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Universal Functions for
Nonisothermal and Conjugate
Heat Transfer

1.1 Formulation of Conjugate Heat Transf{er Problem

As it follows from the above discussion, the domain of any conjugate problem consists at least
of two subdomains according to the interaction components. Therefore, to formulate conjugate
problem, it is necessary to specify two sets of equations: initial and boundary conditions gov-
erning the problem in each of subdomains in order to further conjugation of the corresponding
solutions. In the case of heat transfer, such subdomains and sets of governing equations and
boundary conditions are as follows:

e Body domain:
Unsteady conduction equation
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or steady conduction equations:
Laplace’s and Poisson’s equations (without and with heat source g,) (Com. 1.1)
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or simplified conduction equations for “thin body” and “thermally thin body” (Com. 1.1)
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6 Applications in Conjugate Heat Transfer

o Fluid flow domain:
For laminar flow: Navier-Stokes and energy equations (S. 7.1)
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or simplified equations for high and low Reynolds and Peclet numbers:
Boundary layer equations (S. 7.4.4.1)
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Creeping flow equations (S. 7.4.1)
V-V=0  Vp=uV?V (1.13)

For turbulent flow: Reynolds averaged Navier-Stokes and energy equations in Einstein
notations (S. 7.1.2.2)
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or simplified boundary layer equations for high Reynolds and Peclet numbers (S. 8.3):
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and continuity (1.9) and Bernoulli (1.12) equations.
e Conjugate conditions (boundary conditions of the forth kind) (Com.1.1)
+ —_
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dy dy

Comment 1.1 Body domain: (i) in equations (1.2) V? is the Laplace operator
(S. 7.1.2.1) and V2T is called Laplacian of T, (ii) the first equation (1.3) is obtained
from two-dimensional second equation (1.2) for thin body (A/L < 1), which thermal
resistance is of the same order or greater than that of coolant (Bi = hA/4, > 1), and
due to that longitudinal derivative may be neglected, (iii) the second equation (1.3) is
derived for thermally thin body (Bi < 1) by integration of two-dimensional equation (1.1)
in y-direction taken into account that transverse resistance of such body is small in
comparison with that of the coolant.

Fluid flow domain: (i) the Navier-Stokes and energy equations are used in both three-
and two-dimensional forms, whereas the boundary layer equations are basically employed
in two-dimensional form that is appropriate for majority of applications, (ii) the creeping
flow equations written in vector form (1.13) may be obtained from Navier-Stokes and energy
equations after neglecting the inertia terms (left parts of equations (1.5)—(1.7) (S. 7.4.1), in
this case, the continuity equation is the same equation (1.4), (iii) Navier-Stokes and energy
equations are presented in instantaneous parameters, whereas the equations (1.14)—(1.17)
for turbulent flow are written in averaged parameters using the same notations (S. 8.2), (iv)
eddy-viscosity coefficient y,;, in these equations is determined by one of turbulent models
(S. 8.3) and the value of turbulent Prandtl number Pr,, is usually taken to be equal or close
to unit (S. 2.1.2.4).

Conjugate conditions are expressions providing continuity of the temperature fields at
the interface in the form of equalities of temperatures and heat fluxes computed from both
interface sides and marked by (+) and (—) for body and fluid, respectively (Exer. 1.1-1.7).

e Initial and boundary conditions for subdomains (S.7.2)
The equations just considered are used to solve the subdomain problems. The relevant
initial and boundary conditions depend on the type and order of governing equation. For
example, the conduction equation is of the first order in time and of the second order in
space. Because of that, the solution of one-dimensional conduction problem depends on one
initial and two boundary conditions given at two points. Solutions of more complicated two-
or three-dimensional conduction problems also require satisfaction of one initial condition
and of boundary conditions, but specified around the outline of the whole problem domain.
The initial condition defines the temperature of the system as a function of coordinates at
some instant ¢ = 0, which is taken to be a beginning of the process, whereas the boundary
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conditions prescribe the values of some parameters on the boundaries of the system as the
functions of time and position.

Besides the boundary conditions of the fourth kind (1.18), there are three usually
employed boundary conditions that differ from each other by kind of variables assigned
at some points or around boundaries of domain. The boundary condition of the first kind
designates the temperature values, the second one specifies heat fluxes, and the third kind
of boundary condition presents Newton’s expression with known heat transfer coefficient
and temperature head. For example, at some point of domain with coordinate x, three types
of conditions have the form

oT
T\,.,=T,, or gq,=-4, 5l or q,=hT|,,—Ty) (1.19)

The equations specifying the conjugate problem formulation considered above are par-
tial differential equation of the second order. The appropriate boundary conditions for those
equations depend on the type of a particular equation. It is said that such equation in its
canonical form is of elliptic or hyperbolic type, depending whether it consist of a sum or a
difference of two second order derivatives, whereas such canonical equation with only one
second partial derivative is called a parabolic partial differential equation (Exer. 1.8). Thus,
the two- and three-dimensional conduction equations, Laplace and Poisson equations as
well as Navier-Stokes and energy equations for laminar flow and similar equations for turbu-
lent flow are of elliptic type, whereas both sets of boundary layer equations for laminar and
turbulent flows are the parabolic equations. The parabolic equation requires relatively sim-
ple boundary conditions specifying variable values only on a part of computational domain.
For boundary layer equations, these conditions are: (i) the no-slip condition u = v = 0 for
dynamic equation and conjugate (1.18) or one of the regular (1.19) conditions for thermal
equation on the body surface (y = 0) and (ii) asymptotic conditions u — U, T — T, far
from the body on the outer edge of the boundary layer (y — o) (S. 7.4.4).

In contrast to that, the elliptic equations require boundary conditions specifying the values
of parameters around the entire computational domain, and formulation of such conditions
is more complicated procedure. In this case, two problem formulations with different types
of boundary conditions, known as Dirichlet and Neumann problems, are usually considered.
The Dirichlet problem is stated using boundary conditions of the first kind by specifying the
temperature on the boundaries of domain. The Neumann problem is composed similarly by
employing the boundary conditions of the second kind by specifying the derivatives of the
temperatures on the boundaries domain.

The Dirichlet problem is a well-posted problem, whereas the Neumann problem is an
ill-posted problem. Physically it means that the solution behavior of an elliptic equation
with Dirichlet boundary conditions is regular, whereas the solution of an elliptic equation
under the ill-posted Neumann boundary conditions requires satisfaction on some additional
conditions. For example, the solution of the Neumann heat transfer problem demands the
thermal equilibrium that a system reaches when the total heat flux inside it is zero.

Comment 1.2 Formulation of boundary conditions for the Navier-Stokes equation is associ-
ated with additional difficulties arising due to fluid nature. To understand these complications,
consider a flow through a channel or past a body immersed in a parallel fluid stream. Con-
sidering the Dirichlet problem, one should specify velocities along the boundaries of domain,
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which for a channel or tube include the walls or body surface plus entrance and exit sections
of a channel or body. However, in such a case, only zero velocity boundary conditions on the
surfaces of the immersed channel or body are known and a uniform stream velocity U, at
X — oo far away from the immersed object. The velocity profiles at the entrance and the exit
sections required for the Dirichlet problem formulation are unknown because: (i) the profile at
the entrance is established due to interaction of initial uniform stream with surrounding during
the way from x — —oo to channel or body entrance, and (ii) the velocity profile at the exit is
formed as a result of processes inside the flow in the channel or around the body. Because of
that in practice, the experimental data or relevant assumptions are used. The same situation
holds for full energy equation since this equation is of elliptic type as well, and the initial uni-
form temperature profiles are deformed along with the velocity profiles (S. 7.2, Exam. 7.4 and
7.5, Exer. 1.9 and 1.10).

1.2 Methods of Conjugation

Physical analysis shows that any heat transfer conjugate problem is a question of thermal
interaction of a body and a fluid with unknown temperature and heat flux distribution on the
body/fluid interface. This becomes clear if one looks at what is known at the beginning of the
conjugate problem solution. Indeed at the beginning, we know only: (i) set of equations gov-
erning heat transfer in a body and in a fluid separately, and (ii) conjugate conditions (1.18).
However, the separate boundary conditions for each subdomain are unknown since data on
interface may be obtained only as a result of conjugate problem solution. Thus, the situa-
tion is deficient: to solve a particular conjugate problem we need boundary conditions for
each subdomain, which may be obtained only after solution of the same conjugate problem.
There are several methods for resolving this challenging problem. Here, we consider two
mostly used numerical methods and analytical approach based on employing so called uni-
versal functions [120]. Examples of other procedures for solving this problem are discussed in
applications.

1.2.1 Numerical Methods

One relatively simple way to realize conjugation is to apply the iterations. The idea of such a
approach is that each solution for the body or for the fluid produces a boundary condition for
other component of the system. The process of interactions starts by assuming that one of the
boundary conditions (1.19) exists on the interface. Then, one solves the problem for a body or
for fluid applying this boundary condition and uses the result of solution as a boundary condi-
tion for solving the set of governing equations for other component and so on. If this iterative
process converges, it might be continued until the desired accuracy is achieved. However, the
rate of convergence of the iterations highly depends on the first guessing boundary condition,
and there is no way to find an appropriate condition, except using the trial-and-error approach
(Exer. 1.12).

Another known numerical conjugate procedure is grounded on the simultaneous solution
of a large set of governing equations for both subdomains and conjugate conditions. Patankar
[306] proposed a method and software for such a solution using one generalized expression
for continuous computing of the velocities and temperatures fields through the whole problem
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domain that includes satisfying the conjugate boundary conditions. To make sure that one
generalized equation provides the correct results in different part of the whole domain, the
corresponding value of physical properties for each subdomain is employed. Thus, to ensure
that the velocity is zero in the solid when the velocity field is calculated, one puts a very large
value of viscosity coefficient for the grids points in the body domain, whereas for the grid
points in the fluid domain, the real fluid viscosity coefficient is applied. When the temperature
field is computed, the real values of heat transfer characteristics for the fluid and for the body
are used, which gives the actual temperature field as a result of matching the temperature
distribution in both computing subdomains (Exer. 1.13).

1.2.2  Using Universal Functions

Since the boundary conditions for subdomins are unknown, the required analytical solutions
for body and fluid might be obtained only applying arbitrary nonisothermal boundary condi-
tions. In other words, it is necessary to find a solution in the form that satisfies the governing
equation at any (or arbitrary) boundary conditions (Exer. 1.14). Such solutions are given, in
particular, in the form of universal functions, which are called universal because they satisfied
a particular equation independent of boundary conditions [120]. In the next several paragraphs,
we present two forms of universal functions used in this text for investigation of nonisothermal
and conjugate heat transfer, including the performance of a conjugation procedure described
in Section 2.2.2.

