
                                                          CHAPTER 1

 DevOps: An Overview               

    RANT OF A DEVELOPMENT MANAGER

 So, the developer completes writing code for a new service by Monday 
afternoon. She builds the code, runs unit tests, and delivers the code to the 
integration stream so it gets included in the continuous integration (CI) 
build. To get her service tested, before leaving for work, she opens a ticket 
with the Quality Assurance (QA) team.

Tuesday morning, the QA team comes in and sees the ticket assigned to 
them. A tester gets the ticket and emails the developer asking for the deploy-
ment instructions. As there is no deployment automation, the developer 
responds saying she will deploy the service to the QA environment herself. 
Tuesday afternoon, they get on a conference call to deploy the code. The 
developer discovers that test environment is not compatible with her code. 
They need a new environment. Tuesday evening, the tester opens a ticket 
with the operations (Ops) team for a new environment, with the new specs. 

Wednesday morning, the Ops team assigns the ticket to an engineer 
who looks at the specs and sees a fi rewall port change. As he leaves for 
lunch, he opens a ticket with the security team to approve the port change. 
Wednesday afternoon, the security team assigns the ticket to a security 
engineer, who approves the change. Wednesday evening, the Ops engineer 
receives the approval and starts building the new environment. He needs 
to manually build new Virtual Machines (VMs), with an Operating System 
(OS), app server, database, and web server. 

Thursday morning, the server build is done, and the ticket is closed. The 
tester emails the developer again to deploy the new service. The developer 
deploys the service, and the tester starts walking through the test scripts, 
which pass. He now needs to run a regression test but needs additional test 
data to re-run tests. Thursday afternoon he opens a ticket to request new 
test data with the production support team.

continued

CO
PYRIG

HTED
 M

ATERIA
L



DevOps Adoption Playbook2

c01.indd 12/30/16 Page 2

 DevOps: Origins 
 The DevOps movement began with a seminal talk given by John Allspaw 
and Paul Hammond (both at Flickr/Yahoo at that time) at the O’Reilly 
Velocity 2009 conference. The talk was entitled “10+ Deploys Per Day: Dev 
and Ops Cooperation at Flickr.” 1   Ten deploys a day was considered unprec-
edented. Their approach was eventually referred to as  DevOps  by Patrick 
Debois, when he organized the fi rst DevOpsDays  event in Ghent, Belgium, 
the same year. 

 While the name caught on and started getting tremendous interest, the trac-
tion was initially limited to startups, more specifi cally, organizations deliver-
ing web applications. These applications were created by developers (the Dev) 
who typically delivered changes and updates to their web apps in a very rapid 
manner. The main hurdle they faced was that of operations (the Ops), which 
were slow in deploying those changes, as they had rigid and rigorous change 
management processes. 

 The goal of the DevOps movement was to address this impedance mismatch 
between the Dev and Ops teams; to bridge the chasm between them; and to 
foster more communication, collaboration, and trust. At its heart, it was a cul-
tural movement, focused on changing the cultural differences between Dev and 
Ops, along with automation to make application delivery faster, more effi cient, 

Friday morning, the production support team assigns a database analyst 
(DBA) to extract test data from production. But now it’s Friday afternoon. 
Everyone knows DBAs don’t work on Friday afternoons. Monday morn-
ing, the tester gets the test data from the DBA. It takes him 20 minutes to 
run the regression tests and discover a defect. He returns the ticket to the 
developer—a full week after the code was written and built. A full week of 
coding has now been done on top of that code, not knowing it was defec-
tive. We are now another week behind.

 What’s scary about this story is that when I tell it to my peers in other
companies, they shake their heads not in empathy but in amazement as to 
how effi cient we are compared to them!  

 —Yet another frustrated development manager  

1 http://conferences.oreilly.com/velocity/velocity2009/public/schedule/
detail/7641

continued



Chapter 1 DevOps: An Overview 3

c01.indd 12/30/16 Page 3

and eventually, continuous. In 2010, Jez Humble, then at ThoughtWorks, took 
DevOps to practitioners throughout the industry with his book  Continuous
Delivery , codifying some of the practices that make up the core of DevOpsy
 and making DevOps adoption tangible and available to all. 

 Still, DevOps was seen as something done by the unicorns —the startups 
and the upstarts, organizations at the cutting edge of innovation, without 
large, complex legacy systems to maintain. It had not yet gone mainstream 
with the large enterprises. However, these large enterprises were seeing 
what the startups were achieving with DevOps, and were trying to deter-
mine how to adapt DevOps for their own needs. Organizations like IBM 
were beginning to dabble with deployment automation, and with visual 
architecting of environments, and even stitching these two capabilities 
together. At the same time, well-established companies in the build automa-
tion space, like UrbanCode, started pivoting into DevOps with the release 
of uDeploy, thus establishing a new category of tools to enable continuous 
delivery. Other companies in the automation space, like Nolio, joined in 
with their own competitive offerings. In parallel, coming from the Ops 
and infrastructure as code  side, companies like Opscode (now called Chef) 
and Puppet Labs were gaining traction (Opscode with Chef, and Puppet 
Labs with Puppet). 

 The real growth for DevOps into large enterprises began in 2012, with 
companies like IBM jumping into the fray with their fi rst, albeit short-lived, 
continuous delivery experiment with SmartCloud Continuous Delivery. 
Several consulting fi rms, like ThoughtWorks and IBM, also started to offer 
consulting services for organizations, especially large enterprises looking to 
adopt DevOps, and helping to translate what worked for the unicorns so that 
it could work for enterprises. IBM and CA Technologies announced their 
formal entrance into the DevOps world by acquiring UrbanCode and Nolio, 
respectively (and coincidently on the same day in April 2013). However, the 
biggest turning point for the DevOps movement since its inception came 
later, in 2013, with the publication of Gene Kim’s book,  The Phoenix Project.
This book, inspired by and modeled after the historic The Goal  by Eliyahu 
M. Goldratt, became the must-read book for the modern-day implementation 
of Lean  practices and Goldratt’s Theory of Constraints  in the IT world, just as 
Goldratt’s book had been a few decades earlier for the manufacturing world. 
Kim truly took DevOps mainstream with his book, as well as subsequent work 
he has done with the  State of DevOps Report  that he publishes every year, with
Jez Humble and Puppet Labs.



DevOps Adoption Playbook4

c01.indd 12/30/16 Page 4

 DevOps: Roots
 Where does DevOps come from? While I have already outlined its origin story, 
the true roots of DevOps predate Allspaw, Debois, Humble, and Kim by almost 
a century. You have to go way back to the 1910s and look at the origins of the 
Lean movement.

 The Lean movement started in manufacturing with Henry Ford and his 
adoption of Lean for fl ow management in the Model T production lines. This 
work was further extended, refi ned, and codifi ed by Kiichiro Toyoda and 
Taiichi Ohno at Toyota starting in the 1930s and really accelerating after 
World War II. Their work was both refi ned and infl uenced by Dr. William
E. Deming in the 1950s, who proposed the Plan–Do–Check–Act (or Adjust) 
cycle (PDCA), to continuously improve manufacturing quality. Based on this 
core approach, the Lean manufacturing movement aimed to both contin-
uously improve the product being manufactured and reduce waste in the 
manufacturing process. Lean was further refi ned in the works of James P. 
Womack and Daniel T. Jones when they published The Machine that Changed 
the World  in 1990 and (required reading for everyone)  Lean Thinking  in 1996
(Lean.org, 2016).    

    DEMING ON LEAN THINKING AND CONTINUOUS IMPROVEMENT

   Dr. W. Edwards Deming taught that by adopting appropriate prin-
ciples of management, organizations can increase quality and simul-
taneously reduce costs (by reducing waste, rework, staff attrition and 
litigation while increasing customer loyalty). The key is to practice 
continual improvement and think of manufacturing as a system, not 
as bits and pieces. 

 —Dr. Deming’s Management Training (Deming, 1998)

 In 2001 came Agile, a group of 17 thought leaders, including Alistair 
Cockburn and Martin Fowler, who created  The Agile Manifesto .2   The core
principles of the manifesto were to get away from the rigid, waterfall-oriented, 
documentation-heavy world of software development, which was resulting in 
most software development projects being late, over budget, or abject failures. 

 2 http://www.agilemanifesto.org



Chapter 1 DevOps: An Overview 5

c01.indd 12/30/16 Page 5

 Their goal was to move to an iterative approach where there was constant 
interaction with the customer, end-user, or a surrogate who represented them. 
They wanted to move away from measuring progress through major rigid 
milestones such as Requirements Documentation , which brought code no closer
to being delivered than the day before. Other goals were to use real running 
code (working software) as the true measure of progress; to look at planning 
as being adaptive to real progress; and to create requirements that did not 
need to be written in stone up front, but would evolve and be refi ned as the 
applications were being developed.

