CHAPTER 1

Conditions of Uniform Convergence

1.1 Pointwise, Absolute, and Uniform Convergence. Convergence on a Set and Subset

Example 1. A function f(x, y), defined on $X \times Y$, has a limit for any fixed $x \in$ X as y approaches y_0 , that is, f(x, y) converges pointwise to a limit function $\varphi(x)$ as *y* approaches y_0 , but the convergence of f(x, y) to $\varphi(x)$ is nonuniform on *X*.

Solution

Let us consider $f(x, y) = \frac{xy}{x^2+y^2}$ defined on $[0, 1] \times (0, 1]$ and choose $y_0 = 0$. If x = 0, then f(0, y) = 0 and consequently $\lim_{y \to 0} f(0, y) = \lim_{y \to 0} 0 = 0$. If $x \neq 0$, then $\lim_{y \to 0} f(x, y) = \lim_{y \to 0} \frac{xy}{x^2+y^2} = 0$. Therefore, the limit function is defined for any $x \in [0, 1]$ and it is zero: $\varphi(x) = \lim_{y \to 0} f(x, y) = 0$. However, the convergence to $\varphi(x)$ is not uniform on X = [0, 1]. Indeed for $\forall y \in Y = (0, 1]$, there exists $x_y = y \in$ (0,1] such that

$$|f(x_y, y) - \varphi(x_y)| = \frac{y^2}{2y^2} = \frac{1}{2} \underset{y \to 0}{\not \rightarrow} 0,$$

that is, for $\varepsilon_0 = \frac{1}{2}$ whatever radius δ is chosen, there exists the point $x_y = y \in$ (0, 1] such that $|f(x_y, y) - \varphi(x_y)| = \frac{y^2}{2y^2} \ge \varepsilon_0$ although $|y| < \delta$. It means that the convergence is not uniform.

Remark 1. In the case of $Y = \mathbb{N}$, a similar example can be formulated as follows: a sequence of functions $f_n(x)$ converges (pointwise) on a set X, but this convergence is nonuniform. One of the counterexamples is $f_n(x) = x^n$, X = (-1, 1). Since |x| < 1, one gets $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = 0 = f(x)$, $\forall x \in X$. To show that this convergence is nonuniform, let us pick up $x_n = \left(1 - \frac{1}{n}\right) \in X$, for $\forall n \in \mathbb{N}, n \ge 2$; and for these points, we obtain

$$|f_n(x_n) - f(x_n)| = \left(1 - \frac{1}{n}\right)^n \underset{n \to \infty}{\to} e^{-1} \neq 0.$$

Counterexamples on Uniform Convergence: Sequences, Series, Functions, and Integrals, First Edition. Andrei Bourchtein and Ludmila Bourchtein.

^{© 2017} John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

Companion website: www.wiley.com/go/bourchtein/counterexamples_on_uniform_convergence

Figure 1.1 Examples 1, 4, and 28, sequence $f_n(x) = x^n$.

In other words, for $\varepsilon_0 = \frac{1}{4}$ whatever natural number N is chosen, for some (in this case, actually, for any) $n \in \mathbb{N}$, $n \ge 2$, there exists the point $x_n = 1 - \frac{1}{n}$ such that $|f_n(x_n) - f(x_n)| = \left(1 - \frac{1}{n}\right)^n \ge \frac{1}{4}$, that is, the convergence is not uniform. (In the last inequality, we have used the fact that the sequence $\left(1 - \frac{1}{n}\right)^n$ is increasing.)

Remark 2. A similar formulation can be made in the case of series: a series of functions converges (pointwise) on a set, but this convergence is nonuniform. The respective counterexample can be given with the series $\sum_{n=0}^{\infty} x^n$, $x \in X = (-1, 1)$. It is well known that the geometric series is convergent for |x| < 1 and $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} = f(x)$. To analyze the character of this convergence, first let us find the partial sums $f_n(x) = \sum_{k=0}^n x^k = \frac{1-x^{n+1}}{1-x}$ and the corresponding remainders $r_n(x) = f(x) - f_n(x) = \frac{x^{n+1}}{1-x}$. Choosing now $x_n = 1 - \frac{1}{n+1}$, $\forall n \in \mathbb{N}$, we obtain

$$r_n(x_n) = \frac{\left(1 - \frac{1}{n+1}\right)^n}{1 - 1 + \frac{1}{n+1}} = (n+1)\left(1 - \frac{1}{n+1}\right)^{n+1} \xrightarrow[n \to \infty]{} \infty.$$

Therefore, the convergence is nonuniform.

Figure 1.2 Examples 1 and 4, series $\sum_{n=0}^{\infty} x^n$.

Example 2. A series of functions converges on *X* and a general term of the series converges to zero uniformly on *X*, but the series converges nonuniformly on *X*.

Solution

Let us consider the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ on X = [0, 1). This series converges for $\forall x \in X$, because $0 \le \frac{x^n}{n} \le x^n$, $\forall n$, and the geometric series $\sum_{n=1}^{\infty} x^n$ is convergent for |x| < 1. We can even find the sum of the series if we recall that the function ln (1 + x) has expansion in Taylor's series ln $(1 + x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ convergent on (-1, 1]. Then, replacing x by -x, we obtain ln $(1 - x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}$ with convergence on [-1, 1) and, in particular, on X = [0, 1). Further, the general term $u_n(x) = \frac{x^n}{n}$ converges to 0 uniformly on X = [0, 1), because $\lim_{n \to \infty} \frac{1}{n} = 0$ and evaluation $|u_n(x)| = \frac{|x|^n}{n} < \frac{1}{n}$ holds for $\forall x \in X$. Hence, the conditions of the statement are satisfied. However, the series is not convergent uniformly on X that can be shown by verifying the Cauchy criterion of the uniform convergence. In fact, for $\forall x \in X$ and for $\forall n, p \in \mathbb{N}$ we have the following evaluation:

$$\left|\sum_{k=n+1}^{n+p} \frac{x^k}{k}\right| = \frac{x^{n+1}}{n+1} + \dots + \frac{x^{n+p}}{n+p} > p\frac{x^{n+p}}{n+p}.$$

Figure 1.3 Examples 2, 26, 27, and 30, series $\sum_{n=1}^{\infty} \frac{x^n}{n}$.

Now, for $\forall n \in \mathbb{N}$, choosing $p_n = n$ and $x_n = \frac{1}{\sqrt[n]{2}} \in X$, we get $\left(\frac{1}{\sqrt[n]{2}}\right)^{2n}$

$$\left|\sum_{k=n+1}^{n+p_n} \frac{x_n^k}{k}\right| > n \frac{\left(1/\sqrt[n]{2}\right)}{2n} = \frac{1}{8} \underset{n \to \infty}{\xrightarrow{\to}} 0.$$

which means that the Cauchy criterion is not satisfied and, therefore, the series does not converge uniformly on *X*.

Remark 1. The series $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ considered on X = (-1, 1) provides a similar counterexample. First, it converges for $\forall x \in X$, because $0 \le \left|\frac{x^n}{\sqrt{n}}\right| \le |x|^n$, $\forall n$, and the geometric series $\sum_{n=1}^{\infty} |x|^n$ is convergent for |x| < 1. Second, the inequality $|u_n(x)| = \left|\frac{x^n}{\sqrt{n}}\right| < \frac{1}{\sqrt{n}}$ holds for $\forall x \in X$; since $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$, it implies the uniform convergence of $\frac{x^n}{\sqrt{n}}$ to 0 on *X*. Hence, the statement conditions hold. To analyze the nature of the convergence of the series, let us evaluate the sum $\sum_{k=n+1}^{n+p} \frac{x^k}{\sqrt{k}}$ for $\forall n \in \mathbb{N}$, $p_n = n$, and $x_n = \frac{1}{\sqrt[p]{3}} \in X$:

$$\left|\sum_{k=n+1}^{n+p_n} \frac{x_n^k}{\sqrt{k}}\right| > n \frac{\left(1/\sqrt[n]{3}\right)^{2n}}{\sqrt{2n}} = \frac{1}{9\sqrt{2}} \sqrt{n} \mathop{\to}\limits_{n \to \infty} \infty.$$

This means that the Cauchy criterion is not satisfied and, therefore, the series does not converge uniformly on *X*.

Remark 2. The converse general statement is true: if a series $\sum u_n(x)$ converges uniformly on *X*, then its general term converges to zero uniformly on *X*.

Example 3. A sequence of functions converges on *X* and there exists its subsequence that converges uniformly on *X*, but the original sequence does not converge uniformly on *X*.

Solution

Let us consider the sequence $f_n(x) = \begin{cases} \frac{x}{n}, n = 2k - 1\\ \frac{1}{n}, n = 2k \end{cases}$, $\forall k \in \mathbb{N}, X = \mathbb{R}$. For any fixed $x \in \mathbb{R}$, we have two partial limits: if n = 2k - 1, then $\lim_{k \to \infty} f_{2k-1}(x) = \lim_{k \to \infty} \frac{x}{2k-1} = 0$; and if n = 2k, then $\lim_{k \to \infty} f_{2k}(x) = \lim_{k \to \infty} \frac{1}{2k} = 0$. Therefore, this sequence converges to 0 on \mathbb{R} : $\lim_{n \to \infty} f_n(x) = 0 = f(x)$. Note also that the subsequence $f_{2k}(x)$ converges uniformly on \mathbb{R} , since the same evaluation $|f_{2k}(x) - f(x)| < \varepsilon$ holds simultaneously for all $x \in \mathbb{R}$. Or equivalently, for $\forall \varepsilon > 0$ there exists $K_{\varepsilon} = \left[\frac{1}{2\varepsilon}\right]$ such that for $\forall k > K_{\varepsilon}$ and simultaneously for all $x \in \mathbb{R}$ it follows that $|f_{2k}(x) - f(x)| < \varepsilon$. That is, the definition of the uniform convergence is satisfied for $f_{2k}(x)$. Nevertheless, the sequence $f_n(x)$ does not converge uniformly on \mathbb{R} . Indeed, whatever large index N we choose, there exists the index $n_N = 2N - 1 > N$ and the real point $x_N = 2N - 1$ such that

$$|f_{2N-1}(x_N) - f(x_N)| = \frac{2N-1}{2N-1} = 1 \underset{N \to \infty}{\xrightarrow{\rightarrow}} 0.$$

Hence, the convergence of $f_n(x)$ is not uniform on \mathbb{R} .

Example 4. A function f(x, y) defined on $(a, b) \times Y$ converges to a limit function $\varphi(x)$ as y approaches y_0 , and this convergence is uniform on any interval $[c, d] \subset (a, b)$, but the convergence is nonuniform on (a, b).

Solution

We can employ here the same functions used in Example 1. First, we consider $f(x, y) = \frac{xy}{x^2+y^2}$ defined on $(0, 1) \times (0, 1)$ and choose $y_0 = 0$. As in Example 1, the limit function is zero: $\varphi(x) = \lim_{y \to 0} f(x, y) = 0$, $\forall x \in (0, 1)$. However, the convergence to $\varphi(x)$ is not uniform on (0, 1), because for $\forall y \in (0, 1)$ there exists $x_y = y$ such that

$$|f(x_y, y) - \varphi(x_y)| = \frac{y^2}{2y^2} = \frac{1}{2} \underset{y \to 0}{\xrightarrow{\leftrightarrow}} 0.$$

5

On the other hand, for any interval $[c, d] \subset (0, 1)$, the convergence is uniform. Indeed, for all $x \in [c, d]$ and for any y > 0, it follows that

$$|f(x,y) - \varphi(x)| = \frac{xy}{x^2 + y^2} \le \frac{xy}{x^2} \le \frac{1}{c}y.$$

Therefore, for any $\varepsilon > 0$, there exists $\delta_{\varepsilon} = c\varepsilon > 0$ (which is the same for all points in [c, d]) such that if $0 < y < \delta$, then $|f(x, y) - \varphi(x)| \le \frac{1}{c}y < \varepsilon$ for all $x \in [c, d]$ simultaneously. It means that the convergence is uniform on [c, d].

Remark 1. The sequence $f_n(x) = x^n$ on $x \in (-1, 1)$ from Example 1 provides the following counterexample: a sequence of functions $f_n(x)$, defined on (a, b), converges uniformly on any interval $[c, d] \subset (a, b)$, but the convergence is nonuniform on (a, b). The fact that the convergence to the limit function f(x) = 0 is not uniform on (-1, 1) was already proved in Example 1. Let us show that the convergence is uniform on any $[c, d] \subset (-1, 1)$. Since we can always construct the interval [-q, q], where $q = \max\{|c|, |d|\}$, such that $[c, d] \subset [-q, q] \subset (-1, 1)$, it is sufficient to prove the uniform convergence on [-q, q]. For this interval, we get $|f_n(x) - f(x)| = |x^n| \le q^n$, for all $x \in [-q, q]$ at the same time. Since $\lim_{n \to \infty} q^n = 0$, that is, for any $\varepsilon > 0$ (it is sufficient to consider $\varepsilon < 1$), there exists $N_{\varepsilon} = \left[\frac{\ln \varepsilon}{\ln q}\right]$ such that $q^n < \varepsilon$ if $n > N_{\varepsilon}$, we can conclude that for any $\varepsilon > 0$ there exists exactly the same $N_{\varepsilon} = \left[\frac{\ln \varepsilon}{\ln q}\right]$ such that when $n > N_{\varepsilon}$, then $|x^n| \le q^n < \varepsilon$ for all $x \in [-q, q]$ simultaneously. The last sentence is the definition of the uniform convergence on [-q, q].

