||||| ≤
||||||(−1)n+1 x2√

n + 1

|||||| ≤
4√

n + 1
→

n→+∞
0,

which is satisfied for all x ∈ (0, 2] simultaneously.

Exercises

1 Show that Example 1 can be illustrated by the sequence fn(x) =
nx

n2x2+1
on

X = [0, 1].

2 Use the points xn = 1
n√2

, ∀n ∈ ℕ to prove that the sequence fn(x) = xn of
Example 1 converges nonuniformly on X = (−1, 1).

3 Show that the series
∑∞

n=1 2n sin 1
5nx

converges on X = (0,∞), but the con-
vergence is not uniform.

4 Check if the series
∑∞

n=1
xn

3√n
on X = (−1, 1) can be used for Example 2.

5 Use the sequence fn(x) =
x+n+(−1)nx

n2 on X = ℝ to illustrate the statement in
Example 3.

6 Construct a counterexample to the following false statement: “if f (x, y)
defined on [a, b] × Y converges to a limit function 𝜑(x) as y approaches
y0, and this convergence is uniform on any interval [c, b], ∀c ∈ (a, b), then
the convergence is also uniform on [a, b].” Compare with the statement
in Example 4. Formulate similar false statements for sequences and
series and disprove them by counterexamples. (Hint: for the functions
depending on a parameter, try f (x, y) = 2xy2

x2+y4 on [0, 1] × (0, 1] with the
limit point y0 = 0; for the sequences—fn(x) =

nx
n2x2+1

on [0, 1]; and for the
series—

∑
un(x) =

∑ (1−x)n

n
on (0, 1].)
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40 Chapter 1 Conditions of Uniform Convergence

7 Verify that
a) the function f (x, y) = x2

y2 e−x∕y on X × Y = [0,+∞) × (0, 1]with the limit
point y0 = 0

b) the function f (x, y) =
{ x

y
sin y

x
, x ≠ 0

1, x = 0
on X × Y = ℝ × (0, 1] with the

limit point y0 = 0
c) the sequence fn(x) =

2n2x
1+n4x2 on X = ℝ

d) the series
∑∞

n=1 un(x) =
∑∞

n=1
sin nx√

n
on X = ℝ

provide counterexamples for Example 5.

8 Verify that the series
∑∞

n=1 (−1)n x2+n2

n3 on X = [−1, 1] is one more coun-
terexample to the statement of Example 7.

9 Use the series
∑∞

n=1 (−1)n−1 xn

n
, X = (−1, 1) for Example 8.

10 Show the feasibility of Example 9 by using counterexamples with
a) the series

∑∞
n=1 (−1)n−1 x2

(1+x2)n , X = ℝ
b) the series

∑∞
n=0 (−1)nx(1 − x)n, X = [0, 1].

11 Use the series
∑∞

n=1 un(x) with

a) un(x) =

{
0, x ∈ [0, 3−n−1] ∪ [3−n, 1]

1√
n

cos2
(

3n+1

2
𝜋x

)
, x ∈ (3−n−1, 3−n) on X = [0, 1]

b) un(x) = (−1)n−1 x2

(1+x2)n on X = ℝ
to show the feasibility of Example 10.

12 Verify that the sequence fn(x) =
x2n2

2n2+5
on X = (0, 1] specifies Example 15.

13 Check the statement of Example 16 for the sequence fn(x) =
2nx

n2+x2 on
X = ℝ.

14 Verify whether the sequences fn(x), gn(x) and fn(x) ⋅ gn(x) are convergent
or divergent on X. In the case of the convergence, analyze its character:
a) fn(x) = ln (n2+1)x

n2 , gn(x) = ln 3n+2
n

x2 on X = (0,+∞)
b) fn(x) = gn(x) = ln n2x2

n2+1
on X = (0,+∞)

c) fn(x) =
x
n

, gn(x) =
sin nx

nx
on X = (0,+∞)

d) fn(x) =
x
n

, gn(x) = ln (n+1)x
n

on X = (0,+∞)
e) fn(x) =

x
n

, gn(x) =
sin nx

nx
on X = (0, 1]

f ) fn(x) = gn(x) = (−1)n 5n2+2
3n2+1

x on X = (0, 1].
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Formulate false statements for which these sequences represent coun-
terexamples.

15 Show that the sequences fn(x) =

{
n2+1

n2 x2, x ∈ ℚ
x2

n2 , x ∈ 𝕀
and gn(x) ={ 1

n2 x2, x ∈ ℚ
n2+1

n2 x2, x ∈ 𝕀
defined on X = [0, 1] provide a counterexample to

Example 14.

