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Beginnings

1.1 A naive approach to the natural numbers

1.1.1 Preschool: foundations of the natural numbers

One of the first things we learn in mathematics is the counting chant: one,
two, three, four, five . . . . We quickly learn how to count to higher and higher
numbers, and finally, the day comes when we realize that we can continue on
counting forever. At that point, believe it or not, we have all the necessary
assumptions we need to discover all of mathematics. The counting numbers
are often calledwhole numbers, butmathematicians call them natural numbers.
We can express our childhood discovery in four adult principles:

• There is a unique first natural number.
• Every natural number has a unique immediate successor.
• Every natural number except the first has a unique immediate predecessor.
• Every natural number is an eventual successor of the first.

Algebra begins when we introduce symbols to express these principles. Now
there is a unique first natural number; we will write it as 1. Every natural num-
ber has a unique immediate successor.There are many choices for denoting the
successor of a natural number. In a more rigorous course on the foundations of
mathematics, we might write the successor of a natural number n as s(n). We
will choose a notation that anticipates later definitions.The successor of a natu-
ral number n will be written as n + 1. Notice that this is not addition (yet); n + 1
means “the successor of n,” no more and no less. Every natural number except
the first has a unique immediate predecessor. Again, we choose a notation with
an eye on what is coming later. If n ≠ 1, the predecessor of a natural number
n will be written as n − 1. This is not subtraction; it is simply the symbol for
the predecessor. The relationship between successors and predecessors can be
described using this notation. Notice that 1 − 1 is not defined because the first
number does not have a predecessor.
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4 1 Beginnings

Remark. If n is a natural number, then (n + 1) − 1 = n.

Remark. If n is a natural number and n ≠ 1, then (n − 1) + 1 = n.

These are our first algebraic results. Note that they are nothing more than
symbolic representations of the meanings of the words “successor” and “pre-
decessor.” Thus, (n + 1) − 1 = n is just a symbolic statement that means “the
predecessor of the successor of a natural number n is just the number n.”Thus,
(n − 1) + 1 = n means “the successor of the predecessor of a natural number
n other than the first number 1 is just the number n.” That is all algebra really
is: the encoding of ideas expressed in words into symbolic representations of
those ideas.
The fourth principle is the hardest to precisely express in symbols. However,

in this first chapter, we are just setting some groundwork to make later logi-
cally rigorous mathematics easier. We are willing to forgo some rigor to lay this
groundwork. To say this more clearly, we are not going to restrict ourselves to
completely logical proofs and definitions until the end of this chapter.
The fourth principle states: Every natural number is an eventual successor of

the first. That is, every natural number is the successor of the successor of the
successor of… the successor of 1.The loose notation for this is: if n is a natural
number, then n can be written as

n = (((… ((1 + 1) + 1) +… + 1) + 1) + 1. (1.1)

The use of the ellipsis in this bit of algebra kills any hope of making an unam-
biguous statement. It should be clear what this means: n is made up of a series
of (+1)s, each of which signals the successor of a previous number. This is not
the best way to begin a course in rigorous mathematics, and soon we will need
to replace it with something else.
There is one more bit of notation we set for dealing with these basic princi-

ples. We say m is an eventual successor of n if

m = (((… ((n + 1) + 1) +… + 1) + 1) + 1. (1.2)

Again, the use of ellipsis kills any rigor this ideamight have.Whenm is an even-
tual successor of n, we say “m is greater than n”; and we write m > n. Actually,
wemight prefer tomove smaller to larger andwrite n < m and say “n is less than
m.” This leads to some algebra, and a careful name for an important algebraic
property:

Remark. Let k,m and n be natural numbers. If n < m and m < k, then n < k.