Remark 2. Finally, the series of Example 1 $\sum_{n=0}^{\infty} x^n$, $x \in (-1, 1)$ is an example of the situation when a series of functions converges uniformly on any interval $[c, d] \subset (a, b)$, but the convergence is nonuniform on (a, b). It was already shown in Example 1 that the convergence of the given series is not uniform on (-1, 1). Let us consider an interval $[-q, q] \subset (-1, 1)$, q > 0 and show that the convergence on any interval $[c, d] \subset (-1, 1)$. Since $|x^n| \leq q^n$ for any $x \in [-q, q]$ and the numerical series $\sum_{n=0}^{\infty} q^n$ is convergent (the geometrical series with |q| < 1), according to the Weierstrass test the series $\sum_{n=0}^{\infty} x^n$ converges uniformly on [-q, q].

Remark 3. The nearly converse situation also takes place, as it is shown in Example 5.

Example 5. A sequence $f_n(x)$ converges on X, but this convergence is nonuniform on a closed interval $[a, b] \subset X$.

Solution

One of the counterexamples is $f_n(x) = nxe^{-n^2x^2}$ on $X = \mathbb{R}$. It is easy to show that this sequence approaches $f(x) \equiv 0$ on \mathbb{R} . In fact, for x = 0 one has $f_n(0) = 0$, $\forall n$ and, consequently, $\lim_{n\to\infty} f_n(0) = 0$. For $x \neq 0$, one can use the change of variable t = nx and apply l'Hospital's rule:

$$\lim_{n\to\infty}f_n(x)=\lim_{t\to\pm\infty}\frac{t}{e^{t^2}}=\lim_{t\to\pm\infty}\frac{1}{2te^{t^2}}=0.$$

Consider now $[a, b] \subset \mathbb{R}$ such that $a \leq 0 < b$. Choosing $N > \frac{1}{b}$ and $x_n = \frac{1}{b}$, one obtains the following evaluation for $\forall n > N$:

$$|f_n(x_n) - f(x_n)| = n|x_n|e^{-n^2x_n^2} = e^{-1} \underset{k \to \infty}{\not \to} 0,$$

which means that the convergence of $f_{\mu}(x)$ to 0 is nonuniform on such a closed interval.

Remark 1. A similar example for a series goes as follows: a series $\sum u_n(x)$ converges on a set X, but this series does not converge uniformly on a closed subinterval $[a, b] \subset X$. The series $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ provides an example. First, we show that it is convergent on \mathbb{R} . If $x_k = k\pi$, $\forall k \in \mathbb{Z}$, then $\sum_{n=1}^{\infty} \frac{\sin nx_k}{n} = \sum_{n=1}^{\infty} 0 = 0$. For $x \neq k\pi$, we can apply Dirichlet's theorem. For the partial sums $B_n(x) =$ $\sum_{k=1}^{n} \sin kx$, the following evaluation holds:

$$|B_{n}(x)| = \left| \frac{1}{2\sin\frac{x}{2}} \sum_{k=1}^{n} 2\sin kx \sin\frac{x}{2} \right|$$

= $\left| \frac{1}{2\sin\frac{x}{2}} \sum_{k=1}^{n} \left(\cos\left(k - \frac{1}{2}\right)x - \cos\left(k + \frac{1}{2}\right)x \right) \right|$
= $\frac{1}{2\left|\sin\frac{x}{2}\right|} \left| \cos\frac{x}{2} - \cos\left(n + \frac{1}{2}\right)x \right|$
= $\frac{1}{2\left|\sin\frac{x}{2}\right|} \left| 2\sin\frac{n+1}{2}x \cdot \sin\frac{n}{2}x \right| \le \frac{1}{\left|\sin\frac{x}{2}\right|}$

(note that the division by $\sin \frac{x}{2}$ is possible, since $x \neq k\pi$). Therefore, the sums $B_n(x)$ are bounded for any fixed $x \neq k\pi$. Besides, the numerical sequence $c_n = \frac{1}{n}$ is decreasing and approaches 0 as $n \to \infty$. Hence, all the conditions of Dirichlet's theorem are satisfied, and therefore the series is convergent on \mathbb{R} .

Let us show that this convergence is nonuniform on $(0, 2\pi)$ (and consequently on $[0, 2\pi]$ or any other interval containing $(0, 2\pi)$). To this end, we evaluate the sum $\sum_{k=n+1}^{n+p} u_k(x_n) = \sum_{k=n+1}^{n+p} \frac{\sin kx_n}{k}$ in the Cauchy criterion of uniform convergence. Choosing in this sum $p_n = n$ and $x_n = \frac{\pi}{6n}$, noting that $\frac{\pi}{6} < kx_n \le \frac{\pi}{3}$

for any *k* such that $n < k \le n + p_n = 2n$, and recalling that sin *t* is positive and strictly increasing on $\left(0, \frac{\pi}{2}\right)$, we obtain

$$\begin{vmatrix} n+p_n \\ \sum_{k=n+1}^{n+p_n} u_k(x_n) \end{vmatrix} = \left| \sum_{k=n+1}^{2n} \frac{\sin kx_n}{k} \right|$$
$$= \frac{\sin \left(\frac{\pi}{6} + \frac{\pi}{6n}\right)}{n+1} + \frac{\sin \left(\frac{\pi}{6} + \frac{2\pi}{6n}\right)}{n+2} + \dots + \frac{\sin \frac{\pi}{3}}{2n}$$
$$> \frac{\sin \frac{\pi}{6}}{n+1} + \frac{\sin \frac{\pi}{6}}{n+2} + \dots + \frac{\sin \frac{\pi}{6}}{2n}$$
$$= \frac{1}{2} \left(\frac{1}{n+1} + \dots + \frac{1}{2n} \right) > \frac{1}{2} \frac{n}{2n} = \frac{1}{4}.$$

Hence, there exists $\varepsilon_0 = \frac{1}{4}$ such that for $\forall n$ there are $p_n = n$ and $x_n = \frac{\pi}{6n} \in$ $(0, 2\pi)$ such that $\left|\sum_{k=n+1}^{n+p_n} u_k(x_n)\right| > \varepsilon_0$. This means that the Cauchy criterion is not satisfied on $(0, 2\pi)$ and, consequently, the series does not converge uniformly on this interval.

At the same time, the application of Dirichlet's theorem of uniform convergence reveals that the series converges uniformly on the interval $[a, 2\pi - a]$ for any $a \in (0, \pi)$. Indeed, since $\sin \frac{x}{2} > 0$, $\forall x \in [a, 2\pi - a]$, we can apply the same evaluations as above for the partial sums $B_n(x) = \sum_{k=1}^n \sin kx$ to obtain

$$|B_n(x)| \le \frac{1}{|\sin x/2|} = \frac{1}{\sin x/2} \le \frac{1}{\sin a/2}, \quad \forall x \in [a, 2\pi - a],$$

that is, the sums $B_n(x)$ are uniformly bounded on $[a, 2\pi - a]$. Since $c_n = \frac{1}{n} \underset{n \to \infty}{\to} 0$ and c_n is strictly decreasing, all the conditions of Dirichlet's theorem of uniform convergence are satisfied. Hence, the series converges uniformly on any interval $[a, 2\pi - a], a \in (0, \pi).$

Remark 2. For functions depending on a parameter, the corresponding formulation is as follows: a function f(x, y) defined on $X \times Y$ has a limit $\lim f(x, y) =$ $\varphi(x)$ for $\forall x \in X$, but f(x, y) converges to $\varphi(x)$ nonuniformly on a subinterval $[a, b] \subset X$. The function $f(x, y) = \frac{x^2 y^2}{x^4 + y^4}$ considered on $\mathbb{R} \times (0, +\infty)$ with the limit point $y_0 = 0$ provides the counterexample. This function converges to $\varphi(x) \equiv$ 0 on \mathbb{R} as $y \to 0$: for x = 0, one has f(0, y) = 0, $\forall y \in (0, +\infty)$ which implies $\lim_{x \to 0} f(0, y) = 0$; and for $x \neq 0$, one obtains by the arithmetic rules of the limits $\lim_{y \to 0} \frac{x^2 y^2}{x^4 + y^4} = \frac{0}{x^4} = 0$. Choose now $[a, b] \subset \mathbb{R}$ such that $a \le 0 < b$ and evaluate the difference $|f(x, y) - \varphi(x)|$ for $\forall y \in (0, b)$ and $x_y = y \in [a, b]$:

$$|f(x_y, y) - \varphi(x_y)| = \frac{y^4}{2y^4} = \frac{1}{2} \underset{y \to 0}{\not \rightarrow} 0.$$

This result shows that the convergence is nonuniform on a chosen closed interval.

Remark 3. A strengthened versions of these statements are presented in Example 6.

Example 6. A sequence $f_n(x)$ converges on a set *X*, but it does not converge uniformly on any subinterval of *X*.

Solution

To construct a counterexample, let us place all the rational numbers of the interval [0, 1] in a specific order of a numerical sequence r_n , $n = 1, 2, \cdots$ (this can be done, since the set of all the rational numbers of any interval is countable). Define now the functions $f_n(x)$ on [0, 1] as follows: $f_n(x) = \begin{cases} 1, x = r_1, r_2, \cdots, r_n \\ 0, \text{ otherwise} \end{cases}$. This sequence is monotone in *n* for any fixed $x \in [0, 1]$ (since $f_n(r_{n+1}) = 0 < 1 = f_{n+1}(r_{n+1})$ and $f_n(x) = f_{n+1}(x), \forall x \neq r_{n+1}$) and bounded (since $0 \le f_n(x) \le 1, \forall n \in \mathbb{N}, \forall x \in [0, 1]$). Therefore, this sequence is convergent at any fixed $x \in [0, 1]$ and $f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \in \mathbb{I} \end{cases} = D(x)$. The convergence is nonuniform on [0, 1] since for $\forall n$ there exist $x_n = r_{n+1}$ such that

$$|f_n(x_n) - f(x_n)| = |f_n(r_{n+1}) - f(r_{n+1})| = 1 \underset{n \to \infty}{\xrightarrow{\rightarrow}} 0.$$

Let us show that the convergence is also nonuniform on any interval $[a, b] \subset [0, 1]$, which will imply that the convergence is nonuniform on any interval in [0, 1]. In fact, since any interval contains infinitely many rational points, in [a, b] there are infinitely many points of the sequence r_1, r_2, r_3, \cdots , which form a subsequence $r_{n_1}, r_{n_2}, r_{n_3}, \cdots, r_{n_k} \in [a, b]$, $\forall k \in \mathbb{N}$. Then for any $k \in \mathbb{N}$, there exist $n_k > k$ and $x_k = r_{n_{k+1}} \in [a, b]$ such that

$$|f_{n_k}(x_k) - f(x_k)| = |f_{n_k}(r_{n_{k+1}}) - f(r_{n_{k+1}})| = 1 \underset{k \to \infty}{\not \to} 0,$$

which means that the convergence is nonuniform on [a, b].

Remark 1. The corresponding example for a series that converges on *X*, but does not converge uniformly on any subinterval of *X*, can be easily constructed using the sequence of the given counterexample as partial sums of the series. For instance, the series $\sum u_n(x)$ with the terms $u_n(x) = \begin{cases} 1, x = r_n \\ 0, x \neq r_n \end{cases}$ defined on [0, 1] has the partial sums $f_n(x)$ of the above counterexample and, consequently, this series converges on [0, 1], but does not converge uniformly on any subinterval of [0, 1].

9

Remark 2. Another example of this type, albeit for a sequence of continuous on *X* functions $f_n(x)$, is given in Example 26 of Chapter 2.

Example 7. A series $\sum u_n(x)$ converges uniformly on an interval, but it does not converge absolutely on the same interval.

Solution

The series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$ converges uniformly on the interval [-a, a], $\forall a > 0$. In fact, for any fixed $x \in \mathbb{R}$, this is an alternating series, which converges by Leibniz's test: $\lim_{n \to \infty} \frac{x^2+n}{n^2} = 0$ and $\frac{x^2+n}{n^2}$ is strictly decreasing in *n* for any fixed $x \in \mathbb{R}$. For alternating series, the remainder can be evaluated through its first term: $|r_n(x)| \le |u_{n+1}(x)| = \frac{x^2+n+1}{(n+1)^2}$. Therefore, for all $x \in [-a, a]$, we get

$$|r_n(x)| \le \frac{x^2 + n + 1}{(n+1)^2} \le \frac{a^2}{(n+1)^2} + \frac{1}{n+1} \underset{n \to \infty}{\to} 0,$$

which implies the uniform convergence of the series on [-a, a]. However, the series of the absolute values $\sum_{n=1}^{\infty} |u_n(x)| = \sum_{n=1}^{\infty} \frac{x^{2}+n}{n^2}$ diverges for any x: for x = 0, the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is harmonic and divergent; for $\forall x \neq 0$, the series $\sum_{n=1}^{\infty} \left(\frac{x^2}{n^2} + \frac{1}{n}\right)$ is the sum of the two series $-\sum_{n=1}^{\infty} \frac{x^2}{n^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ —where the former is convergent (*p*-series with p = 2) and the latter is divergent (the harmonic series), which implies the divergence of the sum. Hence, the given series is convergent on \mathbb{R} , uniformly convergent on [-a, a], $\forall a > 0$, but it does not possess absolute convergence at any point.

Remark. The converse situation is considered in Example 8.

Example 8. A series $\sum u_n(x)$ converges absolutely on an interval, but it does not converge uniformly on the same interval.