 Agile was refi ned with the development of methodologies like XP, Scrum, 
and, more recently, Scaled Agile Framework or SAFe. Today, Agile is used 
by both large and small organizations to deliver projects of all sizes and 
technologies.

 Agile was the precursor to, and became the core driver for, the need for 
DevOps. As developers started delivering code faster, that code needed to 
be tested faster; it also needed to be deployed to Dev and test servers, and 
eventually to production, more often. The Ops teams were not set up for this, 
which resulted in a major bottleneck being created at the Dev-to-test handoff, 
due to lack of availability of the right test environments as and when needed 
and, more importantly, at the hands of production at release time. Production 
release remained a major undertaking, with “release weekends” that typically 
lasted beyond the weekend.

    THE RELEASE WEEKEND  

 I remember when I was working as a developer at a fi nancial services insti-
tution in the early ’90s. (We called them banks back then.) On release 
weekends, much to my chagrin, we were asked to show up at work on 
Friday mornings with our sleeping bags in hand. We were expected to 
stay there through the weekend. There were multiple conference rooms set 
up with conference call bridges open to get every team in communication 
with each other. One conference room was set up like a war room with the 
project leader coordinating all the stakeholders off a massive spreadsheet. 
The management did their best to create a party atmosphere, but that faded 
right after the fi rst few hours. We were communicating with the Ops people 
for the fi rst time. We were handing off our code to people who had never 

continued



DevOps Adoption Playbook6

c01.indd 12/30/16 Page 6

 The rapid development of code in short iterations amplifi ed the need for bet-
ter collaboration and coordination between Dev and Ops teams. The frequent 
failure of release to production exposed the need for providing developers with 
access to production-like environments. The major ineffi ciencies in the entire 
process were exposed by making just one part of the process—developing 
code—more effi cient, which created major bottlenecks with test and Ops. If 
you think of the application development and delivery process as an assembly 
line in a factory, speeding up an operation of just one of the stations to increase 
the number of widgets it produces does not help the overall delivery speed if 
the downstream stations are still operating at a slower speed. It just creates 
more of a backlog for them. (See Figure   1-1   .) This was not just a challenge for 
Ops, but for all the stakeholders in the delivery life cycle. 

seen the code before. They were deploying code into environments we 
had no visibility into, using scripts and tools we had no familiarity with. 
It would be chaos the whole weekend. Lots of delivered food and stale cof-
fee, and nothing seemed to work as planned. And the traders we supported, 
they were smart. They always planned their team outing or picnics on the 
Monday following. They knew nothing would work. And they were right. 
Fortunately, we only did this twice a year. Even more fortunately for me 
personally, I worked there for only two releases. 

    Figure   1-1:  Delivery pipeline bottlenecks 

1 per min 1 per min

4 per min 1 per min

4 per min 4 per min

cycle time —the time from the
inception of a requirement, or  user story , to the time that capability is iny
the hands of the customer, or at least is integrated, tested, and ready to be 
deployed to the customer. This resulted in the development of the two core 

continued



Chapter 1 DevOps: An Overview 7

c01.indd 12/30/16 Page 7

capabilities of DevOps: continuous integration (already a core competency 
of Agile) and continuous delivery. I will discuss both capabilities in detail 
shortly. This extension of Agile beyond the Dev-test cycle—including the
Ops team in the delivery cycle, as a part of the process, and not in a separate 
silo that was not engaged until the code was ready for release—became the 
core principle of DevOps.  

 Addressing Dev versus Ops
 Dev and Ops have traditionally lived in different silos, with misaligned, even 
opposing priorities. Development (Dev) is tasked with creating innovation 
and getting it into the hands of users as soon as possible. Operations (Ops) is 
tasked with making sure that the users have access to a stable, fast, and respon-
sive system. While Dev and Ops’ ultimate goal is to make the user a satisfi ed 
(and potentially a happy, paying) customer of the systems they provide, their 
views of how to do it tend to be inherently antithetical. No developer wants 
to intentionally produce a buggy system that would cause the application to 
crash while a user is using it. No operations person wants developers to not 
produce updates with new, exciting features and capabilities. It is how they 
go about it that is different. This is a classic symptom of what is referred to 
as water-Scrum-fall  (Forrester, 2011). Developers want, and are expected 
to produce, new features quickly. Operations want, and are expected to pro-
duce, a stable system, at all times.  

 Dev versus Ops 
 Before the advent of Agile, in the purely waterfall-oriented paradigm, when 
developers and operations lived in truly isolated worlds, these oppos-
ing priorities were not that much of an issue. Developers and operations 
worked on a schedule that was marked by limited interactions, only at 
release times. Developers knew when the release date was, and they could 
only release new features then. If they did not create a new feature by the 
release date, they would have to wait for the next  release train . Operations
knew when the train would come to town. They would have enough time 
to test the new features before deploying them, and they could take days 
(weekends) to deploy them out to customers. For large systems, they could 
even deploy in a phased manner spread over long periods of time. Stability
was maintained. 

 Agile changed all that. With continuous integration (CI), developers were 
now deploying their features daily. There was no release train to wait for; it 



DevOps Adoption Playbook8

c01.indd 12/30/16 Page 8

was a conveyer belt (pipeline) that ran all the time. The developers now wanted 
their features up and running—in the Dev environment, in the test environ-
ment, and fi nally in production (Prod)—at the same frequency at which they 
produced and integrated them. They wanted Ops to accommodate all these 
new releases. 

 Ops now had to deal with not one release every so often but a continuous 
barrage of CI builds. These builds may or may not have been deployment-
ready, but they had to be managed by Ops and deployed to test, and eventually 
production, environments. Ops now cared more about quality. Developers and 
testers cared about how quickly they could get Dev and test environments 
and whether or not those environments were production-like. They did not 
want to test the code they were delivering on environments that did not func-
tion and behave like production environments. Thus, Ops could no longer 
take days to provision and confi gure new environments—for Dev, test, and
eventually Prod. They had to do all of this while still maintaining stability 
and reliability of production systems.

    CYCLE TIME?

 If you have two-week Scrums but it takes three weeks to get a new test 
server, how long are your Scrums? 

 Dev and Ops 
 The solution to this battle between Dev and Ops is what DevOps addresses: 
to achieve the balance between innovation and stability and between speed 
of delivery and quality. To achieve this, both Dev and Ops need to improve 
how they operate and align.

 The Dev View     The previous section may give the impression that Ops 
needs to change more than Dev, but Dev also needs to make several changes: 

■    Dev needs to work with Ops to understand the nature of the production 
systems their applications will be running on. What are the standards 
for the production systems (environment patterns) and how should 
their applications perform on them? Within what constraints do the 
applications need to operate? Dev now needs to understand system and 
enterprise architectures. 



Chapter 1 DevOps: An Overview 9

c01.indd 12/30/16 Page 9

■    Dev needs to get more involved in testing. This means not just mak-
ing sure that their code is bug-free but also testing the application 
to see how it will perform in production. This requires Dev to work 
closely with Quality Assurance (QA) and to test their application in a 
production-like system. (I’ll discuss production-like systems later in 
this chapter.) 

■    Dev also needs to learn how to monitor deployed applications and 
understand the metrics Ops cares about. They need to able to decipher 
how processes interact and how one process can cause another one to 
slow down or even crash. They need to understand how changes to 
their code will impact the entire production system and not just their 
own application. 

■    Dev needs to communicate and collaborate better with Ops.     

 The Ops View     Ops needs to be able to provision new environments rapidly, 
and they need to architect their systems to absorb rapid change. 

■    Ops needs to know what code is coming and how it may impact their 
system. This requires them to be involved with Dev, right from under-
standing requirements and system specs of the applications being devel-
oped. This process is referred to in Lean and DevOps as  shift left.  They
need to make sure that their systems can accommodate these applica-
tions as they are enhanced. 

■    Ops needs to automate how they manage their systems. Rapid change 
with stability cannot be achieved without automation. Automation will 
allow not only rapid change but also rapid rollbacks, if something does 
break.

■    Ideally, Ops needs to version their systems. This can only be done when 
the infrastructure and all changes to it are captured and managed as 
version-controlled code. Thus, they need to leverage infrastructure as 
code or, even better, software-defi ned environments. (I’ll talk more 
about that later in this chapter.) 

■    Ops needs to monitor everything throughout the delivery pipeline, 
whichever environment the Ops teams manage. They need to be able 
to spot potential instability as soon as it happens. 

■    Ops needs to communicate and collaborate better with Dev.   

 In a nutshell, Dev and Ops both need to be brought into the DevOps para-
digms. They both need to know that this is not going to be easy, or something 



DevOps Adoption Playbook10

c01.indd 12/30/16 Page 10

that can be achieved in a day. They need to plan for and work toward gradually 
adopting the changes needed to achieve the promise of DevOps. They may never
get to—and in most cases should never get to—where Dev and Ops are one team, 
but they need to understand that their roles will change as they adopt DevOps. 
They need to change enough to work together and fi nd the right alignment 
between Dev and Ops that their organization needs and improve from there. 

