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CHAPTER 1
MAGNETIC CIRCUITS

OUR KNOWLEDGE OF MAGNETIC phenomena is literally as old as
science itself. According to the Greek philosopher Aristotle, the attractive power of
magnets was known even at that time. However, it was not until the sixteenth century
that experimental work on magnetism began in earnest. Notable, among scientists
active at that time, were the works of Gilbert, who discovered the earth’s magnetism,
Volta, who developed the voltaic cell, and Oersted, who related the magnetic field to
the flow of current. However, it is on the works of Biot and Savart, Ampere, and finally
Faraday that the modern theory of magnetism is based. In their experiments, the force
on a current-carrying wire due to the flow of current in another wire was carefully
measured and forms the experimental basis for the entire theory of magnetism.

1.1 BIOT–SAVART LAW

Using modern notation, the experiments of these pioneers can be expressed com-
pactly in a single vector equation. With reference to Figure 1.1, let O1 and O2 be two
very thin closed conducting current loops in which steady (DC) currents flow. The
coordinates along the loop O1 can be designated by x1, y1, z1 and the coordinates
along the second loop O2 as x2, y2, z2. The arc lengths along the loops O1 and O2 are
denoted as vector quantities dl1 and dl2, respectively. From the experiments of Biot,
Savart, and Ampere, the differential force in Newtons expressed as a vector exerted
on a small piece of loop 2 carrying current I2 due to the current I1 in a small piece of
loop 1 can be expressed, in modern notation and units as

dF21 =
(𝜇0

4π

) I2dl2 × [I1dl1 × ur12]

R2
newtons(N) (1.1)

where

R =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

and ur12 is a unit vector pointing from dl1 to dl2. Essentially, this force acts to align
the two differential elements (i.e., make dl1 and dl2 collinear). This expression can
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2 CHAPTER 1 MAGNETIC CIRCUITS

dl1

dl2
I2

I1
R=Rur12

O1 O2

Figure 1.1 Illustration of Biot-Savart’s law.

be integrated around coil 1 to find the total force exerted on the differential element
of coil 2 as

dF21 =
𝜇0

4π ∮
O1

I2dl2 × (I1dl1 × ur12)

R2
(1.2)

To find the total force on wire 2, one can simply integrate a second time to form what
is called Biot–Savart law or, alternatively, Ampere’s law of force,

F21 =
𝜇0

4π ∮
O2

∮
O1

I2dl2 × (I1dl1 × ur12)

R2
N (1.3)

When the force F21 is measured in newtons and the currents are in amperes with
the tests made in a vacuum the proportionality constant 𝜇0 is equal to 4π × 10−7

newtons per ampere squared (eventually defined as henries per meter). Thus, the pro-
portionality constant 𝜇0, is called the permeability of free space. It can be shown that
reciprocity holds, that is, F12 = −F21

1.2 THE MAGNETIC FIELD B

One of the great philosophical contributions of mathematics to science was the use of
so-called “fields” to explain the action at a distance, a concept justly troubling to these
early researchers. Upon examination of equation (1.3), one can define an incremental
magnetic field vector dB21 at point 2 due to a current element at point 1 as

dB21 =
𝜇0

4π
I1dl1 × ur12

R2
(1.4)

The magnetic field resulting from the entire circuit 1 is then

B21 =
𝜇0

4π ∮
O1

I1dl1 × ur12

R2
(1.5)
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whereupon, the force equation, equation 1.3, becomes the much simpler “BIl” form,

F21 = ∮
O2

I2dl2 × B21 (1.6)

In contrast to equation (1.3), this formulation evaluates the force on a current loop
in terms of the interaction of this current with a magnetic field B. It is important to
remember that the basic unit of magnetic field is newtons per ampere-meter which
will lead to the interpretation of magnetic flux lines as “lines of force.” Note that
there need be no restriction on the value of ur12 and R in equation (1.5). That is,
these quantities need not be concerned with the actual distance between two current
elements on two circuits. In this case, B is well defined everywhere in space and
thereby constitutes what is called a vector field.

One of the advantages of the field formulation is that when B is known, the
relation permits one to evaluate what would be the force exerted on a current-carrying
conductor placed anywhere in the B field without consideration as to what are the
system of currents actually giving rise to this field.

An alternative expression for the vector B can be obtained if the current loops
cannot be considered to have negligibly small cross-sectional areas, that is

B21 =
𝜇0

4π ∫
V

J × ur12

R2
dV (1.7)

where V is the volume and the vector J is the volumetric current density in amperes
per meter2.

1.3 EXAMPLE—COMPUTATION OF FLUX DENSITY B

The computation of flux density within an electrical machine forms the basic principle
behind the machine design process. Consider here the simple example in which a
short segment of wire of length L carries a current I as shown in Figure 1.2. Since the

z

y

x

(0,Y,Z)

dz

_L/2

L/2 R

Figure 1.2 Magnetic field of a short wire.
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current flows in the z-axis, equation (1.5) becomes

dB21 =
𝜇0

4π
Idzuz × ur12

R2
(1.8)

Since the cross product cannot result in a z component and is also normal to the
unit vector ur12, the flux density must also be normal to the plane containing the uz
as well as the vector ur12.

The magnitude of the total field at any point on the x = 0 plane is

B21 =
𝜇0I

4π

L
2

∫
− L

2

|uz × ur12|dz

R2
(1.9)

On the x = 0 plane, the unit vector ur12 is given by

ur12 = Y√
Y2 + (Z − z)2

uy +
Z√

Y2 + (Z − z)2
uz (1.10)

where Y and Z designate a specific point on the x = 0 plane. After taking the cross
products, equation (1.9) becomes

B(0, Y , Z) =
𝜇0I

4π

L
2

∫
− L

2

YdZ
3
√

Y2 + (Z − z)2
ux (1.11)

Upon integrating,

B(0, Y , Z) =
𝜇0I

4πY

⎡⎢⎢⎢⎢⎣
Z + L

2√
Y2 +

(
Z + L

2

)2
−

Z − L
2√

Y2 +
(

Z − L
2

)2

⎤⎥⎥⎥⎥⎦
ux (1.12)

Of general interest is the magnetic field on the plane perpendicular to the wire
and at the center line of the conductor, where Z = 0. Here,

B(0, Y , 0) =
𝜇0I

4πY

⎡⎢⎢⎢⎢⎣
L√

Y2 +
(

L
2

)2

⎤⎥⎥⎥⎥⎦
ux (1.13)

For a current of infinite length, L → ∞ and equation (1.13) becomes

B(0, Y , 0) =
𝜇0I

2πY
ux (1.14)

and becomes independent of Z. When the wire is infinitely long, the general result is
clearly, from symmetry,

B =
𝜇0I

2πR
Wb∕m2 (1.15)
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where R is the radial distance from the wire and the direction of B is normal to the
plane containing both the wire and the length R.

1.4 THE MAGNETIC VECTOR POTENTIAL A

The expression for magnetic field can be further simplified by introducing the concept
of the magnetic vector potential. It can be easily shown that the following expression
is an identity:

ur12

R2
= −∇

( 1
R

)
(1.16)

where ∇ is the gradient operator defined by

∇ = 𝜕

𝜕x
ux +

𝜕

𝜕y
uy +

𝜕

𝜕z
uz (1.17)

Using equation (1.16), equation (1.7) can be written as

B21 =
𝜇0

4π ∫
V

J × ∇
(
− 1

R

)
dV (1.18)

The vector differential operator affects only the variables at the point at which B21 is
evaluated while the integral is taken over the region for which the current density J
is defined. However, another identity states that if f is any scalar function of x, y, and
z, and v is any vector

∇ × (f v) = f∇ × v + ∇f × v (1.19)

where ∇× denotes the curl operator.
Then, letting f be (1∕R) and setting v to J

∇ ×
( J

R

)
=
( 1

R

)
∇ × J + ∇

( 1
R

)
× J (1.20)

In Cartesian coordinates, the curl of any vector F is expressed as the determinant of
the matrix

∇ × F = det

⎡⎢⎢⎢⎣
ux uy uz

𝜕

𝜕x
𝜕

𝜕y
𝜕

𝜕z
Fx Fy Fz

⎤⎥⎥⎥⎦ (1.21)

Upon defining the concept of the electric field (later in Section 1.7) it will
become evident that the first term on the right-hand side of equation (1.20) is zero
by virtue of equations (1.41) and (1.42). (This result assumes that the current distri-
bution is not time-dependent or that the frequency is sufficiently low as is typically
the case with electrical machinery.) Thus, equation (1.18) becomes

B21 = ∇ ×
𝜇0

4π ∫
V

J
R

dV (1.22)
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The curl operation can be brought outside of the integral since the two opera-
tions are independent; that is, the integral is taken over the volume containing J while
the differential operator operates at the point defining B21. The field B21 has now been
defined by the curl of a function that can be designated as A,

B = ∇ × A (1.23)

which can be formally defined as

A =
𝜇0

4π ∫
V

J
R

dV Wb∕m (1.24)

The use of the subscript “21” on B has now been dropped for simplicity. The quantity
A is called the magnetic vector potential and must be formally evaluated by decom-
posing the integrand into components along the three coordinates. That is, for the x
component of A,

Ax =
𝜇0

4π ∫
V

Jx

R
dV (1.25)

and so forth for Ay and Az. Note that the vector potential in the x direction is caused
only by the current distribution in the x direction. Hence, the problem of computing
the magnetic field B has been reduced to solving three decoupled scalar integrals.

The circuit equivalent to equation (1.24) is

A =
𝜇0

4π ∫
L

I
R

dl (1.26)

and is generally more useful when currents flow through wires having negligible cross
section.

1.5 EXAMPLE—CALCULATION OF MAGNETIC FIELD
FROM THE MAGNETIC VECTOR POTENTIAL

Consider that it is necessary to determine the vector potential and the resulting flux
density at a distance Y from the center of a current element of length L and on a line
perpendicular to its midpoint as shown in Figure 1.3.