Solution

The series $\sum_{n=0}^{\infty} (-1)^n x^n$ converges absolutely on the interval X = [0, 1), because for $\forall x \in [0, 1)$ the series $\sum_{n=0}^{\infty} |u_n(x)| = \sum_{n=0}^{\infty} x^n$ is the geometric series with the nonnegative ratio less than 1. However, the convergence is not uniform on [0, 1), because for $\forall n$ we can choose $x_n = 1 - \frac{1}{n+1} \in [0, 1)$ that gives the following evaluation:

$$|r_n(x_n)| = \left|\frac{(-1)^{n+1}x_n^{n+1}}{1+x_n}\right| = \frac{\left(1-\frac{1}{n+1}\right)^{n+1}}{1+1-\frac{1}{n+1}} \underset{n \to \infty}{\to} \frac{1}{2}e^{-1} \neq 0.$$

Figure 1.4 Example 7, series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$.

Example 9. A series $\sum u_n(x)$ converges absolutely and uniformly on [a, b], but the series $\sum |u_n(x)|$ does not converge uniformly on [a, b].

Solution

Let us consider the series $\sum_{n=0}^{\infty} u_n(x) = \sum_{n=0}^{\infty} (-1)^n (1-x)x^n$ on [0, 1]. If x = 1, then $u_n(1) = 0$ and the series converges at this point. If $x \neq 1$, then for each fixed x we have the geometric series with the ratio q = -x, and since |q| = |x| < 1, the series is convergent. The series of the absolute values $\sum_{n=0}^{\infty} |u_n(x)| = \sum_{n=0}^{\infty} (1-x)x^n$ is convergent on [0, 1] for the very same reasons.

Let us analyze the uniform convergence of the original series. Since this series is alternating, we have the following evaluation for its remainder $r_n(x)$ for any n:

$$|r_n(x)| \le |u_{n+1}(x)| = (1-x)x^{n+1}, \forall x \in [0,1].$$

Note that the continuous function $h(x) = (1 - x)x^{n+1}$ is positive on (0, 1) and at the end points h(0) = h(1) = 0. Therefore, h(x) achieves its global maximum in some interior point of [0, 1]. Solving the critical point equation

$$h'(x) = (n+1)x^n - (n+2)x^{n+1} = x^n[(n+1) - (n+2)x] = 0,$$

we find the only critical point $x_n = \frac{n+1}{n+2}$ on (0, 1), which is the global maximum point of h(x) on [0, 1]. Thus, for $\forall x \in [0, 1]$,

$$\begin{aligned} |r_n(x)| &\leq (1-x)x^{n+1} \leq (1-x_n)x_n^{n+1} \\ &= \frac{1}{n+2} \left(1 - \frac{1}{n+2} \right)^{n+1} \xrightarrow[n \to \infty]{} 0 \cdot e^{-1} = 0, \end{aligned}$$

that is, the convergences is uniform on [0, 1]. Finally, let us show that the series $\sum_{n=0}^{\infty} |u_n(x)| = \sum_{n=0}^{\infty} (1-x)x^n$ does not converge uniformly on [0, 1]. It is sufficient to show that the convergence is nonuniform on [0, 1), so let us evaluate the remainder $\tilde{r}_n(x)$ for $x \in [0, 1)$:

$$\tilde{r}_n(x) = \sum_{k=n+1}^{\infty} |u_k(x)| = \frac{(1-x)x^{n+1}}{1-x} = x^{n+1}.$$

Choosing now the points $x_n = \frac{1}{n+1/2} \in [0,1)$ for each *n*, we obtain $\tilde{r}_n(x_n) =$ $\left(\frac{1}{n+\sqrt{2}}\right)^{n+1} = \frac{1}{2} \underset{n \to \infty}{\not\rightarrow} 0$, which shows that the convergence is nonuniform on [0, 1) and, consequently, on [0, 1].

Remark. The converse general statement is true: if a series $\sum_{n=0}^{\infty} |u_n(x)|$ converges uniformly on [a, b], then the series $\sum_{n=0}^{\infty} u_n(x)$ converges absolutely and uniformly on [a, b].

Example 10. A series $\sum u_n(x)$ converges absolutely and uniformly on X, but there is no bound of the general term $u_n(x)$ on *X* in the form $|u_n(x)| \le a_n, \forall n$ such that the series $\sum a_n$ converges.

Solution

One of the counterexamples is the series $\sum_{n=1}^{\infty} u_n(x)$ with the general term $u_n(x) = \begin{cases} 0, x \in [0, 2^{-n-1}] \cup [2^{-n}, 1] \\ \frac{1}{2} \sin^2(2^{n+1}\pi x), x \in (2^{-n-1}, 2^{-n}) \end{cases}$ defined on X = [0, 1]. Note that $u_n(x) \ge 0$ for $\forall x \in [0, 1]$, so the convergence and absolute convergence is the same thing for this series. At the points x = 0, $x = 2^{-n}$, $\forall n \in \mathbb{N}$, and for $\forall x \in \left[\frac{1}{2}, 1\right]$, we get $u_n(x) = 0$, $\forall n \in \mathbb{N}$ and the series converges to zero. If $x \in (0, \frac{1}{2})$, $x \neq 2^{-n}$, $n \ge 2$, then each of such points lies in only one of the intervals $(2^{-n-1}, 2^{-n})$, because these intervals have no common points: $(2^{-n-1}, 2^{-n}) \cap (2^{-n-2}, 2^{-n-1}) = \emptyset, \forall n \in \mathbb{N}.$ Therefore, there is only one n_x such that $x \in (2^{-n_x-1}, 2^{-n_x})$. Then $u_{n_x}(x) = \frac{1}{n_x} \sin^2(2^{n_x+1}\pi x)$ and $u_n(x) = 0$, $\forall n \neq n_x$ and, consequently, $\sum_{n=1}^{\infty} u_n(x) = u_{n_x}(x)$, which shows the (absolute) convergence of this series on [0, 1].

Figure 1.5 Examples 9 and 10 (second counterexample), series $\sum_{n=0}^{\infty} (-1)^n (1-x) x^n$.

Applying the Cauchy criterion and employing similar reasoning, we can also prove that the convergence is uniform. Indeed, since for any fixed $x \in [0,1]$ at most only one term in the entire series is nonzero and this term satisfies the inequality $|u_{n_x}(x)| = \left|\frac{1}{n_x}\sin^2(2^{n_x+1}\pi x)\right| \leq \frac{1}{n_x}$, we obtain the following evaluation $\left|\sum_{k=n+1}^{n+p} u_k(x)\right| \leq \frac{1}{n+1} < \frac{1}{n}$, which holds for $\forall n, p \in \mathbb{N}$ and simultaneously for $\forall x \in [0,1]$. Hence, for $\forall \varepsilon > 0$, there exists $N_{\varepsilon} = \left[\frac{1}{\varepsilon}\right]$ such that for $\forall n > N_{\varepsilon}, \forall p \in \mathbb{N}$ and simultaneously for all $x \in [0,1]$, it follows that $\left|\sum_{k=n+1}^{n+p} u_k(x)\right| < \frac{1}{n} < \varepsilon$, that is, the series converges uniformly on [0,1] according to the Cauchy criterion of the uniform convergence.

Nevertheless, the functions $u_n(x)$ do not admit majoration on [0, 1] by the constants a_n such that the series $\sum_{n=1}^{\infty} a_n$ converges. Indeed, for $\forall n \in \mathbb{N}$, the inequality $|u_n(x)| \leq \frac{1}{n}$ is exact (in the sense that $\frac{1}{n}$ is the lowest upper bound for $|u_n(x)|$) on [0, 1], because there exists the point $x_n = 3 \cdot 2^{-n-2} \in (2^{-n-1}, 2^{-n})$ such that $u_n(x_n) = \frac{1}{n} \sin^2 \left(\frac{3}{2}\pi\right) = \frac{1}{n}$, and the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Another interesting counterexample is the series of Example 9: $\sum_{n=0}^{\infty} u_n(x) = \sum_{n=0}^{\infty} (-1)^n (1-x)x^n$ on [0, 1]. It was shown in Example 9 that this series converges absolutely and uniformly on [0, 1]. For each fixed *n*, the function $|u_n(x)| > 0$, $\forall x \in (0, 1)$, and $|u_n(0)| = |u_n(1)| = 0$. Therefore, the continuous function $|u_n(x)|$ achieves its global maximum in an interior point of [0, 1],

Figure 1.6 Example 10, series $\sum_{n=1}^{\infty} u_n(x), u_n(x) = \begin{cases} 0, x \in [0, 2^{-n-1}] \cup [2^{-n}, 1] \\ \frac{1}{n} \sin^2(2^{n+1}\pi x), x \in (2^{-n-1}, 2^{-n}) \end{cases}$

which can be found by solving the critical point equation:

$$u_n(x)|' = (x^n - x^{n+1})' = nx^{n-1} - (n+1)x^n$$
$$= (n+1)x^{n-1}\left(\frac{n}{n+1} - x\right) = 0.$$

The unique solution on (0, 1) is $x_n = \frac{n}{n+1}$ and, consequently,

$$|u_n(x)| \le \max_{[0,1]} |u_n(x)| = |u_n(x_n)| = \frac{1}{n+1} \left(1 - \frac{1}{n+1}\right)^n$$

Since $\lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)^n = e^{-1}$ and the series $\sum_{n=0}^{\infty} \frac{1}{n+1}$ diverges, according to the comparison test, the series $\sum_{n=0}^{\infty} \frac{1}{n+1} \left(1 - \frac{1}{n+1}\right)^n$ also diverges. Note that for each *n*, the majorant term $a_n = \frac{1}{n+1} \left(1 - \frac{1}{n+1}\right)^n$ is exact (i.e., the minimum possible) for $|u_n(x)|$ on [0, 1]. Therefore, there is no convergent majorant series $\sum_{n=0}^{\infty} a_n$ such that $|u_n(x)| \le a_n$.

Remark. The converse general statement is true and represents the famous Weierstrass M-test.

1.2 Uniform Convergence of Sequences and Series of Squares and Products

Example 11. A sequence $f_n(x)$ converges uniformly on *X* to a function f(x), but $f_n^2(x)$ does not converge uniformly on *X* to $f^2(x)$.

Solution

The sequence $f_n(x) = \ln \frac{nx}{n+1}$ converges on $X = (0, +\infty)$ to $f(x) = \ln x$, because $\lim_{n \to \infty} \ln \frac{nx}{n+1} = \ln \left(\lim_{n \to \infty} \frac{n}{n+1}\right) x = \ln x$. The following evaluation shows that this convergence is uniform:

$$|f_n(x) - f(x)| = \left| \ln \frac{nx}{n+1} - \ln x \right| = \left| \ln \frac{n}{n+1} \right| < \varepsilon.$$

So for $\forall \epsilon > 0$, there exists $N_{\epsilon} = \left[\frac{1}{e^{\epsilon}-1}\right]$, which depends only on ϵ , such that for $\forall n > N_{\epsilon}$ and simultaneously for all $x \in X$ we have $|f_n(x) - f(x)| < \epsilon$.

Due to arithmetic properties of the limits, the sequence $f_n^2(x)$ also converges to $f^2(x) = \ln^2 x$ for any fixed $x \in X$ (it can also be shown directly: $\lim_{n \to \infty} \ln^2 \frac{nx}{n+1} = \left(\ln\left(\lim_{n \to \infty} \frac{n}{n+1}\right)x\right)^2 = \ln^2 x$). However, this convergence is not uniform. In fact, for each $x \in X$, we get

$$|f_n^2(x) - f^2(x)| = \left| \ln^2 \frac{nx}{n+1} - \ln^2 x \right|$$

= $\left| \ln \frac{nx}{n+1} - \ln x \right| \cdot \left| \ln \frac{nx}{n+1} + \ln x \right|$
= $\ln \frac{n+1}{n} \cdot \left| \ln \frac{nx^2}{n+1} \right|.$

Choosing now $x_n = \frac{1}{ne^n} \in X$, we obtain

$$\begin{aligned} |f_n^2(x_n) - f^2(x_n)| &= \ln \frac{n+1}{n} \cdot \left| \ln \frac{n}{(n+1)n^2 e^{2n}} \right| \\ &= \ln \frac{n+1}{n} \cdot \ln(n(n+1)e^{2n}) \\ &= \ln \frac{n+1}{n} \cdot \ln n(n+1) + 2n \ln \frac{n+1}{n} > 1 \end{aligned}$$

for sufficiently large *n* (since the first term is positive and the limit of the second equals two: $\lim_{n \to \infty} 2n \ln \frac{n+1}{n} = \lim_{n \to \infty} 2\ln \left(1 + \frac{1}{n}\right)^n = 2\ln e = 2$, that is, $2n \ln \frac{n+1}{n} > 1$ for large *n*). Therefore, the convergence is not uniform: for $\varepsilon_0 = 1$ whatever *N* is chosen, it can be found that $\tilde{n} > N$ and corresponding $x_{\tilde{n}} \in X$ such that $|f_{\tilde{n}}^2(x_{\tilde{n}}) - f^2(x_{\tilde{n}})| > \varepsilon_0 = 1$.