We can refer to this remark by saying, “The order of the natural numbers is
transitive.”
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This remark is true because n < m means

m = (((… ((n + 1) + 1) +… + 1) + 1) + 1, (1.3)

and m < k means

k = (((… ((m + 1) + 1) +… + 1) + 1) + 1. (1.4)

Equality means that m is exactly the same as the expression that follows
the equal sign. So we can “substitute” that expression for the m in the later
equation.

k = (((… ((… (n + 1)… + 1) +… + 1) + 1) + 1. (1.5)

So, indeed, k is an eventual successor of n.
Finally, suppose thatwe have natural numbersn andm. Sincewe have not said

otherwise, they could be the same.Thus, it might be that n = m. Both numbers
are eventual successors of 1. If n ≠ m, one of the two must be an eventual suc-
cessor of 1 that appears before the first.Thus, either n < m or m < n.This leads
to our final observation about the order of the natural numbers and another
mathematical term.

Remark. If n andm are natural numbers, then exactly one of the followingmust
be true: n < m; m < n; or n = m.

We refer to this remark by saying, “The order on the natural numbers has
trichotomy.”
Thus, if n < m is not true, then either m < n or n = m. We have notation that

allows us to abbreviate this further. We write n ≤ m to mean either n < m or
n = m. Similarly, we write n ≥ m to mean either n > m or n = m. There is no
notational shortcut for saying either n > m or n < m other than n ≠ m.

1.1.2 Kindergarten: addition and subtraction

The first use we learn for numbers is for counting things. We learn names and
symbols for all the eventual successors of 1.

1 + 1 = 2. (1.6)
(1 + 1) + 1 = 3.

((1 + 1) + 1) + 1 = 4.
(((1 + 1) + 1) + 1) + 1 = 5.

· · · · · · = · · ·

In the early grades, we add the two numbers 2 and 5 by creating two sets (say,
of marbles), one with 2 marbles and another set with 5 marbles. We combine
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the two sets into one and count to find a total of 7 marbles. We learn that the
notation for this is 2 + 5 = 7.

2 = 1 + 1; (1.7)
5 = (((1 + 1) + 1) + 1) + 1;

2 + 5 = (1 + 1) + ((((1 + 1) + 1) + 1) + 1)
= ((((((1 + 1) + 1) + 1) + 1) + 1) + 1)
= 7.

While amain goal in elementary school arithmetic is learning the algorithm for
adding natural numbers, this would be pointlesswithout a few years of counting
and combining so that we know what the addition algorithm does for us. This
algorithm is a theoretical method that allows us to avoid long counts.We even-
tually learn how to find that 27 + 35 = 62 without knowing what objects we
are trying to count. The concrete problem of counting combined sets becomes
the abstract problem of adding numbers. We learn what addition is mostly by
repeated counting. Later, we learn a shortcut that uses an arithmetic procedure.
But addition has never been taught by someone defining it for us, until now.
As adults we need to invent (or define) an operation on natural numbers

where two natural numbers n and m are combined to produce a new natural
number. We denote this new number as n + m. We define this new number by
writing n and m as eventual successors of 1:

n = (((… ((1 + 1) + 1) +… + 1) + 1) + 1; (1.8)
m = (((… ((𝟏 + 𝟏) + 𝟏) +… + 𝟏) + 𝟏.

Then

n + m = [(((… ((1 + 1) + 1) +… + 1) + 1) + 1] (1.9)
+ [(((… ((𝟏 + 𝟏) + 𝟏) +… + 𝟏) + 𝟏]

= (((… ((1 + 1) + 1) +… + 1) + 1) + 1)
+ · · · + 𝟏) + 𝟏) + 𝟏) +… 𝟏) + 𝟏.

The imprecision of the ellipsis almost renders this definition useless, but the
bold 1s help a bit. In a course on the rigorous foundations of mathematics,
we would need to do much better than this. Luckily, years of combining sets
of marbles allows us to realize what we are trying to say in this study with
the aforementioned definition. This almost unintelligible definition does lead
to one very important algebraic fact. It is clear that the definition of addition
is just the rearrangement of the parenthesis around 1s and +s. Thus, we have
an algebraic fact about the addition of counting numbers: parentheses do not
matter.

Remark. If k, m, and n are natural numbers, then (k + n) + m = k + (n + m).
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We refer to this by saying, “Addition of natural numbers is associative.”
A few other algebraic facts follow just as quickly.

Remark. If m and n are natural numbers, then n < n + m.