1.3 Integral Universal Function (Duhamel’s Integral)

1.3.1 Duhamel’s Integral Derivation

The Duhamel’s integral presents a solution of some problems with varying variables in terms of
known solutions of similar problems with the same variables considered as a constant param-
eters. This idea is based on two principles: (i) at a small interval of a variable, the function
of interest may be approximately considered as a constant, and (ii) a solution of linear differ-
ential equation is presentable as a sum of other solutions of the same equation (superposition
principle) (Exer. 1.15).

Letting the solution of the problem in question depend on some variable ¢ according to
function F(¢) and function f(x, ¢) is a solution of similar problem for a different but constant ¢.
For example, we consider the heat transfer from a body with time-dependent surface temper-
ature F(t), and function f(x, ¢) is a known solution of the same problem with constant surface
temperature. During a small interval At of variable ¢ (Fig. 1.1) the given function F' may be
considered as an approximate constant. Then, on this small interval AF = F’()At an approx-
imate solution of the problem in question is defined as a product f(x, f)AF, where f(x, ) is the
approximate solution for constant # and AF is the interval. Consequently, for the first interval
we have f(x, 1)F(0), where F(0) stands for AF(0) at the beginning at t = 0 (Fig. 1.1).

For the next interval, the approximation starts at the time # — Az instead of 7 for the first one.
Thus, the approximate solution is f(x, t — 7,)AF (7)) = f(x,t — 7,)F'(z;)At|, where 7, = At is
the time lag in the second interval, and the small variation of function F is determined for time
7, when the second interval begins (Fig. 1.1). For the third interval, one gets similar solutions
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Figure 1.1 Duhamel’s integral derivation: approximation of arbitrary dependence by step function

asf(x,t — 1)) AF(t,) = f(x,t — 7,)F'(t,) AT, with time lag 7, in the third interval, and so forth.
The sum of those results gives the approximate solution of the considered problem, which in
the limit at Az — O transforms in Duhamel’s integral

T(x, 1) = f(x, DF0) + Y f(x,t = 7)F (5) Aty (1.20)
k:1t

T(x,1) = f(x, NF(0) + / [t —)F (t)dr (1.21)
0

Expression (1.21) presents the temperature of a body with given time-variable surface tem-
perature F(¢) but in fact this is a general relation applicable to many other problems governed
by linear equations. To use this integral in any particular case, it is enough to know desired
function F(¢) and the relevant simple solution (Exer. 1.16 and 1.17).

In creating an universal function describing dependence between heat flux ¢,, and temper-
ature head 0,,(x) = T,, — T, in heat transfer, the role of function F(¢) plays temperature head
0,,(x), which is considered as a given, like a function F(¢). Since we are looking for relation
defining the heat flux, it is clear that a heat transfer coefficient # from some solved problem
should be taken instead of function f(x, 7). In such a case, the product /6,,(x) determines the
heat flux g,, as well as product f(x, 1)F(f) defines the body temperature in the example con-
sidered above. Then, the limit of a sum of products /0,,(x), similar to the limit of the sum in
equation (1.20), gives the desired universal function in the form of Duhamel’s integral

X

de,,
9w = hlew(o) + / hr_wdé (122)
dg
0
In this equation £, and &, are the heat transfer coefficients for the first and all other steps from a

known solution of simple problem playing the same role as the functions f(x, ) and f(x, t — 7)
in equation (1.21) (Exer. 1.18).
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The general expression (1.22) is applicable to any flow regime: laminar, turbulent, at zero,
or non zero pressure gradient, if the heat transfer coefficients /; and /, from some relevant
problem are known. It is common [201, 123] to consider as a known solution of a standard
problem of heat transfer after temperature jump on a plate with an isothermal initial zone. In
such a problem, the wall temperature remains constant (with isothermal heat transfer coeffi-
cient &,) up to some point x = & and then suddenly changes to another value resulting after
temperature jump in heat transfer with coefficient &. The ratio of coefficients £, and h; defines
the influence function f(x, &) = h; /h, so called because it describes the effect of initial isother-
mal zone on heat transfer intensity after jump. The influence function is usually employed for
putting ~; = h, and h, = h; which transforms equation (1.22) to the following standard form
(Exer. 1.19)

X
de,,
9y = h| 6, (0) + /f(x, é)d—§d§ (1.23)
0
This expression is an universal function because it determines the heat flux for arbitrary (for
any) temperature head distribution 6,,(x) through integral of it derivative d6,,/dx.

1.3.2  Influence Function

Relation (1.23) is general as well as equation (1.22) and is also applicable to any flow regime,
if the influence function for a specific case is known (Exer. 1.20). However, determining this
function is another difficult task. For some simple cases, when the influence function depends
on ratio &/x instead of each of those variables, an influence function was obtained using
approximate methods. For the simplest case of laminar flow, Prandtl number close to one,
and zero pressure gradient, the influence function was found by integral method (S. 7.6) in the
form [123, 201] (Exam. 7.13)

FE&/x) =1 - (/0713 (1.24)

The more general result for the laminar gradient flow, the influence function was obtained for
self-similar flows with power-law velocities U = Cx™ (S. 7.5.2), but only for fluids with large
or small Prandl numbers. It was shown that the same formula (1.24) is valid with exponents
depending on velocity power m for large and small Prandtl numbers according to the first and
second formula, respectively

FE/x) = [1 = &/ e fx) = [1 = (/o712 (1.25)

The first formula was obtained assuming a linear velocity distribution in the thermal boundary
layer [201, 230]. Therefore, it is applicable to fluids with large Prundtl numbers for which such
assumption is close to reality because in this case the thermal boundary layer is thin relatively
to velocity layer (S. 7.7). At the limit Pr — oo, this approximate formula becomes exact. For
another limiting case Pr — 0, the situation is opposite: the dynamic boundary layer thickness
is so thin that velocity across the thermal boundary layer is practically equal to the external
velocity U(x) (S. 7.7). Since in this case, the velocity in the thermal layer is independent on
v, the thermal boundary layer equation simplifies, and for self-similar flows, second formula
(1.25) is derived [338].
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For turbulent flows, the structure of known relations for influence function remains also
the same. In particular, for this case at the same conditions as for laminar flow (Pr ~ 1, zero
pressure gradient), it was shown that formula (1.24) is valid with exponents 9/10 at (¢/x)
and (—1/9) at brackets [123, 201]. There are also several relations for turbulent flows derived
from experimental data. Those are presented also in the form (1.24), but with slightly different
exponents: unity at (¢/x) and at the brackets: (—0.114) [208], (—0.12) [201, 275] and (—0.2) or
with giving practically the same results exponents 39/40 at (¢/x) and (—7/39) at the brackets
(instead of unity and —0.2) [267].

The review shows that the known relations for influence function for laminar and turbulent
flows pertain only for the simplest cases: limiting values of Prandtl numbers and basically
at zero pressure gradients. Later we will see that employing the universal functions permits
general expressions for influence function from which follow the particular results.

1.4 Differential Universal Function (Series of Derivatives)

This form of universal function may be obtained from the integral relation (1.23) using suc-
cessive integration by parts. We start from simple case of zero pressure gradient. As we have
seen above, for this simple case, the influence function depends on the ratio &/x, rather than
of each variable separately, and integral formula (1.23) takes the form (Exer. 1.21)

9 = h.|0 (0)+/f(§/ )—Wdf (1.26)

Denoting ¢ = &/x and applying for integration the following parts

do
up = d_g dvy =xf(O)df, vy =x /f(?/)d)/ -1 (1.27)
0

we get according to formula for integration by parts an expression (Exer. 1.22)

de,,
/f(C)dC -1+ x—=

dé =
x (¢
/ /f(C)dC 1 dzgwdéf (1.28)
—x — .
dé?
o \o
Substitution of this result in equation (1.26) leads to modified relation for heat flux
x (¢
=h.6,0) + x dby, by / /f( )dy — 1 &0, (1.29)
- T dx |y T8 2 7 A= e '
o \o

g =/f(C)dC—1
0

Here g, is a constant defined by the first integral in the right hand part of equation (1.28).
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Comment 1.3 In this derivation we used several variables: x, &, y, { = £/x. Two of those,
x and ¢, are working variables, whereas two others, & and y, are so-called dummy variables,
which play a subsidiary role. In this case, dummy variables are used for carry out integrals (to
distinguish from upper limit of integral). Thus, y is employed in integral (1.27) instead of ¢,
and ¢ is applied instead of x in the last integral in (1.28).

Relation (1.28) is further modified using the following parts for & integration

¢

dke, (—DFx

u, = d_ék’ Vi = [ Vi dy + —— T (1.30)
0

Putting here k = 2, we obtain the parts (1.31) for transforming the last integral in relation (1.29)

via integration by parts that result in further modification of expression (1.29) for heat flux in

a similar form (1.32) (Exer. 1.23)

¢ ¢ ¢ ¢
d*e,, 1
uzzd_gz’ Vz:x/dy /fz(y)dy—l +%, fz(c,,“)=/dc/f(g“)d€—€+§
0 0 0 0
(1.31)
=, |6, 0+ X% o 280 ey
- 1 dx 20ae | 8 g d&
(1.32)

In the first equation f,(£) = v,({)/x, and in the second equation coefficient g, = —f,(1) is
the value of this function at { = 1. As it is seen, function v,({) arises in the last integral in
equation (1.32) and is defined by relations (1.31), where for simplicity the dummy variable y
is substituted by variable ¢ = &/x (Exer. 1.24).