Since the current is directed solely in the z direction, the magnetic vector poten-
tial will have only a z component. By symmetry, equation (1.26) reduces to

Az =
𝜇0

4π

L
2

∫
0

I
R

dz (1.27)
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x

y

z

Y

Rdz
L/2

–L/2

Az

Figure 1.3 Magnetic vector potential of a current element.

so that

Az =
𝜇0I

4π

L
2

∫
0

1√
Y2 + z2

dz (1.28)

which becomes ultimately

Az =
𝜇0I

4π
ln

(
L

2Y
+
√

1 +
( L

2Y

)2
)

(1.29)

where ln denotes the natural logarithm. The solution for magnetic vector potential
can now be used to obtain the magnetic flux density at the same point. From equa-
tion (1.23),

B = ∇ × A (1.30)

and from equation (1.21), if A has only a z-directed component,

B =
𝜕Az

𝜕y
ux −

𝜕Az

𝜕x
uy (1.31)

Since Az does not vary with x, the second term is zero and

Bx =
𝜕Az

𝜕Y
=

𝜇0I

2πY

⎛⎜⎜⎜⎜⎝
L
2√(

L
2

)2
+ Y2

⎞⎟⎟⎟⎟⎠
(1.32)

which is the same as equation (1.13).

1.6 CONCEPT OF MAGNETIC FLUX

It has been determined that the magnetic field B can be expressed in terms of the curl
of an auxiliary vector potential function A. However, again from vector calculus, the
divergence of the curl of any function is always zero, that is

∇ ∙ (∇ × A) = 0
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where, in the Cartesian system, the divergence operator is defined as

∇ ∙ F =
𝜕Fx

𝜕x
+

𝜕Fy

𝜕y
+

𝜕Fz

𝜕z
(1.33)

From the definition of A, it follows that the divergence of B must be identically
zero.

∇ ∙ B = 0 (1.34)

If equation (1.34) is integrated over a volume

∫
V

∇ ∙ BdV = 0 (1.35)

whereupon, from Gauss’ law, one obtains the result that

∫
V

∇ ∙ BdV = ∮
S

B ∙ dS = 0 (1.36)

in which the surface S encloses the volume V.
In many cases, it is advantageous to think of a vector field as the “flow” of a

quantity and in the case of the magnetic field, as suggested from equation (1.36), it
is useful to now think of B as a density of flow of “something” per unit area. In the
SI system of units, it has been agreed to term this “something” as magnetic flux with
unit webers. Consequently, B can now be considered to have units webers per square
meter and when the webers per unit area are integrated over a closed surface, the
total amount of magnetic flux enclosed is identically zero. The modern SI unit for
B is the tesla which is identically equal to a weber per square meter. However, both
these terms will be used interchangeably throughout this book.

For an arbitrary surface S, bounded by a closed contour O as shown in Fig-
ure 1.1, the total magnetic flux Φ passing through the surface S is expressed by

Φ = ∫
S

B ∙ dS webers (1.37)

The flux which passes through the surface S is said to link the contour O and is gen-
erally referred to as the flux linkage of the contour. The flux which links a contour O
may also be expressed in terms of the vector potential A. Since B is the curl of A, one
can write

Φ = ∫
S

B ∙ dS = ∫
S

∇ × A ∙ dS

This expression can be transformed to a contour integral by using Stokes’ theorem,
in which case,

Φ = ∫
S

∇ × A ∙ dS = ∮ A ∙ dl (1.38)
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This expression is sometimes more convenient to evaluate than equation (1.37) and
will be particularly useful when finite element analysis is investigated later in this
text.

1.7 THE ELECTRIC FIELD E

In a manner similar to the magnetic field discussion above, the force impressed on
one electric charge by another located some distance away can be described by an
electric field acting directly on the charge. The force is usually expressed as the force
on a unit “test” charge as

F21

q2
= 1

4π𝜀 ∫
V

ur12𝜌c(V)

R2
dV (1.39)

where 𝜌c is the charge density in coulombs per meter3, R is the distance from the
differential charge 𝜌cdV to the point at which E is evaluated, ur12 is the corresponding
unit vector, 𝜀 is the permittivity of the material. The unit vector ur12 again points from
the location of the charge, point 1, to the point at which E is to be evaluated, point 2.

Whereas the force exists only on the test charge q2, a field can again be said to
exist everywhere in space given by the vector

E21(x, y, z) = 1
4π𝜀 ∫

V

ur12𝜌c(V)

R2
dV (1.40)

The electric field is usually given in fundamental units of newtons per coulomb. The
free space value of permittivity is 𝜀0 = (1/36π) × 10−9 coulombs2/Nm2.

Finally, when the electric field exists inside a conducting material, the presence
of the field establishes a current according to Ohm’s law, that is,

J = 𝜎E (1.41)

From the form of the definition of E, equation (1.40), and by using equation (1.16)
and the vector identity ∇ × ∇(1∕R) = 0, it can be readily shown that

∇ × E = 0 (1.42)

if 𝜌c is not time-dependent. Equation (1.42) remains valid for DC current flow in a
conductor since the charge at each point in the wire is always the same.

From Stokes’ theorem, equation (1.42) has the property that

∫
S

(∇ × E) ∙ dS = ∮
O

E ∙ dl = 0 (1.43)

where O bounds the surface area S. Equation (1.43) essentially implies that the line
integral of E between any two points is independent of the path resulting in the elec-
trical field being said to be conservative. That is, no energy is lost or gained in mov-
ing a charged particle around a closed path in an electromagnetic field produced by
static (non-moving charges) or by steady currents. In a practical sense, this statement
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implies that if a conductor is placed in a steady field, no current will flow in the con-
ductor in the steady state.

Upon examining equation (1.43), it is apparent that the electric field has the
properties of a “gradient,” that it is expressed in terms of “some quantity” per meter.
This quantity is formally defined as a volt in which case, the electric field is defined
to have unit volts per meter for which a volt has fundamental units of newton-meter
per coulomb. The unit of permittivity 𝜀0 in terms of the voltage as a unit is coulomb
per volt meter.

1.8 AMPERE’S LAW

Ampere’s law forms the fundamental basis upon which all machine design begins.
While often presented as a separate law to that of Biot and Savart, its basis is, in
actuality, embedded in the definition of the magnetic field B. Upon taking the curl of
B as defined by equation (1.7), and replacing the curl-curl operator by the equivalent
expression, the gradient of the divergence minus the Laplacian, it is possible to obtain

∇ × B = ∇ × ∇ ×
𝜇0

4π ∫
V

J
R

dV (1.44)

=
𝜇0

4π ∫
V

[
∇∇ ∙ J

R
− J∇2

( 1
R

)]
dV (1.45)

The differential operators have been taken behind the integral since these operators
are taken with respect to the point at which B is desired whereas the integral is taken
over the region where the current density J exits.

The first term in equation (1.45) can be written alternatively as

∫
V

∇∇ ∙ J
R

dV = ∇ ∫
V

∇ ∙ J
R

dV (1.46)

where the gradient operator has been brought out from under the integral sign since
the gradient and integral operations can again be interchanged. However from Gauss’
theorem, this integral can be replaced by the expression

∇ ∫
V

∇ ∙ J
R

dV = −∇∮
S

J
R
∙ dS (1.47)

The minus sign appears in this expression since the divergence operator is taken with
respect to the point defining B whereas the integral is taken over the volume defining
the current density J. However, the surface S describes the outer surface of the con-
ductor over which a net current clearly is not escaping. Thus the dot product J ∙ dS
is zero on this surface and the first term in equation (1.45) is, therefore, zero.

The expression for the curl of B reduces to

∇ × B = −
𝜇0

4π ∫
V

J∇2
( 1

R

)
dV (1.48)
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where ∇2 = (∇ ∙ ∇) is the Laplacian operator. That is,

∇2 = 𝜕2

𝜕x2
+ 𝜕2

𝜕y2
+ 𝜕2

𝜕z2
(1.49)

where the set (x, y, z) denotes the point at which B is defined. Also, R is the distance
from the point where B is evaluated at the differential element dV locating J. In a
similar manner, one can define the set (x′, y′, z′) as denoting the point at which the
differential volume dV is defined and the corresponding Laplacian operator

∇′2 = 𝜕2

𝜕(x′)2
+ 𝜕2

𝜕(y′)2
+ 𝜕2

𝜕(z′)2
(1.50)

By formal differentiation, it can be shown that the expression ∇2(1∕R) is iden-
tically zero everywhere except at the point of singularity, namely where R → 0. At
the point of singularity, the points (x,y,z) and (x′,y′,z′) coincide so that ∇2(1∕R) =
∇′2(1∕R) where the prime indicates differentiation with respect to the prime variables.
Since ∇2 is equivalently written as ∇ ∙ ∇, equation (1.48) can also be expressed as

∇ × B = − lim
R→0

𝜇0

4π ∫
V

J∇′ ∙ ∇′
( 1

R

)
dV (1.51)

which, by Gauss’ theorem becomes

∇ × B = − lim
R→0

𝜇0

4π ∮
S

J∇′
( 1

R

)
dS (1.52)

The differential surface area in spherical coordinates is un(R2 sin 𝜃d𝜙d𝜃), where un
is the unit normal to the surface dS. However, the gradient of 1∕R is equal to −un∕R2

so that the integral becomes

∇ × B = lim
R→0

𝜇0

4π ∮
S

J sin 𝜃d𝜙d𝜃 (1.53)

Since the radius of the small sphere approaches zero, the current density vector
J can be removed from the integrand since it becomes a constant. The remaining inte-
gral can now be evaluated as simply 4π. Equation (1.44) finally reduces to Ampere’s
law

∇ × B = 𝜇0J (1.54)

The integral form of Ampere’s law can be obtained by integrating equa-
tion (1.54) over an arbitrary finite open surface which includes the region where the
current density J is flowing, whereupon,

∫
S

∇ × B ⋅ dS = 𝜇0 ∫
S

J ∙ dS (1.55)
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The right-hand side of equation (1.55) is clearly proportional to the current I flowing
through the surface S. With the use of Stokes’ theorem, the left hand side can be
altered to the form

∫
S

(∇ × B) ∙ dS = ∮
O

B ∙ dl (1.56)

where the path O corresponds to the outer edge of the surface S. Thus, the integral
form of Ampere’s law is

∫
O

B ∙ dl = 𝜇0I (1.57)

1.9 MAGNETIC FIELD INTENSITY H

Thus far, the behavior of the magnetic field in a vacuum has been considered. When
dealing with material bodies, orbiting electrons of each individual atom can be con-
sidered as a current loop. With no external magnetic field, the orbiting atoms are ran-
domly positioned so that they do not produce, themselves, a magnetic field (except
for permanent magnets). The presence of the magnetic field influences the orbits of
the individual atoms creating what is called a magnetic dipole moment m. The dipole
moment is defined as equal to the product of the area of the circular loop defined by
the orbiting electron times the magnitude of the circulating current and with a direc-
tion perpendicular to the plane of the loop in the direction of a right-hand screw. That
is, if the current loop is located in the x,y plane and orbiting in a counterclockwise
direction as shown in Figure 1.4, the magnetic dipole moment is defined by

m = πr2Iuz A-m2

The vector potential for this small electric circuit is

A =
𝜇0I

4π ∮
O

dl
R1

(1.58)

y

z

x

r

I R1

R

(x,y,z)