 That being said, the gap between Dev and Ops is not the only inhibitor to 
a fast cycle time in the delivery lifecycle. All the stakeholders in the delivery 
lifecycle need to communicate and collaborate better.

 The Business View     Let’s look at the  business view . At the end of the day, w
it is the business’s requirements that IT is delivering through the applications 
and services delivered. What does the business (lines of business to be more 
precise) need?

■    Business needs visibility into the status of what is being delivered by IT. 
Are they on time and on budget to deliver the applications and services? 

■    Business needs the application delivery teams to provide feedback on 
how the clients and end users are utilizing the applications and services 
being delivered. Are they able to get the business value as expected by 
the business?   

 A more detailed analysis on the business’s point of view and expectations 
of IT, and how DevOps helps the business will be discussed in detail in sub-
sequent chapters.

 DevOps: Practices
 Much has been written in books, and even more in blog posts, about the 
capabilities that make up DevOps. Several thought leaders have divided these 
practices into various categories, and in some cases even with different names. 
IBM lists several such practices, which are found under the following broad
categories: 

■    Think
■    Code 
■    Deliver
■    Run 
■    Manage 



Chapter 1 DevOps: An Overview 11

c01.indd 12/30/16 Page 11

■    Learn
■    Culture

 This taxonomy comes from the IBM Garage Method, 3   a new methodology 
for adopting DevOps focused on delivering Cloud Native and Hybrid Cloud 
hosted applications.

 There are two key capabilities of DevOps at its core: continuous integration
and  continuous delivery.  Without these two capabilities, there is no DevOps, 
and they should be considered essential to DevOps adoption, with all others 
being extensions, or supporting capabilities. These two concepts focus on 
minimizing  cycle time.  Let’s revisit the defi nition of  cycle time.

NOTE  Cycle time: The time from the inception of a requirement or user 
story to when that capability is in the hands of the customer, or at least is 
integrated, tested, and ready to be deployed to the customer.    

 Continuous Integration
 Delivering a software application or system today involves multiple teams of 
developers working on separate components of the application. Typically, the 
completed application also needs to interact with other applications or services 
to perform its functions. Some of these external applications or services may 
be legacy applications that exist in the enterprise, or they may be external 
third-party services. There is, as a result, an inherent need for developers to 
integrate their work with components built by other development teams and 
with other applications and services. 

 This need makes integration an essential and complex task in the software 
development lifecycle. The process of doing this at a regular cadence is com-
monly referred to as continuous integration , and it is a key practice from Agile. 
In traditional development processes, integration was a secondary set of tasks 
conducted after the components (or sometimes the complete application) were 
built. This sequence was inherently costly and unpredictable, as the incom-
patibilities and defects that tend to be discovered only during integration 
were discovered late in the development process. The result was typically a 
signifi cant increase in rework and risk.

 The Agile movement introduced a logical step to help reduce this risk by inte-
grating components continuously (or as continuously as possible). In this step, 

 3 https://www.ibm.com/devops/method/



DevOps Adoption Playbook12

c01.indd 12/30/16 Page 12

developers integrate their work with the rest of the development team regularly 
(at least daily) and test the integrated work. In the case of enterprise systems, 
which span multiple platforms, applications, or services, developers also integrate 
with other systems and services as often as possible. An example of Continuous 
Integration across multiple teams and components is shown in Figure 1-2. 

    Figure   1-2:  Continuous integration 

Component
team build

Component
team build

Integration
build

 These steps to integrate results can lead to early discovery and exposure 
of integration risks. In the case of enterprise systems, they can also expose 
known and unknown dependencies related to either technology or sched-
uling that may be at risk. As these practices have matured, some organiza-
tions have adopted continuous integration practices that developers follow 
every time they check in code. In the most mature organizations, continu-
ous integration has led to capabilities for continuous delivery in which the 
code and components are not only integrated but are also delivered to a 
production-like environment for testing and verifi cation. I’ll discuss this in 
the next section. 

 The demands placed by business and customers on development organiza-
tions have driven the wide adoption by development teams of Agile develop-
ment practices. These practices are aimed at reducing the gap between the 
business (or the customers) and the development teams. They work primarily 
in three ways: 

■    By breaking the development effort into small chunks of work that can 
be completed in time-bound iterations. This allows developers to iden-
tify and resolve risk earlier than when they undertake entire projects 
or larger portions of projects. 

■    By including contact with the end user or a surrogate representing the 
user into the development iterations. This helps give developers a better 



Chapter 1 DevOps: An Overview 13

c01.indd 12/30/16 Page 13

understanding of the user’s needs and allows for changing needs to be 
more quickly accommodated.

■    By releasing software at the end of every iteration. This allows devel-
opers to demonstrate regularly what they have built in order to obtain 
user feedback.

 As described, continuous integration is one of the tenets of such Agile 
development. It allows for developers to integrate their software components 
with components that are being developed by others—either internally or 
externally—on a regular basis, to allow for early identifi cation of risks.  

 Practices of Continuous Integration
 Martin Fowler, a signatory of what is known as the Agile Manifesto , is a thought o
leader in the development of continuous integration processes. He has broken 
down the concept into ten practices, which are described here. 

  1.    Maintain a single-source repository.  Whether managing code or any 
fi le, it is critical to use version management tools to manage the source 
base that allows multi-user access and streaming, or branching and 
merging, and that allows multiple developers in distributed locations 
to work on the same set of fi les. With any multi-platform develop-
ment effort, using a common, cross-platform, single-source repository 
becomes even more important. If such a repository is not implemented 
across platforms, any platform left isolated (System z or Mobile, for 
example) will not be able to participate in continuous integration prac-
tices. Integration with any work conducted on the isolated platform will 
become an after-effort, waterfall-style integration. 

 This transition to a modern source-code repository represents a sig-
nificant change for legacy system development teams that may have 
been using the same capability for years. However, a single source code 
management (SCM) tool is critical to allow the management of all arti-
facts, help break down the silos, and remove a key bottleneck.  

  2.   Automate the build.  Automating the build is what makes continuous
integration continuous. Additionally, it should be possible to coordinate 
the build across multiple platforms, when required. 

  3.    Make your build self-testing.  Just as builds need to be automated, 
so does the testing. The goal of continuous integration is not only to 
integrate the work of teams but also to see if the application or system 
being built is functioning and performing as expected. This requires 



DevOps Adoption Playbook14

c01.indd 12/30/16 Page 14

that a suite of automated test scripts be built for unit-test level and for 
the component and application level. In true continuous integration, 
developers should be able to start an integration build by kicking off the 
right test suite when they commit the code. This process requires that 
the build scripts include the capability to build the software if needed, 
provision the test server, provision the test environment, deploy the 
built software to the test server, set up the test data, and run the right 
test scripts.

 The requirement to have the environments to do the build, deploy 
it, and do the automated testing at any time helps improve the quality 
of the final code. This requires availability of system resources, the 
willingness to run large numbers of automated tests on a regular basis, 
and the development of the automated tests.  

  4.   Ensure that everyone commits to the mainline every day.  The goal 
of having every developer, across all components and all development 
environments, commit their code to the mainline of their development 
streams every day is to help ensure that integrations remain as simple 
as possible. Even today, many developers work independently on their 
code changes until the fi nal build, which is when they realize their work 
is impacted by the work of other developers. This can lead to delays 
in releasing functions or to last-minute changes that have not been 
properly tested being deployed into production. Regular integration of 
code can help ensure that these dependencies are identifi ed sooner so 
the development team can handle them in a timely manner and without 
time constraints. 

  5.   Ensure that every commit builds the mainline on an integration 
machine.  This is a second part of Practice 4. Making sure that every com-
mit is built and that automated regression tests are run can help ensure 
that problems are found and resolved earlier in the development cycle. 

  6.   Keep the build fast.  Virtually nothing impedes continuous integration 
more than a build that takes extremely long to run. Builds with modern 
tools are generally fast due to the standard practice of building only 
changed fi les. 

  7.    Test in a clone of the production environment.  Testing in an environ-
ment that does not accurately represent the production system leaves 
a lot of risk in the system. The goal of this practice, then, is to test in a 
clone of the production environment. It is not always possible, however, 
to create a clone of an entire multi-server environment just for testing. 



Chapter 1 DevOps: An Overview 15

c01.indd 12/30/16 Page 15

It is even harder to create a clone environment with other workloads 
running on it. 

 Instead, this practice requires the creation of what is known as a 
production-like  environment. In terms of specifications, this environ-
ment should be as close to the production environment as possible. It 
should also be subject to proper test data management. A test environ-
ment should not contain production data because in many cases that 
data needs to be masked. Proper test data management can also reduce 
the size and complexity of the test environment. 