16 Verify whether the series
∑

un(x),
∑

vn(x) and
∑

un(x) ⋅ vn(x) are con-
vergent or divergent on X. In the case of the convergence, analyze its
character:
a) un(x) = vn(x) =

sin nx√
n

on X = ℝ

b) un(x) = vn(x) =
sin nx
n2∕3 on X = ℝ

c) un(x) = vn(x) =
1

x2∕3+n2∕3 on X = [0,+∞)
d) un(x) =

1
x+n

, vn(x) =
1

x+ln2n
on X = (0,+∞)

e) un(x) = vn(x) =
cos nx√

n
on X = [a, 𝜋 − a], ∀a ∈

(
0, 𝜋

2

)
f ) un(x) =

sin nx√
n

, vn(x) =
sin nx

4√n
on X = [a, 𝜋 − a], ∀a ∈

(
0, 𝜋

2

)
g) un(x) = vn(x) = (−1)n xn√

n
on X = (0, 1)

h) un(x) = (−1)n xn

ln n
, vn(x) = (−1)n xn√

n
, n ≥ 2 on X = (0, 1)

i) un(x) =
sin nx
n2∕3 , vn(x) =

sin nx
n

on X = ℝ
j) un(x) = vn(x) =

xn

n
on X = [0, 1)

k) un(x) =
xn

n
, vn(x) =

xn

n1∕3 on X = [0, 1)
l) un(x) = vn(x) = (−1)n xn

3√n
on X = [0, 1)

m) un(x) = vn(x) = (−1)n x√
n

on X = (0, 1).
Formulate false statements for which these series represent
counterexamples.

17 Show that the series
∑∞

n=1
2x3

n6+x6 and
∑∞

n=1
2x3

n6+x3 on X = (0,+∞) exemplify
the statement in Example 25.

18 For given un(x) and vn(x) on the specified set X, verify the conditions of
Dirichlet’s theorem and investigate the character of the convergence of
the series

∑
un(x) ⋅ vn(x):

a) un(x) = xn−1, vn(x) =
x
n

on X = (−1, 1)
b) un(x) = xn−1, vn(x) = (−1)n x

n
on X = [0, 1)

c) un(x) = xn+1, vn(x) = (−1)n 1
n3∕2x

on X = (0, 1)
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42 Chapter 1 Conditions of Uniform Convergence

d) un(x) = (−1)nxn−1, vn(x) = (−1)n x
n

on X = [0, 1)

e) un(x) =
1√
n

, vn(x) = sin nx on X =
[

𝜋

10
,

19𝜋
10

]
f ) un(x) = (−1)n, vn(x) =

(
x2

1+x2

)n
on X = ℝ

g) un(x) = x2, vn(x) =
(−1)n

(1+x2)n on X = (0,+∞)

h) un(x) =
x
n

, vn(x) =
sin nx

x
on X =

[
𝜋

6
,

11𝜋
6

]
i) un(x) = x2n, vn(x) =

(−1)n

(1+x2)n on X = (−1, 1).
Formulate false statements for which these functions and series represent
counterexamples.

19 For given un(x) and vn(x) on the specified set X, verify the conditions of
Abel’s theorem and investigate the character of the convergence of the
series

∑
un(x) ⋅ vn(x):

a) un(x) = (−1)n, vn(x) =
(

x2

1+x2

)n
on X = ℝ

b) un(x) = xn−1, vn(x) =
x
n

on X = (−1, 1)
c) un(x) =

x2

n
, vn(x) =

sin nx
nx2 on X = (0,+∞)

d) un(x) =
1

nx
, vn(x) =

√
nx sin nx on X =

[
𝜋

10
,

19𝜋
10

]
e) un(x) =

(−1)n

n
, vn(x) = (−1)n sin nx on X = ℝ

f ) un(x) = (−1)n x2

(1+x2)n , vn(x) =
2n+1

(n+1)x2 on X = (0,+∞)
g) un(x) =

sin nx√
n

, vn(x) =
1√
n

on X = ℝ

h) un(x) =
sin nx

n2 , vn(x) = n3∕2 on X = ℝ
i) un(x) =

xn

n
√

n
, vn(x) = x

√
n on X = (0, 1)

j) un(x) =
sin nx

n
, vn(x) = (−1)n

√
n on X =

(
0, 𝜋

2

)
.

Formulate false statements for which these functions and series represent
counterexamples.
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