Figure 1.4 The magnetic dipole.
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If R2 is much greater than r2, then

1
R1

≈ 1
R

(
1 + rx

R2
cos𝜙′ +

ry

R2
sin𝜙′

)
(1.59)

Equation (1.58) then integrates to yield

A =
𝜇0Ir2

4R3
(−yux + xuy) (1.60)

However,

uz × R = uz × (xux + yuy + zuz) = −yux + xuy

so that the vector potential can be expressed in vector form as

A =
𝜇0m

4π
uz ×

ur

R2
(1.61)

In general, if the magnetization axis direction is arbitrary,

A =
𝜇0m

4π
um ×

ur

R2
(1.62)

or, alternatively, from equation (1.16), as

A = −
𝜇0m

4π
um × ∇

( 1
R

)
(1.63)

A mathematical representation of the overall magnetic dipole moment of a finite
body can be obtained by multiplying mum by the number of atoms per unit volume
Na to obtain the magnetic polarization vector M

M = Nam = Namum A∕m (1.64)

so that it is possible to write, in place of (1.63),

A (x, y, z) = −
𝜇0

4π ∫
V

M(x′, y′, z′) × ∇
( 1

R

)
dV′ (1.65)

where M is considered here as varying within the body (i.e., a function of (x′, y′, z′)
and R represents the distance between the external point (x,y,z) and the internal point
(x′, y′, z′). Now,

M × ∇
( 1

R

)
= −M × ∇′

( 1
R

)
(1.66)

and

M(x′, y′, z′) × ∇′
( 1

R

)
=
( 1

R

)
∇′ × M(x′, y′, z′) − ∇′ ×

M(x′, y′, z′)
R

(1.67)

Equation (1.65) can now be written as

A = −
𝜇0

4π ∫
V

( 1
R

)
∇′ × M(x′, y′, z′)dV′ +

𝜇0

4π ∫
V

∇′ ×
M(x′, y′, z′)

R
dV′ (1.68)
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It can be shown as a homework problem that a corollary to Stokes’ theorem is
the fact that

∫
V

∇′ ×
M(x′, y′, z′)

R
dV′ = −∮

S

M × un

R
dS (1.69)

for any vector field M wherein un is the unit normal to the surface dS. Thus, finally,

A =
𝜇0

4π ∮
S

M × un

R
dS +

𝜇0

4π ∫
V

( 1
R

)
∇′ × M(x′, y′, z′)dV′ (1.70)

If one compares this expression of the vector potential with that for true cur-
rents, it is apparent that one can interpret the term M × un as an equivalent surface
polarization current Km. Similarly, the curl of the magnetization vector ∇ × M is an
equivalent volumetric polarization current Jm. The expression for vector potential
becomes

A =
𝜇0

4π

⎛⎜⎜⎝∮S
Km

R
dS + ∫

V

Jm

R
dV

⎞⎟⎟⎠ (1.71)

Note that this equation again generates three “decoupled” equations involving only
x, y, and z components of A, Km, and Jm, respectively.

Consider now the magnetic flux density at any point within a material body
having both true current J and polarization current Jm. From equation (1.22),

B = ∇ ×
⎛⎜⎜⎝
𝜇0

4π ∫
V

Jm + J

R
dV

⎞⎟⎟⎠ (1.72)

In Section 1.8, it was shown that ∇ × B = 𝜇0J. In an analogous manner it is evident
that with polarization currents,

∇ × B = 𝜇0(J + Jm) (1.73)

Since the volumetric polarization current Jm is equal to the curl of the magne-
tization M, this expression can be written as

∇ ×
(

B
𝜇0

− M
)

= J (1.74)

in which the vector on the left-hand side of the equation B∕𝜇0 − M has as its source,
only the true currents J. It is, therefore, useful to define a new quantity, the magnetic
field intensity H as

H = B
𝜇0

− M A∕m (1.75)

from which it can be established that

𝜇 =
𝜇0

1 − 𝜇0

(
M
B

) (1.76)
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in which case

B = 𝜇H (1.77)

or, alternatively,

B = 𝜇r𝜇0H (1.78)

where 𝜇r = 𝜇/𝜇0 is defined as the relative permeability. The differential form for
Ampere’s law is finally obtained, namely

∇ × H = J (1.79)

Since ∇ ∙ H = −∇ ∙ M, the divergence of the magnetic field intensity is not zero as
is the case for the divergence of B. The magnetic field intensity is also sometimes
called the magnetic potential gradient.

Starting with equation (1.79), and applying Stokes’ theorem, results in the usual
integral form of Ampere’s law,

∫
S

(∇ × H) ∙ dS = ∮
O

H ∙ dl = ∫
S

J ∙ dS = I (1.80)

where I is the total current enclosed by the path defined by O. If current I is con-
fined to a conductor and flows N times through the loop O, I is replaced by NI in
equation (1.80).

1.10 BOUNDARY CONDITIONS FOR B AND H

In the derivation of the differential form for Ampere’s law, points within the material
were specified and not points on the boundary, where an additional polarization cur-
rent component, Km exists. Hence, for points on the boundary, the results obtained
must be modified to take account of this current which results from a discontinuity in
the magnetization vector M. Consider now an interface between two material bodies
with permeability 𝜇 different from 𝜇0 as illustrated in Figure 1.5.

l

O

w

S

un

Ht1Ht2

S

Figure 1.5 Determination of boundary condition for the tangential component of H.
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Let Ht1 and Ht2 be the components of H tangent to the interface surface in the
material body and air, respectively. From equation (1.79), ∇ × H = J and if the path
O is chosen as shown in Figure 1.5, the integral form for Ampere’s law gives

∫
∇S

(∇ × H) ∙ dS = ∮
ΔO

H ∙ dl = ∫
ΔS

J ∙ dS (1.81)

whereΔO is the outer contour of the surfaceΔS. Since no physical current is enclosed,
these expressions are equal to zero. If one shrinks Δw to a negligibly small value, then
Ht1Δl − Ht2Δl = 0 so that

Ht1 = Ht2 (1.82)

which states, in effect, that the tangential components of H must be continuous across
a boundary not carrying a true surface current K. It is clear that if the boundary sup-
ports a physical current surface current K, then equation (1.82) must be replaced with

Ht1 = Ht2 = K (1.83)

where positive current is taken in the direction made by a right-hand screw when
rotated in the direction defined by the path O. In vector form, the equivalent expres-
sion is written as

un × (H1 − H2) = K (1.84)

Although true surface currents are essentially impossible, equation (1.83) is often
used to approximate physical situations in an electrical machine design.

As a corollary to equation (1.82), it is apparent that the tangential components
of B are discontinuous across a boundary separating materials with different perme-
abilities, that is

Bt1

𝜇1
=

Bt2

𝜇2
(1.85)

when no surface currents flow on the boundary.
The behavior of the normal components of B and H can also be determined as

shown in Figure 1.6.
In this case, from equation (1.36),

∮
S

B ∙ dS = 0

If this expression is applied to the pill box shape of Figure 1.6, then

Bn1ΔS − Bn2ΔS = (Bn1s + Bn2s) (πΔrΔw)

where Bn1, Bn2 pertains to the top and bottom of the pill box and Bn1s and Bn2s
pertains to the sides of the pillbox in materials 1 and 2, respectively. If the sides of
the pillbox are made arbitrarily small, then Bn1ΔS = Bn2ΔS, or finally across any
boundary,

Bn1 = Bn2 (1.86)
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Material 2
Permeability μ2

Material 1
Permeability μ11

2 Δr

ΔS
Δw

Bn2 Bn1

un

Figure 1.6 Determination of the boundary condition for the normal component of B.

In vector form, this expression is equivalent to

un ∙ (B1 − B2) = 0 (1.87)

The corresponding boundary condition for H is clearly

𝜇1Hn1 = 𝜇2Hn2 (1.88)

It is observed that the normal component of B is continuous but not so for H.

1.11 FARADAY’S LAW

It was Michael Faraday and Joseph Henry who jointly discovered that the electric
field becomes non-conservative when the line integral of E is evaluated in a magnetic
field which is non-steady, that is, when the magnetic field linking the line integral
path varies with time. In this case, equation (1.43) must be modified to form

∮
O

E ∙ dl = − d
dt ∫

S

B ∙ dS = −dΦ
dt

(1.89)

where O bounds surface S. In a practical sense, this expression shows that an addi-
tional electric field is produced by a time-changing magnetic field and consequently,
a voltage is produced in a closed short-circuited coil when placed in this field. The
strength of this voltage is proportional to the time rate of change of flux linking the
coil and, in turn, induces a current in the conducting loop. The negative sign indi-
cates that the voltage is directed in such a manner so as to produce a current which
produces a consequent magnetic field which reduces the net flux linking the loop.

The differential form of equation (1.89) may be obtained by using Stokes’ the-
orem to replace the line integral by a surface integral so that

∮
O

E ∙ dl = ∫
S

∇ × E ∙ dS = − d
dt ∫

S

B ∙ dS (1.90)
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or

∫
S

(
∇ × E + dB

dt

)
∙ dS = 0 (1.91)

from which,

∇ × E = −dB
dt

(1.92)

The current which flows in the conducting loop creates also an electric field
within a conducting material which is proportional to the current, the basis for
Ohm’s law. Expressed at a point rather than averaged over a finite body, Ohm’s law
at a point is

J = 𝜎E (1.93)

where, 𝜎 is the conductivity of the material in amperes per volt-meter (ohm-meters)−1.

