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Mathematical Foundations 1

Point-Set Concepts, Set and Measure Functions, Normed Linear Spaces,
and Integration

1.1 Set Notation and Operations

1.1.1 Sets and Set Inclusion

We may generally think of a set as a collection or grouping of items without
regard to structure or order. (Sets will be represented by capital letters, e.g.,
A, B, C, ….) An element is an item within or a member of a set. (Elements
are denoted by small case letters, e.g., a, b, c, ….) A set of sets will be termed
a class (script capital letters will denote a class of sets, e.g., A,B,C,…); and a
set of classes will be called a family.
Let us define a space (denoted Ω) as a type of master or universal set—it is

the context in which discussions of sets occur. In this regard, an element of Ω
is a point ω. To define a set X, let us write X = x the x's possess some
defining property , that is, this reads “X is the set of all elements x such that
the x’s have some unique characteristic,” where “such that” is written “|.”
The set containing no elements is called the empty set (denoted ϕ)—it is

a member of every set. What about the size of a set? A set may be finite (it is
either empty or consists of n elements, n a positive integer), infinite (e.g., the
set of positive integers), or countably infinite (its elements can be put into
one-to-one correspondence with the counting numbers).
We next look to inclusion symbols. Specifically, we first consider element

inclusion. Element x being a member of set X is symbolized as x X . If x is
not a member of, say, set Y, we write x Y . Next comes set inclusion (a subset
notation). A set A is termed a subset of set B (denoted A B) if B contains the
same elements that A does and possibly additional elements that are not found
in A. If A is not a subset of B, we write A⊈ B. Actually, two cases are subsumed
in A B: (1) either A B (A is then called a proper subset of B, meaning that B
is a set that is larger than A; or (2) A = B (A and B contain exactly the same
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elements and thus are equal). More formally, A = B if and only if A B and
B A. If equality between sets A and B does not hold, we write A B.

1.1.2 Set Algebra

Given sets A and B within Ω, their union (denoted A B) is the set of elements
that are inA, or in B, or in both A and B. Here, we are employing the inclusive or.
Symbolically, A B= x x A or x B (Figure 1.1a). The intersection of sets A
and B (denoted A B) is the set of elements common to both A and B, that is,
A B= x x A and x B (Figure 1.1b). The complement of a set A is the set
of elements within Ω that lie outside of A (denoted A ). Here, A = x x A
(Figure 1.1c).
If sets A and B do not intersect and thus have no elements in common, then

A and B are said to be disjoint or mutually exclusive and we write A B =Ø.
The difference between sets A and B (denoted A − B) is the set of elements in
A but not in B or A−B=A B . Thus, A−B= x x A and x B (Figure 1.1d).
The symmetric difference between sets A and B (denoted AΔB) is the

A
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A A′
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A B

Ω
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Ω

Figure 1.1 (a) Union of A and B, (b) intersection of A and B, (c) complement of A, (d) difference
of A and B, and (e) symmetric difference of A and B.
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union of their differences in reverse order or AΔB = (A − B) (B −A) =
A B B A (Figure 1.1e).
A few essential properties of these set operations now follow. Specifically

for sets A, B, and C within Ω:

UNION

A A =A, A Ω =Ω, A Ø =A
A B = B A (commutative property)
A (B C) = (A B) C (associative property)
A B if and only if A B = B

INTERSECTION

A A =A, A Ω =A, A Ø =Ø
A B = B A (commutative property)
A (B C) = (A B) C (associative property)
A B if and only if A B =A

COMPLEMENT

(A ) =A, Ω =Ø, Ø =Ω
A A =Ω, A A =Ø

A B =A B

A B =A B
DeMorgan’s laws

DIFFERENCE

A − B = (A B) − B =A − (A B)
(A − B) −C =A − (B C) = (A − B) (A −C)
A − (B −C) = (A − B) (A C)
(A B) −C = (A −C) (B −C)

SYMMETRIC DIFFERENCE

AΔ A =Ø, AΔ Ø =A
AΔ B = BΔ A (commutative property)
AΔ (BΔ C) = (AΔ B)Δ C (associative property)
A (BΔ C) = (A B)Δ (A C)

DISTRIBUTIVE LAWS (connect the operations of union and intersection)

A (B C) = (A B) (A C)
A (B C) = (A B) (A C)
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If Ai, i= 1,…,n is any arbitrary finite class of sets, then the extension of the
union and intersection operations to this class can be written, respectively, as

n
i=1Ai and

n
i= 1Ai

Hence, the union of a class of sets is the collection of elements belonging to at
least one of them; the intersection of a class of sets is the set of elements
common to all of them. In fact, given these notions, De Morgan’s laws may
be extended to

n
i=1Ai = n

i= 1Ai and
n
i= 1Ai = n

i=1Ai

Furthermore, if Ai, i= 1,…,n and Bj, j= 1,…,m are two finite classes of sets
with Ai Bj , then

n
i=1Ai

m
j=1Bj and

m
j= 1 Bj

n
i= 1Ai

In addition, if Ai, i= 1 2,… represents a sequence of sets, then their union
and intersection appears as

∞
i=1Ai and

∞
i=1Ai,

respectively.