Remark 1. Naturally, the following example can also be constructed: sequences $f_n(x)$ and $g_n(x)$ converge uniformly on X to f(x) and g(x), respectively, but $f_n(x)g_n(x)$ does not converge uniformly on X to f(x)g(x). In the case $f_n(x) = g_n(x)$, we have the original example with the square of function. For different sequences, we can use the same $f_n(x) = \ln \frac{nx}{n+1}$ and slightly different $g_n(x) = \ln \frac{nx}{2n+5}$. The sequence $g_n(x)$ converges to $g(x) = \ln \frac{x}{2}$, and this convergence is uniform on $X = (0, +\infty)$ due to the evaluation

$$\begin{aligned} |g_n(x) - g(x)| &= \left| \ln \frac{nx}{2n+5} - \ln \frac{x}{2} \right| \\ &= \left| \ln \frac{2n}{2n+5} \right| = \ln \left(1 + \frac{5}{2n} \right) \underset{n \to \infty}{\to} 0. \end{aligned}$$

Consequently, $f_n(x)g_n(x)$ converges to $f(x)g(x) = \ln x \ln \frac{x}{2}$ for each fixed $x \in X$ due to arithmetic rules of the limits. However, this convergence is not uniform on *X*, as it is shown below: for each $x \in X$, we have

$$\begin{split} |f_n(x)g_n(x) - f(x)g(x)| &= \left| \ln \frac{nx}{n+1} \ln \frac{nx}{2n+5} - \ln x \ln \frac{x}{2} \right| \\ &= \left| \ln \frac{nx}{n+1} \ln \frac{nx}{2n+5} - \ln \frac{nx}{n+1} \ln \frac{x}{2} \right| \\ &+ \ln \frac{nx}{n+1} \ln \frac{x}{2} - \ln x \ln \frac{x}{2} \right| \\ &= \left| \ln \frac{nx}{n+1} \ln \frac{2n}{2n+5} + \ln \frac{x}{2} \ln \frac{n}{n+1} \right|, \end{split}$$

and for the special choice of the points $x_n = \frac{1}{ne^n} \in X$, we obtain

$$\begin{split} |f_n(x_n)g_n(x_n) - f(x_n)g(x_n)| &= \left| \ln \frac{1}{(n+1)e^n} \ln \frac{2n}{2n+5} + \ln \frac{1}{2ne^n} \ln \frac{n}{n+1} \right| \\ &= \left| (n+\ln(n+1)) \ln \left(1 + \frac{5}{2n} \right) + (n+\ln 2n) \ln \left(1 + \frac{1}{n} \right) \right| \\ &= \frac{5}{2} \cdot \frac{2n}{5} \ln \left(1 + \frac{5}{2n} \right) + \frac{\ln(n+1)}{2n/5} \frac{2n}{5} \ln \left(1 + \frac{5}{2n} \right) \\ &+ n \ln \left(1 + \frac{1}{n} \right) + \frac{\ln 2n}{n} n \ln \left(1 + \frac{1}{n} \right) \underset{n \to \infty}{\to} \frac{5}{2} \cdot 1 \\ &+ 0 \cdot 1 + 1 + 0 \cdot 1 = \frac{7}{2}. \end{split}$$

In the evaluation of the last limit, we have used the following auxiliary limits:

$$\lim_{n \to \infty} \frac{n}{\alpha} \ln\left(1 + \frac{\alpha}{n}\right) = \lim_{n \to \infty} \ln\left(1 + \frac{\alpha}{n}\right)^{n/\alpha} = \ln e = 1, \quad \forall \alpha \neq 0$$

Figure 1.7 Examples 11 and 17, sequence $f_n(x) = \ln \frac{nx}{n+1}$.

Figure 1.8 Example 11, sequence of squares $f_n^2(x) = \ln^2 \frac{nx}{n+1}$.

according to the second remarkable limit, and

$$\lim_{t \to \infty} \frac{\ln(\alpha t + \beta)}{t} = \lim_{t \to \infty} \frac{\alpha/(\alpha t + \beta)}{1} = 0, \quad \forall \alpha > 0, \forall \beta$$

due to l'Hospital's rule. Therefore, for $\varepsilon_0=1$ whatever N is chosen, there is $\tilde{n} > N$ and corresponding $x_{\tilde{n}} \in X$ such that $|f_{\tilde{n}}(x_{\tilde{n}})g_{\tilde{n}}(x_{\tilde{n}}) - f(x_{\tilde{n}})g(x_{\tilde{n}})| > \varepsilon_0 = 1$, that is, the convergence is nonuniform.

Remark 2. The following general statement is true for the sum and difference: if $f_n(x)$ and $g_n(x)$ converge uniformly on X to f(x) and g(x), respectively, then $f_n(x) \pm g_n(x)$ converges uniformly on *X* to $f(x) \pm g(x)$.

Remark 3. The following general statement is true for the product: if $f_n(x)$ and $g_n(x)$ converge uniformly on X to f(x) and g(x), respectively, and f(x)and g(x) are bounded on X, then $f_n(x) \cdot g_n(x)$ converges uniformly on X to $f(x) \cdot g(x)$. (Note the requirement of boundedness of the limit functions in this formulation.)

Example 12. Sequences $f_n(x)$ and $g_n(x)$ converge nonuniformly on X to f(x)and g(x), respectively, but $f_n(x) \cdot g_n(x)$ converges to $f(x) \cdot g(x)$ uniformly on X.

Solution

Consider the sequences $f_n(x) = \frac{1}{n\sqrt{x}}$ and $g_n(x) = nxe^{-nx}$ on $X = (0, +\infty)$. Both sequences converge to 0 for any fixed $x \in X$:

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{1}{n\sqrt{x}} = 0 = f(x);$$
$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} nxe^{-nx} = \lim_{t \to +\infty} \frac{t}{e^t} = \lim_{t \to +\infty} \frac{1}{e^t} = 0 = g(x).$$

Therefore, $\lim_{n\to\infty} f_n(x) \cdot g_n(x) = 0$. Let us investigate the nature of the convergence of these sequences. For $f_n(x)$, choosing $x_n = \frac{1}{n^2} \in X$, we obtain

$$|f_n(x_n) - f(x_n)| = \frac{1}{n\sqrt{x_n}} = \frac{n}{n} = 1 \underset{n \to \infty}{\xrightarrow{}} 0,$$

that is, this convergence is nonuniform on X. Similarly, choosing $x_n = \frac{1}{n} \in X$, we can show the nonuniform convergence of $g_n(x)$ on *X*:

$$|g_n(x_n) - g(x_n)| = nx_n e^{-nx_n} = 1 \cdot e^{-1} \underset{n \to \infty}{\xrightarrow{\to}} 0.$$

Finally, for $f_n(x) \cdot g_n(x)$, we have $|f_n(x)g_n(x) - f(x)g(x)| = \sqrt{x}e^{-nx}$. The derivative of the right-hand side is

$$(\sqrt{x}e^{-nx})_x = \left(\frac{1}{2\sqrt{x}} - n\sqrt{x}\right)e^{-nx} = \frac{n}{\sqrt{x}}e^{-nx}\left(\frac{1}{2n} - x\right).$$

Therefore, the point $x_n = \frac{1}{2n} \in X$ is the only local (and global) maximum of $\sqrt{x}e^{-nx}$ on X. Consequently,

$$|f_n(x)g_n(x) - f(x)g(x)| \le \max_{(0,+\infty)} \sqrt{x}e^{-nx} = \sqrt{x_n}e^{-nx_n} = \frac{1}{\sqrt{2n}}e^{-1/2} \xrightarrow[n \to \infty]{} 0,$$

that is, $f_{\mu}(x) \cdot g_{\mu}(x)$ converges uniformly on X to 0.

Example 13. A sequence $f_n^2(x)$ converges uniformly on *X*, but $f_n(x)$ diverges on X.

Solution

Consider the sequence $f_n(x) = (-1)^n \frac{n+1}{n} x$ on X = (0, 1]. The sequence of squares $f_n^2(x) = \frac{(n+1)^2}{n^2} x^2$ converges uniformly on (0, 1] to x^2 , because

$$|f_n^2(x) - x^2| = \left| \frac{(n+1)^2}{n^2} x^2 - x^2 \right| = x^2 \frac{2n+1}{n^2} \le \frac{2}{n} + \frac{1}{n^2} \underset{n \to \infty}{\to} 0.$$

However, there is no limit of $f_n(x)$ for any fixed $x \in (0, 1]$, since two partial limits give different results: $f_{2n}(x) = \frac{2n+1}{2n} x \xrightarrow[n \to \infty]{} x$ and $f_{2n+1}(x) = -\frac{2n+2}{2n+1} x \xrightarrow[n \to \infty]{} -x$.

Remark 1. The same sequence can be used to exemplify the following situation: a sequence $|f_n(x)|$ converges uniformly on X, but $f_n(x)$ diverges on X. Indeed, although $f_n(x) = (-1)^n \frac{n+1}{n} x$ does not converge on X = (0, 1], the sequence $|f_n(x)| = \frac{n+1}{n}x$ converges uniformly to x on $X = \{0, 1\}$:

$$||f_n(x)| - x| = \left|\frac{n+1}{n}x - x\right| = \frac{1}{n}|x| \le \frac{1}{n} \xrightarrow[n \to \infty]{\to} 0.$$

Remark 2. Note that the inequality $||f_n(x)| - |f(x)|| \le |f_n(x) - f(x)|$ ensures the validity of the converse general statement: if $f_n(x)$ converges uniformly on *X* to f(x), then $|f_n(x)|$ converges uniformly on *X* to |f(x)|.

Remark 3. The following example also takes place: a sequence $f_n^2(x)$ converges uniformly on X and $f_n(x)$ converges on X, but the convergence of $f_n(x)$ is nonuniform. Consider the sequence $f_n(x)$ on [0, 1] similar to that analyzed in Example 6: $f_n(x) = \begin{cases} 1, x = r_1, r_2, \cdots, r_n \\ -1, \text{ otherwise} \end{cases}$, where r_n is the sequence

of all the rational points in [0,1] ordered in some way. This sequence is monotone in *n* for any fixed $x \in [0,1]$ (since $f_n(r_{n+1}) = -1 < 1 = f_{n+1}(r_{n+1})$ and $f_n(x) = f_{n+1}(x)$, $\forall x \neq r_{n+1}$) and bounded (since $-1 \leq f_n(x) \leq 1$, $\forall n \in \mathbb{N}$, $\forall x \in [0,1]$). Therefore, this sequence is convergent at any fixed $x \in [0,1]$ and $f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 1, x \in \mathbb{Q} \\ -1, x \in \mathbb{I} \end{cases}$. The sequence of the squares consists of the same constant function $f_n^2(x) = 1$, $\forall n \in \mathbb{N}$ and, therefore, it converges uniformly on [0, 1] to $f^2(x) = 1$. At the same time, using the same reasoning as in Example 6, one can show that the convergence of $f_n(x)$ is nonuniform on [0, 1] and on any subinterval of [0, 1].

Example 14. A sequence $f_n(x) \cdot g_n(x)$ converges uniformly on *X* to 0, but neither $f_n(x)$ nor $g_n(x)$ converges to 0 on *X*.

Solution

The sequences $f_n(x) = nx + (-1)^n nx$ and $g_n(x) = nx - (-1)^n nx$ are divergent for every fixed $x \in X = (0, +\infty)$:

$$f_{2n}(x) = 4nx \underset{n \to \infty}{\to} +\infty, f_{2n+1}(x) = 0 \underset{n \to \infty}{\to} 0;$$

$$g_{2n}(x) = 0 \underset{n \to \infty}{\to} 0, g_{2n+1}(x) = (4n+2)x \underset{n \to \infty}{\to} +\infty.$$

However, $f_n(x) \cdot g_n(x) = n^2 x^2 - n^2 x^2 = 0$ converges uniformly to 0 on *X*.

Another interesting counterexample includes the sequences $f_n(x) =$ $\begin{cases} \frac{nx}{n+1}, x \in \mathbb{Q} \cap X \\ \frac{x}{n}, x \in \mathbb{I} \cap X \end{cases} \text{ and } g_n(x) = \begin{cases} \frac{x}{n}, x \in \mathbb{Q} \cap X \\ \frac{nx}{n+1}, x \in \mathbb{I} \cap X \end{cases} \text{ defined on } X = (0, 1]. \\ \text{Both sequences converge on } X \text{ to nonzero functions } f(x) = \lim_{n \to \infty} f_n(x) = \\ \begin{cases} x, x \in \mathbb{Q} \cap X \\ 0, x \in \mathbb{I} \cap X \end{cases} \text{ and } g(x) = \lim_{n \to \infty} g_n(x) = \begin{cases} 0, x \in \mathbb{Q} \cap X \\ x, x \in \mathbb{I} \cap X \end{cases}, \text{ respectively. At the } x \in \mathbb{I} \cap X \end{cases}$ same time, $\lim_{n \to \infty} f_n(x)g_n(x) = \lim_{n \to \infty} \frac{x^2}{n+1} = 0$, for $\forall x \in (0, 1]$ and this convergence is uniform on *X*, since the estimate

$$|f_n(x)g_n(x) - 0| = \frac{x^2}{n+1} \le \frac{1}{n+1} \xrightarrow[n \to \infty]{} 0$$

holds simultaneously for all $x \in (0, 1]$.

Example 15. A sequence $f_n(x)$ converges uniformly on *X* to a function f(x), $f_n(x) \neq 0, f(x) \neq 0, \forall x \in X$, but $\frac{1}{f_n(x)}$ does not converge uniformly on *X* to $\frac{1}{f(x)}$.

Solution

The sequence $f_n(x) = \frac{nx}{n+2}$ converges uniformly on X = (0, 1) to f(x) = x:

$$|f_n(x) - f(x)| = \left|\frac{nx}{n+2} - x\right| = \frac{2}{n+2}|x| < \frac{2}{n+2} < \epsilon$$

and the last inequality holds for $\forall \epsilon > 0$ and simultaneously for all $x \in X$ if we choose $\forall n > N_{\epsilon} = \begin{bmatrix} \frac{2}{\epsilon} \end{bmatrix}$. On the other hand,

$$\left|\frac{1}{f_n(x)} - \frac{1}{f(x)}\right| = \left|\frac{n+2}{nx} - \frac{1}{x}\right| = \frac{2}{n}\frac{1}{|x|},$$

and for $x_n = \frac{1}{n} \in X$, it follows that $\left|\frac{1}{f_n(x_n)} - \frac{1}{f(x_n)}\right| = n\frac{2}{n} = 2$, which means that the convergence is nonuniform.