1.12 INDUCED ELECTRIC FIELD DUE TO MOTION

Since a changing magnetic field linking a conducting coil can also be produced by
simply moving it physically through a stationary, non-uniform field, equation (1.89)
is equally valid for this condition as well. Movement of the coil through the field,
however, produces an accompanying phenomenon, the Lorentz force which states
that moving charges in a magnetic field experience a force proportional to the velocity
of the charge and the strength of the magnetic field according to the vector equation

F = qcv × B (1.94)

The force is seen acting in a direction perpendicular to both v and B. Note that this
is just an equivalent form of the Biot–Savart law since an ampere flowing through
a meter of wire is essentially the same as 10−6 coulombs of electrons traveling at
106 m/s. This force is proportional to the electric field since

F
qc

= E = v × B (1.95)

The corresponding field, in turn, induces a voltage in the coil resulting in current flow
according to Ohm’s law, equation (1.93). This induced voltage is typically called the
electromotive force (a misnomer since the actual units of the quantity are fundamen-
tally newtons/coulomb). Note from Figure 1.7 that this voltage is in such a direction
so as to produce a current which resists any change in the flux linking the coil. The
degree to which this is accomplished, depends on the resistance of the coil. If super-
conducting, flux linking the coil will not change at all. The interrelationship between
the force on a moving coil and the resulting current (or vice versa) is the key compo-
nent in the principle of electromechanical energy conversion.
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Figure 1.7 Induced voltage in a coil moving in a direction so as to increase the flux linking
the coil. Force assumed to be impressed on a negative charge (electron).

1.13 PERMEANCE, RELUCTANCE, AND THE
MAGNETIC CIRCUIT

The solution to the general magnetostatic boundary-value problem involving con-
duction currents in the presence of magnetic material is very difficult to obtain ana-
lytically. Fortunately, applications involving electric machine design allow for good
approximate solutions to be obtained. The analysis procedure parallels that of DC
circuits which are composed of series and parallel resistors. Consider, for example,
the field in the region of a toroid with a rectangular cross section wound with N turns
with the coil current I as illustrated in Figure 1.8.

w

r2

x

R

r1

h

Figure 1.8 Flux distribution of a toroid with a rectangular cross section.
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Due to symmetry, the magnetic field intensity has only a circumferential com-
ponent. At any point in the core x meters from its center, the magnetic potential gra-
dient is

H = NI
2πx

(1.96)

where N is the number of turns enclosed by the path for H. The flux density at the
distance x is therefore

B = 𝜇H = 𝜇NI
2πx

(1.97)

However, the flux density at any point is equal to dΦ/dA. The total flux over a cross-
sectional area (h dx) is

dΦ = BdA = Bh dx = 𝜇
NIh
2π

dx
x

(1.98)

The total flux over the area A is given by

Φ =

r2

∫
r1

𝜇
NIh
2π

dx
x

(1.99)

= 𝜇
NIh
2π

ln(r2∕r1)

= 𝜇
NIh
2π

ln
(

R + w∕2

R − w∕2

)

= 𝜇
NIh
2π

ln
⎛⎜⎜⎝

1 + w
2R

1 − w
2R

⎞⎟⎟⎠
= 𝜇

NIh
2π

ln
(

1 + w
R
+ w2

2R2
+ w3

4R3
+⋯

)
so that finally,

Φ = 𝜇
NI
2π

h
w
R

if w∕R ≪ 1 (1.100)

When w/R = 0.2, then the natural log of the expansion 1 + w/R + w2/2R2 +⋯
is equal to w/R to within 0.3%. Therefore, for cases where the core width is small in
comparison with the mean radius R, one can assume the flux density to be uniform.
Thus

Φ = 𝜇NIhw
2πR

(1.101)

Considering the core width w to be small compared with R enables one to
assume that H is constant at all points of the toroid and equal to its value at the center.
In this case, from equation (1.97)

𝜇NI
2πR

= B (1.102)



JWBS213-c01 JWBS213-Lipo September 9, 2017 19:37 Printer Name: Trim: 6.125in × 9.25in

1.13 PERMEANCE, RELUCTANCE, AND THE MAGNETIC CIRCUIT 21

and

hw = A (1.103)

Therefore,

Φ = 𝜇NI
2πR

A (= BA) (1.104)

Note that a rectangular toroid has purposely been chosen for this example. The case
of a circular toroid reduces in the same manner but the exact solution involves Bessel
functions. It is useful noting that in this book, in deference to convention, the symbol
A will be used for both vector potential and cross-sectional area. Similarly, S will
be used for surface area and per unit slip of an induction motor, hopefully without
much confusion.

It can be observed that equation (1.104) may be written as

Φ =
(

𝜇A
2πR

)
NI (1.105)

where A = hw. Note that the coefficient of NI is a constant depending upon the
geometry of the magnetic circuit and its permeability. Defining this constant as the
permeance

P = 𝜇A
2πR

(1.106)

Since 2πR is the length of the magnetic path, it may be replaced for purposes
of generalization by l. Therefore, in general, when the flux is uniformly distributed
over a constant cross-sectional area,

P = 𝜇A
l

(1.107)

The permeance P is given in units of webers per ampere-turn or henries.
It is also useful to define

F12 =

2

∫
1

H ∙ dl (1.108)

The quantity F12 is said to express the magnetomotive force (MMF) acting between
points 1 and 2 which has the SI unit amperes. The units used in this text will be
ampere-turns as a reminder of the important influence of the number of winding turns
on this quantity. When the closed path O encloses a circuit of N turns carrying I
amperes, it is clear from Ampere’s law that

F = NI (1.109)
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Therefore, in general, the flux in a magnetic circuit can be expressed as

Φ = PF (1.110)

In almost all practical cases, the permeance is not so easy to find. Therein lies
the art and science of electrical machine design. When the flux density varies over
the cross-sectional area, the differential form of equation (1.110) is often useful. In
this case

dΦ = FdP (1.111)

where

dP = 𝜇dA
l

The total permeance is found by taking

P =

A

∫
0

𝜇
dA
l

(1.112)

where l is frequently a function of A.
In the case of the example rectangular toroid, dA = hdx and l = 2πx. Equa-

tion (1.112) becomes

P =

r2

∫
r1

𝜇
hdx

(2πx)

whereupon,

P = 𝜇h
2π

ln
(

r2

r1

)
directly.

The reciprocal of permeance also has great utility in magnetic circuit analysis.
Formally, by definition, reluctance is

R = 1∕P (1.113)

and if the cross-sectional area A and the permeability are constants, independent of
the length of the circuit,

R = l
𝜇A

(1.114)

The quantity reluctance carries units of ampere-turns per weber. In the MKS
unit system, this corresponds to inverse henries (H−1). In SI units, reluctance has not
been formally given a unique name such as siemens for Ω−1 so that it is generally
described in terms of its basic units. In this text, inverse henries is adopted as the pre-
ferred unit. The reluctance is often found to be a more useful quantity in the analysis
of electrical machines than permeance.
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R

a = 2 cm
R = 50 cm

μ = 1 × 10–4
a

Figure 1.9 Square toroid for Example.

1.14 EXAMPLE—SQUARE TOROID

1. Find the reluctance of a toroid of square cross section and radius R to the center
of the core. The core is designed such that 𝜇 = 1 ⋅ 10−4, R = 50 cm, and a =
2 cm. Refer to Figure 1.9. The reluctance R is given by

R = l
𝜇A

= 2π (0.5)

1 ⋅ 10−4(0.02)2

= 7.85 ⋅ 107 H−1

2. The toroid has 1570 ampere-turns uniformly wound around its core. What is
the value of the flux inside the toroid?

Φ = F∕R

= 1570

7.85 ⋅ 107
= 2 ⋅ 10−5 Wb

3. What is the flux density in the core of the toroid?

B = Φ
A

= 2 ⋅ 10−5

(0.02)2
= 0.05 Wb∕m2

1.15 MULTIPLE CIRCUIT PATHS

When the same flux is set up in a magnetic circuit made of the same material but
with parts of different cross sections or when the parts of the circuit are of materials
of different permeabilities but of the same or different cross sections, the flux can be
found by finding the reluctance of the different parts, adding them to give the total
reluctance of the circuit, and finally dividing the magnetomotive force by the total
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Figure 1.10 A type of iron core transformer and its equivalent magnetic circuit.

reluctance. As in the case of the resistances of an electric circuit, the reluctances in a
magnetic circuit when in series are added to give the total reluctance of the circuit.

When the magnetic circuits are in parallel, their total permeance is equal to
the sum of the permeances of the parallel circuits. The total reluctance is simply the
reciprocal of the total permeance. When the circuit is more complicated, the usual
application of Kirchhoff’s laws will generally yield an answer. For example, consider
the iron-core transformer with an air gap in the center leg as shown in Figure 1.10. (a)
The problem is to compute the flux linkage for the coil with N2 turns when a current
I2 flows in the other coil. The equivalent magnet circuit is illustrated in Figure 1.10b.
The magnetomotive force N1I1 is applied to the circuit and it acts in series with the
reluctance R1 of the left leg. The reluctance can be split into two portions of magnitude
R1∕2. Following the usual DC circuit analysis approach, the following two equations
may be obtained:

N1I1 = Φ1(R1 + 2R2 + Rg) − Φ2(2R2 + Rg)
N2I2 = Φ2(R1 + 2R2 + Rg) − Φ1(2R2 + Rg)

(1.115)

Solving for Φ2 yields

Φ2 = [N1I1(2R2 + Rg) + N2I2(R1 + 2R2 + Rg)]∕[R1(R1 + 4R2 + 2Rg)]

(1.116)

1.16 GENERAL EXPRESSION FOR RELUCTANCE

Assume now a body of homogeneous permeability but of an arbitrary shape. If flux
lines can be approximated, flux tubes containing a specified number of flux lines can
be identified which take the general shape of the sketch in Figure 1.11.
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Figure 1.11 An arbitrary flux tube.

The difference of magnetic potential between the two faces A1 and A2 can be
evaluated by again taking

∫
l12

H ∙ dl = F1 − F2 (1.117)

where l12 is the path from A1 to A2 along the side or within the flux tube. The flux
which is confined within the flux tube is

∫
A

B ∙ dS = Φ (1.118)

where A is the area A1, A2, or any cross-sectional area across the flux tube. By defi-
nition, the reluctance between the two surfaces A1 and A2 is

R =

∫
l12

H ∙ dl

𝜇 ∫
A

H ∙ dS
(1.119)

Although this expression is rather simple in form, the values of the integrals
cannot be established easily since the location of the flux lines must be known before
the integrals can be carried out. Evaluation of the reluctance can be made more accu-
rate if the cross section of the flux tubes are considered as curvilinear squares or
rectangles. That is, it is assumed that the corners of the cross-sectional area of a flux
tube are always 90 degrees but the sides of the rectangles are allowed to be curved
lines. This behavior of the cross-sectional area is a natural consequence of the fact
that the lines of constant magnetic potential must be at right angles to the lines of
magnetic flux. Plots of the magnetic field using “curvilinear squares” is a traditional
method which can yield remarkably accurate results when care is taken to always
maintain a curvilinear (right angle) relationship between the potential and flux lines
when sketching the field plot.
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Figure 1.12 Orthogonal curvilinear squares used to portray a magnetic flux tube.