We refer to this by paraphrasing Euclid, “The whole is greater than the part.”

Remark. If k, m, and n are natural numbers and n < m, then n + k < m + k.

We refer to this by saying, “Addition of natural numbers respects the order.”
If we remember our lessons from counting blocks, we realize that it doesn’t

make a difference which set of blocks we start with when we combine the two
sets – the total always comes out the same. We can turn this observation into
another useful algebraic fact.

Remark. If m and n are natural numbers, then m + n = n + m.

We refer to this by saying, “Addition of natural numbers is commutative.”
The first step after learning the arithmetic operation of addition is the intro-

duction of a new operation, subtraction. At first we learned it as the solution
to an addition puzzle, such as “What number added to 5 gives 7?” We all recall
the problem: Fill in the box

5 + [ ] = 7. (1.10)

Only later, after we understood this type of question better, did we learn a
procedure for subtracting. Soon we learned that there were two arithmetic
operations: addition and subtraction. Asmathematicians, wewill not talk about
subtraction as its own operation, but rather look at it in terms of addition. It is
not that there is anything wrong with thinking of subtraction as its own oper-
ation, but just that it will help later algebraic ideas to try to keep the language
focused on addition. Subtraction will still be a possibility, but we will not fully
admit it, but rather refer to the following property of the natural numbers:

Remark. If n and m are natural numbers with n < m, then there exists a unique
natural number k so that m = n + k.

We refer to this by saying, “There is a conditional subtraction on the natural
numbers.”
We say that this subtraction is conditional because we cannot subtract the

natural number n from m unless n < m (and get a natural number as a result).
Of course, one of our first orders of business will be to create the integers as
a larger collection of numbers that removes this condition on subtraction. As
for notation, it is no surprise that we will eventually write k as m − n. Thus,
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the sign “−” for subtraction is still there. For at least a while, we will not take
advantage of this notation because we are trying to avoid treating subtraction
as an operation. The reason for this should be clearer when we start to discuss
the integers where things work better algebraically.
There are two other “subtraction” properties that we will use frequently.

Remark. If k, n, and m are natural numbers with n + k = m + k, then n = m.

Remark. If k, n, and m are natural numbers with n + k < m + k, then n < m.

Rather than talking about these in terms of subtraction, we will refer to these
as “cancellation properties of addition.”

1.1.3 Grade school: multiplication and division

Once we know that we can add any two natural numbers, we can use that
to invent a new operation, multiplication. Two natural numbers n and m are
combined to produce a new natural number. We denote this new number as
n ⋅ m or nm. We define this new number by writing n as eventual successor
of 1:

n = (((… ((1 + 1) + 1) +… + 1) + 1) + 1. (1.11)

Then

n ⋅ m = (((… ((m + m) + m) +… + m) + m) + m. (1.12)

Again, because of the ellipsis, the only reason this might be considered a defi-
nition is because we already know what it means: to find n ⋅ m add m to itself n
times. For example,

3 × 7 = (7 + 7) + 7. (1.13)

As we move on to a discussion of the properties of multiplication, we lose any
pretense of rigor. We need to refer to geometric intuition to justify our obser-
vations. Luckily, we spent endless hours playing with various objects in the
elementary grades, developing this intuition just to understand the multipli-
cation properties. A geometric representation of n ⋅m is the number of objects
arranged in a rectangle n blocks wide and m blocks long. A geometric repre-
sentation of (n ⋅ m) ⋅ k is the number of objects arranged in k rectangles each
n blocks wide and m blocks long and stacked into a 3-D box. If we turn an n
by m rectangle on its side, it turns into a rectangle that is m objects wide and n
objects long. So we have our first algebraic property of multiplication.

Remark. If m and n are natural numbers, then m ⋅ n = n ⋅ m.
We refer to this by saying, “Multiplication of natural numbers is

commutative.”
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If we pile k of these rectangles one on top of each other, we get a box n blocks
wide, m blocks long, and k blocks high. The number of blocks in the box is
k ⋅ (n ⋅ m). But if we stack m walls of rectangles that are m blocks long and k
blocks high, we get the same box.The number of blocks in the box is m ⋅ (n ⋅ k).
But by commutativity of multiplication, we can say

Remark. If k, m and n are natural numbers, then (k ⋅ n) ⋅ m = k ⋅ (n ⋅ m).