Example 16. A sequence $f_n(x)$ is bounded uniformly on \mathbb{R} and converges uniformly on [-a, a], $\forall a > 0$, to a function f(x), but the numerical sequence $\sup_{x \in \mathbb{R}} f_n(x)$ does not converge to $\sup_{x \in \mathbb{R}} f(x)$.

Solution

Consider the sequence $f_n(x) = e^{-(x-n)^2}$, which is defined and uniformly bounded on \mathbb{R} : $0 < e^{-(x-n)^2} \le 1$, $\forall n, \forall x \in \mathbb{R}$. This sequence converges to zero on \mathbb{R} , since for any fixed $x \in \mathbb{R}$ one has $(x-n)^2 \to +\infty$ and, consequently, $\lim_{n\to\infty} e^{-(x-n)^2} = \lim_{t\to+\infty} e^{-t} = 0$. Hence, $f(x) \equiv 0$ on \mathbb{R} and, consequently, $\sup_{x\in\mathbb{R}} f(x) = 0$. On the other hand, $\sup_{x\in\mathbb{R}} f_n(x) = 1$, $\forall n \in \mathbb{N}$, since $f_n(x) \le 1$ and $f_n(n) = 1$. This means that $\sup_{x\in\mathbb{R}} f_n(x) = 1$ does not converge to $\sup_{x\in\mathbb{R}} f(x) = 0$. It just remains to prove the uniform convergence of $f_n(x)$ on [-a, a], $\forall a > 0$. For any fixed a > 0, there exists the natural number $N_a > a$. Then for $\forall n > N_a$, one gets $(x - n)^2 \ge (a - n)^2$ for each $x \in [-a, a]$. Therefore,

 $|f_n(x) - f(x)| = e^{-(x-n)^2} \le e^{-(a-n)^2}$

for all $x \in [-a, a]$. Since exp $(-(a - n)^2) \xrightarrow[n \to \infty]{n \to \infty} 0$, the last inequality guarantees the uniformity of the convergence on [-a, a], where a > 0 is arbitrary. Note, however, that the convergence of $f_n(x)$ is not uniform on \mathbb{R} , which is evident if one chooses $x_n = n$ leading to

$$|f_n(x_n) - f(x_n)| = e^{-(n-n)^2} = 1.$$

Remark 1. Two other interesting counterexamples are $f_n(x) = \arctan \frac{x}{n}$ and $f_n(x) = \frac{2nx}{n^2+x^2}$. For instance, for the first function the reasoning can be as follows. First, note that the sequence is uniformly bounded on \mathbb{R} ($\left|\arctan \frac{x}{n}\right| < \frac{\pi}{2}$, $\forall n \in \mathbb{N}$ and $\forall x \in \mathbb{R}$). Second, it converges to zero for any fixed $x \in \mathbb{R}$ ($\lim_{n \to \infty} \arctan \frac{x}{n} = 0$). Further, this convergence is uniform on [-a, a], $\forall a > 0$ due to the evaluation

$$|f_n(x) - f(x)| = \left| \arctan \frac{x}{n} \right| = \arctan \frac{|x|}{n} \le \arctan \frac{a}{n},$$

that holds for all $x \in [-a, a]$ (here we used the properties that $\arctan t$ is an odd and a strictly increasing function). Since $\lim_{n\to\infty} \arctan \frac{a}{n} = 0$, the last evaluation implies the uniform convergence. Hence, all the conditions of the example are satisfied, but still the sequence $\sup_{x\in\mathbb{R}} f_n(x)$ does not converge to $\sup_{x\in\mathbb{R}} f(x)$, because $\sup_{x\in\mathbb{R}} \arctan \frac{x}{n} = \frac{\pi}{2}$ for any n, while $\sup_{x\in\mathbb{R}} f(x) = \sup_{x\in\mathbb{R}} 0 = 0$. Note, that just like in the first counterexample, the convergence of $f_n(x)$ is not uniform on \mathbb{R} : for any none can choose $x_n = n$ to obtain

$$|f_n(x_n) - f(x_n)| = \arctan \frac{n}{n} = \arctan 1 = \frac{\pi}{4} \neq 0.$$

Remark 2. The following general statement is true: if a sequence $f_n(x)$ is bounded uniformly on \mathbb{R} and converges uniformly on \mathbb{R} to a function f(x), then the numerical sequence $\sup_{x \in \mathbb{R}} f_n(x)$ converges to $\sup_{x \in \mathbb{R}} f(x)$. (Note the requirement of uniform convergence on \mathbb{R} to the limit function in this formulation.)

Remark 3. The condition of uniform convergence of a sequence $f_n(x)$ to a function f(x) on X is equivalent to the condition $\lim_{n\to\infty} \sup_{x\in X} |f_n(x) - f(x)| = 0.$

Example 17. Suppose each function $f_n(x)$ maps *X* on *Y* and function g(y) is continuous on *Y*; the sequence $f_n(x)$ converges uniformly on *X*, but the sequence $g_n(x) = g(f_n(x))$ does not converge uniformly on *X*.

Solution

Let us consider the sequence $f_n(x) = \ln \frac{nx}{n+1}$ on $X = (0, +\infty)$ and function $g(y) = e^y$. Each of the functions $f_n(x)$ maps $(0, +\infty)$ on the entire real line and the function g(y) is continuous on \mathbb{R} . In Example 11, it was shown that the sequence $f_n(x)$ converges uniformly on X to the function $f(x) = \ln x$. The corresponding sequence $g_n(x) = g(f_n(x)) = \frac{nx}{n+1}$ converges for any fixed $x \in (0, +\infty)$:

$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{nx}{n+1} = x = g(f(x)),$$

but this convergence is not uniform. In fact,

$$|g_n(x) - g(f(x))| = \left|\frac{nx}{n+1} - x\right| = \frac{1}{n+1}x$$

and choosing $x_n = (n + 1) \in X$, one gets

$$|g_n(x_n) - g(f(x_n))| = \frac{x_n}{n+1} = 1.$$

Figure 1.9 Example 16, sequence $f_n(x) = e^{-(x-n)^2}$.

Remark. The following example also takes place: suppose functions $f_n(x)$ map X on Y and function g(y) is continuous on Y; the sequence $f_n(x)$ converges nonuniformly on X, but the sequence $g_n(x) = g(f_n(x))$ converges uniformly on X. In the trivial case, one can use an arbitrary nonuniformly convergent sequence $f_n(x)$ and the constant function $g(y) \equiv 1$. For a nonconstant function g(y), one can use the above sequence $f_n(x) = \frac{nx}{n+1}$ defined on $X = (0, +\infty)$ and the function $g(y) = \ln y$.

Example 18. A series $\sum u_n^2(x)$ converges uniformly on *X*, but the series $\sum u_n(x)$ does not converge uniformly on *X*.

Solution

In Remark 1 to Example 5, it was shown that the series $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ converges nonuniformly on \mathbb{R} . However, the series $\sum_{n=1}^{\infty} \frac{\sin^2 nx}{n^2}$ converges uniformly on \mathbb{R} according to the Weierstrass test: $\frac{\sin^2 nx}{n^2} \leq \frac{1}{n^2}$, $\forall x \in \mathbb{R}$ and the majorant series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

Example 19. A series $\sum u_n^2(x)$ converges uniformly on *X*, but the series $\sum u_n(x)$ does not converge (even pointwise) on *X*.

Figure 1.10 Examples 19, 20, and 21, series $\sum_{n=1}^{\infty} \frac{1}{n+n}$.

Solution

Consider the series $\sum_{n=1}^{\infty} \frac{1}{x+n}$ on $X = [0, +\infty)$. This series is divergent at each point $x \in X$, since $\lim_{n \to \infty} \frac{1/n}{1/(x+n)} = 1$ and the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent. At the same time, the series $\sum_{n=1}^{\infty} \frac{1}{(x+n)^2}$ converges uniformly on $X = [0, +\infty)$ due to the Weierstrass test: $\frac{1}{(x+n)^2} \le \frac{1}{n^2}$, $\forall x \in X$ and the majorant series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

Remark. If $\sum u_n(x)$ diverges, it may happen that $\sum_{n=1}^{\infty} u_n^2(x)$ also diverges. For instance, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{x}+\sqrt{n}}$ diverges at each point $x \in X = [0, 1]$ according to the comparison test: $\lim_{n \to \infty} \frac{1/\sqrt{n}}{1/(\sqrt{x}+\sqrt{n})} = 1$ and the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is divergent. Due to the very same arguments, the series of squares also diverges on X = [0, 1]: $\lim_{n \to \infty} \frac{1/n}{1/(\sqrt{x}+\sqrt{n})^2} = 1$ and the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

Example 20. A series $\sum u_n(x)v_n(x)$ converges uniformly on *X*, but at least one of the series $\sum u_n(x)$ or $\sum v_n(x)$ does not converge uniformly on X.

Solution

Consider $u_n(x) = \frac{1}{x+n}$ and $v_n(x) = \frac{1}{x^2+n^2}$ on $X = [0, +\infty)$. The series $\sum_{n=1}^{\infty} u_n(x) v_n(x)$ converges uniformly on X due to the Weierstrass test:

Figure 1.11 Example 19, series of squares $\sum_{n=1}^{\infty} \frac{1}{(x+n)^2}$.

$$|u_n(x)v_n(x)| = \frac{1}{x+n}\frac{1}{x^2+n^2} \le \frac{1}{n^3}, \quad \forall x \in [0, +\infty)$$

and $\sum \frac{1}{n^3}$ is a convergent series. The same reasoning shows the uniform convergence of the series $\sum_{n=1}^{\infty} \nu_n(x)$ on *X*:

$$|v_n(x)| = \frac{1}{x^2 + n^2} \le \frac{1}{n^2}, \quad \forall x \in [0, +\infty)$$

and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent series. However, the series $\sum_{n=1}^{\infty} u_n(x)$ diverges on *X*, since $\lim_{n\to\infty} \frac{1/n}{1/(x+n)} = 1$ and the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

Example 21. A series $\sum u_n(x)v_n(x)$ converges uniformly on *X*, but neither $\sum u_n(x)$ nor $\sum v_n(x)$ converges (even pointwise) on *X*.

Solution

Consider $u_n(x) = \frac{1}{x+n}$ and $v_n(x) = \frac{1}{\sqrt{x}+\sqrt{n}}$ on $X = [0, +\infty)$. The series $\sum_{n=1}^{\infty} u_n(x)v_n(x)$ converges uniformly on X due to the Weierstrass test:

$$|u_n(x)v_n(x)| = \frac{1}{x+n} \frac{1}{\sqrt{x}+\sqrt{n}} \le \frac{1}{n^{3/2}}, \quad \forall x \in [0, +\infty)$$

and $\sum \frac{1}{n^{3/2}}$ is a convergent series. However, both $\sum_{n=1}^{\infty} u_n(x)$ and $\sum_{n=1}^{\infty} v_n(x)$ diverge on *X* according to the comparison test: $\lim_{n \to \infty} \frac{1/n}{1/(x+n)} = 1$ and the series $\sum \frac{1}{n}$ diverges; $\lim_{n \to \infty} \frac{1/\sqrt{n}}{1/(\sqrt{x}+\sqrt{n})} = 1$ and the series $\sum \frac{1}{\sqrt{n}}$ diverges.

Example 22. Series $\sum u_n(x)$ and $\sum v_n(x)$ converge nonuniformly on *X*, but $\sum u_n(x)v_n(x)$ converges uniformly on *X*.

Solution

The series $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ converges nonuniformly on \mathbb{R} (see Remark 1 to Example 5), and so does the series $\sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt{n}}$ (applying for the latter series the same reasoning as for the former in Remark 1 to Example 5). However, the series $\sum_{n=1}^{\infty} \frac{\sin^2 nx}{n^{3/2}}$ converges uniformly on \mathbb{R} according to the Weierstrass test: $\frac{\sin^2 nx}{n^{3/2}} \leq \frac{1}{n^{3/2}}, \forall x \in \mathbb{R}$ and the majorant series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ converges.

Example 23. A series $\sum u_n(x)$ converges uniformly on *X*, but $\sum u_n^2(x)$ does not converge uniformly on *X*.

Solution

The uniform convergence of the series $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt[3]{n}}$ on X = (0, 1) can be proved by applying Abel's theorem. In fact, the series $\sum (-1)^n \frac{1}{\sqrt[3]{n}}$ converges by Leibniz's test of alternating series (and this convergence is uniform on X, since the series does not depend on x), and the sequence x^n is monotone in n for each $x \in (0, 1)$ and is uniformly bounded, since $x^n < 1$, $\forall x \in (0, 1)$, $\forall n \in \mathbb{N}$.

On the other hand, the convergence of the series $\sum_{n=1}^{\infty} u_n^2(x) = \sum_{n=1}^{\infty} \frac{x^{2n}}{n^{2/3}}$ is nonuniform on X = (0, 1). In fact, this series converges on X = (0, 1), since $u_n^2(x) = \frac{x^{2n}}{n^{2/3}} \le x^{2n}$, $\forall n \in \mathbb{N}$, and the series $\sum x^{2n}$ is convergent by being a geometric series with the ratio in (0, 1). At the same time, applying the Cauchy criterion of the uniform convergence with $p_n = n$ and $x_n = \left(1 - \frac{1}{4n}\right) \in X$, one obtains

$$\left|\sum_{k=n+1}^{n+p_n} u_k^2(x_n)\right| = \sum_{k=n+1}^{n+p_n} \frac{x_n^{2k}}{k^{2/3}} > n \frac{x_n^{4n}}{(2n)^{2/3}} = \frac{n^{1/3}}{4^{1/3}} \left(1 - \frac{1}{4n}\right)^{4n} \underset{n \to \infty}{\to} +\infty,$$

that is, the series $\sum u_n^2(x)$ converges nonuniformly on X = (0, 1).