Repeating the integration by applying the parts indicated by equation (1.30), we finally
arrive in the following series with coefficients g, determined by relations (1.34)

x do x2 d*6 Xk dko do,,

0)+ = —x —— e b -

[ O+ 1% e | T ka | dx
,d*0, d*e,,

nsk—n
g = DM, Q) = / az / a . / f(cf)dcf+z( —— (1.34)

The k times repeated integral and the sum in the last equation may be presented as follows
(Exer. 1.25 and 1.26)

¢ ¢ ¢ ¢
/ dg / dg ... / f©ad¢ = (k_ll)! / (1= f©ag (1.35)
0 0 0 0
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n=k
—1)" k—n
; % = Lie -1t =gt (136)

Then, the coefficients g, according to relation (1.34) are defined as (Exer. 1.27)

( 1)k+l

8k =

/(1 O -1 (1.37)

Analyzing equation (1.33) for heat flux, one sees that the first sum, starting with 6,,(0),
represents an expansion of function 6,,(x) as a Taylor series at x = 0. Therefore, if at k — oo,
the last integral in equation (1.33) (which is aremainder) goes to zero, this expression turns into
infinite series determining the heat flux in terms of derivatives of temperature head distribution
0,,(x) in the following form (Exer. 1.28)

S d,
g, = h, (ew + ) gt dka> (1.38)

k=1

As shown in [101] and repeated in [119, p. 55], this relation is an exact particular result for
zero pressure gradient obtained from more general exact solution of thermal boundary layer
equation. At the same time, we just derive this relation from integral formula for heat flux (1.26)
using the exact procedure of integration by parts. These two facts show that both relations—the
integral (1.26) and differential formula (1.38)—are two equivalent exact expressions for heat
flux in a flow with a zero pressure gradient. These expressions are universal because they both
describe the dependence between heat flux and arbitrary (say any) surface temperature head
in two forms: as integral consisting of the first derivative of temperature head or as a series of
derivatives of it (Exer. 1.29).

1.5 General Forms of Universal Function

The more general expression for heat flux than relation (1.38), derived in [101] and men-
tioned above, is an exact solution of thermal boundary layer equation for self-similar flows
with power-low external velocity distribution U = Cx™ (S. 7.5.2). This solution is the same
series (1.38) but written in Gortler variable @ (S. 7.4.4.2) (see [119])

X

- ,dko,, 1
gy =h.\ 0, + ngq’ Tk ® = ;/ Uédé (1.39)

n=1 0

In the case of zero pressure gradient (U = const), series (1.39) transforms in (1.38) since for
constant U variable ® = Re, and due to that @ is proportional to x (Exer. 1.30). Because series
(1.38) and integral relation (1.26) are equivalent, it is clear that substituting the Gortler variable
@ for x in integral (1.26) yields expression also valid for self-similar flows with power-low
external velocity distribution U = Cx™ (Exer. 1.31 and 1.32)

w=he| 0, (0)+/f(§/¢)—d§ (1.40)
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The two equivalent universal functions (1.39) and (1.40) are solutions of boundary layer
equations because, as it noted at the beginning of this section, expression (1.39) is obtained
from thermal boundary layer equation. It is known, that solutions of that type are applicable to
majority of practically important applications. Two facts ensure this conclusion: (i) the prop-
erties (kinematic viscosity and thermal diffusivity) of the essential technical fluids, such as air,
water, oil, and liquid metals, are small, and due to that the corresponding Reynolds and Peclet
numbers are large, and (ii) as it was shown by Prandtl, the Navier-Stokes equations simplifies
to boundary layer equations for high Re and Pe because in this case, the viscosity effects are
significant only in a thin layer adjacent to the body surface (S. 7.4.4.1).

To employ universal functions (1.39) and (1.40) for calculations, the series coefficients g
and influence function f(¢/®) for the integral are required. Examples considered above in
Section 1.3.2 show that all known formulae for influence function have the same structure
with different values of exponents. Proceeding from that fact of similarity, we use analogous
expression for general form of influence function with unknown exponents C; and C,

FE/D) = [1 = /D) > (1.41)

In the next sections, the coefficients g, and exponents C; and C, are calculated for laminar,
turbulent flows, and several other regimes and conditions.

Exercises

It is assumed (see Preface) that to perform some exercises a reader gets additional knowledge
from Part IIT using references indicated in text.

1.1  Explain how the conjugate problem differs from other heat transfer problems.

1.2 Why do conjugate heat transfer problems contain at least two subdomains? Name these
subdomains.

1.3  What is the difference between Laplace and Poisson equations? In what cases and why
are these equations simplified? Explain physically the difference between “thin” and
“thermally thin” bodies.

1.4  Compare Navier-Stokes and full energy equations with simplified boundary layer and
creeping equations. Explain what and why part of equation terms may be neglected?
Are the simplified equations exact or approximate? Think: why the set of equations for
creeping flow does not include the equation for turbulent flow?

1.5  Study Sections 8.2.3 to understand the Reynolds averaging and arising Reynolds
stresses in averaged Navier-Stokes equations. Think: why are these stresses so
much greater than molecular ones? Explain the differing between physical nature
of coefficients p and pu,, Compare Navier-Stokes (1.4)—(1.7) and Reynolds (1.14)
equations to better understand the Einstein notations.

1.6  What is the essential difference between boundary conditions of the third and forth
kinds?
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1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19%

1.20

Is the problem of atmosphere and ocean interaction a conjugate one? Explain your
answer. What are the subdomains in such a problem? What equations are relevant?

Study some features of partial differential equation of second order using, for example,
Advanced Engineering Mathematics Course, to understand what is a canonical equation
form? How do canonical equations differ from each other? Learn or recall why the
Navier-Stokes equation is difficult to solve. What is nonlinearity? How do nonlinear
and linear equations differ?

Discuss with other students or colleagues the difficulties arising in formulating the
boundary conditions for Navier-Stokes and full energy equations. Explain why it is
easier to formulate boundary conditions for boundary layer equations.

Compare well- and ill-posted problems. What causes the additional difficulties in for-
mulating Dirichlet problem for Navier-Stokes and energy equations?

Explain the term “deficient situation”. Why do such situations occur in conjugate prob-
lem statements? How can this difficulty be resolved?

What is the basic idea of iteration method of conjugation? What is the method of
trial-and-error? (see article “Trial and Error” on Google, on Wikipedia)

Explain how the problem of different physical properties of body and fluid is resolved
in the conjugation by one equation for entire domain.

What is the universal function? Why is such a function required for an analytical solu-
tion of the conjugate problem?

The idea of Duhamel’s integral is based on a superposition principle. Read about the
superposition method to understand why it is applicable for linear, and is not appropri-
ate for nonlinear equations (see Exer. 1.8).

In the development of Duhamel’s integral, we used the first ordinate of each interval as
a value of function F(¢). Think: will the result (1.20) be the same if we use the middle
or final ordinate of each interval instead of the first one? Explain your answer.

What is the time lag? Remind or read about this term, for example, on Wikipedia. Think:
what is the difference between time legs in the two equations (1.20) and (1.21)? Can
the first one be transformed in the second?

Repeat the derivation of equation (1.22) from Duhamel’s integral (1.21) to answer why:
(i) function 6,,(x) and heat transfer coefficient represent in this case functions F(¢) and
Jf(x, 1) in initial integral (1.21), and (ii) heat transfer coefficients i, and &, relate to
functions f(x, ) and f(x, t — 7).

Describe the problem of heat transfer after a temperature jump on the plate with an
isothermal initial zone, which is usually used as a standard problem with a known
solution. Draw a graph showing the temperature variation along the plate. Obtain
equation (1.23).

What is an influence function? How does it relate to Duhamel’s integral?
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1.21

1.22%

1.23*

1.24

1.25%

1.26

1.27

1.28

1.29

1.30

1.31

1.32

Discuss with your friend or colleague the benefits of universal function for conjugate
heat transfer problems. Think about other examples where universal functions might
be useful. What is the basic characteristic that distinguishes this type of relations from
others?

Repeat the first integration by parts and derive equation (1.29) from universal function
(1.26). Hint: note that the integration is performed by variable &, and because of that, x
is considered as a constant parameter in process of this integration.

Obtain parts for third integration from general relation (1.30). Hint: begin from deriv-
ing the parts for first and second integrations using relations (1.30) to understand the
procedure.

Extend the series (1.32) by adding two next terms without farther calculations. Compare
your results with formulae (1.33) and (1.34). Hint: first, analyze the rules according to
which the existing terms are constructed and then proceed using these rules.

Expression (1.35) for k-times repeated integral is obtained by series of integration by
parts. Show that this is true for k = 2. Hint: take the integral with function f(¢) as one
part (1) and d¢ as another part (dv).

Check equation (1.36) for k = 2 and k = 3 to see that this equation is correct.

Derive equation (1.37) from relation (1.34) using expressions (1.35) and (1.36). Hint:
take into account that k! is a product of (k-1)! and k.

Recall or study the Taylor series to understand the procedure of transforming
equation (1.33) into series (1.38).

At the end of this section (S. 1.4) it is stated that the integral with the first derivative of
temperature head and a series with successive derivatives of it are universal functions,
because they describe the dependence between heat flux and arbitrary (say any) surface
temperature head. Explain why this statement is true or in other words, why a function
describing a dependence of some arbitrary variable is universal? In what sense is such
function universal?

Show that in the case of constant external flow U = const, the Gortler variable ®
becomes Reynolds number, and expression (1.39) transforms into relation (1.38).

Prove that in the case of constant external flow the expression (1.40) transforms into
equation (1.26). Explain why it is possible to write f(&/®) = f(£/x) in this case. Hint:
think about the connection between dummy and working variables explained in analyz-
ing examples in Comment 1.2. Are the dummy variables £ the same in both influence
functions in equations (1.26) and (1.40)?

Recall why the arbitrary external velocity corresponds to arbitrary pressure gradient.
What equation from a set of relations given in the beginning of this chapter tells us
about this fact? What is the name of this equation? In what type of flow does such
connection between velocity and pressure hold? Hint: see Section 7.1.2.5.
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1.6 Coefficients g, and Exponents C, and C, for Laminar Flow

In this section we discuss the basic features of coefficients g, that determine the differential
universal function for laminar flows and show how the exponents C for the general form (1.41)
of influence function may be estimated using known coefficients g,. Then, in the next sections,
similar coefficients and exponents are evaluated for turbulent, compressible flows and for some
other cases.

1.6.1 Features of Coefficients g, of the Differential Universal Function

We discussed in the previous section how the exact solution of the thermal boundary layer
equation is obtained for self-similar laminar flows with power-law external velocity distribu-
tion U = cx™. Such distribution occurs on the wage with open angle 7 f (Fig. 1.2) streamlined
by potential flow. The exponent m in velocity distribution and open wage angle f are con-
nected by relation m = /(2 — f). The first four coefficients g; of series (1.39) calculated for
this case are plotted in Figures 1.3 and 1.4 as functions of Prandl number for different external
flow velocities (different f).