We refer to this by saying, “Multiplication of natural numbers is associative.”

The next observation follows directly from the definition of multiplication.

Remark. If n is a natural number, then n ⋅ 1 = 1 ⋅ n = n.

We refer to this by saying, “1 is a multiplicative identity.”
If n < m, then m is an eventual successor of n, and we can write

m = (((… ((n + 1) + 1) +… + 1) + 1) + 1 (1.14)
= (… (.(𝟏 + 𝟏) + ...𝟏) +… + 1) + 1) + 1.

So

m ⋅ k = (… (.(k + k) + ...k) +… + k) + k) + k (1.15)
= (… (kn + k)… + k) + k) + k.

So we know k ⋅ n < k ⋅ m. Thus,

Remark. If k, m, and n are natural numbers and n < m, then n ⋅ k < m ⋅ k.

We refer to this by saying, “Multiplication of natural numbers respects the
order.”
Notice that we have defined three things for the natural numbers: an order

<, and two operations: addition + and multiplication ⋅. We know how addition
interacts with the order. Addition respects the order. We know how multipli-
cation interacts with the order; multiplication respects the order. Next, we see
how multiplication interacts with addition. We leave a geometric justification
of this as an exercise.

Remark. If k, m, and n are natural numbers, then k ⋅ (n + m) = k ⋅ n + k ⋅ m.

We refer to this by saying, “Multiplication of natural numbers distributes over
addition.”
If we were reluctant to talk about subtraction of natural numbers simply

because to subtract n from m we must know n < m, we are definitely going to
wait beforewe discuss division of natural numbers. Division of natural numbers
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is a much more complicated procedure involving remainders as well as quo-
tients. We will get to it, but not just now.
Still we would like some division-like algebraic results to make things easier.

We have two painfully obvious observations:

Remark. If k, n, and m are natural numbers with n ⋅ k = m ⋅ k, then n = m.

Remark. If k, n, and m are natural numbers with n ⋅ k < m ⋅ k, then n < m.

We refer to either of these as “cancellation properties of multiplication.” Be
warned, however, these are very dangerous. We are basically going to find safer
replacements for them as soon as we can.
These are “painfully” obvious because while they are quite obvious after

years of practicing arithmetic, the justifications that they are correct are rather
painful to follow. There are a few ingredients in this justification: trichotomy,
the results of multiplication are unique, multiplication respects order, and
logical reasoning. Let us give a justification a try.
We know that the results of multiplication are unique; however we multiply

two numbers m and k, the result will always be the same.Thus, we can state this
algebraically as: if n = m, then for all natural numbers k, we have n ⋅ k = m ⋅ k.
We really want to be clear about what this says.

If it is true that n = m, then it absolutely must be true that n ⋅ k = m ⋅ k.

(We are just being resolute about our earlier statement.) But then, if we ever see
that n ⋅ k = m ⋅ k is false, then there is no way that n = m could be true. This is
to say:

If n ⋅ k ≠ m ⋅ k, then n ≠ m.

Let us remember this for now.
Because multiplication respects order, we know that if k, m, and n are natural

numbers and n < m, then n ⋅ k < m ⋅ k. So assuming that k,m, and n are natural
numbers, if it is true that n < m, then it absolutely must be the case that n ⋅ k
< m ⋅ k. So as before, if we ever see that n ⋅ k < m ⋅ k is false, then there is no
way that n < m could be true. So

If n ⋅ k < m ⋅ k is not true, then n < m is not true either.

But by trichotomy, saying that n ⋅ k < m ⋅ k is false is the same as saying n ⋅ k
≥ m ⋅ k. By basically the same argument, we can also say:

If m ⋅ k < n ⋅ k is not true, then m < n is not true either.