Remark 1. If, in the given counterexample, one changes the set *X* to (0, 1], then $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt[3]{n}}$ converges uniformly on *X* = (0, 1] (due to the

Figure 1.12 Examples 22, 5, and 18, series $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$.

Figure 1.13 Examples 22 and 24, series $\sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt{n}}$.

Figure 1.14 Example 22, series of products $\sum_{n=1}^{\infty} \frac{\sin^2 nx}{n^{3/2}}$.

same reasoning as before), but $\sum_{n=1}^{\infty} u_n^2(x) = \sum_{n=1}^{\infty} \frac{x^{2n}}{n^{2/3}}$ diverges at x = 1 since $\sum_{n=1}^{\infty} u_n^2(1) = \sum_{n=1}^{\infty} \frac{1}{n^{2/3}}$ is a divergent *p*-series.

Remark 2. Evidently, the following more general example can also be constructed: both series $\sum u_n(x)$ and $\sum v_n(x)$ converge uniformly on X, but the series $\sum u_n(x)v_n(x)$ does not converge uniformly on X. In the particular case $u_n(x) = v_n(x)$, the counterexample is already provided above. Let us consider the case when $u_n(x) \neq v_n(x)$. For instance, using the same arguments as before, one can prove that both $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt{n}}$ and $\sum_{n=1}^{\infty} v_n(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt{n}}$ converge uniformly on X = (0, 1), but the series $\sum_{n=1}^{\infty} u_n(x)v_n(x) = \sum_{n=1}^{\infty} \frac{x^{2n}}{n^{5/6}}$ converges nonuniformly on X = (0, 1). For the last series, its convergence follows from the evaluation $\frac{x^{2n}}{n^{5/6}} \leq x^{2n}$, $\forall n \in \mathbb{N}$ and the convergence of the geometric series $\sum_{n=1}^{\infty} x^{2n}$ for $\forall x \in (0, 1)$, while the nonuniformity can be shown by the Cauchy criterion, choosing as above $p_n = n$ and $x_n = \left(1 - \frac{1}{4n}\right) \in X$:

$$\left|\sum_{k=n+1}^{n+p_n} u_k(x_n) v_k(x_n)\right| = \sum_{k=n+1}^{2^n} \frac{x_n^{2k}}{k^{5/6}} > n \frac{x_n^{4n}}{(2n)^{5/6}} = \frac{n^{1/6}}{2^{5/6}} \left(1 - \frac{1}{4n}\right)^{4n} \underset{n \to +\infty}{\to} \infty.$$

Figure 1.15 Example 23, series $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt[3]{n}}$.

Figure 1.16 Example 23, series of squares $\sum_{n=1}^{\infty} \frac{x^{2n}}{n^{2/3}}$.

Example 24. A series $\sum u_n(x)$ converges uniformly on *X*, but $\sum u_n^2(x)$ does not converge (even pointwise) on X.

Solution

The series $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt{n}}$ is uniformly convergent on $X = [a, \pi - a]$, $\forall a \in \left(0, \frac{\pi}{2}\right)$, which can be shown using the same considerations as for $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ in Remark 1 to Example 5. Let us prove that the series $\sum_{n=1}^{\infty} u_n^2(x) = \sum_{n=1}^{\infty} \frac{\sin^2 nx}{n}$ is divergent on *X*. Note that the series $\sum_{n=1}^{\infty} \frac{\cos 2nx}{n}$ is uniformly convergent on *X* just like the series in Remark 1 to Example 5. The series of squares can be rewritten in the form $\sum_{n=1}^{\infty} u_n^2(x) = \sum_{n=1}^{\infty} \frac{1-\cos 2nx}{2n}$, that is, the general term $u_n^2(x)$ is the difference of the general term of the divergent harmonic series and uniformly convergent series. This implies the divergence of the series $\sum_{n=1}^{\infty} \frac{\sin^2 nx}{n}$ at each point of X.

Remark. Naturally, the following more general situation also takes place: both series $\sum u_n(x)$ and $\sum v_n(x)$ converge uniformly on *X*, but the series $\sum u_n(x)v_n(x)$ does not converge (even pointwise) on *X*. In the particular case $u_n(x) = v_n(x)$, the counterexample is given above. Let us consider the case when $u_n(x) \neq v_n(x)$. For instance, using the same arguments as before, one can prove that both $\sum_{n=1}^{\infty} \frac{\cos nx}{\sqrt[3]{n}} \text{ and } \sum_{n=1}^{\infty} \frac{\cos nx}{\sqrt[4]{n}} \text{ converge uniformly on } X = [a, \pi - a], \forall a \in \left(0, \frac{\pi}{2}\right),$ but the series $\sum_{n=1}^{\infty} u_n(x) v_n(x) = \sum_{n=1}^{\infty} \frac{\cos^2 nx}{n^{7/12}}$ diverges at each point of *X*, because its general term can be represented in the form $\frac{\cos^2 nx}{n^{7/12}} = \frac{1}{2n^{7/12}} + \frac{\cos 2nx}{2n^{7/12}}$, where the first summand is a general term of the divergent *p*-series, while the second is a general term of the uniformly convergent series.

Example 25. Both series $\sum u_n(x)$ and $\sum v_n(x)$ are nonnegative for $\forall x \in X$, $\lim_{n \to \infty} \frac{u_n(x)}{v_n(x)} = 1$ and one of these series converges uniformly on *X*, but another series does not converge uniformly on X.

Solution

Consider the two nonnegative series $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \frac{x^2}{n^4 + x^4}$ and $\sum_{n=1}^{\infty} v_n(x) = \sum_{n=1}^{\infty} \frac{x^2}{n^4 + x^2}$ on $X = \mathbb{R}$. The limit of the general terms equals 1: $\lim_{n \to \infty} \frac{u_n(x)}{v_n(x)} = \lim_{n \to \infty} \frac{n^4 + x^2}{n^4 + x^4} = 1$ for $\forall x \in \mathbb{R}$. Also, the series $\sum_{n=1}^{\infty} \frac{x^2}{n^4 + x^4}$ converges uniformly on $X = \mathbb{R}$ by the Weierstrass test, since $u_n(x) = \frac{1}{2n^2} \frac{2n^2 x^2}{n^4 + x^4} \le \frac{1}{2n^2}$, $\forall x \in \mathbb{R}$ and the series $\sum \frac{1}{2n^2}$ converges. Therefore, all the statement conditions hold. At the same time, the second series $\sum_{n=1}^{\infty} \frac{x^2}{n^4 + x^2}$ converges on $X = \mathbb{R}$ since $\frac{x^2}{n^4 + x^2} \le \frac{x^2}{n^4}$, $\forall x \in \mathbb{R}$ and the series $\sum_{x^4} \frac{1}{x^4}$ converges. However, the convergence of the second

Figure 1.17 Example 24, series of squares $\sum_{n=1}^{\infty} \frac{\sin^2 nx}{n}$.

series is nonuniform since its general term does not converge to 0 uniformly: for $x_n = n^2$, one gets $v_n(x_n) = \frac{x_n^2}{n^4 + x_n^2} = \frac{1}{2} \underset{n \to \infty}{\Rightarrow} 0.$

Remark. For numerical series and for the pointwise convergence of series of functions, the corresponding general statement is true and represents a particular case of the Comparison test for nonnegative series: if both series $\sum u_n(x)$ and $\sum v_n(x)$ are nonnegative for $\forall x \in X$, $\lim_{n \to \infty} \frac{u_n(x)}{v_n(x)} = const > 0$ and one of these series converges on *X*, then another series also converges on *X*.

1.3 Dirichlet's and Abel's Theorems

Remark to Examples 26–29. In the following four examples, the conditions of Dirichlet's theorem, which provides sufficient conditions for the uniform convergence of the series $\sum u_n(x)v_n(x)$, are analyzed. It is shown that none of the three conditions stated in the theorem can be dropped. At the same time, these conditions are not necessary: all of them can be violated for an uniformly convergent series.

Example 26. The partial sums of $\sum u_n(x)$ are bounded for $\forall x \in X$, and the sequence $v_n(x)$ is monotone in *n* for each fixed $x \in X$ and converges uniformly on *X* to 0, but the series $\sum u_n(x)v_n(x)$ does not converge uniformly on *X*.

Solution

Let $u_n(x) = x^n$ and $v_n(x) = \frac{1}{n}$ be defined on X = (0, 1). The series $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} x^n$ converges on X, since this is a geometric series with the ratio in (0, 1). Therefore, the partial sums of this series are bounded for each fixed $x \in X$. However, the boundedness is not uniform as is seen from the evaluation of the partial sums at the points $x_n = 1 - \frac{1}{n}$, n > 1 lying in X:

$$\sum_{k=1}^{n} x_n^k = \frac{x_n}{1 - x_n} (1 - x_n^n) = \frac{1 - 1/n}{1/n} \left(1 - \left(1 - \frac{1}{n} \right)^n \right)$$
$$= (n - 1) \left(1 - \left(1 - \frac{1}{n} \right)^n \right) \underset{n \to \infty}{\to} +\infty,$$

that is, the first condition in Dirichlet's theorem is weakened. The remaining two conditions hold: $v_n(x) = \frac{1}{n}$ is monotone and $v_n(x) = \frac{1}{n} \xrightarrow{n \to \infty} 0$ (and the last convergence is uniform, because v_n does not depend on x).

convergence is uniform, because v_n does not depend on x). The series of the products $\sum_{n=1}^{\infty} u_n(x)v_n(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$ converges on (0, 1), since $0 < \frac{x^n}{n} \le x^n$, $\forall n \in \mathbb{N}$ and the geometric series converges for $\forall x \in (0, 1)$. However, this convergence is nonuniform, which can be shown by the Cauchy criterion: choosing $p_n = n$ and $\tilde{x}_n = 1 - \frac{1}{2n} \in X$, $\forall n \in \mathbb{N}$, one obtains:

$$\left|\sum_{k=n+1}^{n+p_n} u_k(\tilde{x}_n) v_k(\tilde{x}_n)\right| = \sum_{k=n+1}^{2n} \frac{\tilde{x}_n^k}{k} > n \frac{\tilde{x}_n^{2n}}{2n} = \frac{1}{2} \left(1 - \frac{1}{2n}\right)^{2n} \underset{n \to +\infty}{\to} \frac{1}{2} e^{-1} \neq 0.$$

Example 27. The partial sums of $\sum u_n(x)$ are uniformly bounded on *X*, and the sequence $v_n(x)$ converges uniformly on *X* to 0, but the series $\sum u_n(x)v_n(x)$ does not converge uniformly on *X*.

Solution

Let $u_n(x) = \frac{(-1)^n}{\sqrt{n}}$ and $v_n(x) = (-1)^n \frac{x^n}{\sqrt{n}}$ be defined on X = (0, 1). The series $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges by Leibniz's test and, consequently, its partial sums are bounded (and this boundedness is uniform on X, because the general term does not depend on x). The sequence $v_n(x) = (-1)^n \frac{x^n}{\sqrt{n}}$ converges uniformly on X to 0 due to the following evaluation: $\left| (-1)^n \frac{x^n}{\sqrt{n}} \right| \le \frac{1}{\sqrt{n}}$, $\forall x \in (0, 1)$ and $\frac{1}{\sqrt{n}} \xrightarrow{\to} 0$. Thus, both conditions of the statement hold, but the series of the products $\sum_{n=1}^{\infty} u_n(x)v_n(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$ converges nonuniformly on (0, 1) as was shown in Example 26. Note that the sequence $v_n(x) = (-1)^n \frac{x^n}{\sqrt{n}}$

is not monotone in *n*, that is, the condition of the monotonicity of $v_n(x)$ in Dirihlet's theorem is violated.

Example 28. The partial sums of $\sum u_n(x)$ are uniformly bounded on *X*, and the sequence $v_n(x)$ is monotone in *n* for each fixed $x \in X$ and converges on *X* to 0, but the series $\sum u_n(x)v_n(x)$ does not converge uniformly on *X*.

Solution

Consider $u_n(x) = (-1)^n$ and $v_n(x) = x^n$ on X = (0, 1). The partial sums $\sum_{k=1}^n u_k(x)$ are uniformly bounded on X: $\left|\sum_{k=1}^n u_k(x)\right| = \left|\sum_{k=1}^n (-1)^k\right| \le 1$, for $\forall n \in \mathbb{N}$ and $\forall x \in (0, 1)$. The sequence $v_n(x) = x^n$ is decreasing in n and $v_n(x) = x^n \to 0$ for each fixed $x \in (0, 1)$. Thus, the conditions of the statement are satisfied. However, the series of the products converges nonuniformly. In fact, $\sum_{n=1}^\infty u_n(x)v_n(x) = \sum_{n=1}^\infty (-1)^n x^n$ is a convergent geometric series on (0, 1) (the ratio $-x \in (-1, 0)$), but the evaluation of its residual shows that this convergence is nonuniform: choosing $x_n = 1 - \frac{1}{n+1} \in (0, 1)$, one obtains

Figure 1.18 Examples 26, 29, and 33, series $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} x^n$.