 A complex system with multiple components—both pre-existing
(such as other services and applications) and new components being
 developed—also creates challenges. All the components, services, and 
systems that applications need to access and interact with may not be 
available for running tests. This may occur for multiple reasons: the com-
ponent, service, or system may not have been built yet; it may have been 
built but is available only as a production system that cannot be tested 
with non-production data; or it may have a cost associated with its use. 
For third-party services, for example, cost can become a major issue.  

  8.   Make it easy for anyone to get the latest executable.  Anyone associ-
ated with the project should have access to what is built and should be 
provided with a way to interact with it. This allows validation of what 
is being built against what was expected. 

  9.    Make sure everyone can see what is happening.  This is a communication-
and-collaboration-related best practice, rather than one related to 
continuous integration. However, its importance to teams practicing 
continuous integration cannot be discounted. Visibility to the progress 
of continuous-integration builds via a central portal or dashboards can 
provide information to all practitioners. 

 This can boost morale and help build the sense of working as a 
team with a common goal. If challenges occur, visibility can provide 
the impetus for people to step in and help other practitioners or teams. 
Visibility via a common team portal is especially important for teams 
that are not collocated—but it is also key for collocated teams and
for cross-platform teams that work on different components of a proj-
ect. This visibility should extend all the way back to the Business. As 
described in the earlier section on the Business View , visibility into w
the current status of the applications and services being delivered is a 
critical need of the business.  



DevOps Adoption Playbook16

c01.indd 12/30/16 Page 16

  10.   Automate deployment.  Continuous integration naturally leads to the
concept and practice of continuous delivery—the process of automat-
ing the deployment of software to test, system testing, staging, and 
production environments.

 Continuous Delivery 
 Continuous delivery simply involves taking the concept of continuous inte-
gration to the next step. Once the application is built, at the end of every con-
tinuous integration build, it is delivered to the next stage in the application 
delivery lifecycle. It is delivered to the Quality Assurance (QA) team for testing 
and then to the operations team for delivery to the production system. The 
goal of continuous delivery is to get the new features that the developers are 
creating out to the customers and users as soon as possible. Now, all builds 
that come out of a continuous integration effort do not need to go to QA; only 
the “good” ones with functionality that is at a stage of development where it 
can be tested need to go to QA. 

 Similarly, all the builds that go through QA do not need to go to production. 
Only those that are ready to be delivered to the users, in terms of functionality, 
stability, and other non-functional requirements (NFRs) should be delivered 
to production. To test whether the builds coming out are production-ready, 
they should be delivered to a staging or test area that is production-like. This 
practice of regularly delivering the application being developed to QA and 
operations for validation and potential release to customers is referred to as 
continuous delivery.y

 Continuous delivery requires the creation of a delivery pipeline (as shown 
in Figure   1-3   ), with the core capability that automates the delivery pipeline 
being continuous delivery. As continuous integration produces builds at a 
steady pace, these builds need to be rapidly progressed to other environments 
in the delivery pipeline. Builds need to be deployed to the test environment 
to perform tests, to the integration environment for integration builds and 
integration testing, and so on, all the way to production. Continuous delivery 
facilitates deployment of applications from one environment to the next, as 
and when deployment is needed.   

 Continuous delivery, however, is not as simple as just moving fi les around. 
It requires orchestrating the deployments of code, content, applications, mid-
dleware and environment confi gurations, and process changes, as shown in 
Figure   1-4   .



Chapter 1 DevOps: An Overview 17

c01.indd 12/30/16 Page 17

 With regard to continuous delivery, there are two key points to remember: 

■    It does not mean deployment of every change out to production, a 
process commonly known as  continuous deployment . Instead, continu-
ous delivery is not a process but rather a capability to deploy to any 
environment, at any time, as needed. (I will discuss this more in the 
next section.)

■    It does not always mean deploying a complete application. What is 
deployed may be the full application, one or many application com-
ponents, application content, application or middleware confi guration 
changes, or the environment to which the application is being deployed. 
It may also be any combination of these.   

 Two of the ten practices of continuous integration form the link to, and the 
necessity for, continuous delivery: 

■    Testing in a clone of the production environment 
■    Automating deployment   

    Figure   1-3:  A delivery pipeline 

Development Source code
management

Build Package Deploy

• Applications
• Middleware
• Databases

Configure >

Test Stage Production

    Figure   1-4:    Continuous delivery

Dev Environment
Continuous Integration

Unit Test
Functional

Test

Performance
Test

Acceptance
Test

Build

Build

Build
Continuous Monitoring

Test Environment Stage Environment Prod Environment

Continuous Testing

Continuous Delivery



DevOps Adoption Playbook18

c01.indd 12/30/16 Page 18

 While testing in a clone of the production environment (the seventh prac-
tice) may be a testing practice, it also requires continuous delivery capabili-
ties to deliver the new build to the clone test environment. This delivery may 
require provisioning the test environment and any virtualized instances of 
services and applications. It may also require the positioning of relevant test 
data, in addition to the actual deployment of the application to the right 
test environment.

 The tenth practice of continuous integration, automating deployment, is 
the core practice of continuous delivery; it is not possible to achieve con-
tinuous delivery without automation of the deployment process. Whether 
the goal is to deploy the complete application or only one component or 
confi guration change, continuous delivery requires having tools and pro-
cesses in place to deploy, as and when needed, to any environment in the 
delivery pipeline. 

 Practicing continuous delivery also tests the actual deployment process. 
It is not unusual for organizations to suffer severe issues when deploying an 
application to production (as I discussed earlier). However, it is possible to 
uncover these issues early in the delivery lifecycle by automating the deploy-
ment process and validating it by deploying multiple times to production-like 
environments in pre-production.

 Continuous Delivery versus Continuous Deployment 
 In the past, companies like Flickr posted on their blogs 4   how many  deploys  they 
had so far in a particular day or week. Looking at an organization that deploys
to production 89 times in a week can be very intimidating. More importantly, 
it begs the question, “What do you deploy to production 89 times in a week?” 

 This is a scenario that may actually keep some people away from adopting 
DevOps practices, because they believe that they have to deploy every change to 
production. That is certainly not the case. First, you need to understand what is 
being deployed here, and second (and more importantly), you need to understand
that this is not applicable, necessary, or even feasible for every organization.  

 What Do You Deploy 89 Times a Week?   When organizations say 
they are doing double-digit deploys to production every day, it does not mean 
that they are delivering dozens of new features or bug fi xes every day! What 
these companies have adopted is true and full-fl edged continuous deploy-
ment. This means that every change by every developer works its way out 

 4 http://code.flickr.net



Chapter 1 DevOps: An Overview 19

c01.indd 12/30/16 Page 19

to production. These may not be complete features; several such changes by 
multiple developers, over a matter of days, may make up a complete usable 
feature. They may not be visible to a customer at all; it is only after the 
complete feature is available and tested that it becomes visible. Then, too, 
it may be a part of an A-B test effort, so only a few customers will ever see 
it. The deployment may also be a simple confi guration or database schema 
change that is never seen by anyone, but that changes some performance 
or behavior. Yet another scenario is where the deployment involves a new 
environment change and not an application change at all—an operating 
system (OS) or middleware patch, an OS- or middleware-level confi guration 
change, a new database schema version, an entire new architectural topology 
of nodes, and so on.

 Such a process is not viable for many organizations. Some organizations 
may have some (water-Scrum-fall like) requirements and policies that require a 
manual approval process before deployment to production. Others may require 
a segregation of duties , which mandates that the person to deploy to production 
is a different person or team from the one that contributes to the development 
of the deployable asset.   

 To Continuously Deploy or Not?     There is still confusion among people
between the concepts of continuous delivery and continuous deployment.

 Continuous delivery doesn’t mean every change is deployed to production ASAP. It
means every change is proven to be deployable at any time. 

 —Carl Caum (Caum, 2013)

 This tweet by Carl Caum, in a simple (less than 140-character) sentence, 
captures the essence of what  should  be done versus what  may  be done by an
organization. Going by this distinction, continuous delivery is a  must , while 
continuous deployment is an option . Having the capability to continuously
deploy is more important than actually doing it in a continuous manner out to 
production (the key words here being  to production ). These terms are, unfor-n
tunately, still used interchangeably by most people.

 What is required is the tested and validated capability to deploy to any 
environment in your delivery lifecycle—all the way out to production. 
You may only continuously deploy to an environment before Prod  (lower 
environments)—for example, User Acceptance Testing (UAT), Pre-prod…, but 
the environments you deploy to should be production-like, so you know, with e



DevOps Adoption Playbook20

c01.indd 12/30/16 Page 20

very high confi dence, that the fi nal deploy to production will work without 
issues when you actually deploy to Prod.