Consider the more accurate flux plot of Figure 1.12, where two equipotential
surfaces Ai and Ai+1 are identified. Let the potential difference between these surfaces
be ΔFs.

The region between Ai and Ai+1 can be decomposed into a number of more
elementary flow tubes of length Δli and cross section ΔAij. The reluctance of an
arbitrary elementary flow tube is

Ri =
ΔFi

ΔΦij
=

Δli
𝜇ΔAij

(1.120)

Since permeances add directly in parallel, the total permeance between surfaces Ai
and Ai+1 is

ΔPi =
∑

j

𝜇ΔAij

Δli
(1.121)

The corresponding reluctance is

ΔRi =
1∑

j

𝜇ΔAij

Δli

(1.122)
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The total reluctance is obtained by adding up all such reluctances over the total length
of the flux tube. The result is

R =
∑

i

1∑
j

𝜇ΔAij

Δli

(1.123)

It is important to note that the equation remains a function of the geometry of
the magnetic structure only. For more details on the method of curvilinear squares for
flux plotting, the reader is referred to any good basic text on electromagnetic fields.

1.17 INDUCTANCE

In most practical cases the magnetic flux links a number of circuit loops N or “turns”
in which case one defines the flux linkage 𝜆 as

𝜆 = NΦ (1.124)

The inductance of a coil is defined as “the number of flux linkages in weber turns per
ampere of current flowing in the coil.” Flux linkages per ampere is formally defined
as a henry. Interpreted in mathematical form

L = 𝜆

I
= NΦ

I
weber-turns/ampere or henries (1.125)

where

L is the inductance in henries

N is the number of turns of the coil

Φ is the flux in webers linking the turns

I is the current in the turns in amperes

If the current I and flux Φ correspond to the same circuit, then the resulting induc-
tance is termed self-inductance. When the current I and flux Φ correspond to different
circuits, a mutual inductance can be defined.

The self-inductance can be written in several other useful forms:

L = N2Φ
F

(1.126)

= N2P (1.127)

and if the cross-sectional area and 𝜇 are constant,

L = 𝜇
N2A

l
(1.128)

Note that the inductance is proportional to the square of the number of turns. Since the
inductance has been formally defined in henries, the permeability 𝜇 formally takes
on the alternate unit of henries per meter.

In the above expressions for inductance, it was assumed that the magnetic path
or magnetic circuit is defined. When the path of the magnetic flux is not defined as
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in a solenoid, formulas for inductances are derived from field theory, flux plotting,
experimentation, or numerical solution of Laplace’s or Poisson’s equation.

1.18 EXAMPLE—INTERNAL INDUCTANCE OF A WIRE
SEGMENT

It was shown in Example 1.1 that the flux density of an infinitely long wire was given
by

B =
𝜇0I

2πR
(1.129)

Consider a more detailed view of the wire as shown in Fig. 1.13 showing now a
circular inner portion of the wire with radius r. If it is assumed that the current density
J in A/m2 is directed along the wire length and is uniform over the wire cross section,
then by Ampere’s law, the integral along a circular path C with radius r within the
wire will yield

∮
C

H ∙ dl = H𝜙2πr = Jπr2 0 < r < Rw, (1.130)

where Rw is the outer radius of the wire. Since the wire is assumed to be non-magnetic,

B𝜙 = 𝜇0H𝜙 =
𝜇0Jr

2
(1.131)

Since J is constant, the current in the wire is I = J
(
πR2

w

)
and thus

B𝜙 = 𝜇0I
r

2πR2
w

(1.132)

where Rw is the radius of the wire.
Consider now a circular inner portion of the wire with radius r. The flux in an

annular portion of length l and thickness dr will be

dΦ (r) = B𝜙ldr (1.133)

=
𝜇0Il

2π
r

R2
w

dr (1.134)

This flux links the only the current I r2

R2
w

so that the corresponding flux linkages

d𝜆 =
𝜇0Il

2π
r3

R4
w

dr (1.135)

and the total flux linkages become

𝜆 =
𝜇0

2π
Il

Rw

∫
0

r3

R4
w

dr (1.136)

=
𝜇0

8π
Il (1.137)
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Figure 1.13 Calculation of flux density and inductance within a circular conductor.

Thus, the internal inductance of a wire of length L is

Linternal =
𝜆

I
=

𝜇0

8π
L (1.138)

1.19 MAGNETIC FIELD ENERGY

Utilization of the magnetic field energy is often a convenient method for determining
the inductance. The energy stored in a magnetic field can be expressed as

Wm = 1
2 ∫

V

(B ∙ H) dV (1.139)

since, also,

Wm = 1
2

LI2 (1.140)

then, when B and H arise from the same current,

Lself =
1
I2 ∫

V

(B ∙ H) dV (1.141)

Alternative forms of equation (1.141) are useful. In machine analysis, it is fre-
quently possible to assume that the field intensity and flux density are only radially
directed in the air gap and that they vary only circumferentially. Furthermore, since
H = B/𝜇, if 𝜇 → ∞, H can be assumed as zero in the iron. Alternatively, the rela-
tively small MMF drop in the iron can be corrected by appropriately increasing the
MMF in an equivalent gap ge. If 𝜃 denotes the angular measure in the circumferential
direction, r the radial direction, and l the axial direction, after performing integration
in the radial and axial directions of a typical cylindrically shaped geometry, equa-
tion (1.141) can be written as

Lself =
grl

I2

2π

∫
0

Bg (I, 𝜃) Hg (I, 𝜃) d𝜃 (1.142)
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Since H can be assumed constant in the gap then

Hgg = Fg (1.143)

where Fg represents the MMF acting across the air gap. One can now write this equa-
tion as either

Lself =
rl
I

2π

∫
0

Bg (I, 𝜃)
Fg (I, 𝜃)

I
d𝜃 (1.144)

or

Lself = 𝜇0
rl
g

2π

∫
0

[Fg (I, 𝜃)

I

]2

d𝜃 (1.145)

Since the gap g is comprised of air, the MMF must vary linearly with the current
so that it can be expressed as the product of current times a second function which
only depends on 𝜃. Thus, the self-inductance can be obtained from either

Lself =
rl
I

2π

∫
0

Bg (I, 𝜃) N (𝜃)d𝜃 (1.146)

or the expression,

Lself = 𝜇0
rl
g

2π

∫
0

N(𝜃)2d𝜃 (1.147)

The new quantity N(𝜃) = Fg(I, 𝜃)∕I is called the winding function and is frequently
employed in the circuit analysis of AC machines.

The field representation of stored energy can also be used to calculate mutual
inductance. When B and H arise from currents in two different circuits,

Wm = 1
2 ∫

V

(B1 + B2) ∙ (H1 + H2)dV (1.148)

However, it is also true from circuit theory that

Wm = 1
2

L1I2
1 + L12I1I2 +

1
2

L2I2
2 (1.149)

Comparing equations (1.148) and (1.149), the terms involving the mutual inductance
can be equated whereupon,

L12I1I2 = 1
2 ∫

V

(B1 ∙ H2 + B2 ∙ H1)dV (1.150)
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When the Bs and Hs are collinear, the product exists only in the gap and is only a
function of 𝜃, equation (1.150) clearly reduces to

L12 = 𝜇0
rl
g

2π

∫
0

N1 (𝜃) N2 (𝜃) d𝜃 (1.151)

where (B1∕𝜇0)g = H1g = F1, (B2∕𝜇0)g = H2g = F2, and

N1(𝜃) =
F1(𝜃)

I1
; N2(𝜃) =

F2(𝜃)

I2
(1.152)

When the flux density produced by one of the two windings is known, the following
expression for the mutual inductance L12 is also convenient.

L12 = rl
I1

2π

∫
0

B1((𝜃) N2 (𝜃))d𝜃 (1.153)

1.20 THE PROBLEM OF UNITS

One of the facts of life concerning the electromagnetic design of an electric machine
is inconsistency regarding physical units. This inconsistency is a consequence of the
long history associated with this discipline. In practice, three unit systems are used
based on the SI or MKS system (Europe originally and now worldwide), the CGS
unit system (small transformers, permanent magnet or PM machines, and small sub-
fractional horsepower (HP) machines) and the English unit system (fractional HP
machines and above, during early work in the United States). The English unit system
is a throwback to the use of inches and pounds whereas the CGS system came into use
via the physicists. Clearly, the SI system is the unit system of choice today. However,
in view of the tremendous work done in the past incorporating the other units, it is
important to be equally familiar with all three sets of units.

In this text, a particular relationship will be derived using SI units and then
the result converted, if desired, to the different units. As an example, consider the
constituent equation for magnetic materials.

B(Wb∕m2) = 𝜇r𝜇0 (H∕m) H (A∕m) (1.154)

Multiplying this equation by 104 and substituting explicitly for 𝜇0,

104B(Wb∕m2) = 𝜇r[4π ⋅ 10−3H (A∕m)] (1.155)

If one defines

B (G) = 104B(Wb∕m2) (1.156)

and

H (Oe) = 4π ⋅ 10−3H (A∕m) (1.157)
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then in CGS units

B (G) = 𝜇rH (Oe) (1.158)

where the new units of B and H are the gauss and the oersted, respectively.
Consider now the possibility of converting this equation to English units. Mul-

tiplying equation (1.154) by 108, the result is

108B(Wb∕m2) = 108𝜇r𝜇0, H (A∕m) (1.159)

One can now define a new unit of flux called the maxwell or line such that

1 weber = 108 lines or maxwells (1.160)

Making this substitution in equation (1.159), and explicitly substituting for B and 𝜇o,

B
( lines

m2

)
= 𝜇r (40π) H (A∕m) (1.161)

Now,

B
( lines

m2

)
= B

( lines
in.2

)( 1 in.
2.54 cm

)2(100 cm
m

)2
(1.162)

and

H (A∕m) = H (A∕in.)
( 1 in.

2.54 cm

)(100 cm
m

)
(1.163)

so that in the English system,

B
( lines

in.2

)
= 𝜇r40π

(2.54
100

)2 ( 100
2.54

)
H
( A

in.