Now we can justify our first statement that, if n ⋅k = m ⋅k, then n = m. Sup-
pose it is true that n ⋅ k = m ⋅ k. Then by trichotomy, both (n ⋅ k < m ⋅ k) and
(m ⋅ k < n ⋅ k) are not true. (Trichotomy says exactly one must be true.) By our
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two observations, we know (n < m) is not true, and (m < n) is not true. But
trichotomy leaves only one possibility. It must be that n = m. Thus, as we said
in our second remark: if k, n, andm are natural numbers with n ⋅ k < m ⋅ k, then
n < m.
Next, we justify our second statement that, if n ⋅ k < m ⋅ k, then n < m. Sup-

pose n ⋅k < m ⋅k. Then by trichotomy, both (n ⋅k = m ⋅k) and (m ⋅k < n ⋅k) are
not true. By the first observation, we know that (n ⋅k ≠ m ⋅k) impliesn ≠ m.The
last observation says that (m ⋅ k < n ⋅ k) is not true implies that (m < n) is not
true. But again, trichotomy leaves only one possibility. It must be that n < m.
It was a bit painful to follow these justifications of those simple remarks, but

we do now see that they are simply consequences of trichotomy and a unique
result frommultiplication. One of our goals is to create an algebraic and logical
language that makes arguments such as this easier to understand.
There is only one last remark we need to make about the natural numbers.

Remark. Let n and m be natural numbers with n ≤ m ≤ n + 1, then either
n = m or m = n + 1.

We refer to this by saying, “The natural numbers are discrete.”
Again, the justification for this depends on the statements in the earlier

remarks. Suppose n < m < n + 1. Then by subtraction (whoops), we know
that there is a natural number k so that m = n + k. But then n + k = m and
m < n + 1. So by transitivity, n + k < n + 1. But we have a cancellation rule for
addition; so k < 1. But since every natural number is an eventual successor of
1 and trichotomy holds, this cannot happen.
The purpose of algebra is to help make all these justifications easier to

manage.

1.1.4 Natural numbers: basic properties and theorems

We have just reviewed several years of elementary school arithmetic so that we
can identify and name various basic algebraic properties of the natural num-
bers. They are as follows:

• There is a first natural number, which we call 1.
• There is an order on the natural numbers.
• The order is transitive.
• The order has trichotomy.
• For any two natural numbers n and m, there is a unique natural number

n + m.
• This addition is associative.
• This addition is commutative.
• If m and n are natural numbers, then n < n + m.
• If k, m, and n are natural numbers and n < m, then n + k < m + k.
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• If n andm are natural numbers with n < m, then there exists a unique natural
number k so that m = n + k.

• If k, n, and m are natural numbers with n + k = m + k, then n = m.
• If k, n, and m are natural numbers with n + k < m + k, then n < m.
• For any two natural numbers n andm, there is a unique natural number n ⋅ m.
• This multiplication is associative.
• This multiplication is commutative.
• The natural number 1 is a multiplicative identity.
• If k, m, and n are natural numbers and n < m, then n ⋅ k < m ⋅ k.
• If k, n, and m are natural numbers with n ⋅ k = m ⋅ k, then n = m.
• If k, n, and m are natural numbers with n ⋅ k < m ⋅ k, then n < m.
• If m and n are natural numbers and n ≤ m ≤ n + 1, then either m = n or

m = n + 1.
• Multiplication distributes over addition.

1.2 First steps in proof

There are, of course, many more true facts about the natural numbers, but they
all should follow from these basic properties. We will state many further facts
about these numbers as theorems. We will prove these theorems by using the
aforementioned basic properties. If our justifications for these properties are
accepted and are correct, then the theorems we prove by using them must be
perfectly true. Granted our justifications of these properties are a bit dicey, but
we are going to have to start being rigorous somewhere, and it will be easier
starting by assuming a list of basic properties such as those aforementioned.
Let us now use these properties to prove something.