 What you continuously deliver should be every change to Dev and QA envi-
ronments and other (lower) non-production environments. What you fi nally 
choose to deploy to Prod will typically be a full feature or set of features, or a 
full application or service.     

 Supporting Practices
 Other than the two core practices of DevOps—continuous integration and 
continuous delivery (you are not doing DevOps without both being adopted)—
there are several supporting  practices. These have been developed to support 
and enable the two core practices. Following are some of these practices, which 
are considered to be supporting but essential.  

 Infrastructure as Code    

    MASTER OF THE OPS UNIVERSE

 Imagine a seasoned operations engineer (neck beard and all). Over his 
career, he has most certainly developed a toolkit of scripts that he can use, 
with minor changes, to perform all his regular tasks of provisioning and 
managing the plethora of environments he has seen and dealt with. When 
it comes to confi gurations, he knows all the admin consoles he deals with 
like the back of his hand. He can log in and make the exact tweaks to 
application server confi gs that are needed to address the issues he is fac-
ing. For database-related issues, he knows exactly who to call and that the 
DBA has mastered his end of the deal as well as he has his. He has things 
down to a routine. He knows exactly when the next application release is 
due. He knows when to expect the next update to the OS. He is the master 
of his universe. 

 As systems have become virtualized and as developers have started practic-
ing continuous integration (CI), things have started to change. The number 
of environments, and their instances that Ops engineers have to deal with, 
have increased by several orders of magnitude. Developers no longer release 
updates and new versions every few months; they are pumping out CI builds 
daily—in fact, multiple builds a day. All of these builds need to be tested and 



Chapter 1 DevOps: An Overview 21

c01.indd 12/30/16 Page 21

validated. That requires new environment instances to be spun up, fast. These 
builds also often come with confi guration changes. Logging into consoles 
to make each one of these changes individually is no longer a viable option. 
Furthermore, the need for speed is critical. Developers’ builds are creating a 
backlog, as the environments to even test them on are not available as needed. 
Houston, we have a problem .

 Let’s start by revisiting two concepts:

  1.   Cycle time.  Cycle time  is defi ned as the average time taken from when
a new requirement is approved, a change request is requested, or a bug 
that needs to be fi xed via a patch is identifi ed, to when it is delivered to 
production. Agile organizations want the delivery cycle time to be the 
bare minimum. This is what limits their ability to release new features 
and fi xes to customers. Organizations like Etsy have cycle time down 
to minutes! While this is not possible for enterprise applications, the 
current cycle time of weeks or sometimes even months is absolutely 
unacceptable.

  2.   Versioning environments.  The need to maintain multiple confi gura-
tions and patch levels of environments that are now needed by develop-
ment, on demand, requires Ops to modify how they handle change and 
maintain these environments. Any change Ops makes to an environ-
ment, whether it is applying a patch or making a confi guration change, 
should be viewed as creating a new version  of the environment, not 
just tweaking a confi g setting via a console. The only way this can be 
managed properly is by applying all changes via scripts. These scripts, 
when executed, would create a new version of the environment they are 
executed on. This process streamlines and simplifi es change manage-
ment, allowing it to scale, while keeping Ops best practices Information 
Technology Infrastructure Library (ITIL) and IT Service Management 
(ITSM) intact.

 The solution to addressing both of these needs—minimizing cycle time
and versioning environments—can be addressed by capturing and manag-
ing infrastructure as code. Spinning up a new virtual environment or a new 
version of the environment then becomes a matter of executing a script that 
can create and provision an image or set of images—all the way from the OS 
to the complete application stack being installed and confi gured. What took 
hours now takes minutes.



DevOps Adoption Playbook22

c01.indd 12/30/16 Page 22

 Versioning these scripts as you would version code in an SCM system
allows for proper confi guration management. Creating a new version of an 
environment now involves checking out the right scripts and making the nec-
essary changes to the scripts—to patch the OS, change an app server setting, 
or install a new version of the application—and then checking the scripts back 
in as a new version of the environment, before executing it.     

NOTE  Without infrastructure as code, Ops can very easily become the 
“fall” in water-Scrum-fall.

 Several automation frameworks have emerged to enable the capturing and 
management of infrastructure as code. The popular frameworks include Chef, 
Puppet, Salt, and Ansible.

 With the evolution of the cloud, IT is now going to complete  software-
defi ned environments (SDE s). This takes the defi nition, versioning, and main-
tenance of complete environments as code. Technologies like OpenStack 
CloudFormation (for Amazon Web Services) are the leaders. OpenStack, for 
example, allows for full stack  environments to be defi ned as software using 
Heat patterns, which can be versioned, provisioned, and confi gured using 
the likes of Chef and Salt, as needed. This also allows for the management 
of these environments at scale. No longer are Ops practitioners focused on 
managing individual servers that have long lifetimes; they are now managing 
large numbers of servers that are  transient  in their existence, and provisioned
and de-provisioned on demand. This scale and agility can only be achieved 
with SDEs. 

NOTE  In a software-defi ned environment world, servers are “cattle,” not 
“pets” (McCance, 2012) and (Bias, 2012).

 Continuous Feedback 
 If you step back and look at continuous feedback  in a holistic sense, it essentially
means getting feedback from each functional area of the delivery pipeline 
to the areas to its left. So, developers provide feedback as they develop and 
deliver code, back to architects, analysts, and lines of business; testers provide 
feedback, through continuous testing to developers, architects, analysts and 
lines of business; and fi nally, Ops provides feedback to QA, testers, develop-
ers, architects, analysts, and lines of business, as well as everyone else who 
is a stakeholder. 



Chapter 1 DevOps: An Overview 23

c01.indd 12/30/16 Page 23

 The purpose of continuous feedback is to validate that the code produced 
and integrated with code from other developers and with other compo-
nents of the application functions and performs as designed. Once the 
application has been deployed to a production system, it is also a goal 
to monitor that application to ensure that it functions and performs as 
designed in a production environment, as it is being used by end-users. This 
is essential to enable continuous improvement and quality. It is the core of 
Deming’s PDCA cycle, as it provides the input to determine what to change 
and how to act.     

NOTE  Continuous integration and delivery are both (almost) meaning-
less without continuous feedback. Not having testing and monitoring in 
a continuous manner, and therefore not knowing how the application is 
performing in production, makes the entire process of DevOps moot. What 
good is having a streamlined continuous delivery process if the only way 
you fi nd out that your application’s functionality or performance are below 
par is via a ticket opened by a disgruntled user?

 This brings me to the two practices of DevOps that are required to enable 
continuous feedback: continuous testing and continuous monitoring.

 Continuous Testing Continuous testing  is the capability for testing the 
application, the environment, and the delivery process at every stage of 
the delivery pipeline for the application being delivered. The items tested 
and the kinds of tests conducted can change depending on the stage of the 
delivery lifecycle. Continuous testing is really intertwined into the processes 
of  continuous integration and continuous delivery, if done properly. Let’s look 
at how this works in detail. 

 Individual developers work to create code. Fixing defects, adding new fea-
tures, enhancing features, or making the code perform faster are some of the 
many tasks (work items) they may be working on. When done, they run unit 
tests on their own code and then deliver their code and integrate it with the 
work done by other developers on their team, as well as with unchanged code 
their team owns ( continuous integration ). Once the integration is done, they don
unit tests on the integrated code. They may run other tests such as white box 
security tests, code performance tests, and so on. This work is then delivered 
to the common integration area of the team of teams—integrating the work of 
all the teams working on the project and all the code components that make 
up the service, application, or system being developed.



DevOps Adoption Playbook24

c01.indd 12/30/16 Page 24

 This is the essence of the process of continuous integration. What makes 
this process continuous is where an individual developer’s code is integrated 
with that of their team, as and when they check in the code and it is delivered 
for integration. The important point to note here is the goal of the continuous 
integration process: to validate that the code integrates at all levels without 
error and that all tests run by developers run without error. Thus, continuous 
testing starts right with the developers. 

 After validating that the complete application (or service or system) is built 
without error, the application is delivered to the QA area. This delivery of code 
from the Dev or development environment to the QA environment is the fi rst 
major step in continuous delivery. There is continuous delivery happening as 
the developers deliver their code to their team’s integration space and to the 
project’s integration space, but this is limited to being within the Dev space. 
There is no new environment to target. 

 When delivering to QA, I am speaking of a complete transition from one 
environment to another. QA has its own environment on which to run its 
suites of functional and performance tests. DevOps principles demand that 
this environment be production-like. In addition, QA may also need new data 
sets for each run of the suites of tests it runs. This may be one or more times 
every day as continuous integration leads to continuous delivery at a steady 
stream. This means that the continuous delivery process not only requires 
the processes to transition the code from Dev to QA, but also to refresh or 
provision new instances of QA’s production-like environments, complete with 
the right confi gurations and associated test data to run the tests against. This 
makes continuous delivery a more complex process than just copying code 
over. The key point to note is that the goal of continuous delivery is to get 
the code ready for test, and for release, and to get the application to the right 
environment—continuously, so that it can be tested continuously. 