)
(1.164)

B
( lines

in.2

)
= 𝜇r

(4π
10

)
2.54 H

( A
in.

)
The quantity (4π/10)2.54 = 3.192 is sometimes called the “free space” permeability
in the English system.

A similar development can be carried out for the magnetic circuit equation,
equation (1.110), that is

Φ(Wb) = P (H) F(A-t) (1.165)

Multiplying both sides by 108 and making use of equations (1.160) and (1.107)

Φ (lines) = (108)(4π ⋅ 10−7)𝜇r
A(m2)
l (m)

F (A-t)

= 40π𝜇rF (A-t)
A(m2)
l (m)

(1.166)

Now

A(m2) = A(cm2)
( 1 m

100 cm

)2
(1.167)

l(m) = l(cm)
( 1 m

100 cm

)
(1.168)



JWBS213-c01 JWBS213-Lipo September 9, 2017 19:37 Printer Name: Trim: 6.125in × 9.25in

1.21 MAGNETIC PATHS WHOLLY IN IRON 33

TABLE 1.1 Comparison of magnetic circuit equations with various systems of units

MKS (SI) units CGS units English units
Constit. Eq. B = 𝜇0𝜇rH B = 𝜇rH B = 𝜇0𝜇rH

Magnetic Ohm’s law Φ = 𝜇0

𝜇rA

l
F Φ =

𝜇rA

l
F Φ = 𝜇0

𝜇rA

l
F

Faraday’s law v = N
dΦ
dt

v = N
dΦ
dt

⋅ 10−8 v = N
dΦ
dt

⋅ 10−8

Free space permeability 𝜇0 = 4π ⋅ 10−7 𝜇0 = 1 𝜇0 = 4π
10

⋅ 2.54

= 3.192

B in Wb/m2

H in A-t/m
Φ in Wb
F in A-t/m

B in gauss
H in Oe
Φ in lines (Maxwells)
F in Gb

B in lines/in.2

H in A-t/in.
Φ in lines
F in A-t/m

so that equation (1.166) becomes

Φ (lines) = 0.4π𝜇r
A(cm2)
l (cm)

F (A-t) (1.169)

In the CGS system the gilbert is defined as

F (gilberts) = 0.4π F (A-t)

so that in the CGS system, the magnetic circuit equation, equation (1.169), becomes

Φ (maxwells) = 𝜇r
A(cm2)
l(cm)

F (gilberts) (1.170)

In the English system, it is necessary to convert lengths to inches:

Φ (maxwells) =
(0.4π)𝜇rA(in.2)

(2.54) l (in.)
F (A-t) (1.171)

The key equations in magnetic circuit analysis in the three systems are sum-
marized in Table 1.1. The reader should get to know these equations well. In order to
help sort out the various conversion factors between the three systems, “flow charts”
for the important variables are provided in Figure 1.14.

1.21 MAGNETIC PATHS WHOLLY IN IRON

The analogies between the electric circuit and the magnetic circuit seem to indicate,
upon first consideration, that the Ohm’s law type of relationship among MMF, flux,
and reluctance or permeance ought to provide a straightforward method for solving
magnetic circuit problems. However, the problem is much more difficult than the
simple examples thus far considered. The direct application of the method is made
difficult in practice by the relatively large flux leakage encountered in magnetic circuit
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MAGNETOMOTIVE  FORCE MAGNETIC FLUX

kiloampere              kA

ampere-turn      At

ampere                      A

gilbert           Gb

weber          Wb

milliweber             mWb

microweber             Wb

maxwell  Mx

MAGNETIC FIELD  STRENGTH

kiloampere per meter                  kA/m

oersted                                                Oe

ampere-turn per inch           At/in

ampere per meter                                                 A/m

79.6=1000/4

12.57=4

2.02=10x2.54/4
1000

MAGNETIC FLUX  DENSITY

tesla T weber per square meter   Wb/m2

kilogauss          kG

                       mT

              G

maxwell per sq. inch       Mx/in
2

line per sq. inch

[kg/A-s ]
2

[A/m]

x

x

x
x

x 39.37=100/2.54

1000

1.257=4 /10 100

1000

1000

1000

x

x
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x
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x108
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Figure 1.14 Conversion factors for magnetic field quantities.

problems and by the dependence of the reluctance of a ferromagnetic material upon
the flux density; that is, the problem is nonlinear.

In general, solutions of magnetic circuit problems are solved to resolve two
key questions: (a) the determination of the MMF required to produce a desired flux
or flux density in a specified part of a structure, (b) the determination of the flux or flux
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density produced at specified places in a magnetic structure brought about by MMFs
impressed at various places throughout the structure. Strictly speaking, the magnetic
circuit method of analysis does not yield flux densities except as averages of total
fluxes over the cross-sectional areas of the circuit so that the exact determination of
the flux distribution becomes a field problem.

When the problem is to determine the MMF required to produce a desired total
flux or flux density, that is, the calculation as in (a), the procedure is direct, provided
that the leakage flux is neglected or estimated. In each portion of a series magnetic
path having a cross-sectional area A, the average value of flux density B is equal to
the ratio of the total flux Φ to the area A. The value of magnetizing force H required
to establish this value of B is determined as a curve of B plotted as a function of H for
the particular material. This value of H is then multiplied by the length of that portion
of the path for which B is assumed constant, to give the magnetic potential difference
Fab between the ends of that portion of the path, that is

Fab = Hlab (1.172)

where the distance a to b is the length of the path of uniform material and cross-
sectional area. If the path includes portions of different kinds of ferromagnetic mate-
rial, the value of H for each material is multiplied only by the length of the path in
that material to give the magnetic potential difference for that portion of the path. The
sum of the magnetic potential differences for all such portions of paths a–b, b–c, c–d,
etc. taken around the series circuit gives the total MMF required, that is

F = Fab + Fbc + Fcd +⋯ + Fna (1.173)

If the construction of the circuit is such that the average flux density differs markedly
from the extremes of flux density on the cross section, more elaborate magnetic cir-
cuits must be employed.

When the problem is to determine the total flux or flux density produced by
MMFs impressed at various places, that is, the calculation as in (b) above, the pro-
cedure is not so straightforward even if leakage fluxes are neglected. In certain
simple combinations of paths, graphical methods are applicable. These are illus-
trated in the examples to follow. In complicated combinations of paths, a successive-
approximation method leads rapidly to a solution. For such problems, the MMF
required to produce an assumed value of flux Φ1, is first calculated. If the calcu-
lated MMF does not approach the assumed impressed value within limits, a second
trial value Φ2 is chosen, greater or less by the amount required to equal the magnetic
potential drop produced by the assumed flux Φ1. After a few iterations, a solution is
easily obtained. A Newton–Raphson iteration procedure using a digital computer is
convenient for this purpose.

1.22 MAGNETIC MATERIALS

Historically, electric motors have been constructed from magnetic steels usually in
the form of thin laminations, electrical conductors (either copper or aluminum), insu-
lation for the conductors and slots, high tensile strength steel for shafts, and steel or
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copper alloys for bearings. The laminations used in most general-purpose motors have
been “common iron” or low carbon steel. Although low in cost, this material typ-
ically produces machines of only modest efficiency. More recently, high efficiency
motors often feature higher quality silicon steels at a correspondingly higher cost.
The percent of silicon in the steel has a beneficial effect in reducing losses in the
steel but at the same time tends to reduce the saturation flux density. The percent of
silicon in motor steels typically range from 1% to 4%. The corresponding 60 Hz AC
losses range from 0.6 watt per pound of core for 3.25% silicon steel to 1.0 watt per
pound for 1% silicon steel at a peak flux density of 15,000 gauss (1.5 tesla). Nickel
alloys, such as permalloy, have low losses but are very expensive and have low sat-
uration flux density. The cobalt alloys such as Supermendur (49% iron, 49% cobalt,
and 2% vanadium) have peak flux densities over 2 teslas, but are also very expensive
($7–$8 per pound) and have higher losses.

When the magnetic structure is assembled by means of stacking laminations
punched from thin sheet material, the volume occupied by the stacked laminations
does not truly represent the volume of iron that supports the magnetic flux. A region
whose permeability is that of air exists between the laminations because of the pres-
ence of irregularities in the laminations or due to a thin coat of insulating varnish
applied to avoid circulating current flow between laminations (eddy currents). In
order to allow for this effect, the effective cross-sectional area of iron is equal to
the cross-sectional area of the stack, times a factor called the stacking factor. The
stacking factor, defined as the ratio of the cross-sectional area of the iron to the cross-
sectional area of the stack, ranges between about 0.95 and 0.90 for lamination thick-
ness between 0.025 in. and 0.014 in. (25 and 14 mils), respectively. For thinner lam-
inations, for example, 1 mil to 5 mil thick, the stacking factor can be in the range of
0.4–0.75. Thinner laminations than 14 mils are generally not used unless iron loss
is a severe problem. This choice typically occurs when the machine operates at high
frequencies, for example an aircraft generator.

A new group of alloys has been developed, grouped under the generic title of
amorphous metal alloys. These materials represent a new state of matter for elec-
tromagnetic materials, the so-called amorphous or non-crystalline state. Ordinary
window glass is a typical example of an amorphous material. Some of these new
amorphous alloys have magnetic properties which surpass the properties of conven-
tional alloys. Thus, they appear to be a potentially useful new class of soft magnetic
material. These alloys contain about 80% ferritic elements such as iron, nickel, and
cobalt, and 20% glasseous elements such as silicon, phosphorous, boron, and carbon.
A good example of an amorphous alloy having 80% iron and 20% boron by atomic
weight is Fe80B20 (Metglas from Metglas Inc.). Major advantages of amorphous
metal include low cost (roughly $0.30 per pound vs. $0.50 for silicon steel), very low
core loss (one fifth that of the best silicon steels), low annealing temperature, and
high tensile strength. Unfortunately, this new material has not yet been successfully
used in a large scale because the high tensile strength also makes the material diffi-
cult to punch. Also, amorphous materials are presently only available in thicknesses
of 1–2 mils (0.001′′ to 0.002′′) which results in a poor stacking factor and creates
problems during assembly.
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Figure 1.15 Core type transformer structure with two different cross-sectional areas.