1.2.1 A direct proof

The first proof we will give is called a direct proof . Suppose that we wish to
prove a statement of the form “If P, then Q.” In a direct proof of this statement,
we begin by assuming P. Then we deduce Q using P and any other assumptions
we have available. Let us now prove the statement

If n is a natural number, then (n + 1)2 = n2 + 2n + 1

using a direct proof. This is of the form “If P, then Q” where P is the statement
“n is a natural number” and Q is the statement “(n + 1)2 = n2 + 2n + 1.”Wewill
begin the proof by assuming that n is a natural number. Knowing that, we can
use all of the basic properties of the natural numbers listed earlier. So we will
use those assumptions to deduce that (n + 1)2 = n2 + 2n + 1.

Theorem 1.2.1. If n is a natural number, then (n + 1)2 = n2 + 2n + 1.
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Proof . Assume that n is a natural number. Then n + 1 is a natural number
because addition is always defined. Then

(n + 1)2 = (n + 1)(n + 1), (1.16)

because that is what the exponent means.

(n + 1)(n + 1) = (n + 1)n + (n + 1) ⋅ 1, (1.17)

by the distributive property.

(n + 1)n + (n + 1) ⋅ 1 = (n + 1)n + (n + 1), (1.18)

because 1 is a ⋅ identity.

(n + 1)n + (n + 1) = n(n + 1) + (n + 1), (1.19)

because ⋅ is commutative.

n(n + 1) + (n + 1) = (n ⋅ n + n ⋅ 1) + (n + 1), (1.20)

by the distributive property.

(n ⋅ n + n ⋅ 1) + (n + 1) = (n ⋅ n + n) + (n + 1), (1.21)

because 1 is a ⋅ identity.
(n ⋅ n + n) + (n + 1) = (n2 + n) + (n + 1), (1.22)

because that is what the exponent means.
(n2 + n) + (n + 1) = n2 + (n + (n + 1)), (1.23)

because + is associative.

n2 + (n + (n + 1)) = n2 + ((n + n) + 1), (1.24)

because + is associative.

n2 + ((n + n) + 1) = n2 + ((n ⋅ 1 + n ⋅ 1) + 1), (1.25)

because 1 is a ⋅ identity.

n2 + ((n ⋅ 1 + n ⋅ 1) + 1) = n2 + (n(1 + 1) + 1), (1.26)

by the distributive property.

n2 + (n(1 + 1) + 1) = n2 + (n ⋅ 2 + 1), (1.27)

because that is what 2 means.

n2 + (n ⋅ 2 + 1) = n2 + (2n + 1), (1.28)

because ⋅ is commutative.

n2 + (2n + 1) = n2 + 2n + 1, (1.29)

because + is associative, this is unambiguous.
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Thus, we have

(n + 1)2 = n2 + 2n + 1. (1.30)
◽

This is a completely algebraic proof; it is also a completely boring proof to
anyone who knows algebra.This is the stuff of middle school algebra and is not
the kind of proof that should give us any problems. While we should be able to
justify any step in any algebraic part of any proof we give, there is rarely a reason
to do so. In addition, we can take advantage of algebra’s disregard for the rules
of proper language composition. Notice that each step in the aforementioned
proof is a full English sentence with a subject, a verb (always “equals”), and an
object followed by a prepositional phrase.This is how a paragraph should be in
any English composition.
But in an algebraic proof, we can violate one the major rules of good writing:

no run-on sentences. The aforementioned proof is completely over the top for
mathematical adults. In any work past a high school text, it would be written
more like:

(n + 1)2 = (n + 1)(n + 1) (1.31)
= (n + 1)n + (n + 1)
= n2 + n + n + 1
= n2 + 2n + 1.

Even this might be longer that necessary. Notice that this is a run-on English
sentence. It has one subject, (n + 1)2, several objects, and one word “equals”
used as a verb four times. This is unacceptable in an English composition, but
perfectly acceptable in an algebraic proof.We need to remember that this proof
is an abbreviation of the full proof written earlier as a composition. Each equal
sign has two subjects: the object of the previous line, and by deduction, the orig-
inal subject of the sentence. The conclusion drawn from the four intermediate
sentences is that the original subject is equal to the final object.
In this study, we will not bother to do much more than outline an algebraic

proof such as this. This does not, however, reduce at all our need for detailed
algebraic proofs. As humans we will make algebra mistakes, and we need to
be ready to find them before someone else does. Finding an algebraic mistake
is often nothing more than giving a complete and thorough line-by-line step
through the use of our basic properties until the error reveals itself.