 If you extend the process described here to delivering the service, application,
or system to a staging and eventually a production environment, the process and 
goal remain the same. The Ops team wants to run their own set of smoke tests, 
acceptance tests, and system stability tests before they deliver the application 
to the  must-stay-up-at-all-costs  production environment. That is done using a
staging environment. This is a production-like environment that needs to be 
provisioned just like the QA environment. It needs to have the necessary scripts 
and test data for acceptance and performance tests that Ops will run. Only when 
this last phase of continuous testing is complete is the application delivered to 
production. Continuous delivery processes, hence, also perform the tasks of 
providing staging and production environments and delivering the application. 



Chapter 1 DevOps: An Overview 25

c01.indd 12/30/16 Page 25

 To delve more into this process, continuous testing is achieved by testing 
all aspects of the application and environment, including, but not limited to, 
the following: 

■    Unit testing
■    Functional testing 
■    Performance testing 
■    Integration testing 
■    System integration testing
■    Security testing
■    User acceptance testing   

 In continuous testing, the biggest challenge is that some of the applications, 
services, and data sources that are required to perform some tests may not 
be available. Alternatively, even if they are available, the cost associated with 
using them may prohibit running tests on an ongoing basis. Furthermore, the 
costs of maintaining large test environments to serve all teams developing 
multiple applications in parallel can also be high. 

 The solution is to introduce the practice known as test virtualization  (see 
Figure   1-5   ). This practice replaces actual applications, services, and data 
sources that the application must communicate and interact with during the 
test, with virtual  stubs . These virtual instances make it possible to test appli-
cations for functionality, integration, and performance without making the 
entire ecosystem available. This virtualization can be utilized to perform the 
myriad types of testing listed earlier.  

    Figure   1-5:    Example of test virtualization

integrated with
Deploy what is ready,

virtualize the rest

Continuously test in
production-like environment

Test using real-world
network conditions

IBM UrbanCode Deploy

IBM Rational Test
Virtualization Server

Network virtualization

IBM Rational Test
Workbench

Databases Internal
messages

Test environments

Third-party
services

Simultaneously
test across

multiple test
stages

Dynamic infrastructure

Virtual components

Development Quality
assurance



DevOps Adoption Playbook26

c01.indd 12/30/16 Page 26

 When it comes to testing in the context of DevOps, in addition to continu-
ous testing,  there is also the practice of shift left testing, which I will examine 
in the “Shift Left” section ,  later in this chapter.

 Continuous Monitoring     In production, the Ops team manages and
ensures that an application is performing as desired and the environment is 
stable via continuous monitoring. Ops teams have their own tools to monitor 
their environments and running systems. Ultimately, the Ops team needs to 
ensure that the applications are performing, from the process level down 
to levels that are lower than what system-monitoring tools would allow. This 
requires that Ops teams use tools that can monitor application performance 
and issues. It may also require that they work with Dev to incorporate self-
monitoring or analytics-gathering capabilities right into the applications that 
are being built. This would allow for true end-to-end monitoring, continuously. 

 As the technology in this space has grown, there has also been the emer-
gence of tools and services that monitor application behavior and user senti-
ment, providing even fi ner-grained feedback that is useful to developers and 
the line of business. 

 In a nutshell, continuous monitoring requires the capture and analysis of 
metrics in four areas: 

■    Application performance 
■    System performance
■    Application user behavior 
■    User sentiment   

 It is, however, essential that the Ops teams not just gather this data but also run 
analytics on it. Furthermore, they must make their feedback consumable by their 
target audience, from deep technical Ops practitioners, like performance engineers, 
to non-technical line-of-business stakeholders. Data is of no value unless it is con-
sumable. Good data, and even better, good analytics on the data, can truly enable 
continuous improvement, as decisions at all levels of the delivery pipeline—from 
line of business, to developers, to testers—can now be data driven.       

    THE FUTURE OF FEEDBACK IS COGNITIVE  

 With the advent of cognitive capabilities like IBM Watson, tremendous 
capabilities are being brought to market in the area of predictive analytics



Chapter 1 DevOps: An Overview 27

c01.indd 12/30/16 Page 27

 Continuous Business Planning 
 The DevOps practice of  continuous business planning  focuses on the lines of busi-g
ness and their planning processes. Businesses need to be agile and able to react 
quickly to customer feedback. To achieve this, many businesses today employ 
Lean thinking techniques. These techniques involve starting small by identi-
fying the outcomes and resources needed to test the business vision or value 
and then continuously adapting and adjusting based on customer feedback. 

 To achieve these goals, organizations measure the current baseline state, 
fi nd out what customers really want, and then shift direction by updating 
their business plans accordingly, allowing them to make continuous trade-off 
decisions in a resource-constrained environment.

 There has been a lot of work done in this space to leverage techniques made 
popular by the Lean startup movement ,  and described by Eric Reis in his book,
The Lean Startup . The set of techniques, like delivering a minimum viable 
product,  that are introduced by Reis in his book are becoming popular with 
businesses wanting to experiment with new markets and new business models, 
without having to make complete plans for delivering complex IT systems for
these new areas. I will discuss this in more detail in Chapter   4  . 

 The latest addition to the arsenal of capabilities available to ensure that you 
are not just building the deliverable right, but also building the right deliv-
erables, is design thinking. Like Lean and Agile, design thinking has been 
used in industrial design for physical products for decades, in various levels 
of its evolution. It became mainstream with Peter Rowe’s 1987 book, aptly 
named Design Thinking.  What is new is its adaptation to IT and, specifi cally,
application design, with a focus on user experience. Design thinking will be 
explored in more detail in Chapter   4  .   

 Collaborative Development 
Collaborative development  was made popular by IBM, primarily as a practice
supported by its Collaborative Lifecycle Management (CLM)  tool suite. The 

of this feedback data. Data from user behavior, application behavior, and 
system behavior can now be analyzed, leveraging cognitive techniques 
to deliver predictive results, from predictive failure of systems, to pre-
dictive behavior of (happy or disgruntled) customers. Predictive analy-
sis can result in businesses acting preemptively to prevent outages and 
disgruntlement. 



DevOps Adoption Playbook28

c01.indd 12/30/16 Page 28

practice is essentially in place to ensure that organizations with large, distrib-
uted teams enable visibility between, and collaboration among, cross-function 
practitioners and teams of teams, across silos. This is achieved by ensuring 
two capabilities across the delivery pipeline:

■    Provision of access and visibility by practitioners not just to artifacts, 
work items, and metrics related to their functional area, but across 
all functional areas into which they need to have visibility (of course, 
access is managed by role and security needs).

■    Seamless handoff of artifacts from one practitioner or team to another. 
This should be possible across functional boundaries, and should not 
require any translation or transformation of the artifact, in order for 
it to be consumed.

 These capabilities can only be achieved by having a set of integrated tools 
utilized by practitioners and teams, across the delivery pipeline.

 If you look at DevOps as a cultural movement, where the fostering of com-
munication, collaboration, and trust are the core tenets you are striving for, 
then collaborative development may be seen as a core capability of DevOps. 
There is no better way to promote communication, collaboration, and trust 
than by enabling practitioners to communicate with other practitioners using 
a common tool (which is not email). 

 This can be achieved using tools such as Slack or Rational Team Concert, 
which are becoming popular. The collaboration can be further enhanced by 
leveraging in-tool collaboration around work items, enabling practitioners to 
move work items between each other, add notes, attach code change sets, and 
have visibility into what other team members have worked on, or are currently 
working on, that impacts their own work.

 Speaking of visibility, nothing fosters trust more than full visibility. If a 
tester has visibility into what a developer is unit testing, the developer knows 
that she cannot commit code without proper unit testing.     

NOTE  Total visibility drives total trust.  

  At our company, we will no longer require fi ling expense claims. You can spend
whatever you want and we will reimburse you. No questions asked. All we ask you to 
do is to post your receipt on an open Wiki page which every employee in the company
can see. Trust me, you will spend wisely. 

 —CEO of a Silicon Valley startup



Chapter 1 DevOps: An Overview 29

c01.indd 12/30/16 Page 29

 Shift Left 
Shift left  as a concept also has its origins in Lean. The basic idea here is to 
improve quality by moving tasks that can impact quality to as early in the 
lifecycle as possible. This is done across the lifecycle. The underlying premise 
is that the earlier quality issues are caught, the earlier their root cause can be 
identifi ed and addressed.     

NOTE  There is a well-known axiom in the QA space that if it takes one 
cent to catch and fi x a defect or problem in the requirements stage, it will 
cost ten cents to fi x the same in development, one dollar to fi x in testing, 
and ten dollars to fi x in production (Rice, 2009).   