These data are obtained numerically (details in [119]). For limiting cases Pr — 0 and
Pr — o0, the corresponding simplified equations are solved analytically leading to following

7
<

Figure 1.2 Flow past a wage. At the leading edge, the potential velocity is U = cx™
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Figure 1.3  Coefficient g, (Pr, §) of universal function (1.39) for laminar boundary layer. Asymptotes:
1—-Pr=0, 6—-Pr— co; f:2-1 (stagnation point), 3 — 0.5 (favorable pressure gradient), 4-0 (zero pres-
sure gradient), 5-(—0.16) (preseparation pressure gradient) (S. 7.5.2)
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Figure 1.4 Coefficients g, (Pr) of universal function (1.39) for laminar boundary layer. 1 — (-g,),
2-g4,3 — (—g,), ° — numerical integration

formulae and numerical results [119] (I'(j) -is gamma function, Exer. 1.33)
(=D 2) i’“ (=DMT [@i/3) +1]

g=—>_— Pr—0, g=r (‘ & (k—i)!i!'T [(4i/3)+2/3] e

T RRk=1) 3
(1.42)

g =1,8,=-1/6, g3 =1/30, g, = —1/168, g5 = 1/1080, g4 = —1/7920 Pr=0
(1.43)

g, =0.6123, g, = —0.1345, g; = 0.0298, g, = —0.0057  Pr— oo (1.44)

Data from Figures 1.3 and 1.4 and limiting values (1.43) and (1.44) yield the following basic
features of coefficients g, of universal function (1.39): (i) coefficient g, depends on the exter-
nal velocity (via f) and on the Prandtl number; this dependence is more significant for small
Prandtl numbers (Pr < 0.5); for Pr = 0 and Pr — oo, the values of g, for all § tend to the
greatest g, = 1 and to the lowest g; = 0.6123 values, respectively, (ii) coefficient g, is prac-
tically independent of the external velocity and depends slightly only on the Prandtl number
in the region of small Prandtl numbers; for Pr — 0 and Pr — oo the values of g, also tend to
the greatest absolute value |g,| = 1/6 and to the lowest absolute value |g,| = 0.1345, respec-
tively; (iii) coefficients g5 and g, are independent of both the external velocity and the Prandtl
number, so that numerically obtained values for whole diapason of Prandtl numbers practically
coincide with the limiting values g; = 1/30 and 0.0298 and g, = —1/168 and —0.0057, (iv)
therefore, for k > 3, coefficients g, may be estimated using simple formula (1.42) for Pr — 0,
(v) coefficients g, for universal function (1.39) rapidly decrease with the number of terms, so
that using first two or three coefficient usually gives acceptable results (Exer. 1.34).
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Comment 1.4 The isothermal heat transfer coefficient %, required for employing both
universal functions (1.39) and (1.40) may be estimated by any of known methods reviewed,
for example, in [369]. These methods are well tested during many years when the isothermal
heat transfer coefficient was used for practical calculations, in particular, as a part of the
boundary conditions of the third kind.

Analysis of just considered features of coefficients g, shows that the exact for power-law
external flows universal function (1.39) provides practically accurate approximate results
for arbitrary external flow velocity distribution. The following facts specified this statement:
(1) coefficient g, slightly depends on external velocity (say on /), whereas other coefficients
are practically independent of the external velocity, (ii) if coefficients g; were also independent
of f, the relation (1.39) would be an exact relation for arbitrary external velocity U(x), (iii) in
reality, according to Figure 1.3, the effect of f (i.e., external velocity) on the first coefficient
reaches the maximum of +12% from average value g, ~ 0.675 in vicinity of Pr= 0.1 and
then decreases to zero in both limiting cases of Prandtl number at Pr — 0 and Pr — oo.

Thus, universal function (1.39) in general case of arbitrary external flow (or pressure gra-
dient) with average values of coefficients g, provides the calculation results with inaccuracy
less than +12% which is comparable with accuracy of other existing approximate methods (S.
7.6) (see also [338]). Accuracy may be increased by estimating the value of f. In some cases,
p is known, for example, it is clear that for the flow past plate f = 0 as well as for transverse
flow past circular cylinder or other body with blunt nose f = 1 close to the stagnation point,
whereas for the rest part of the surface of such body the value of f may be approximately con-
sidered as zero. In other cases, the parameter f may be estimated using some simple relation,
for example, formula

p=2(1->/Re,) (1.45)

which results from assumption that average velocities of considering distribution U(x) and
power-law flow distribution U = cx#/?=#) are equal (Exer. 1.35).

Comment 1.5 To understand why Gortler variable extends applicability of universal func-
tion (1.38) obtained for zero pressure gradients, consider Gortler variable in the form ® =
Uyx/v = Re,,, (Exer. 1.36). Here, U, (x) is the average external flow velocity for the inter-
val from the leading edge (x = 0) to point with coordinate x. It follows from this presentation
of Gortler variable that function @ (1.39) takes into account the flow history. Physically, it
means that the flow characteristics at point x are determined not only by local parameters at
this point but also by those at other points along the whole considering interval (0, x). Thus,
Gortler variable takes into account, in particular, the variation of pressure gradients along the
considering interval.

Comment 1.6 In general, the characteristics of some point of interest are governed by: (i) in
the simplest case, local data only (at this point); for example, the coefficients of friction and
heat transfer at some point in a flow past wage with given surface and free stream temperatures
are specified only by local values of Reynolds and Nusselt numbers (S. 7.5.2), (ii) local and
historical data (at this and behind points) as, for example, in the same problem for wage but
with nonisothermal surface when to get characteristics of some point, the surface tempera-
ture at this and behind points is required in addition (S. 2.1.1 ), and (iii) local, historical and
future data (at this, behind and advanced points) as, for example, in any Dirichlet problem
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for elliptical equation when for characteristics of any point, the information is necessary from
whole boundary of domain (Exer. 1.37).

1.6.2  Estimation of Exponents C, and C, for Integral Universal Function

Relation (1.37) establishes the connection between coefficients g, and influence function f({)
where for general case { = £/®. Substituting expression (1.41) into relation (1.37), expanding
(1 — ¢)*! via a binominal formula, and introducing a new variable r = €1 leads to an equation

0 RS e =) —
T [C_l,;)(_l) m!(k—m—l)!B< C, ’1_C2>—1 (1.46)

determining the dependence between coefficients g, and exponents C, and C, required for
integral universal function (1.40). Here, B(i,j) is beta function, which is specified through
combination of gamma functions (Exer. 1.38)

1

B(ij) = / A =y ldr = TORG) /TG + ) (1.47)

0

It is easy to calculate coefficients g, employing relation (1.46) and knowing exponents of
some influence function. For example, since relation (1.46) is a result of exact solution for
self-similar flows, this equation may be used to check the accuracy of influence function
(1.24) and others of this type approximate equations. Substitution C; = 3/4 and C, = 1/3
in equation (1.46) gives: g, = 0.612, g, = —0.131, g3 = 0.03, g, = —0.0056. Those are prac-
tically the same as (1.44) obtained from exact solution for the limiting case Pr — oo. This tells
us that function (1.24) is correct (Exer. 1.38). Similarly, equation (1.46) with exponents C; = 1
and C, = 1/2 gives coefficients g, that are in agreement with the values (1.43) obtained from
exact solution for Pr — 0 (details in [119]).

More complicated is the inverse problem of determining exponents in influence function
(1.41) knowing coefficients g;. Two facts cause the difficulties in solving this problem: (i)
relation (1.46) is transcendental, and due to that could not be solved for exponent C; or C,
(Exerc. 1.39), and (ii) there are only two unknowns C; and C,, but countless known coef-
ficients g,. While the first difficulty is a technical question that may be resolved applying
a graphic approach, or software based on trial and error or on other numerical method, the
second problem is a fundamental complexity, known as an overdetermined system, when a
number of equations exceeds the number of unknowns. In this case, such situation produces
numerous results because each pair of coefficients g, after substitution in equation (1.46) gives
two equations defining unknown C; and C,. However, as we have seen, this particular set of
coefficients g; consists of only two weighty coefficients g; and g,, whereas the others are
comparatively negligible. Due to that, it may be expected that exponents C; and C, obtained
from system of two equations with coefficients g, and g, would be appropriate (Exer. 1.40
and 1.41).

This is confirmed by calculation results plotted in Figure 1.5 showing that all particular
cases of laminar flow considered in Section 1.3.2 follow from data of this pattern. It is seen
from Figure 1.5 that for whole interval of Prandtl number, exponents C; and C, vary slightly
from 1 to 3/4 and from 1/2 to 1/3, respectively, as it should be according to relations (1.25).
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Figure 1.5 Exponents C; and C, for laminar boundary layer. | —=Pr=0,2 - =1,3-0, 4-(-0.16)

These data tells us as well as data of a slight dependence of g, on pressure gradient (on f
from Figs 1.3 and 1.4) identifies that the Gortler variable @ takes into account the flow history
(Com. 1.5). This property of variable ® results in independence of the exponents in influence
function (1.41) written in variables (¢/®) on pressure gradients. That means that the values
of C; and C, remains the same 3/4 and 1/3 at Pr — oo as well as 1 and 1/2, at Pr — O for
arbitrary external velocity distribution, as those in the known simple influence functions (1.25)
for the plate at zero pressure gradient (m = 0) presented in variables (&/x).

This is also in line with data from Figure 1.5 showing that C; and C, are independent on f in
both limiting cases being the same for arbitrary external velocity as just indicated values 3 /4
and 1/3 at Pr - oo and 1 and 1/2, at Pr — 0. Moreover, it is easy to check that the functions
(1.25) for self-similar flows follow from relation (1.41) because in the case of U = cx™, one
gets: £/® = (£/x)"*! (Exer. 1.42).

Now we have a full set of constants for using universal functions for general case of laminar
flow. The same universal function (1.39) and (1.40) are applicable to other flow regimes and
situations, however, with proper coefficients g, and exponents C. Next sections present those
constants for several other cases.

Comment 1.7 As we will see in applications, employing two forms of universal function pro-
vides accurate results of calculations. This is achieved by using the differential form with
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several first terms, when the series converges fast, and employing the integral form if the
achieved by series accuracy is not satisfactory.

1.7 Universal Functions for Turbulent Flow

To get coefficients g, and exponents C for the two forms of universal functions in the case of
turbulent flow, the solution of thermal boundary layer equation for this case, analogous to that
given in [101] for laminar flow, was obtained in [106] using the same Gortler variable (1.39).