1.23 EXAMPLE—TRANSFORMER STRUCTURE

The magnetic structure shown in in Figure 1.15 is similar to that of a core type trans-
former. The core is made of 29 gauge (14 mils) fully processed steel. The B–H curve
for this material is shown in Figure 1.16. The sheets are stacked into a 3-inch stack.
The stacking factor is 0.91. The exciting winding has 200 turns. Compute the current
required in the exciting winding to produce a maximum core flux density of 1.2 tesla.
Leakage flux is to be neglected.

Solution.

The cross-sectional area of the iron portion of legs x is 2 × 3 × 0.91 = 5.46 in.2 and
of the legs y is 1.5 × 3 × 0.91 = 4.1 in.2

� The maximum flux density will clearly occur in the y member having the small-
est cross section. If By = 1.2 tesla then in the x leg Bx = 1.2 × 4.1/5.46 = 0.9
tesla.

� From Figure 1.16, the magnetizing force is 2.9 Oe or 5.8 A-t/in. for legs y and
1.4 Oe or 2.85 A-t/in for legs x.

� The mean length of the flux paths in Figure 1.15 is estimated as 21 in. for the
two x legs and 24 in. for the two y legs.

� The sum of the MMFs acting on the two y legs is 5.8 × 24 = 140 A-t and for
the x legs 2.85 × 21 = 60 A-t. The total ampere-turns for the entire magnetic
circuit is therefore 140 + 60 = 200.

� The excitation current required to produce a flux density of 1.2 T in the trans-
former core is thus 200/200 = 1.0 A.

� The flux in the core is clearly Φ = By × Ay = 1.2 × 3 × 1.5 × 0.91 × (0.0254)2

= 3.17 mWb.
� The saturated inductance is then L = NΦ/i = 200 × 3.17 × 10−3/1.0 = 0.63 H.
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When a specified MMF acts on a core, the inverse problem of calculating the
fluxes is not simple. Assume, for example, that the results of the previous calculations
are not known and that the core is excited with 200 A-t. In this case, it is necessary
to estimate the probable magnetic potential difference between the ends of each core
portion.

� Since the cross-sectional area of the y legs is much smaller than that of the x
legs, the flux density is much larger in the y legs and would consume the major
part of the MMF drop. As a first approximation, all the MMF is assumed to
drop along the y legs. The resulting potential gradient is therefore 200/24 =
8.3 A-t/in. or 4.1 Oe.

� From Figure 1.16, the flux density in the y legs is then about 1.3 T. By propor-
tionality, the flux density in the x legs is (4.1/5.46)1.3 = 0.97 T. Again from
Figure 1.16, the x legs require an MMF of 1.6 × 2.021 × 21 = 68 A-t. The
MMF required by the entire circuit is 200 + 68 = 268, which is, of course, too
much MMF to satisfy Ampere’s law.

� As a second approximation, the MMF drops in the x and y legs can be estimated
by taking ratios. For the y legs assume Fy = (200/268)200= 149 A-t so that Hy =
6.2 A/in. or 3.1 Oe. The second iteration yields By = 1.22 T resulting in a flux
density in the x leg of Bx = (4.1/5.46)1.22 = 0.91.

� The corresponding field intensity in the x leg becomes 1.45 Oe or 2.9 A-t/in.
� The MMF drop in the x legs of 2.9 × 21 = 61 A-t.
� The total MMF drop around the circuit is now estimated to be 149 + 61 = 210

A-t which is now just slightly greater than the correct value of 200 A-t. As a
third iteration, it is now possible to assume that Fy = (149/210)149 = 106 A-t.

Note that the method oscillates about the correct solution, but nonetheless con-
verges rapidly if implemented on a digital computer since the B–H curve is a simple
monotonically increasing function. The iteration method for the y leg MMF can be
made less oscillatory by changing the new estimate by only a fraction of the error
from the last iteration by using the algorithm,

Fi = Fi−1 + 𝜅a(Fi(est) − Fi−1) (1.174)

The quantity 𝜅a is an acceleration factor which can be taken as roughly 0.5 and Fi(est)
is the estimated MMF for the ith iteration using ratios as described above.

For simpler problems, one can also resort to a graphical method. The procedure
is to first determine the relationship between the total flux and the total MMF for each
of the two nonlinear portions of the circuit. The curves of Φx as a function of Fx and
Φy as a function of Fy is plotted in Figure 1.17 in such a manner that the abscissa for
the x leg runs from left to right and for the y leg from right to left. The plot for the
y legs, turned end for end, is called a negative magnetization curve and its origin is
put at the point where F equals 200 on the plot for the x legs. The point 200 is chosen
because it is equal to the applied MMF. Since the same total flux is present in both
legs x and y, the solution for the impressed value of 200 A-t. is the intersection of the
two curves.
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Figure 1.17 Graphical solution of Example.

1.24 MAGNETIC CIRCUITS WITH AIR GAPS

Because electrical machines involve magnetic circuits in relative rotation, an air gap
must exist between the stator and rotor. In addition, other air gaps frequently occur
because of limitations inherent in the construction. Air gaps are often introduced into
iron-core inductors in order to make the inductance of the element essentially inde-
pendent of the current in the coil throughout its working range, but at the same time
to make the inductance larger than if the inductor had the same coil and only an
air core.

When an air gap is inserted in a magnetic circuit, the flux spreads out, or fringes,
around the gap as shown by the sketch of Figure 1.18 and the flux density in the gap
assumes a non-uniform distribution. The flux that terminates near the edges of the
gap is called the fringing flux. Because of the spreading of the flux, the apparent
reluctance of the gap is not that of an air space of the same dimensions as the gap.
Since the permeability of iron is several thousand times that of air the reluctance of

g

b

a

Figure 1.18 Magnetic circuit showing fringing flux.
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even a short air gap is usually large compared to that of the iron portion making the
magnetic potential between the stator and roor teeth relatively large. Relatively large
magnetic potentials may also exist between iron parts not immediately near the gap.
For example, in a synchronous machine, the main flux that traverses the gap fringes at
the pole tips and because of the large reluctance of the air gap, considerable flux goes
directly from rotor pole to rotor pole, constituting rotor leakage flux. This flux is often
as much as 25% of the flux in the core of the field pole and contributes considerably
to the saturation of the pole body.

When the air gap is short compared with its cross-sectional dimensions and has
parallel faces, the fringing effect can be incorporated into the analysis by the use of
simple correction factors. If the cross-sectional dimensions of the core are the same
on both sides of the gap, the equivalent gap is assumed to have a length g equal to the
actual air gap, but to have an equivalent cross-sectional area

A = (a + g) (b + g) (1.175)

where a and b are the cross-sectional dimensions of the core faces. If one of the
faces of the gap has a cross-sectional dimension much larger than the corresponding
dimensions of the other, a correction of 2g should be used. Experience has shown that
these rules give satisfactory results if the correction applied does not exceed about 1/5
of the physical cross-section.

If the total MMF applied is known a successive approximation solution can
again be used. The first approximation can be obtained by considering that all the
ampere-turns are required to overcome the reluctance of the air gap. A direct graphical
method can also be used. The required solution is again obtained by superposing a
plot of Φs as a function of Fs with a plot of Φa as a function of Fa, where s denotes
the steel portion and a the air portion of the flux path. The construction is shown
in Figure 1.19, where Ft denotes the total impressed MMF. Note that the ordinate
intersection of the air gap line is readily determined since

Φa =
Fa

Ra
=

𝜇0A

g
Fa (1.176)

s vs Fs

s= a

avs Fa

F
Fa

F t

Fs

Ft /Ra

(inverse airgap line)

Figure 1.19 Graphical solution for combined steel and air magnetic circuit.
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s vs Fs

Fa

Ft

Fs

t vs F t

airgap line

Fs Fa+

Fs Fa= +

inverse air gap line

Figure 1.20 Illustrating the concept of the air gap line.

The intersection of the negative air gap line with the saturation characteristic of
the steel for all values of Ft will generate the flux versus MMF characteristics for the
overall device, that is, the “sat curve.” The net saturation curve can be readily visual-
ized as the sum of the iron and air saturation curves at each value of flux. Figure 1.20
shows such a construction.

1.25 EXAMPLE—MAGNETIC STRUCTURE WITH
SATURATION

A magnetic structure similar to Figure 1.18 is made of 29 gage sheet steel laminations
0.014 in. thick stacked 2 in. thick. Dimension b is 2.5 in. The air gap length g is 0.10 in.

0 100 200 300
0

0.002

0.004

MMF in  A-t

inverse air gap line

steel portion of circuit

Figure 1.21 Graphical solution of Example.
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The mean length of the steel part of the circuit is 30 in. Find the resultant flux if the
applied MMF is 1400 A-t.

The equivalent air gap area, using a 2g correction is (2.0 × 0.91 + 0.2) (2.5 +
0.2) = 5.45 in.2 The negative air gap line intersects the abscissa at F = 1400 A-t. The
intersection on the ordinate is found by solving

Φa = (𝜇0)
A
l

Fa (1.177)

or

Φa = 4π10−7
(5.45

0.1

) 1
39.37

(1400) = 2.44 mWb (1.178)

The saturation curve for the iron is found by neglecting the MMF drop of the gap. A
plot of the steel saturation curve and the negative air gap line is shown in Figure 1.21.
The point of intersection of the two curves is read as 2.2 mWb.

1.26 EXAMPLE—CALCULATION FOR SERIES–PARALLEL
IRON PATHS

A type of core construction used frequently for certain transformers in which a rel-
atively small magnetic coupling between primary and secondary coils is desired is
shown in Figure 1.22. This type of geometry will also be used in the subsequent anal-
ysis of a machine for calculating the flux entering the core through both the tooth and
the slot. Because of the nonlinearity of the core material the fraction of the total flux
bypassed through the leg y varies with the amount of magnetic saturation.

For illustration, assume a flux of 3.8 mWb is set up in the leg x by a coil wound
around this leg. The ampere-turns required are to be calculated. The magnetic material
is again fully processed steel, 14 mil thick. The stacking factor is 0.91. The paths axb
and azb are assumed to have a mean length of 21 in. The mean length of core in the
center leg is 7.9 in.

� In order to solve this problem, the cross-sectional area of the core and air gap
is first calculated. For the core, the area is 2 × 2 × 0.91 = 3.64 in.2 For the air
gap, including fringing, 2.1 × 2.1 = 4.41 in.2

10"

b

y
z

4 1/2"

6"
0.1"

4 1/2"

a

2"

2"

2"

2"

x

Figure 1.22 Magnetic circuit with series-parallel paths.
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� The flux density in the x leg is calculated to be 0.00380/(3.64 × 0.02542) = 1.62
tesla. The MMF required to set up this flux density in the path axb is calculated
as 830 × 21 = 1743 A-t. Figure 1.16 as 83 × 21 = 1743 A-t.