1.2.2 Mathematical induction

Unfortunately, not all theorems about the natural numbers are easily proved by
a direct proof or simple algebra. Consider

For all natural numbers n, 2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = n(n + 1).



�

� �

�

1.2 First Steps in Proof 15

The dreaded rigor killer, ellipsis, appears again. Mathematics has notation
that allows us to write such a summation in a more precise mathematical way.
However, in this case, it is pretty clear what this claim is: if we add all the num-
bers starting at 1 and stop when we get to n and then double the result, the
answer would be the same as if we multiplied n by its successor. Unfortunately,
the only direct proof of this involves using geometric intuition. This is a per-
fectly fine proof, but there is an alternate proof that uses a much more general
method with many more applications.
We will prove this claim using a “proof by mathematical induction.” Such a

proof is a two-step process. Both steps must be completed successfully for the
proof to be valid.The first step is to prove that the result is true for the first nat-
ural number. The second step takes advantage of a logical loophole. To prove a
statement of the form “If something, then something else,” onemay assume that
something is true. Once something is assumed true for a valid logical reason,
we can use that assumption to draw additional conclusions. The second step
in induction is to prove the following: “If the statement is true for a particular
natural number, then it will be true for its successor.”
If we can accomplish both these steps, we will know

• that the statement is true for 1;
• that anytime the statement is true for a particular number, it will be true for

its successor.

So we know that the statement is true for 1, and 1 is certainly a particular
number. Since the statement is true for 1, it is true for the successor of 1. But
2 is a particular number, and the statement is true for it; so because we have
proved the second step of induction, the statement is true for the successor of
2. Because every natural number is an eventual successor of 1, wewill eventually
know that the statement is true for any number.
Here is the claim written as a theorem, and this is followed by its (mostly

rigorous) proof. Notice that, as we write out exactly what we are proving, our
statement about n reappears three times. It may look like we are proving or
assuming the same thing over and over. But a more careful look reveals that in
each statement, the meaning of the variable n changes. Thus, the statements
are actually about different numbers.

Theorem 1.2.2. For all natural numbers n, 2 ⋅ (1 + 2 + 3 +…(n − 1) + n) =
n(n + 1).

Proof . The proof is by induction on n. Thus, we will actually prove two other
mini theorems:

1. If n = 1, then 2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = n(n + 1).
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2. If for a particular n = n0,

2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = (n + 1)n, (1.32)

then for n = n0 + 1,

2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = n(n + 1). (1.33)

Proof of Step 1. Assume that n = 1. To prove that two expressions are the same,
consider them one at a time. First, (1 + 2 + 3 +…(n − 1) + n)means start at 1
and stop when you get to n. But we are working under the assumption that
n = 1. So

(1 + 2 + 3 +…(n − 1) + n) = 1. (1.34)

So

2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = 2 ⋅ 1 = 2. (1.35)

Now consider the other expression, n(n + 1). We are still assuming n = 1.

(n + 1)n = (1 + 1) ⋅ 1 = 2. (1.36)

Since 2 = 2, we have shown that if n = 1, then 2 ⋅ (1 +…(n − 1) + n) =
n(n + 1). ◾

Proof of Step 2. Assume for a particular n = n0, 2 ⋅ (1 +…(n − 1) + n) =
n(n + 1). Thus, we can say

2 ⋅ (1 +…(n0 − 1) + n0) = n0.(n0 + 1). (1.37)

Under this assumption, we want to prove, for n = n0 + 1, that we also have
2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = n(n + 1). That is to say, we want to show

2 ⋅ (1 + 2 +…((n0 + 1) − 1) + (n0 + 1)) = (n0 + 1)((n0 + 1) + 1). (1.38)

To prove that two expressions are equal, we consider each side. Consider
2 ⋅ (1 +…((n0 + 1) − 1) + (n0 + 1)). We have