Note that the third condition of Dirichlet's theorem (the uniform convergence of $v_n(x)$) is weakened in the above statement, and the chosen sequence $v_n(x) = x^n$ converges nonuniformly to 0 on X = (0, 1), since for $x_n = 1 - \frac{1}{n} \in (0, 1)$, $\forall n \in \mathbb{N}$ it follows $|v_n(x_n)| = \left(1 - \frac{1}{n}\right)^n \xrightarrow[n \to +\infty]{} e^{-1} \neq 0$.

Example 29. The partial sums of $\sum u_n(x)$ are not uniformly bounded on *X*, and the sequence $v_n(x)$ is not monotone in *n* and does not converge uniformly on *X* to 0, but still the series $\sum u_n(x)v_n(x)$ converges uniformly on *X*.

Solution

Consider $u_n(x) = x^n$ and $v_n(x) = \frac{(-1)^n}{xn^2}$ on X = (0, 1). Let us check the conditions of the statement. First, the partial sums of $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} x^n$ are not uniformly bounded on X (see for details Example 26). Second, the sequence $v_n(x)$ is not monotone in n (it is alternating for each fixed $x \in (0, 1)$). Finally, $v_n(x) = \frac{(-1)^n}{xn^2}$ converges to 0 for each fixed $x \in (0, 1)$, but this convergence is not uniform, because choosing $x_n = \frac{1}{n^2}$, $\forall n \in \mathbb{N}$ one obtains $\left|\frac{(-1)^n}{x_nn^2}\right| = 1 \xrightarrow[n \to +\infty]{n \to +\infty} 0$. In this way, all the conditions in Dirichlet's theorem are violated. Nevertheless, the series $\sum_{n=1}^{\infty} u_n(x)v_n(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^{n-1}}{n^2}$ converges uniformly on (0, 1)

Figure 1.19 Examples 26, 27, 30, 31, and 32, series $\sum_{n=1}^{\infty} u_n(x)v_n(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$.

according to the Weierstrass test: $\left|(-1)^n \frac{x^{n-1}}{n^2}\right| \leq \frac{1}{n^2}$, for $\forall n \in \mathbb{N}$ and $\forall x \in (0, 1)$, and the majorant series $\sum \frac{1}{n^2}$ converges.

Remark. The functions $u_n(x) = \frac{x}{n}$ and $v_n(x) = (-1)^n x$ considered on X = (0, 10] exhibit even "wilder" behavior. In fact, the partial sums of the series $\sum_{n=1}^{\infty} \frac{x}{n}$ are not bounded at any point $x \in (0, 10]$ since this series is positive and divergent at each $x \in (0, 10]$. The sequence $(-1)^n x$ is not monotone in n and diverges at each $x \in (0, 10]$. Nevertheless, the series $\sum_{n=1}^{\infty} u_n(x)v_n(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^2}{n}$ converges uniformly on (0, 10] since the following evaluation of the residual (resulting from Leibniz's test for alternating series)

$$|r_n(x)| = \left|\sum_{k=n+1}^{\infty} (-1)^k \frac{x^2}{k}\right| \le \left| (-1)^{n+1} \frac{x^2}{n+1} \right| \le \frac{100}{n+1} \underset{n \to +\infty}{\to} 0$$

is true for all $x \in (0, 10]$ simultaneously.

Remark to Examples 30–33. In the next four examples, we analyze the sufficient conditions of Abel's theorem for the uniform convergence of the series $\sum u_n(x)v_n(x)$. The situation here is quite similar to that for Dirichlet's

Figure 1.20 Examples 29 and 33, sequence $v_n(x) = \frac{(-1)^n}{xn^2}$.

Figure 1.21 Examples 29 and 33, series $\sum_{n=1}^{\infty} u_n(x)v_n(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^{n-1}}{n^2}$.

theorem: none of the three conditions can be dropped, but, at the same time, all of them can be violated for an uniformly convergent series.

Example 30. A series $\sum u_n(x)$ converges on *X*, and a sequence $v_n(x)$ is monotone in *n* for each fixed $x \in X$ and uniformly bounded on *X*, but the series $\sum u_n(x)v_n(x)$ does not converge uniformly on *X*.

Solution

For $u_n(x) = x^{n-1}$ and $v_n(x) = \frac{x}{n}$ on X = (0, 1), the series $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} x^{n-1}$ is convergent at each point $x \in (0, 1)$, since this is a geometric series with the ratio in (0, 1), and the sequence $v_n(x) = \frac{x}{n}$ is monotone in *n* and uniformly bounded on X: $\left|\frac{x}{n}\right| \le \frac{1}{n} \le 1$, $\forall n \in \mathbb{N}$, $\forall x \in X$. Thus, all the statement conditions are satisfied. However, the series $\sum_{n=1}^{\infty} u_n(x)v_n(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$ converges nonuniformly on (0, 1) (see Example 26 for details). Note, that in the statement conditions, the first condition of Abel's theorem (the uniform convergence of $\sum u_n(x)$) is weakened, and the chosen series $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} x^{n-1}$ converges nonuniformly on X = (0, 1), which can be seen from the evaluation of the series residual for $x_n = 1 - \frac{1}{n} \in X$, $\forall n > 1$:

$$\left|\sum_{k=n+1}^{\infty} x_n^{k-1}\right| = \frac{x_n^n}{1-x_n} = n \cdot \left(1-\frac{1}{n}\right)^n \underset{n \to +\infty}{\to} \infty.$$

Example 31. A series $\sum u_n(x)$ converges uniformly on *X*, and a sequence $v_n(x)$ is uniformly bounded on *X*, but the series $\sum u_n(x)v_n(x)$ does not converge uniformly on *X*.

Solution

Consider $u_n(x) = \frac{(-1)^n}{n}$ and $v_n(x) = (-1)^n x^n$ on X = (0, 1). The series $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges by Leibniz's test, and this convergence is uniform since $u_n(x)$ does not depend on x. The uniform boundedness of $v_n(x) = (-1)^n x^n$ is also easily verified: $|(-1)^n x^n| \le 1$, for $\forall n \in \mathbb{N}$, $\forall x \in (0, 1)$. Thus, all the statement conditions hold. However, as was shown in Example 26, the series $\sum_{n=1}^{\infty} u_n(x)v_n(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$ converges nonuniformly on (0, 1). Note that the condition of monotonicity of $v_n(x)$ in Abel's theorem is omitted in this example and, consequently, the choice of the nonmonotone sequence $v_n(x) = (-1)^n x^n$ resulted in nonuniform convergence of the series of the products.

Example 32. A series $\sum u_n(x)$ converges uniformly on *X*, and a sequence $v_n(x)$ is monotone in *n* for each fixed $x \in X$, but the series $\sum u_n(x)v_n(x)$ does not converge uniformly on *X*.

Solution

For $u_n(x) = \frac{x^{n-1}}{n^2}$ and $v_n(x) = nx$ on X = (0, 1), all the statement conditions are satisfied. In fact, the sequence $v_n(x) = nx$ is monotone in *n* for each fixed $x \in (0, 1)$, and the series $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n^2}$ converges uniformly on (0, 1)according to the Weierstrass test: $\left|\frac{x^{n-1}}{n^2}\right| \leq \frac{1}{n^2}, \forall x \in (0, 1)$ and the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent *p*-series. However, the series $\sum_{n=1}^{\infty} u_n(x)v_n(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$ converges nonuniformly on (0, 1) (see details in Example 26). Note that the condition of uniform boundedness of $v_n(x)$ in Abel's theorem is omitted in the statement. The chosen sequence $v_n(x) = nx$ is not bounded for any $x \in (0, 1)$, and this led to nonuniform convergence of the series $\sum u_n(x)v_n(x)$.

Remark. The following strengthened version of this example can also be constructed: a series $\sum u_n(x)$ converges uniformly on X, and a sequence $v_n(x)$ is monotone and bounded in n for each fixed $x \in X$, but the series $\sum u_n(x)v_n(x)$ does not converge uniformly on X. The counterexample can be provided by $u_n(x) = \frac{x^2}{(1+x)^n}$ and $v_n(x) = \frac{n^2}{(3n^2+2)x}$ on $X = (0, +\infty)$. The series $\sum_{n=0}^{\infty} u_n(x) = \sum_{n=0}^{\infty} \frac{x^2}{(1+x)^n}$ converges on X as a geometric series with the ratio $\frac{1}{1+x} \in (0, 1), \forall x \in X$. To show the uniformity of this convergence on X, let us consider the residual

$$r_n(x) = \sum_{k=n+1}^{\infty} \frac{x^2}{(1+x)^k} = \frac{\frac{x}{(1+x)^{n+1}}}{1 - \frac{1}{1+x}} = \frac{x}{(1+x)^n}$$

and solve the critical point equation for each n > 1 fixed:

$$r'_n(x) = \frac{1 - (n - 1)x}{(1 + x)^{n+1}} = 0$$

that gives $x_n = \frac{1}{n-1}$. Since the derivative $r'_n(x)$ is positive at the left of x_n and negative at the right, the critical point x_n is the maximum on X and, consequently, for each fixed *n* one gets the following evaluation of the residual:

$$r_n(x) \le \max_{(0,+\infty)} |r_n(x)| = r_n(x_n) = \frac{1}{n-1} \left(1 + \frac{1}{n-1} \right)^{-n} \xrightarrow[n \to \infty]{} 0 \cdot e^{-1} = 0$$

that is, the series $\sum_{n=0}^{\infty} u_n(x)$ converges uniformly on *X*. As for the sequence $v_n(x) = \frac{n^2}{(3n^2+2)x}$, for each fixed $x \in X$, its terms are monotonic $(v_{n+1}(x) > v_n(x))$ and bounded $(|v_n(x)| = \frac{n^2}{(3n^2+2)x} < \frac{1}{3x})$. Thus, all the con-

ditions of the statement are satisfied. Nevertheless, the series $\sum_{n=0}^{\infty} u_n(x)v_n(x) = \sum_{n=0}^{\infty} \frac{n^2}{3n^2+2} \frac{x}{(1+x)^n}$ converges nonuniformly on *X*. Indeed, the convergence on *X* follows from the inequality $0 < \frac{n^2}{3n^2+2} \frac{x}{(1+x)^n} < \frac{1}{3} \frac{x}{(1+x)^n}$ and the convergence of the geometric series $\sum \frac{x}{(1+x)^n}$ for each fixed $x \in X$. Applying now the Cauchy criterion with $p_n = n$ and $x_n = \frac{1}{n}$, one obtains

$$\left|\sum_{k=n+1}^{n+p_n} u_k(x_n) v_k(x_n)\right| = \sum_{k=n+1}^{2n} \frac{k^2}{3k^2 + 2} \frac{x_n}{(1+x_n)^k} > \frac{n}{4} \frac{x_n}{(1+x_n)^{2n}}$$
$$= \frac{n}{4} \frac{1}{n} \left(1 + \frac{1}{n}\right)^{-2n} \underset{n \to \infty}{\to} \frac{1}{4} e^{-2} \neq 0,$$

which means that the convergence is nonuniform on $X = (0, +\infty)$. Note that although $v_n(x)$ is bounded for each fixed $x \in X$, it is not uniformly bounded on X, since for $x_n = \frac{1}{3n^{2}+2} \in X$ one gets $v_n(x_n) = n^2 \xrightarrow[n \to \infty]{} +\infty$.

Example 33. A series $\sum u_n(x)$ does not converge uniformly on X, and a sequence $v_n(x)$ is not monotone in *n* and is not uniformly bounded on *X*, but still the series $\sum u_n(x)v_n(x)$ converges uniformly on *X*.

Solution

Consider $u_n(x) = x^n$ and $v_n(x) = \frac{(-1)^n}{xn^2}$ on X = (0, 1). Let us check the conditions of the statement. First, using the same reasoning as in Example 30, one can prove that the series $\sum_{n=1}^{\infty} x^n$ converges nonuniformly on (0, 1). Then, the sequence $v_n(x)$ is not monotone in *n* (it is alternating for each fixed $x \in (0, 1)$). Finally, $v_n(x) = \frac{(-1)^n}{xn^2}$ converges to 0 for each fixed $x \in (0, 1)$, but this sequence does not bounded uniformly on (0, 1), since for $x_n = \frac{1}{n^3} \in (0, 1)$ one has $|v_n(x_n)| = n \xrightarrow[n \to +\infty]{} \infty$. Thus, all the conditions of Abel's theorem are violated. Nevertheless, the series $\sum_{n=1}^{\infty} u_n(x)v_n(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^{n-1}}{n^2}$ converges uniformly on (0, 1) according to the Weierstrass test as was shown in Example 29.

Remark. The conditions of Abel's theorem are violated even stronger for the functions $u_n(x) = \frac{x}{n}$ and $v_n(x) = (-1)^n \sqrt{nx}$ considered on X = (0, 2]. In fact, the series $\sum_{n=1}^{\infty} \frac{x}{n}$ diverges at each $x \in (0, 2]$. The sequence $(-1)^n \sqrt{nx}$ is not monotone in *n* and is unbounded at each $x \in (0, 2]$ because $|v_n(x)| = |(-1)^n \sqrt{nx}| = \sqrt{nx} \xrightarrow[n \to +\infty]{} +\infty, \ \forall x \in (0, 2]$. Nevertheless, the series $\sum_{n=1}^{\infty} u_n(x)v_n(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^2}{\sqrt{n}}$ converges uniformly on (0, 2] as is seen from the evaluation of the residual (following from Leibniz's test for alternating series)

$$|r_n(x)| = \left|\sum_{k=n+1}^{\infty} (-1)^k \frac{x^2}{\sqrt{k}}\right| \le \left| (-1)^{n+1} \frac{x^2}{\sqrt{n+1}} \right| \le \frac{4}{\sqrt{n+1}} \underset{n \to +\infty}{\to} 0,$$

which is satisfied for all $x \in (0, 2]$ simultaneously.