Comment 1.8 This solution as well as some others considering in this and in the next chapters
are presented more detailed in author’s monograph [119]. Therefore, below we indicate in the
brackets only the relevant page or section of this book without repeating citation [119]. For
the case of turbulent flow solution such citation is [Chapter 4] instead of [119, Chapter 4].

The thermal boundary layer equation (1.17) for turbulent flow differs from similar equation
(1.11) for laminar flow by last two terms containing additional dynamic v, and thermal a,,
turbulent transfer coefficients. In contrast to analogous v and « laminar coefficients, which
are physical properties, the turbulent coefficients are complex functions depending on flow
characteristics, and because of that a turbulence model is required for their estimation. Usually,
to estimate turbulent thermal diffusivity, the turbulent Prandtl number Pr,, = v,;,/,;, similar to
physical Prandtl number is introduced. Then, coefficient v,; is defined, and turbulent diffusivity
is found as ratio a,, = v,,/Pr,, using Pr,, which usually is taken to be close or equal unity (S.
2.1.2.4, Exer. 1.43).

Solution of turbulent thermal boundary layer equation requires also the velocity profiles
in boundary layer. In solution derived in [106], the Mellor-Gibson turbulence model [260] is
used to calculate both transfer coefficients and velocity profiles. This model is one of the mod-
ern algebraic models based on dependences valid for equilibrium turbulent boundary layers,
which are as well as the self-similar laminar boundary layers flows with constant dimensionless
pressure gradient (S. 8.3.2 and S. 8.3.3)

6, dp
T,, dx

= (1.48)
where 6, and 7,, are displacement thickness and skin friction stress (S. 7.5.1.1). As we have
seen in Section 1.6.1, the parameter f determines the wage angle 7 and in the case of laminar
self-similar flows is connected with the exponent in velocity power law U = cx™. For this
case, it is easy to check that the complex (1.48) is a constant (Exer. 1.44). In the case of the
equilibrium turbulent boundary layer that can be demonstrated as well by more complicated
analysis [422].

It is shown [106 or p. 99, Com. 1.8] that solution of thermal turbulent boundary layer
equation for heat flux on arbitrary nonisothermal surface may be presented by the same two
universal functions in slightly different Gortler variables (S. 8.3.6.3) with specific coefficients
g of series (1.39) and exponents C of influence function in integral (1.40). In this case, these
specific parameters depend on pressure gradient via f and on Prandtl number as in the case of
laminar flow and in addition on Reynolds number. Calculations were performed for § = —0.3
(flow at stagnation point), f = O (zero pressure gradient flow), f = 1 and f = 10 (flows with
weak and strong adverse pressure gradients) for the following Prandtl and Reynolds numbers:
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Pr=0.01,0.1, 1, 10, 100, 1000 R651 =103, 10°, 10°. Other details of turbulent boundary layer
computing may be found in [106, p. 102]. The results are plotted in Figures 1.6 and 1.7 for
coefficients g, and in Figures 1.8 and 1.9 for exponents C as functions of Prandtl number for
different values of § and Re; .

The following conclusions are formulated analyzing these data: (i) the values of the coef-
ficients g, rapidly decrease with increasing k as well as in the case of laminar flow; hence,
one may use only a few of the first terms in series (1.39) to get satisfactory accuracy, (ii) as
in the case of laminar flow, the coefficients g, decrease with increasing Prandtl number (Exer.
1.45); however, in contrast to the case of laminar flow, where at large Prandtl numbers the
value of coefficients become independent of Pr, but remain finite, in the case of turbulent flow
they tends to zero with increasing Pr, so that starting with some value of Prandtl number (say
~ 10?), the effect of nonisothermicity becomes negligible, (iii) for this case, coefficients g, are
smaller than the corresponding coefficients for laminar flow, and they decrease with increas-
ing Reynolds number indicating that the nonisothermicity affects the heat transfer in turbulent
flows relatively lesser (Exer. 1.46), (iv) coefficients g, and g, depend slightly on g, whereas
the others are practically independent of f, this allows one to use the universal function (1.39)
for turbulent flows with an arbitrary pressure gradient as for laminar flows estimating value
of § by the same approach, (v) exponents C; and C, increase with decreasing Prandtl and
Reynolds numbers, (vi) exponent C, increases with decreasing pressure gradient, whereas the
exponent C| is practically independent of pressure gradient.

It follows from Figures 1.8 and 1.9 that C; = 1, C, = 0.18 for zero pressure gradient flow
when Pr = 1 and Rea, = 103, but under the same conditions and Re,Sl = 10, the same figures
give C; = 0.84, C, = 0.1. These computed results are close to exponents in well-known influ-
ence function considered in Section 1.3.2: the first exponents are almost the same as C; =1
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Figure 1.8 Exponent C, for turbulent boundary layer: Re; = 10°,2 - 10, 3~ 10°

and C, = 0.2 derived theoretically and confirmed by measuring data at relatively low Reynolds
number Re, = 5- 10 [201], and the second values are close to C; =9/10 and C, = 1/9
obtained experimentally at greater Reynolds number Re, = 108 in [267] (Exer. 1.47).

Comment 1.9 In the case of turbulent flow, the isothermal heat transfer coefficient %, is
required also for applying both universal functions (1.39) and (1.40). For this purpose, a spe-
cial investigation was provided for wide range of Reynolds and Prandtl numbers [107] using
the same Mellor turbulent model. We present those results and comparison with available
experimental data in applications in Section 2.1.2.3.
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Figure 1.9 Exponent C, for turbulent boundary layer: Re; = 10°,2~10°,3 - 10°

Exercises

1.33

1.34

1.35

1.36

1.37

1.38

1.39

1.40%

Read about gamma function in some Advanced Engineering Mathematics Course and
calculate limiting values (1.43) and (1.44) using formulae (1.42). Hint: for Gamma
function estimation use some handbook or Mathcad.

Estimate a rate of convergence of series (1.39) by comparing the first four values of
terms using limiting coefficients for Pr — 0 or Pr — oo and assuming that all products
ol (a"‘HW / d®*) are of the same order.

Derive relation (1.45) for estimating f#. Hint: equal results of integration of two flows
velocity distributions: given U(x) and self-similar U = cx/?=#)_ which is used for esti-
mating f.

Show that the Gortler variable @ (1.39) is the average value of Reynolds number on
interval (0, x).

Think about other examples of problems and different types of information required to
understand the role of local, historical, and future data in determining point character-
istics of interest.

Read about beta function (see Exer. 1.33) and calculate coefficients g, using relation
(1.46) and exponents from influence function (1.24).

Recall or read about a term “transcendental expression” using, for example, Wikipedia
to understand the difficulties in solving the inverse problem and methods to overcome
those.

Think how the inverse problem may be solved graphically. Hint: (i) calculate two func-
tions g,(C,, C,) and g,(C;, C,) using equation (1.46) and varying C; from 1 to 3/4 and
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1.41%

1.42

1.43

1.44

1.45

1.46

1.47

1.8

C, from 1/2 to 1/3, (ii) plot these functions and choose coefficients g, and g, from
Figures 1.3 and 1.4 for the same value of Prandtl number, (iii) draw lines g, = const.
and g, = const. on each of graphs to get two relations between exponents C; and C,,
(iv) find the intersection point of two curves plotted according to data for C; and C,
from (iii).

Create a software for solving the inverse problem applying trial and error method. Hint:
(i) choose coefficients g; and g, from Figures 1.3 and 1.4 for the same value of Prandtl
number, (ii) take two equations (1.46) for g, and g, and guess a value of C; or C,, (iii)
by varying another than guessed exponent satisfy one of equation (1.46) to get the corre-
sponding coefficient g, (iv) by varying another exponent satisfy another equation (1.46)
to get the second coefficient g, (iv) continue the procedure until desired accuracy of
both refined coefficients g, and g, will be achieved, (vi) if the process would be poor
converged, change the value of the first guessing coefficient.

Show using the Gortler variable that for self-similar flows with velocity U = cx™, the
formula (1.25) is valid. Hint: calculate variable @ for U = cx™, and substitute &/® for
&/x in equation (1.24).

What means physically Pr,, = 1? Recall, what is the Reynolds analogy? Explain phys-
ically why such an analogy exits. Hint: think about similarity of transport processes
(S.7.1.1).

Prove that for laminar boundary layer the parameter f = (6,/7,,)(dp/dx) is constant.
Hint: use the external velocity distribution U = Cx?/?=#), second equation (1.12) for
dp/dx, and equations for 6, and r,, from Section 7.5.1.

Explain physically why coefficients g, decrease with a Reynolds or Prandtl number
increasing. Hint: think about relation between dynamic and thermal boundary layer
thicknesses (Exam. 7.8).

Explain why effect of nonisothermicty (and coefficients g;) in turbulent flow is less
than in laminar flow. Hint: think about different nature of transport process in both
cases (S.8.2.1).

Calculate exponents C; and C, for several examples using laminar and turbulent data
for g, and g, and graphical approach or software described in Exercises 1.41 and 1.42,
respectively.

Universal Functions for Compressible Low

The results obtained above for incompressible flows are applicable to the compressible
flows with variable density in the case of zero pressure gradient. This follows from the
fact that boundary layer equations for compressible flow past plate in Dorodnizin or
Illingworth-Stewartson variables (according Russian or English literature) has the same form
as the boundary layer equations for incompressible flow in physical variables (Exer. 1.48).
Therefore, the solution of thermal boundary layer equation for heat flux on a plate with
arbitrary temperature distribution in compressible flow in such variables may be presented as
universal function (1.38), but written in differences of enthalpy instead of temperature head
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[111, p. 78]

0:Co [~ dhig,
=——| ip, + E K
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), gy = = “d=iw—£(k—1)M2 (1.49)

C= Tw,av Too + TS
Too Tw.av + TS

Here, g,,, is the heat flux on an isothermal surface with average temperature head of con-
sidering nonisothermal plate (like 4, in relation (1.38)), J,, and J,; are wall and adiabatic wall
enthalpy, i, is stagnation enthalpy difference (Exer. 1.49), C and C, are coefficients of propor-
tionality in approximation law for gas viscosity u/u., = C (T/T,,) calculated using average
T, . or local T,, surface temperature, r is a recovery factor (S. 1.14), M is Mach number,
and T is Sutherland gas constant. Equation (1.49) is an exact solution of a thermal bound-
ary layer equation for the plate with an arbitrary temperature distribution. The well-known
Chapman-Rubesin solution for polynomial surface temperature follows from this relation as a
particular case.