2 ⋅ (1 +…((n0 + 1) − 1) + (n0 + 1)) (1.39)
= 2 ⋅ [(1 + 2 + 3 +… n0) + (n0 + 1)]
= 2 ⋅ [1 + 2 + 3 +… n0] + 2[n0 + 1]
= n0(n0 + 1) + 2(n0 + 1)

because that is the assumption we are working under in this step. Then

2 ⋅ (1 +…((n0 + 1) − 1) + (n0 + 1)) (1.40)
= n0(n0 + 1) + 2(n0 + 1)
= (n0 + 2)(n0 + 1).
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Next, consider the other side, (n0 + 1)((n0 + 1) + 1).

(n0 + 1)((n0 + 1) + 1) = (n0 + 1)(n0 + 2). (1.41)

The two expressions are equal. So we have proved: if for a particular n = n0,
we have 2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = (n + 1)n, then for n = n0 + 1, we have
2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = n(n + 1). ◾

These two steps complete the proof by induction. So we have proved: for all
natural numbers n, 2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = n(n + 1). ◽

There are a few final comments on this write-up. Much of the exposition is a
matter of taste, but no matter what, the proof must be an English essay. It may
contain some headings, but everything in the content should be a full sentence.
This includes the algebraic calculations. The logic is easier if all statements to
be proved are written in the “If P, then Q” form.The proof of one of these state-
ments should begin with “Assume P.” After that assumption, the goal becomes
to prove Q. The use of n0 to stand for a particular value of n in the induction
step is completely optional. With more experience in writing induction proofs,
it becomes a distraction. However, even with experience, the second step of
an induction step can get rather confusing when the statement being proved is
long. Using the n0 can be a valuable tool in fighting through that kind of confu-
sion. For beginners, it is not a bad idea to take the time to use that extra notation
so that it will always be available when needed.

1.3 Problems

1.1 (a) Use n = 2, m = 3, and k = 4 to provide an example of the distribu-
tive property n(m + k) = nm + nk using either ellipsis arguments or
a geometric construction.

(b) Provide a justification of the general distributive property n(m + k) =
nm + nk using either ellipsis arguments or a geometric construction.

1.2 Provide justifications for the cancellation properties of addition. (Hint:
look at the justifications for multiplication.)

1.3 Prove that for all natural numbers n,
n∑

k=1
k2 = n(n+1)(2n+1)

6
.

1.4 Be careful while reading these formulas.

(a) Prove that for all natural numbers n,
n∑

k=1
(2k − 1) = n2.



�

� �

�

18 1 Beginnings

(b) Prove that for all natural numbers n,
n∑

k=1
2k − 1 = n2 + n − 1.

1.5 Prove that for all natural numbers n, n2 ≥ n.

1.6 Prove that for all natural numbers n ≥ 2, n2 ≥ n + 2. (Hint: when trying to
prove an inequality a ≤ b, it can help to write the objective as a ≤ ? ≤ b.
Then the idea is to find a value we can use in place of the question mark.
If we can prove the two inequalities a ≤ ? and ? ≤ b, the result we want
follows from transitivity. If we are lucky, one of these two inequalities is
already known to be true.)

1.7 Prove that for all natural numbers n,
n∏

k=1

(
1 + 1

k

)
= n + 1. (Hint: the

symbol
∏

is similar to the symbol
∑

except it means multiply instead of
add.)

1.8 Let n be any natural number greater than or equal to 7.

(a) Prove that if there is a natural number q so that n = 7 ⋅ q, then
n + 1 = 7 ⋅ q + 1.

(b) Prove that if there are natural numbers q and r so that n = 7 ⋅ q + r
and r < 6, then there is a natural number r′ so that n + 1 = 7 ⋅ k + r′
with r′ < 7.

(c) Prove that if there are natural numbers q and r so that n = 7 ⋅ q + r
and r = 6, then there is a natural number q′ so that n + 1 = 7 ⋅ q′.

(d) Prove the following statement using induction.

For all natural numbers n ≥ 7, either there exists a natural
number q so that n = 7q or there exists a pair of natural
numbers q and r so that n = 7q + r with r < 7.