 These are, of course, illustrative numbers and are not based on some 
statistical analysis of actual costs; however, the logic is sound. Shifting left 
the tasks that can identify defects and problems early saves money and 
improves quality.

 From a DevOps culture perspective, you can also look at shift left as an 
approach used to improve collaboration and communication by engaging prac-
titioners from functions that are to the right in the delivery pipeline, earlier 
in the lifecycle.    

    DEVOPS OR COUPLES’ COUNSELING?  

 I had been asked by the architect on the account to meet with the Director 
of Dev and the Director of Ops for a client of his. We met for lunch, with 
the architect and me on one side of the table and the two directors on the 
other. I knew right away that all was not well on their home front. They 
were leaning away from each other. The Dev director complained about 
how Ops was not agile, and the Ops director said that Dev sent them 
garbage that would not even run without crashing servers. They even 
looked at their hands while speaking about the other. I felt I was in 
couples’ counseling. 

 The solution plan I recommended to them was to begin with small steps, 
by shifting left when Ops was engaged. Their main challenge was a total 
lack of visibility between the Dev and Ops teams, till it was time to deploy 
to production. The suggestion I made was to pick one critical project and,

continued



DevOps Adoption Playbook30

c01.indd 12/30/16 Page 30

 For maximum impact on quality improvement, there are two major areas 
where shift left needs to be adopted in the delivery pipeline. 

  Shift Left Testing 
Engaging testers early, right from the requirements stage, better prepares them 
for what they will need to test, and in turn, they can also ensure that the 
requirements being written are testable. The goal, however, is to start testing 
earlier in the lifecycle. The practice of shift left testing ,  as it is gaining traction
in the industry, is focused above all on ensuring integration testing earlier 
in the lifecycle. While other forms of testing (as described in the section,
“Continuous Testing”) are important to shift to earlier in the lifecycle, the 
value of shifting integration testing earlier is the highest.

As teams practice continuous integration, testing those integration points 
to identify integration and architectural defi ciencies early has a signifi cant 
impact on quality. What is the use of having perfectly functioning and per-
forming services or components, if they don’t work with other services and 
components when integrated? In order to achieve integration testing early in 
the lifecycle, test virtualization becomes a prerequisite, as all the services or 
components required in order to complete testing may not be available when 
needed. Test virtualization enables the stubbing out of these unavailable ser-
vices with virtual instances, enabling integration—and other—testing early in 
the lifecycle, thus achieving shift left testing. You need to shift left to achieve 
the proverbial “Test Early, Test Often” goal.

  Shift Left Operations Concerns 
As described in the anecdote at the beginning of this section, the Ops team is 
usually seen as a separate silo in the delivery lifecycle. They are typically engaged 
at the beginning of projects, as operational requirements are determined, and 
then left disconnected from the Dev efforts, till it comes time to start operational 

once a week, have the Ops team send one resource to the Dev team’s daily 
standup meeting and have them just listen, without needing to engage, 
and see if things improved. I had a follow-up meeting with the same two 
directors less than three months later at a conference. They were happy to 
report that the Ops team now had a presence at the daily standup meeting, 
and Ops not only listened, but actively participated, sharing their progress, 
plans, and blockers. Ops engagement had shifted  l eft. They had achieved 
collaboration. 

continued



Chapter 1 DevOps: An Overview 31

c01.indd 12/30/16 Page 31

readiness, before handoff to production. Engaging Ops early in the lifecycle and 
having them participate in the Dev-test cycle prevents challenges that manifest 
during deployment to production, if Ops is engaged late. Engaging Ops early 
makes them aware of what is being delivered and how it will result in changes 
to Ops environments, as the needs may have deviated from the as designed state.

Engaging Ops early also helps to ensure that the production-like envi-
ronments Dev and test are deploying to during Dev-test, are truly still 
 production-like and have not drifted away from real production environments. 
Lastly, engaging Ops early also ensures that the deployment processes and 
procedure being developed by Dev teams are consumable by Ops. In the pre-
DevOps days, one of the biggest challenges with deployment to production 
on a release weekend was the fact that deployment processes had never been 
used or tested by Ops before. Ensuring that these processes are tested over 
and over again as code is deployed to non-Prod environments—early and 
often, using the same processes and procedures that Ops will use—ensures 
that they will work in production.

A signifi cant impact of shifting left is the change that happens in the roles 
of the practitioners. These changes happen subtly and over time, resulting 
in unintended consequences when it comes to skills needed and, eventually, 
headcount distribution across the delivery pipeline.

As responsibilities shift left, the role of the practitioner changes from that of a
doer to that of ar  a service provider. Testers may no longer be the ones doing the tests;
instead, they become providers for test automation, which can be self-served by 
the developers. Similarly, for Ops practitioners, they are no longer the ones run-
ning around building, provisioning, and de-provisioning servers. Instead, they 
build server images, manage server instances, and respond to issues. Dev, test, 
and other practitioners provision, confi gure, and de-provision instances of serv-
ers, on demand, leveraging the self-service access provided and managed by Ops 
teams. This raises the abstraction at which the testers and Ops now work and per-
form. Consequently, it impacts the skills they need, and the numbers of resources 
that may be needed. 

 Architecture and Risk Mitigation    
    ARCHITECTURAL THINKING  

 When I joined Rational Software in the mid-’90s, the focus on architecture 
was imbibed into my thinking. With the methodology “Three Amigos” 
Grady Booch, James Rumbaugh, and Ivar Jacobson developing UML   

continued



DevOps Adoption Playbook32

c01.indd 12/30/16 Page 32

 The area of application delivery that is fi nally beginning to get the attention 
it needs, in order to get the full promise of DevOps realized, is architecture. 
You cannot achieve continuous delivery with large, monolithic systems. While 
architectural refactoring was largely ignored in the early days of DevOps, it is 
going mainstream now, mainly thanks to the evolution of microservices (or 
what are referred to as  12-factor apps). s 5

 While the debate is still ongoing over whether microservices can truly 
deliver the value for every kind of application, the attention that microservices 
have received has revived a much-needed focus on architecture. If you truly 
understand 12-factor apps, their focus on web apps and Software as a Service 
is self-evident. They may not add value to apps and systems that are large, 
complex, data-heavy legacy systems, without expensive refactoring of code 
and data. That investment is viable and necessary only if those systems are 
being modernized into cloud-native apps. Microservices and 12-factor apps 
will be discussed in more depth in Chapter   5  . 

 The architectural transformation needed to achieve continuous delivery ,yy
irrespective of whether microservices are used, is to enable the delivery of 
changes in small batches—thus, reducing batch size. A batch  is the number 
of changes being delivered in each cycle or sprint. These changes include any 
and all changes—code, confi gurations, infrastructure, data, data-schemas, 
scripts, deployment processes, and so on—that encompass a full Dev-to-Ops 
cycle. (Remember, not all changes are deployed to production every time.) 
Reducing batch size is imperative to do the following:

■    Reduce risk
■    Improve quality 
■    Enable faster delivery   

 These benefi ts are self-evident. The most effective way to manage risk and 
quality, while increasing speed, is to reduce the batch size in each iteration 
or  sprint . This is a mind shift to deliver smaller, more frequent new versions. 

 5 http://12factor.net

(Jim joined Rational Software just before I did. We still had Booch’s Clouds 
for Objects) and Philippe Kruchten developing his 4+1 View Model of 
Software Architecture (Kruchten, 2002), architectural thinking was, and 
is, in my bloodstream.

continued



Chapter 1 DevOps: An Overview 33

c01.indd 12/30/16 Page 33

As you reduce batch size, there is less to test and validate in each cycle; there 
is less to deploy; and, because there is less change, there is lower risk. If chal-
lenges or issues are identifi ed, their impact is also limited by the smaller batch 
size, making mitigation easier, via fi xes or rollbacks.   

 Continuous Improvement 
 At the end of the day, the heart of DevOps lies in achieving continuous improve-
ment. No matter where you start, at whatever maturity level, adopting DevOps is
not a one-time project you undertake; it is an ongoing effort. The goal is to ulti-
mately become a learning organization, as envisioned by Peter Senge in the ‘90s
(David A. GarvinAmy C. Edmondson, 2008). In the DevOps context, a  learning
organization  is constantly learning from what it just delivered, and continuously 
improving. What do you improve? There are three areas of improvement:

■ The application.  Are the application changes that you just delivered 
functioning and performing as desired? What can you learn from the 
continuous feedback coming in to improve the app in the next iteration? 

■ The environment.  Are the environments the application is running on 
performing and behaving as desired? Are the service level agreements 
(SLAs) being met? What can you learn from the continuous feedback 
that is coming in to improve the environments in the next iteration? 

■ The process.  What can you learn from the experiences of the practi-
tioners and stakeholders to improve the delivery processes themselves 
in the next iteration?