The equivalent integral universal function for compressible flow past plate is obtained from
equation (1.26) after similar substitution of stagnation enthalpy difference iy, and product
q,,+C./ \/E' before brackets for the temperature head and isothermal heat transfer coefficient
h,,, respectively

diy de (1.50)
4

ol )+ 7f(s/ )
qdy = Low X
ve |” ) d

1.9 Universal Functions for Power-Law Non-Newtonian Fluids

The term “non-Newtonian fluid” belongs to fluids which rheology (a science of flow of a
matter) behavior is different from that of Newtonian fluids. In particular, the Newtonian fluids
viscosity depends only on the temperature, whereas there are countless other fluids and materi-
als (like polymers) whose viscosity is governed by more complex laws depending on spatial or/
and on time deformation (Com. 5.8). The universal function was obtained for non-Newtonian
and non-Fourier power laws fluids [351, p. 83] which characteristics obeys the following
expressions of power types

n—1

S 2 2
1 2 1 2 ou\?2 oav Jdu  ov
=K<—I) , =K<-1) aT. 1=4<_) a9V 4o 9u, 9V
TGRS A7 RA5R) 8 2= o) TN oy) T\ T

(1.51)
Here, 7 and e are the stress and rate of deformation tensors, q is the heat flux vector, K and K p
are constants and /, is a second invariant of rate of deformation tensor. Non-Newtonian power
laws satisfactory describe the behavior of a group of substances, like suspensions, polymer
solutions and melts, starch pastes, clay mortars.

Comment 1.10 Tensor is a general term defining the other quantities by order of its degree.
A tensor order depends on array of numerical values (or indices) that determines the tensor. In
this terminology, the scalar is a tensor of zero order, whereas the vector is the tensor of order
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one since three values (three coordinate) is necessary to define a vector. Similarly, the tensor
of second order is an array of nine values.
Relations (1.51) simplifies for boundary layer flows for which they become

)" ou\’ar
=r() en(R) 5 (22
The Newton and Fourier laws follow from (1.52) as well as from (1.51) at n=1 and s =
n—1=0(Exer. 1.50 and 1.51).

It is shown that universal functions (1.39) and (1.40) are valid also for power law
non-Newtonian fluids, but only for such, for which the condition s = n — 1 is satisfied. This
equality means that viscosity K, and heat conductivity K, (called apparent parameters for
non-Newtonian fluids, Exer. 1.52) are proportional to each other as for Newtonian fluids, and
due to that, the analogous exact solution of thermal boundary layer equation may be obtained.
[111, p. 84] In that, more general case, the Gortler variable and parameter f, defined the
self-similar flows, are determined as follows (Exer. 1.53)

_ 2 [ g __@+bm  __Ux _
®= KT/ vl Ode P T M= 1 (153)
0 [ U&)de
0

These equations indicate that for power-law fluids, the pressure gradient parameter f is
depended not only on exponent m of the external velocity U = cx™ as for Newtonian fluid,
but also on exponent 7 in rheology law (1.51) or (1.52). Because of that, the pressure gradient
is characterized not by f, which depends also on n, but by using directly the exponent m
applying the third formula (1.53) instead of relation (1.45) for # in the case of Newtonian
fluid (Exer. 1.54).

The coefficients g, were calculated in the same way only for large Prandtl numbers Pr =
10, 100, 1000 typical for non-Newtonian fluids, exponents n from 0.2 to 1.8, and for m = 0
(zero pressure gradient), m = 1/3 (negative pressure gradient) and m = 1 (stagnation point
flow). The results given in Figure 1.10 indicate that: (i) the dependences of coefficients g,
on Prandtl number and pressure gradient are similar to those for Newtonian fluids (Fig.1.3),
(ii) for Pr > 10 and relatively small pressure gradients m = 0 and m = 1/3, coefficients g,
are practically independent on Pr as well as for Newtonian fluid, (iii) as the pressure gradi-
ent increases (m = 1), this dependence becomes more significant, but still remains slight, (iv)
functions g, (n) and g,(n) (form = 1/3, m = 1 and Pr = 100 they merge in one curve 2) present
the effect of non-Newtonian behave of fluid (exponent 7) on heat transfer intensity showing
that nonisotermicity effect increases markedly with growing exponent 7, (v) the greatest coef-
ficient g; becomes larger from two to more than three times as the exponent # increases from
0.2to 1.8.

In Figure 1.11 are plotted the results obtained for coefficient g, which defines the isothermal
heat transfer coefficient /, for non-Newtonian fluids according to formula for Nusselt number
[111, p. 84]

2n—1

Nu C L\ 2 o
< - go<_fRem> (=)™ (1.54)
Ren+t 2 Re
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Figure 1.10 Coefficients g, for non-Newtonian fluids: s =n—1,1—=m=1,Pr=10,2-m=1,Pr =
100and m =1/3,Pr> 10,3 —m =1, Pr > 1000,4 —m = 0, Pr > 10
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Figure 1.11 Quotient g,/Pr'/? of the coefficient g, and Prandtl number Pr'/? for non-Newtonian fluids:

s=n—-1,1-m=0,Pr>10,2-m=1/3,Pr>10,3—m=1.Pr> 1000,4 —m =1, Pr=100, 5 —
m=1,Pr=10

where Nu and Re are special numbers for non-Newtonian fluids given in nomenclature.
The friction coefficient C; containing in (1.54) may be estimated using special literature,
for example [351]. Figure 1.11 presents the value g,/ Pr'/? (instead of 8o) as a function of
exponent n for different values of pressure gradient (different m) and Prandtl number. It is
seen that for large Pr, this quotient slightly depends on Prandl number. This indicates that
the heat transfer coefficient for an isothermal surface for power-law fluids is practically
proportional to Pr'/3 as well as for Newtonian fluids (S. 7.5.1).
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Although the coefficients C; and C, here are not given, they may be calculated by the same
way using data for coefficients g, (Exer. 1.55). For the general case of arbitrary exponents n and
s (not connected by condition s = n — 1) for laws (1.51) only approximate similar solutions
for universal function have been obtained [104].

1.10 Universal Functions for Moving Continuous Sheet

The systems in which a continuous material goes out of a slot and moves through surrounding
coolant are used in a number of industrial processes, such as forming of synthetic films and
fibers, the rolling of metals, glass production, and so on. Due to viscosity of the surrounding,
on the surface of such moving sheet a boundary layer similar to that on a streamlined or a fly-
ing body forms as it schematically is shown on Figure 1.12. Despite both boundary layers are
similar, at the middle of the last century it was shown [333] that the boundary layer on contin-
uous sheet differs from the well-known boundary layer existing on streamlined bodies. As it
is clear from Figure 1.12 in this case, the boundary layer grows in the direction of the motion,
whereas on the moving or streamlined body, the boundary layer develops in an opposite to the
moving direction.

It can be shown that in coordinate system attached to the moving surface, the boundary layer
equations are unsteady (Exer. 1.56), and hence, they differ from the usual steady equations for
a plate, but the boundary conditions in the moving frame are identical with those for stream-
lined plate. At the same time, in a frame attached to the slot, the problem of the moving sheet
is steady, and both boundary layer equations coincide, however, in this case, the boundary
conditions differ because the flow velocity on a sheet relatively to a slot is not zero.

The first calculations revealed that for the moving continuous sheet, the friction coefficient
and the isothermal heat transfer coefficient at Pr = 0.7 are greater than those for streamlined
plate by 34% and 20%, respectively [333, 395]. Exact solution for arbitrary nonisothermal
surface in the same form of universal functions (1.38) and (1.26) for zero pressure gradient
was obtained in [109] for stationary and blowing surrounding coolant with different ratio ¢ =
Us/U,, where U,, and U, are velocities of surface and coolant. The coefficients g, and the
exponents C; and C, are given in Figure 1.13 and 1.14. The coefficient g, plotted in Figure 1.15
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Figure 1.12 Schematic pattern of boundary layer on moving continuous sheet for symmetric (U, =
U,,T T_,) and asymmetric flows
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Figure 1.14 Exponent C, and C, as a functions of Prandtl number and ratio ¢ = U_ /U, for a plate
moving through surrounding. 1 —¢ =0,2-0.1,3-0.3,4-0.5,5-0.8
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Figure 1.15 Quotient g, /Pr'/? as functions of Prandtl number and ratio ¢ = U, /U, for moving

isothermal continuous sheet. 1 —¢p=1,2-0.8,3-0.5,4-0.3,5-0.1,6 — 0.7, 7 — (—0.05)



34 Applications in Conjugate Heat Transfer

for different ratio ¢ = U, /U,, defines the isothermal heat transfer coefficient according to
formula i, = gy+/U,,/vx (Exer. 1.57).

The coefficients g, in this case are markedly greater than those for streamlined plate (Figs.
1.3 and 1.4), but decrease rapidly as well with coefficient number increasing. For instance, in
the case of stationary surrounding, the first coefficient g, for the moving sheet is twice greater
which indicates that the effect of nonsothermcity in this case is significantly larger than that
for streamlined stationary or moving plate. As well as for usual case, the coefficients g, for
k > 3 are practically independent of the Prandtl number and blowing parameter ¢ and may be
calculated by the same formula (1.42) for Pr — 0 as for universal functions (1.38).

1.11 Universal Functions for a Plate with Arbitrary Unsteady
Temperature Distribution

An exact solution of unsteady thermal boundary layer equation for a plate with arbitrary
unsteady temperature distribution 7,,(¢, x) shows that in this case, a differential universal func-
tion has the form similar to series (1.38) [117, p. 75] (Exer. 1.58)

00 00 0% 2 920 2 9%0
q, = h, (9w +g10xa—; +g01%0_tw +820x2?2w +802%672W +811%?av;

(1.55)
Series (1.55) contains three types of terms with derivatives depending: on coordinate only,
on time only, and on both coordinate and time with coefficients g,,. g,; and g;;, respectively.
Coefficients g are the same as g, in universal function (1.38) for steady temperature distribu-
tion. The two others depend on Prandtl number as well as g, and on time (Exer. 1.59). For the
case of zero pressure gradient and Pr = 1, the first four coefficients g;;(i # 0) are computed
numerically. They are plotted on Figure 1.16, which shows that the coefficients g,; are simi-
lar to coefficients g, rapidly decreasing with growing number ki. Due to that, it is possible to
obtain satisfactory accurate calculations using only first several terms of the series (1.55) as

well as in the case of employing steady state universal function (1.38).
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Figure 1.16 Coefficients g,,(i # 0) as functions of z for zero pressure gradient and Pr = 1
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It follows from Figure 1.16 that the coefficients g;; gradually grow with time and finally
attain the values of (g;;),_, ., that coincide with those obtained by Sparrow in a similar problem
without an initial conditions [370]. The ratio g;;(z)/(g4);—  is about 0.99 when dimensionless
time z = Ut/x (see Exer. 1.59) becomes z > 2.4. Hence, for z > 2.4, the coefficients g; are
practically independent of time. Comparing these coefficients with coefficients g, of series
(1.38) for zero pressure gradient and Pr = 1 reveals that coefficients g;; for large time are much
greater. In particular, the first coefficient g, =~ 2.4 is four times larger than corresponding value
of steady state g; ~ 0.6 (Fig.1.3). This specifies that the nonisothermicity effect caused by time
temperature gradient 06,, /0t is four times greater than the effect of nonisothermicity produced
at the same conditions by spatial temperature gradient 96,,/0x.