Exercises

- 1 Show that Example 1 can be illustrated by the sequence $f_n(x) = \frac{nx}{n^2x^2+1}$ on X = [0, 1].
- **2** Use the points $x_n = \frac{1}{\sqrt[n]{2}}$, $\forall n \in \mathbb{N}$ to prove that the sequence $f_n(x) = x^n$ of Example 1 converges nonuniformly on X = (-1, 1).
- **3** Show that the series $\sum_{n=1}^{\infty} 2^n \sin \frac{1}{5^n x}$ converges on $X = (0, \infty)$, but the convergence is not uniform.
- 4 Check if the series $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt[3]{n}}$ on X = (-1, 1) can be used for Example 2.
- **5** Use the sequence $f_n(x) = \frac{x+n+(-1)^n x}{n^2}$ on $X = \mathbb{R}$ to illustrate the statement in Example 3.
- **6** Construct a counterexample to the following false statement: "if f(x, y) defined on $[a, b] \times Y$ converges to a limit function $\varphi(x)$ as y approaches y_0 , and this convergence is uniform on any interval [c, b], $\forall c \in (a, b)$, then the convergence is also uniform on [a, b]." Compare with the statement in Example 4. Formulate similar false statements for sequences and series and disprove them by counterexamples. (Hint: for the functions depending on a parameter, try $f(x, y) = \frac{2xy^2}{x^2+y^4}$ on $[0, 1] \times (0, 1]$ with the limit point $y_0 = 0$; for the sequences— $f_n(x) = \frac{nx}{n^2x^2+1}$ on [0, 1]; and for the series— $\sum u_n(x) = \sum \frac{(1-x)^n}{n}$ on (0, 1].)

- 7 Verify that
 - a) the function $f(x, y) = \frac{x^2}{y^2} e^{-x/y}$ on $X \times Y = [0, +\infty) \times (0, 1]$ with the limit point $y_0 = 0$
 - b) the function $f(x, y) = \begin{cases} \frac{x}{y} \sin \frac{y}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$ on $X \times Y = \mathbb{R} \times (0, 1]$ with the limit point $y_0 = 0$

c) the sequence
$$f_n(x) = \frac{2n^2x}{1+x^4x^2}$$
 on $X = \mathbb{R}$

- d) the series $\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt{n}}$ on $X = \mathbb{R}$ provide counterexamples for Example 5.
- 8 Verify that the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n^2}{n^3}$ on X = [-1, 1] is one more counterexample to the statement of Example 7.
- **9** Use the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{2}$, X = (-1, 1) for Example 8.
- Show the feasibility of Example 9 by using counterexamples with a) the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^2}{(1+x^2)^n}$, $X = \mathbb{R}$ b) the series $\sum_{n=0}^{\infty} (-1)^n x (1-x)^n$, X = [0,1]. 10

11 Use the series
$$\sum_{n=1}^{\infty} u_n(x)$$
 with
a) $u_n(x) = \begin{cases} 0, x \in [0, 3^{-n-1}] \cup [3^{-n}, 1] \\ \frac{1}{\sqrt{n}} \cos^2 \left(\frac{3^{n+1}}{2} \pi x \right), x \in (3^{-n-1}, 3^{-n}) \end{cases}$ on $X = [0, 1]$
b) $u_n(x) = (-1)^{n-1} \frac{x^2}{(1+x^2)^n}$ on $X = \mathbb{R}$
to show the feasibility of Example 10.

12 Verify that the sequence
$$f_n(x) = \frac{x^2 n^2}{2n^2 + 5}$$
 on $X = (0, 1]$ specifies Example 15.

Check the statement of Example 16 for the sequence $f_n(x) = \frac{2nx}{x^2 + x^2}$ on 13 $X = \mathbb{R}.$

14 Verify whether the sequences $f_n(x)$, $g_n(x)$ and $f_n(x) \cdot g_n(x)$ are convergent or divergent on *X*. In the case of the convergence, analyze its character: a) $f_n(x) = \ln \frac{(n^2+1)x}{n^2}$, $g_n(x) = \ln \frac{3n+2}{n}x^2$ on $X = (0, +\infty)$ b) $f_n(x) = m r_{n^2}$, $g_n(x) = m r_n$, $x \in O(X) = 0$ b) $f_n(x) = g_n(x) = \ln \frac{n^2 x^2}{n^2 + 1}$ on $X = (0, +\infty)$ c) $f_n(x) = \frac{x}{n}$, $g_n(x) = \frac{\sin nx}{nx}$ on $X = (0, +\infty)$ d) $f_n(x) = \frac{x}{n}$, $g_n(x) = \ln \frac{(n+1)x}{n}$ on $X = (0, +\infty)$ e) $f_n(x) = \frac{x}{n}$, $g_n(x) = \frac{\sin nx}{nx}$ on X = (0, 1]f) $f_n(x) = g_n(x) = (-1)^n \frac{5n^2 + 2}{3n^2 + 1} x$ on X = (0, 1].

Formulate false statements for which these sequences represent counterexamples.

- **15** Show that the sequences $f_n(x) = \begin{cases} \frac{n^2+1}{n^2} x^2, x \in \mathbb{Q} \\ \frac{x^2}{n^2}, x \in \mathbb{I} \end{cases}$ and $g_n(x) = \begin{cases} \frac{1}{n^2} x^2, x \in \mathbb{Q} \\ \frac{n^2+1}{n^2} x^2, x \in \mathbb{I} \end{cases}$ defined on X = [0,1] provide a counterexample to Example 14.
- **16** Verify whether the series $\sum u_n(x)$, $\sum v_n(x)$ and $\sum u_n(x) \cdot v_n(x)$ are convergent or divergent on *X*. In the case of the convergence, analyze its character:
 - a) $u_n(x) = v_n(x) = \frac{\sin nx}{\sqrt{n}}$ on $X = \mathbb{R}$ b) $u_n(x) = v_n(x) = \frac{\sin nx}{n^{2/3}}$ on $X = \mathbb{R}$ c) $u_n(x) = v_n(x) = \frac{1}{x^{2/3} + n^{2/3}}$ on $X = [0, +\infty)$ d) $u_n(x) = \frac{1}{x+n}, v_n(x) = \frac{1}{x+\ln^2 n}$ on $X = (0, +\infty)$ e) $u_n(x) = v_n(x) = \frac{\cos nx}{\sqrt{n}}$ on $X = [a, \pi - a], \forall a \in \left(0, \frac{\pi}{2}\right)$ f) $u_n(x) = \frac{\sin nx}{\sqrt{n}}, v_n(x) = \frac{\sin nx}{\sqrt[4]{n}}$ on $X = [a, \pi - a], \forall a \in \left(0, \frac{\pi}{2}\right)$ g) $u_n(x) = v_n(x) = (-1)^n \frac{x^n}{\sqrt{n}}$ on X = (0, 1)h) $u_n(x) = (-1)^n \frac{x^n}{\ln n}, v_n(x) = (-1)^n \frac{x^n}{\sqrt{n}}, n \ge 2$ on X = (0, 1)i) $u_n(x) = \frac{\sin nx}{n^{2/3}}, v_n(x) = \frac{\sin nx}{n}$ on $X = \mathbb{R}$ j) $u_n(x) = v_n(x) = \frac{x^n}{n}$ on X = [0, 1)k) $u_n(x) = v_n(x) = \frac{x^n}{n}$ on X = [0, 1)l) $u_n(x) = v_n(x) = (-1)^n \frac{x^n}{\sqrt{n}}$ on X = [0, 1)j) $u_n(x) = v_n(x) = (-1)^n \frac{x^n}{\sqrt{n}}$ on X = [0, 1)k) $u_n(x) = v_n(x) = (-1)^n \frac{x}{\sqrt{n}}$ on X = [0, 1)l) $u_n(x) = v_n(x) = (-1)^n \frac{x}{\sqrt{n}}$ on X = [0, 1)k) $u_n(x) = v_n(x) = (-1)^n \frac{x}{\sqrt{n}}$ on X = [0, 1)m) $u_n(x) = v_n(x) = (-1)^n \frac{x}{\sqrt{n}}$ on X = [0, 1). Formulate false statements for which these series represent counterexamples.
- **17** Show that the series $\sum_{n=1}^{\infty} \frac{2x^3}{n^6 + x^6}$ and $\sum_{n=1}^{\infty} \frac{2x^3}{n^6 + x^3}$ on $X = (0, +\infty)$ exemplify the statement in Example 25.
- 18 For given u_n(x) and v_n(x) on the specified set X, verify the conditions of Dirichlet's theorem and investigate the character of the convergence of the series ∑ u_n(x) · v_n(x):
 a) u_n(x) = xⁿ⁻¹, v_n(x) = x/n on X = (-1, 1)
 b) u_n(x) = xⁿ⁻¹, v_n(x) = (-1)ⁿ x/n on X = [0, 1)
 c) u_n(x) = xⁿ⁺¹, v_n(x) = (-1)ⁿ 1/n^{3/2}x on X = (0, 1)

d)
$$u_n(x) = (-1)^n x^{n-1}$$
, $v_n(x) = (-1)^n \frac{x}{n}$ on $X = [0, 1)$
e) $u_n(x) = \frac{1}{\sqrt{n}}$, $v_n(x) = \sin nx$ on $X = \left[\frac{\pi}{10}, \frac{19\pi}{10}\right]$
f) $u_n(x) = (-1)^n$, $v_n(x) = \left(\frac{x^2}{1+x^2}\right)^n$ on $X = \mathbb{R}$
g) $u_n(x) = x^2$, $v_n(x) = \frac{(-1)^n}{(1+x^2)^n}$ on $X = (0, +\infty)$
h) $u_n(x) = \frac{x}{n}$, $v_n(x) = \frac{\sin nx}{x}$ on $X = \left[\frac{\pi}{6}, \frac{11\pi}{6}\right]$
i) $u_n(x) = x^{2n}$, $v_n(x) = \frac{(-1)^n}{(1+x^2)^n}$ on $X = (-1, 1)$.
Formulate false statements for which these functions at

rmulate talse statements for which these functions and series represent counterexamples.

19 For given $u_n(x)$ and $v_n(x)$ on the specified set *X*, verify the conditions of Abel's theorem and investigate the character of the convergence of the series $\sum u_n(x) \cdot v_n(x)$:

a)
$$u_n(x) = (-1)^n$$
, $v_n(x) = \left(\frac{x^2}{1+x^2}\right)^n$ on $X = \mathbb{R}$
b) $u_n(x) = x^{n-1}$, $v_n(x) = \frac{x}{2}$ on $X = (-1, 1)$

b)
$$u_n(x) = x^{n-1}, v_n(x) = \frac{\pi}{n}$$
 on $X = (-1, 1)$

- c) $u_n(x) = \frac{x^2}{n}, v_n(x) = \frac{\sin nx}{nx^2}$ on $X = (0, +\infty)$ d) $u_n(x) = \frac{1}{nx}, v_n(x) = \sqrt{nx} \sin nx$ on $X = \left[\frac{\pi}{10}, \frac{19\pi}{10}\right]$ e) $u_n(x) = \frac{(-1)^n}{n}, v_n(x) = (-1)^n \sin nx$ on $X = \mathbb{R}$ f) $u_n(x) = (-1)^n \frac{x^2}{(1+x^2)^n}, v_n(x) = \frac{2n+1}{(n+1)x^2}$ on $X = (0, +\infty)$ g) $u_n(x) = \frac{\sin nx}{2}, v_n(x) = \frac{1}{2}$ on $X = \mathbb{R}$

g)
$$u_n(x) = \frac{1}{\sqrt{n}}, v_n(x) = \frac{1}{\sqrt{n}}$$
 on $X = \mathbb{R}$

h)
$$u_n(x) = \frac{\sin nx}{n^2}$$
, $v_n(x) = n^{3/2}$ on $X = \mathbb{R}$
i) $u_n(x) = \frac{x^n}{n^2}$, $u_n(x) = \frac{\pi \sqrt{n}}{n}$ or $X = (0, 1)$

1)
$$u_n(x) = \frac{1}{n\sqrt{n}}, v_n(x) = x\sqrt{n} \text{ on } X = (0, 1)$$

j)
$$u_n(x) = \frac{\sin nx}{n}, v_n(x) = (-1)^n \sqrt{n}$$
 on $X = \left(0, \frac{\pi}{2}\right).$

Formulate false statements for which these functions and series represent counterexamples.

Further Reading

- S. Abbott. Understanding Analysis, Springer, New York, 2002.
- D. Bressoud, A Radical Approach to Real Analysis, MAA, Washington, DC, 2007.
- T.J.I. Bromwich, An Introduction to the Theory of Infinite Series, AMS, Providence, RI, 2005.
- B.M. Budak and S.V. Fomin, Multiple Integrals, Field Theory and Series, Mir Publisher, Moscow, 1978.

- G.M. Fichtengolz, *Differential- und Integralrechnung, Vol.1–3*, V.E.B. Deutscher Verlag Wiss., Berlin, 1968.
- V.A. Ilyin and E.G. Poznyak, *Fundamentals of Mathematical Analysis, Vol.1,2*, Mir Publisher, Moscow, 1982.
- K. Knopp, *Theory and Applications of Infinite Series*, Dover Publication, Mineola, NY, 1990.
- C.H.C. Little, K.L. Teo and B. Brunt, *Real Analysis via Sequences and Series*, Springer, New York, 2015.
- W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.
- V.A. Zorich, Mathematical Analysis I, II, Springer, Berlin, 2004.