1.2 Single-Valued Functions

Given two nonempty sets X and Y (which may or may not be equal), a single-
valued function or point-to-point mapping f: X Y is a rule or law of corres-
pondence that associates with point x X a unique point y Y. Here, y = f(x) is
the image of x under rule f. While set X is called the domain of f (denoted Df),
the collection of those y’s that are the image of at least one x X is called the
range of f and denoted Rf . Clearly the range of f is a subset of Y (Figure 1.2a). If
Rf Y, then f is an into mapping. In addition, if Rf = Y (i.e., every y Y is the
image of at least one x X or all the y’s are accounted for in the mapping
process), then f is termed an onto or surjective mapping. Moreover, f is
said to be one-to-one or injective if no y Y is the image of more than one
x X (i.e., x1 x2 implies f x1 f x2 ). Finally, f is called bijective if it is both
one-to-one and onto or both surjective and injective. If the range of f consists of
but a single element, then f is termed a constant function.
Given a nonempty set X, if Y consists entirely of real numbers or Y = R, then

f: X Y is termed a real-valued function or mapping of a point x X into
a unique real number y R.1 Hence, the image of each point x X is a real scalar
y = f(x) R.

1 A discussion of real numbers is offered in Section 1.3.
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For sets X and Y with set A X, let f1: A Y be a point-to-point mapping of
A into Y and f2: X Y be a point-to-point mapping of X into Y. Then f1 is said
to be a restriction of f2 and f2 is termed an extension of f1 if and only if for each
x A, f1(x) = f2(x).
Let X1, X2,…, Xn represent a class of nonempty sets. The product set of X1,

X2,…, Xn (denoted X1 ×X2 × ×Xn) is the set of all ordered n-tuples (x1, x2,…,
xn), where xi Xi for each i = 1, …, n. Familiar particularizations of this defini-
tion are R1 = R (the real line); R2 = R × R is the two-dimensional coordinate
plane (made up of all ordered pairs (x1, x2), where both x1 R and x2 R);
and Rn = R×R× ×R (the product is taken n times) depicts the collection
of ordered n-tuples of real numbers. In this regard, for f a point-to-point map-
ping of X into Y, the subset Gf = x,y x X ,y= f x Y of X × Y is called the
graph of f.
If the point-to-point mapping f is bijective ( f is one-to-one and onto), then

its single-valued inverse mapping f −1 Y X exists. Thus to each point
y Y, there corresponds a unique inverse image point x X such that
x= f −1 y = f −1 f x so that x is termed the inverse function of y. Here, the
domainDf −1 of f −1 is Y, and its range Rf −1 isX. Clearly, f −1 must also be bijective
(Figure 1.2b).

X

(a)

(b)

• •

••

X = Df

f
Rf

y = f(x)

x

x = Df = Rf–1 Y = Rf = Df–1

y = f (x)

x = f –1(y)

Rf⊆Y

Y

X

f

f –1

Y

Figure 1.2 (a) f is an into mapping and (b) f is one-to-one and onto.
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1.3 Real and Extended Real Numbers

We noted in Section 1.2 that a function f is real valued if its range is the set of
real numbers. Let us now explore some of the salient features of real numbers—
properties that will be utilized later on.
The real number system may be characterized as a complete, ordered

field, where a field is a set F of elements together with the operations of
addition and multiplication. Moreover, both addition and multiplication
are associative and commutative, additive and multiplicative inverse and
identity elements exist, and multiplication distributes over addition. Set F
is ordered if there is a binary order relation “<” in F that satisfies the follow-
ing conditions:

1. For any elements x, y in F, either x < y, y < x, or x = y.
2. For any elements x, y, and z in F, if x < y and y < z, then x < z.