The following integral universal function corresponds to unsteady differential universal
function (1.55)

X t
20, 00,
4, = h.|0, (@, 0)+/f[(§/x,)0, 2 dé‘+/f[0, (n/1), Zl—=—dn
4 on
0 0
t X
0%,
+/dn FlE/x, m/o, 7| agand§ (1.56)
0 0

Applying the same technique of repeated integration by part as in the case of steady-state
heat transfer described in Section 1.4, one can show that this expression is identical with the
differential form in series (1.55).

1.12 Universal Functions for an Axisymmetric Body

According to Stepanov and Mangler (in conformity with Russian and English literature), the
problem for an axisymmetric body is transformed to two-dimensional problem by using vari-
ables which in case of non-Newtonian power law fluids are [351]

X

¥= / R™(&)dE, 7 =Ry, (1.57)

0

where R is a cross section radius (Exer. 1.60). It follows from this result that universal functions
(1.39) and (1.40) are valid for flow past axisymmetric body in Gortler variable transformed
according to relation (1.57). Such variable for the case of the power law non-Newtonian
fluids is obtained after substituting R"*'dx for dx in the corresponding Goértler variable for
non-Newtonian fluids (1.53). The heat flux g,, obtained for plane two-dimensional problems
should be multiplied in this case by R" to get

X

P = Ki / Ul OR"©dE, G, =R"q, (1.58)

T

In the case of Newtonian fluid (n = 1), the first expression (1.58) in conformity with
equations (1.57) transforms in the Gortler variable @ (1.39) modified by multiplying the
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integrand by R?. The second equation (1.58) in this case reduces to ¢,, = Rg,, where g, is the
heat flux obtained by universal function (1.39) for plane problem, which also is in line with
the second equation (1.57 ) (Exer. 1.61).

Comment 1.11 Special variables play a significant role in simplifying the initial form of
equations. So far, we consider those three variables: Gortler variable, which transforms the
solution for zero pressure gradient to form applicable for flows with arbitrary pressure gradi-
ent, Dorodnizin-Illingworth-Stefartson variable transforming the equations for compressible
fluid in an incompressible form, and the Stepanov-Mangler variable which reduces the axisym-
metric equation to the equivalent two-dimensional equation. There are other specific variables
transforming equations, in particular, as later we will see the Falkner-Skan, Blasius, and other
similarity variables, which change the partial boundary layer equations in ordinary differential
equations (S. 7.5.1 and 7.5.2), Prandtl-Mises variables converting boundary layer equation in
the form, which is close to one-dimensional conduction equation (S. 7.4.4.2). These examples
are taken from boundary layer theory. However, the equations transforming by applying new
variables is a general method widely used in mathematics.

1.13 Inverse Universal Function

The inverse universal function is obtained as a result of solution of the inverse problem when
the surface heat flux distribution is specified and the corresponding temperature head distri-
bution should be found. We consider two such problems: first, the general inverse universal
functions for surface with given arbitrary heat flux distribution is obtained and then, the specific
inverse problem determining the universal function for recovery factor is solved.

1.13.1 Differential Inverse Universal Function [112]

Because we are seeking a temperature distribution, we solve equation (1.39) for temperature
head to obtain

“kE W qw
W_Y_p9 (® 1.59

0, + i g, D
k=1

The right hand part of this equation is a known function of x and hence, of Gortler variable @
since in the problem in question the heat flux distribution is given. Physically the ratio ¢,, /A,
determines the temperature head which would be established by given heat flux if the consid-
ering surface were isothermal. Therefore, we use for this function the notation 6, (®) (Exer.
1.62). In fact, equation (1.59) is a differential equation defining unknown function 6, (®),
which solution may be presented in terms of known function 6, (®) = ¢,,/h, as a series sim-
ilar to universal function (1.39)
& n
0, =0, + Z h,ﬂ)"%, (1.60)
n=

where h,, denotes coefficients similar to g,. To prove this, we show that relation (1.60) satisfies
equation (1.59) which we transform by replacing the right hand part to the left

k

- d*e
0,0, (P)+ oF—2 =0 1.61
w w( ) kzzlgk d(I)k ( )
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Substitution of equation (1.60) into this equation leads to following equation (Exer. 1.63)

B e, & o
n;hncb" o +n§ P dq)k Zg,@ dq)kz =0 (1.62)

After changing indices n to k and performing differentiation in the last term, we mod-
ify this equation by assembling terms containing the same groups ®*(9*@,,, /o®*) for k =
1, 2, 3 .... The expression obtained in such a way is a summation of the partial sums of groups
@k (%0, /0®F) for different numbers k, which according to (1.62) should be equal zero. Since
those partial sums of different groups are independent of each other, the required condition of
zero may be satisfied only if each sum of groups would be equal zero. The equalities obtained
in such procedure by setting each of partial sums to zero contain known k coefficients g, and
k — 1 coefficients h;. Therefore, they define coefficients /; in sequence so that the first equal-
ity for k = 1 specifies &, the second one gives /, via known £, and so on, resulting in the
following equations (Exer. 1.64)

hy+g(h+1)=0, hy+gQ2hy+h)+gQ2h+2h +1)=0
hy + g,(Bhy + hy) + g,(6h5 + 4hy + hy) + g3(6hy + 6hy + 30 +1) =0
hy + g(4hy + h3) + g,(12h, + 6h3 + hy) + g3(24hy + 18h3 4+ 6hy + h))
+g4(24hy +24hs + 120, +4h + 1) =0+ ... (1.63)

Figures 1.17 and 1.18 present the values of the first four coefficients 4; for laminar and
turbulent flows. For the limiting Prandtl numbers the coefficients A, are

hy=—1/2, hy=3/16, hy=-5/96, h,=235/1968  Pr—0 (1.64)
hy =-038, h,=0135 hy=-0.037, h,=000795 Pr— oo (1.65)

Like coefficients g, the first few coefficients /, are a weak functions of § and the others are
practically independent of # and Pr.

1.13.2 Integral Inverse Universal Function [112]

The integral inverse universal function is obtained in the same way by considering the universal
function (1.40) as an equation for temperature head determination to get

O] O]

dew _ CIW((D) _ c1 % % _ qw((b)
/f(é/‘b)fdf " /[1 (&/®)"] e dg = @) (1.66)
0 0

It is seen that in this case, the unknown function 6,, is located under sign of an integral with
variable limit. To find such unknown function, one should solve the second equation (1.66),
which is Volterra integral equations (Exer. 1.65). Because there is no standard approach for
solving integral equations, the solution of such a problem is a hard task. In this specific case,
applying new variables: ®¢1 =z, €61 =¢, and ¢, (®)/h,(®) 2 = F(z) converts second
equation (1.66) into Abel integral equation (1.67), of which the known solution for this
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particular case is shown by second expression (1.67) (Exer. 1.66)

Z 4

do d do F(&)d
/ O S T — L (1.67)
A d¢ (z— ) dz (G, =DHI-C)! dz A (z—¢) 2
Returning to variables @ and ¢ yields a relation for the temperature head (Exer. 1.67)
® G-l c(1-C
C G 1(1=C)
=G / - (i) <§> D0 4 (1.68)
(1 - C)I(Cy) A @ o h,(&)¢
For the case of zero pressure gradient, this expression coincides with known relation
gy 3747 /3
0, = @Regm Pr—1/3/ ll - (5) ] 4, (&)de (1.69)
X
0

obtained in [201] using another approach (Exer. 1.68).

1.14 Universal Function for Recovery Factor

The recovery factor determines a part of fluid mechanical energy that is recovered as thermal
energy. This process is important for estimation of the wall adiabatic temperature (S. 7.3.5).
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Actually, the recovery factor calculation is an inverse problem of the temperature head
determining under condition of zero heat flux (Exer. 1.49) and significant mechanical energy
dissipation. Solution of such a problem is similar to that considered in the previous section,
but in this case in addition, the effect of mechanical energy dissipation should be taken into
account.

It is shown [119, p. 57] that the exact solution of the laminar thermal boundary layer
equation for the case with significant mechanical energy dissipation differs from universal
function (1.39) by the term g,(U?/ ¢,) where g, is a special coefficient similar to coefficients
8- Taking this into account, we solve equation (1.39) with such additional term (the first
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equation (1.70)) for temperature head 6,, in the same way as in Section 1.13.1 to obtain the
second equation (1.70) instead of similar equation (1.59)

n=k o0
a0, 1> a0, q, U
4, = h. <9w+28k‘bk —8dc—>, 9w+28kq’k =5 T&_— (170)
n=1 P k=1

¥ Aok~ h, 3

Considering the last equation (1.70) as the differential equation defining temperature head as
asum (q,,/h, +g,U?/ ¢,) instead of 6,,.,, we get the same solution (1.60) for the problem with
significant mechanical dissipation in which 0,,, = g,,/h, is substituted by the sum (g, /h, +
g,U%/ ¢,) regarding the effect of dissipation

d d”(qw/h* + gdUz/Cp)

0, = q,/h. +8,U*[c, + ) h,®" & (1.71)

n=1

After putting here g,, = 0, this expression gives the universal function for recovery factor

de__zzm YMf_'de - o gk
. - —og (143 0 2L 172
U2, | U, ,; U ok (.72

where T, is adiabatic wall (i.e., isolated) temperature, and 7, is the temperature of the usual
non-isolated wall defined by equation (170) which wall has if it would be nonisolated. It fol-
lows from the last two relations that the adiabatic may be determined as a temperature of
isolated wall or as a wall temperature cooled due to dissipation mechanical energy (Exer. 1.69
and 1.70).