 While most organizations have efforts ongoing to continuously improve the
application being delivered, fewer organizations have the same level of rigor 
for continuously improving the operational environments, based on real met-
rics. Far fewer organizations have programs in place to continuously improve 
delivery processes. This is the case despite movements like Lean, and their 
incarnations like Agile’s Scrum and the broader Lean startup,  which have built 
into them what is needed to become a learning organization or team, and to 
be constantly improving at a process level.   

 Metrics

   If you can’t measure it, you can’t manage it.

 —Attributed to Peter Drucker   



DevOps Adoption Playbook34

c01.indd 12/30/16 Page 34

 Irrespective of whether Peter Drucker actually said this, or of whether it 
is even accurate (Kaz, 2013), the fact remains that in order to manage and 
consequently improve something, you need to be able to measure some 
critical metrics: Key Performance Indicators (KPIs). You will need both 
a baseline measurement of these KPIs, marking the starting point, and 
ongoing measurements to see if improvement is indeed occurring. Not 
only do you need to measure that the needle is moving—and in a positive
direction—but you also need to be able to understand cause and effect: 
which actions result in improving KPIs. If you are making several changes 
to people and processes, knowing which changes are actually resulting in 
improvement is critical.   

 Business Drivers 
 To know which metrics to measure and improve, you have to know the business 
drivers. What business impact are you striving for? Change, and even improvement 
for the sake of improvement, does not make good business sense. If you are going 
to invest in transforming an organization by adopting DevOps, knowing what 
business drivers need to be addressed is a prerequisite. It helps to determine which 
metrics matter, and thus, which capabilities to focus on and invest in. Focusing 
on speed alone means that you are taking a very myopic view of the world.

 As a medical device manufacturer, quality always trumps speed for us. We would 
rather be late in releasing a device, than ever have to issue a recall. As you can
imagine, recalling installed pacemakers is not a good situation for anyone.

 —Director of QA at a medical device manufacturer   

 What KPIs or metrics should you measure and strive to improve? As I 
mentioned earlier, it all depends on business drivers. What are the lines of 
business asking you, the IT organization, to improve? (This may vary by line 
of business, even within the same organization.) Is it speed, quality, agility, 
ability to innovate, or cost reduction? Is it something at an even higher level, 
such as the ability to deploy new business models or capture new markets? Is 
it something at a lower level, such as reducing the mean time between failures 
(MTBF) ,  or improving mean time to resolve (MTTR); or is it just lowering 
bug density in the code? Is it being able to develop a partner ecosystem with 
APIs? Is it reducing the time it takes to get all the approvals IT needs to 



Chapter 1 DevOps: An Overview 35

c01.indd 12/30/16 Page 35

deliver a new app? Is it being able to attract more tech talent by participating 
in open source projects? (Everyone knows that it is the cool companies that 
contribute to open source projects.)

 Here is a subset of core DevOps metrics that a division at IBM used to mea-
sure the impact of DevOps adoption. These metrics, shown in the following 
list, were all determined by the business drivers that this group needed to have 
an impact on (speed to market, market share, and improving profi tability of 
the products they delivered).

■    Project initiation
■    Groomed backlog
■    Overall time to development 
■    Composite build time
■    Build Verifi cation Test (BVT) availability
■    Sprint test time
■    Total deployment time 
■    Overall time to production 
■    Time between releases
■    Time spent—innovation/maintenance (percentage)      

 DevOps: Culture 

   “Everyone is responsible for delivery to production.” That is what the T-shirt
says. I am giving it to everyone who is even remotely connected to my project. Of 
course, the analysts, designers, developers, testers, ops folk assigned to the project 
get it. But so do the people on the enterprise architecture team, the application 
architecture team, and the security guys. The people in the PMO defi nitely get 
one. I gave one to the janitor who has our fl oor—if the restroom is busted and 
an engineer wastes 20 minutes to use one on another fl oor, the janitor is now
responsible for a delay in deployment to production. I gave one to the coffee
machine maintenance guy. If the coffee machine is out of pods and we send one
of the interns over to Starbucks, the coffee machine maintenance guy is now 
responsible for a delay. I FedEx’ed one to our CFO. If she can’t manage the budget
and furloughs even one of my contractors this December, like she did last year, she 
is now delaying deployment to production. The CIO gets it to keep my team out 
of email-jail. The CTO gets it for not delaying technology approvals. Heck, if my 
wife had not convinced me that it was a bad idea, I would have handed it to every



DevOps Adoption Playbook36

c01.indd 12/30/16 Page 36

“signifi cant other” who showed up at the company picnic. That, my friend, is what 
a DevOps culture means to me.

—VP at a large insurance company, defining DevOps culture   

 As I mentioned before, DevOps, at its heart, is a cultural movement. So, how 
do you change culture? Ultimately, even after all the process improvement and 
automation that can be introduced in an organization, the organization can 
only succeed at adopting the culture of DevOps if it is able to overcome the 
inherent cultural inertia. Organizations have inertia—an inherent resis-
tance to change. Change is not easy, especially in large organizations where 
the cultural may have had years to develop and permeates across hundreds, 
if not thousands, of practitioners. These practitioners, as individuals, may 
appreciate the value of adopting DevOps, but as a collective, they resist change 
and thus have inertia. Overcoming this inertia is key. Cultural inertia can be 
exhibited by the following statements: 

   “This is the way we do things here.” 
   “Yes, but changing X is not in my control.” 
   “Nothing is broken in our processes. Why should we change?”
   “You will need to talk to Y about that; WE cannot change how 

THEY work.”
   “Management will never allow that.”
   “Don’t you know we are in a regulated industry?”
   “DevOps is the new fl avor of the month. Let’s see how long this effort lasts.”   

 Over time, organizations develop behaviors; teams and groups divide up 
actions and responsibilities along organizational lines; checks and balances are 
established in the name of governance but are not related to true governance 
at all; processes exist, but no one knows why—they are  just there  ; reports are
produced that no one reads anymore, but no one is willing to do away with 
them; bad things happened in the past and resulted in approval requirements 
to ensure they never happen again; and so on. All of these behaviors build up 
inertia in an organization’s culture. 

 What kind of culture does DevOps adoption need? One of trust, com-
munication, and collaboration. Adopting DevOps practices alone will not 
foster such a culture, nor will the practices take root and become ingrained 
in an organization’s DNA unless such a culture begins to develop. It is a 



Chapter 1 DevOps: An Overview 37

c01.indd 12/30/16 Page 37

chicken-and-egg situation that requires a concerted effort to overcome 
the cultural inertia. This cultural inertia can be overcome by addressing 
three areas:

  1.   Visibility.  I discussed this at length earlier in this chapter, and its value 
cannot be ignored. There is no greater cause of mistrust than not hav-
ing visibility into teams or practitioners that you have to engage with, 
and you are not sure what they did with the artifacts they are handing 
off to you.

  2.   Effective communication.  Email and voicemail need to be done away
with as sources of communication in a DevOps environment; so do 
project plan and status documents, slide decks, and spreadsheets. 
Communication needs to be live and peer-to-peer, not via email or tick-
ets, or done through management. One practitioner should be able to 
communicate with any other practitioner she needs to, without having 
to go through a chain of command. These live communications should 
replace email, status updates, and collaboration, and they should be 
streaming. Tools like Slack, HipChat, Yammer, and Wrike are becoming 
very popular as a result.

  3.   Common measurements.  Out of all that I’ve mentioned, the area that 
causes the most inertia is a lack of right measurements for practitioners 
and teams. People will not change their behaviors, unless the way they 
are being measured matches the new, desired behaviors. Furthermore, 
to deliver true collaboration and a sense of a single team working toward 
a singular set of goals across silos, these measurements of success 
should be the same among all practitioners. Dev, test, and Ops need to 
have common or at least similar metrics that their success is measured 
on. Everyone—and I mean everyone—has to be made responsible for
deploying to production.

 Summary 
 DevOps is now mainstream. While that is a given, not everyone has come
to the same understanding of what DevOps is and, more importantly, how it 
should be adopted. The right answer is, unfortunately, “It depends.” And it 
does. It depends on the business goals you are striving for; it depends on what 
the current maturity of practices is; and it depends on the rate of change your 



DevOps Adoption Playbook38

c01.indd 12/30/16 Page 38

organization is able to absorb. Change has to be adopted to achieve increased 
business value, but not at its expense. Any disruption results in dips in pro-
ductivity, and that is also true for DevOps adoption. 

 Adopting DevOps is a journey that has to begin with the fi rst step of identi-
fying point A (your current state) and point B (your business goals). Once you 
have identifi ed these points, you can develop an adoption roadmap to adopt 
the right practices and capabilities (the right plays) described in this chapter. 
How do you go about creating such an adoption roadmap? That is the topic 
of the next chapter.