The total flux of 3.8 mWb in the path axb divides between the z and y legs in such
a manner that the MMF from a to b is the same using either path azb or ayb. The
division of flux must be calculated by assuming a tentative flux distribution and then
correcting. The flux in the air gap or y leg is assumed so that the MMF from a to b
necessary to produce this flux can be calculated. Since this MMF also acts on leg z,
the flux in the z leg is now calculated and added to the flux assumed to exist in the y
leg. The result is compared to the assumed total value of flux and if the result differs,
the amount of flux assumed in the air gap is corrected accordingly. The procedure
continues iteratively until convergence occurs.

� For example, assume that 0.80 mWb of flux exists in the y leg of the transformer.
The corresponding value of flux density in the y leg iron is 0.00080/(3.64 ×
0.02542) = 0.34 tesla. Since this is a relatively small value of flux density, the
MMF drop in the iron can be neglected relative to the drop in the air.

� The MMF consumed in the air gap is, from equation (1.110), the result (0.0008)
0.1/[0.0254 × (2 + 0.1)2𝜇0] = 568 A-t. This MMF drop acts on the z leg pro-
ducing a magnetizing force of 568/21 = 27 A-t/in. which from the data of Fig-
ure 1.16 establishes a flux density of 1.47 tesla.

� The corresponding flux in the z leg is then (1.47)(3.64)(0.02542) or 3.5 mWb.
The total flux in the two legs is 4.3 mWb which is somewhat more than the
specified value of 3.8 mWb.

� If necessary, a second trial is now made using the value 0.8 × 3.8/4.3 = 0.71 as
the value of flux assumed to flow in the y leg. The procedure proceeds iteratively
to about 0.47 mWb in the y leg and 3.33 mWb in the z leg.

� The MMF drop in the y leg is now computed to be 333 A-t resulting in a total
MMF drop around the path xaybx corresponding to the ampere-turns required
to produce 3.8 mWb in the x leg, namely F = 1743 + 333 = 2076 A-t.

1.27 MULTIPLE WINDING MAGNETIC CIRCUITS

In many cases, the magnetic circuit includes the effect of two or more sources of
MMF. This was, for example, the case when the transformer of Section 1.15 was
examined. This is also typically the case in many electrical machines which have
not only an excitation component but also a separate load component typically on
different members of the machine. When the iron is allowed to saturate the problem
is now not so simple.

The basic issue can be demonstrated by the simple electromagnet shown in
Figure 1.23. This device can be represented by the equivalent magnetic circuit shown
in Figure 1.24.
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a b

c

d

e f

Figure 1.23 Electromagnetic with two sources of excitation.

N2I2

N1I1

a b

c

d

e f

Φ2

Φ1

Φ3

Figure 1.24 Equivalent magnetic circuit of Figure 1.23.

In this case, the MMF drop from point a to point b can be written in terms of
three equations, namely

Fab(Φ1) = N1I1 − Radb(Φ1)Φ1 (1.179)

Fab(Φ2) = N2I2 − Racb(Φ2)Φ2 (1.180)

Fab(Φ3) = Raefb(Φ3)Φ3 (1.181)

where

Φ1 + Φ2 = Φ3 (1.182)

Three MMF versus flux curves can be constructed as shown in Figure 1.25.

N1I1 N2I2

Fab( ) Fab( )Fab( )

(a) (b) (c)

Figure 1.25 MMF vs. flux curves for the three magnetic paths: (a) lower member, (b) upper
member, (c) middle member.
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Fab( ) Fab( )

Fab( )=Fab( )

(a) (b)

N1I1

Fab( )
Solution

from Figure 1.25(c)

from Figure 1.26(a)

Figure 1.26 Graphical solution of the dual excitation problem.

Clearly, Fab(Φ1) = Fab(Φ2). If both Φ1 and Φ2 are plotted versus Fab, then the
flux Φ3 can be determined for every value of Fab. The resulting construction is shown
in Figure 1.26a. The actual solution is the point where the MMF as determined by
this curve matches the MMF as determined by the function Fab(Φ3) as computed in
Figure 1.25c.

1.28 MAGNETIC CIRCUITS APPLIED TO
ELECTRICAL MACHINES

Although the methods and simplifying assumptions outlined in the preceding sec-
tions yield results of reasonable accuracy for simple geometries, electrical machines
present a considerably more complicated problem. Nonetheless, the basic principles
which have been discussed form the basis for analysis and design of any machine
structure. For illustration, Figure 1.27 shows the magnetic circuit of a typical two-
pole DC machine. The center-slotted member is the rotor which carries the rotor
winding in the slots. It is usually assembled from laminated steel punchings hav-
ing 1–3% silicon. The outer member is the field structure, the cylindrical portion
being the yoke or frame which frequently is of cast iron or cast steel. The protruding

Armature

Yoke

Pole (Nt turns)

Figure 1.27 Magnetic circuit of a DC machine.
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Figure 1.28 Simplified magnetic equivalent circuit corresponding to Figure 1.27.

portions of the field structure of salient poles are the poles which are usually made
of laminated steel.

With a DC voltage applied to the field windings, the steady-state value of field
current is determined entirely by the resistance of the circuit. For the polarity shown,
the field winding produces an MMF in the direction to establish a flux from left to
right through the field poles, air gaps, and armature. The flux path is then completed
through the frame. The magnetic circuit is redrawn schematically in Figure 1.28. In
order to determine the portions of the magnetic circuit whose properties predomi-
nate, a graph of the relative MMF of various points around the circuit is sketched in
Figure 1.29. The MMFs are given with respect to an arbitrary point at the center of
the yoke, point a. The magnetic potential drop from a to b is shown as a negatively
sloped line in Figure 1.29. From b to c, similar conditions hold but since the material
is different a slightly different slope is shown. The air gap d–e offers a very large

N It

a db ec f hg kj a

MMF Rise

MMF Drop

Net MMF (with respect to pt. a)

2 Ff

Ff

– Ff

–2 Ff

Figure 1.29 Magnetic potential drops and rises in a two-pole DC machine.
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MMF drop relative to the iron. If the plot is completed for the remainder of the path,
returning to the point a, the total reluctance drop is found to equal twice the MMF
drop from a to f.

For the drop from a to f to exist, an equal and opposite rise in MMF must exist
somewhere in the circuit. The required potential rise is established by the MMF of the
field windings, the magnitude of the contribution being the same as the MMF drop
from a to f for each of the two field windings. The upper curve of Figure 1.29 shows
the rise in potential given by the windings. The next MMF curve shows the sum of
the rises and drops at each point in the circuit and thus gives the actual MMF at each
point with respect to point a.

Several important points can be deduced from Figure 1.29. First, note that the
points a and f are at the same potential and the MMFs from f to a and a to f are mirror
images of each other. Therefore, it can be deduced that all calculations can be made
on a “per pole” basis. Second, the resultant curve shows that all points on the yoke are
nearly at the same potential. Therefore, the leakage flux from b to k through the air
will be relatively small. Third, the same is not true for the tips of the field poles. The
potential difference through the pole body increases until at the pole tips the MMF is
a maximum. In particular, the difference in potential from the top of one pole to the
tip of the other is 2NtI. Since the distance between the tops of adjacent pole shoes is
relatively small, the leakage flux from pole to pole is likely to be appreciable. Indeed,
even for a good design, this leakage flux is generally 10 to 20% of the useful flux.

1.29 EFFECT OF EXCITATION COIL PLACEMENT

Up to this point, little attention has been paid to the exact placement of the core coil
making up an inductor. In practice, the location of the exciting coil has a considerable
effect on the overall losses as well as the exact value of the inductance obtained.
Consider again the simple air-gapped core of Figure 1.18. Figure 1.30 shows three
cases in which the coil is placed (a) on the limb farthest from the gap, (b) on the limb
with the gap and (c) on the upper and lower limbs. In each case, the MMF is plotted
from point a to point f as identified in the figure. The potential is plotted with respect
to point a. While the remainder of the flux path is not plotted (from f back to a in
the lower portion of the core), it is identical (mirror image) to the upper half. In case
(a) where the coil is on the side away from the gap, the difference in MMF potential
between the upper half of the core and the lower half is large over the distance c to
d resulting in a large flux passing from the top limb to the bottom limb which closes
through the left-hand limb. Since the useful flux is presumably the flux in the air gap
region, this additional flux could be considered as leakage flux.

In case (b) of Figure 1.30, MMF is large only in the region near the air gap (d
to e) resulting in “leakage” flux concentrated in this region. Clearly, if the purpose
of the inductor design is to create a specified amount of flux in the air gap region,
then this design would wind up being the smallest and lightest since most of the iron
path does not have to support these additional leakage flux lines. Unfortunately, this
option is often not a good choice since heating of the copper conductors around the
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Figure 1.30 Three different methods of winding a simple gapped core. MMF potential
plotted with respect to point a.

air gap will occur due to eddy current effects. The issue of losses will be taken up in
more detail in Chapter 5.

With case (c), a compromise can be reached concerning these additional flux
lines. Since the MMF in this case increases linearly over the entire length of the
upper and lower limbs, the overall average difference in potential decreases resulting
in leakage flux lines somewhere between cases (a) and (b).

Although a poor choice for inductor design, case (b) clearly does produce the
desirable effect of creating the maximum number of flux lines in the air gap. This
result is also a valid and important observation in the design of electrical machines
where the process of creating a maximum amount of flux lines in the air gap for a
given amount of ampere-turns is of critical importance. The design of case (b) teaches
that it is important to design machines in which the copper exciting the main magnetic
circuit be as near to the air gap as possible. Hence, many shallow slots are prefer-
able to fewer deep slots containing the same amount of ampere-turns. Also, mag-
nets far away from the air gap (buried magnets) are poorer in creating torque than a
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machine with magnets simply fixed on the rotor surface, that is, in the air gap. Much
more will be presented concerning these interesting aspects of machine design in
future chapters.

1.30 CONCLUSION

This chapter has served as a brief, but intensive, review of electromagnetic fields
as applied to electric machine design. Although the math appears formidable, for-
tunately, with reasonable approximations, most calculations required in the design
process can be carried out without an advanced mathematical treatment. Generally,
the simple concepts presented in Section 1.13 provide a good starting point for the
design process.
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