Accordingly, integral universal function for recovery factor is obtained from relation (1.68)
by the same substitution of the sum (g,,/h, + g,U?/ c,) for 0, = g,,/h_in its integrand and
following putting ¢,, = 0 (Exer. 1.71)

@ Cy—1 B
LT 2C / L <g>cl ’ (5)““ YO 113
U?/2c,  T(1=C)I(CyU> @ ) £ '

0

Relations (1.72) and (1.73) present recovery factor for flows with arbitrary external flow
U(x). For zero pressure gradient with U = const. both expressions (1.72) and (1.73) give the
well-known result r = 2g, (Exer. 1.72).

The effect of dissipation, which is proportional to the square of velocity U?(x)., is minor for
incompressible fluids due to typical relatively small incompressible flows velocities. In such
a case, the effect of dissipation becomes significant only for large Prandtl numbers when the
last term in thermal boundary layer equation (1.11), which is proportional to Prandl number, is
comparable with other terms (Exer.1.73). The large Prandtl numbers are common, in particular,
for non-Newtonian fluids. Because of that, the coefficient g, was calculated for non-Newtonian
(n = 0.6 — 1.2) including Newtonian (n = 1) fluids only for large Prandtl numbers, Pr >1000,
for zero pressure gradient (m = 0) and for stagnation point flow (m = 1). The same approach
as for coefficients g, calculation (S. 1.6.1) was used (Exer. 1.74). The results are plotted in
Figure 1.19. It is seen from Figure 1.19 that the recovery factor and hence, the effect of dissi-
pation increases with pressure gradient and decreases as the exponent n increases. This implies
that the effect of dissipation for non-Newtonian fluids with n > 1 (dilatant fluids) is greater and
limited for with n < 1 (pseudoplasic fluids) is smaller than that for Newtonian fluid withn = 1.
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Figure 1.19  Coefficients g, for Newtonian (n = 1) and non-Newtonian fluids (s = n —1, S.1.6), Pr
>1000

Comment 1.12 One merit of using the adiabatic wall temperature is that the substitution of
the adiabatic temperature head defined as 0,;, = T,, — T,,, for usual temperature head 6,, =
T, — T, in known relations yields the expressions valid for the case with heat dissipation. For
example, equation (1.49) for compressible fluid written using adiabatic stagnation enthalpy
difference i, has the same form as the relation (1.39) written in terms of usual tempera-
ture head 6,, for incompressible fluid. This is achieved due to applying adiabatic stagnation
enthalpy difference according to the second equation (1.49) (Exer. 1.75). Applying adiabatic
temperature is also important to understand some heat exchange processes. For instance, as
it shown in Section 2.1.4.3, the fluid cools the wall until it reaches the adiabatic temperature,

and then, the heat flux changes its direction so that the fluid heats the wall.

Exercises

1.48* The basic idea of transforming boundary layer equation for compressible fluid to the
form of incompressible ﬂu1d is to take into account the variability of gas density using

integral of density n = f 2 dé That gives the transverse variable #, which converts
0

the compressible boundary layer equation to the form of incompressible boundary layer
equation. Note, that expression for # is of the same type as Gortler variable @ defined by
equation (1.39). Compare these relations, thinking of their similarity and dissimilarity.
Are the considerations about different kinds of information and flow history outlined in
comments 1.5 and 1.6 applicable to relation for # defined as integral of density? Think
about dummy variables in this relation and in Gortler variable (1.39). Compare both
these dummy variables denoted by the same letter &. Are they actually the same? If no,
explain why do you think so, and how differ these dummy variables from each other?

1.49 Recall what is the adiabatic wall temperature (S.7.3.5) and enthalpy to understand what
is the stagnation enthalpy difference ij,, and how is it calculated? Compare relations
(1.49) and (1.50) for compressible fluids with analogous relations (1.38) and (1.26) for
incompressible flows.
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1.50

1.51

1.52%

1.53*

1.54
1.55%

1.56

1.57*

1.58

1.59%

1.60%*

Show that for the boundary layer flows, the relations (1.52) follow from general expres-
sions (1.51). Hint: compare magnitude order of terms as in derivation boundary layer
equations (S. 7.4.4.1) and use Newton’s law for shear stress.

Obtain Newton’s and Fourier’s laws from relations (1.52) for Newtonian fluids (n = 1)
and prove that in this case the proportionality between viscosity and conductivity exists
because of s = n — 1. Hint: note that in this case the deformation tensor e (see (1.51))
equals du/0y.

Show the same from relations (1.52) for non-Newtonian fluid (at any n) for the case

n—1
when s = n — 1. Hint: modify the relations (1.52) to the forms 7 = K (3—:) ’)—'f and
-1 ﬂ :
dy
1.51. Compare the Newton’s and Fourier’s laws for Newtonian fluid with similar rela-

tions for non-Newtonian fluids to see the difference between viscosity y and conduc-

n
q=K, ( 3—:) which are similar to those obtained for Newtonian fluid in example

-1
tivity 4 in the first case and factors K (?) at velocity and temperature derivatives

in the second case. Think: why those coefficients for non-Newtonian fluids are called
“apparent” viscosity and conductivity (see Com. 5.8)?

Show that in the case of constant external flow U = const, the Gortler variable (1.53)
becomes Reynolds number in a special form for non-Newtonian fluids (see nomencla-
ture) as in similar case for Newtonian fluid (Exer. 1.30).

Derive the third formula (1.53) for exponent m using approach described in Exer. 1.35.

Calculate exponents C; and C, for several examples using coefficients g, from
Figure 1.10 by graphical approach or software described in Exer. 1.41 and 1.42,
respectively; see also Exer. 1.47.

Think and explain why the problem of a moving continuous sheet is unsteady in the
frame attached to the sheet, but is steady in unmoved frame located out of sheet. Hint:
consider what the observer sees looking at the boundary layer when he or she: (i) moves
along with the sheet and (ii) sit out of the moving sheet.

Compare coefficients g, g, and g, for different values of parameter ¢ = U /U,, on
Figures 1.13 and 1.15. Think: why coolant blowing increases the first coefficient, but
reduces two others showing that the cooling effect of isothermal surface grows, whereas
the effect of nonisithermicity decreases as coolant velocity increases? What physically
causes those opposite effects? Hint: analyze the mechanism of such two phenomena.

Continue series (1.55) for i =0, k>0, k=0, i>0, k>0, i >0 knowing that the
general term is g;;(x**1 /U (016, /0x*at"). Hint: first check the given terms.

Show that time and mixed derivatives are in fact derivatives with respect to dimension-
less time z = Ut /x so that, for example, the third, fifth and sixth terms in equation (1.55)
actually are 06,,/0z, 0%6,,/07%, 9%6,,/0x0z.

Compare variable (1.57) with others of this type, Gortler variable (1.39) and
Dorodnizin-Illingworth-Stewartson variable, considered in Exercise 1.48. Answer the
same questions about variable (1.57): are the considerations about different kinds of
information outlined in comment 1.3 applicable to this variable defined as integral
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1.61

1.62

1.63

1.64%

1.65

1.66%*

1.67

1.68*

1.69%

1.70

1.71

1.72

of cross section radius? What variable represents the same dummy variable & in this
integral?

Show that in the case of Newtonian fluid, equation (1.58) transforms in both Gortler
variable for plane two-dimensional problem and for axisymmetric body that are relation
(1.39) and modified relation (1.39), respectively.

Explain physically why the ratio g,,/h, presents the temperature head on an isothermal
surface and why the notation 6, (®) is proper for this ratio.

Obtain expression (1.62) by substituting equation (1.60) into equation (1.61). Hint:
the first sum in (1.62) represents the difference 6,, —6,,,, which is found from
equation (1.60), the second and the third terms are obtained by substituting 6,, defined
by the same equation (1.60) into derivatives in the last term of equation (1.61).

Derive relations (1.63) following directions from text and calculate coefficients &, for
limiting cases. Explain why the summation of the sums of groups with the same com-
plexes ®%(0%0,,, /0D¥) equals zero it follows that each these sums equals zero.

Read the article about integral equations on Wikipedia (at least the beginning part
of definitions) to understand the difference between Volterra and Fredholm integral
equations. Read also on Wikipedia about young mathematician Abel who became
famous despite he died at the age of 26.

Show that substitution of new variables indicated in the text transforms the second
integral equation (1.66) into integral Abel equation (1.67). Hint: note that ¢ is the inte-
gration variable, whereas z is considered as a parameter (see Exercise 1.22).

Obtain the inverse universal function (1.68) from solution of Abel equation (1.67) by
returning to physical variables. Hint: take care of difference between functions of vari-
ables @ and &. Note also, that factorial of noninteger numbers is determined by gamma
functionas y ! =T'(y + 1).

Prove that expression (1.68) becomes (1.69) in the case of zero pressure gradient. Hint:
as in previous example, be careful in using variable @, which in this case is proportional
to x, and variable &. To calculate gamma function apply known formulae, for example,
I'ord —x) = z/sin zx.

Show that the first and second expressions (1.72) for recovery factor follow from
equations (1.71) and (1.70), respectively. Verify that that both definition of adiabatic
temperature given in text follow from these equations.

Derive differential universal function (1.72) for recovery factor using relation (1.60)
as described in the text. Comparing sums in functions (1.60) and (1.72), one sees that
the second sum may be obtained directly from the first one by substituting U? for 6, .
Explain physically why such substitution yields true result.

Obtain integral universal function (1.73) for recovery factor using relation (1.68). Holds
the same physical explanation from the previous exercise in this case?

Show that in the case of zero pressure gradient, relations (1.72) and (1.73) yield
well-known result for recovery factor r =2g,. Hint: in integrand (1.73) take a
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new variable z = (£/x)*/* and transform integral (1.73) to beta function defined by
equation (1.47).

1.73  Prove that that only the last term in thermal boundary layer equation (1.11) is propor-
tional to Prandl number. Explain physically why high Prandtl number leads to signifi-
cant effect of mechanical energy dissipation.

1.74* What parameters should be changed to make relations (1.72) and (1.73) applicable for
turbulent flows?

1.75 Derive the second equation (1.49) for adiabatic stagnation enthalpy difference i, at
zero pressure gradient from relation (1.72) knowing that Mach number is M = U /U,
where speed of sound is Uy; = y/kRT .
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