Now, if F is an ordered field, then the order relationmust be connected to the
field operations according to the following conditions:

1. If x < y, then x + z < y + z.
2. If x, y, and z is positive, then zx < zy.

Looking to the completeness property of the real number system, let us note
first that a set A ( Ø) of real numbers is bounded above if there is a real num-
ber b (the upper bound for A) such that a ≤ b for every a A. The least upper
bound or supremum of A (denoted sup A) is a real number b such that (1)
a ≤ b for every a A; and (2) if a ≤ c for every a A, then b ≤ c. So if b is
an upper bound for A such that no smaller element of A is also an upper bound
for A, then b is the least upper bound forA. In a similar vein, we can state that a
set A ( Ø) of real numbers is bounded below if there is a real number
b (the lower bound for A) such that b ≤ a for every a A. The greatest lower
bound or infimum of A (written inf A) is a real number b such that (1) b ≤ a
for every a A; and (2) if c ≤ a for every a A, then c ≤ b. Hence, if b is a lower
bound forA such that no larger element ofA is also a lower bound forA, then b
is the greatest lower bound for A. Clearly the supremum and infimum for A
must be unique.
Armed with these considerations, we can state the completeness property as

every nonempty subset A of the ordered field F of real numbers which has an
upper bound in F has a least upper bound in F.
If we admit the elements {−∞} and {+∞} to our discussion of real numbers R,

then the extended real number system (denoted R∗) consists of the set of real
numbers R together with ±∞, that is, R

∗
=R −∞ +∞ .

0003038343.3D 6 28/2/2017 12:01:47 PM

1 Mathematical Foundations 16



1.4 Metric Spaces

Given a spaceΩ, ametric defined onΩ is an everywhere finite real-valued func-
tion μ of ordered pairs (x, y) of points ofΩ or μ x,y Ω×Ω 0, +∞ satisfying
the following conditions:

1. For x Ω, μ(x, x) = 0 (reflexitivity).
2. For x, y Ω, μ(x, y) ≥ 0 and μ( x, y) = 0 if and only if x = y.
3. For x, y Ω, μ(x, y) = μ( y, x) (symmetry).
4. For x, y, z Ω, μ(x, y) ≤ μ(x, z) + (z, y) (triangle inequality).

Here, μ serves to define the distance between x and y. A metric space consists
of the space Ω and a metric μ defined on Ω. Hence, a metric space will be
denoted (Ω, μ). For instance, if Ω = R, then R is a metric space if
μ x,y = x−y (the distance between points x and y on the real line). In addition,
if Ω = Rn, then Rn can be considered a metric space if

μ x,y =
n

i= 1

xi−yi
2

1
2

, 1 1

where again μ(x, y) is interpreted as the distance between x, y Rn.2

Suppose Ω is a metric space with metric μ and X ( Ø) is an arbitrary subset
of Ω. If μ is defined only for points in X, then (X, μ) is also a metric space. Then
under this restriction on μ, X is termed a subspace of Ω.
The importance of a metric space is that it incorporates a concept of distance

(μ) that is applicable to the points within Ω. In addition, this distance function
will enable us to tackle issues concerning the convergence of sequences inΩ and
continuous functions defined on Ω.

2 Equation (1.1) is actually a generalization of the absolute value function x−y . To see this, let us
define on Rn a norm (denoted )—a function Rn 0, +∞ which assigns to each x Rn

some number x such that

a. x ≥ 0 and x =0 if and only if x = 0;
b. x+ y ≤ x + y (triangle inequality);
c. for a scalar c, cx = c x (homogeneity); and

d.
n

i= 1
xiyi ≤ x y (Cauchy–Schwarz inequality).

Then the distance between points x, y Rn induced by the norm “ ” on Rn is

x−y =
n

i= 1

xi−yi
2

1
2

1 2

or Equation (1.1). So if Ω = Rn and μ is given by (1.1), then Rn is a metric space with metric (1.1).
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1.5 Limits of Sequences

Let X be a subset of Rn. A sequence of points in X is a function whose domain is
the set of all positive integers I and whose range appears in X. If the value of the
function at n I is xn X, then the range of the sequence will be denoted by
xn = x1,x2,… and interpreted as “the sequence of points x1, x2,… in X.”

(Note that the sequence of points {xn} mapped into X is not a subset of X.)
By deleting certain elements of the sequence {xn}, we obtain the subsequence
xn n J , where J is a subset of the positive integers.
A sequence {xn} in Rn converges to a limit x if and only if limn ∞

μ xn,x = limn ∞ xn−x = 0. (This is alternatively expressed as limn ∞
xn = x or xn x asn ∞ .) That is, x is the limit of {xn} if for each ε > 0 there
exists an index value nε such that n > nε implies xn−x < ε. If we think of
the condition xn−x < ε as defining an open sphere of radius ε about x, then
we can say that {xn} converges to x if for each open sphere of radius ε > 0 cen-
tered on x, there exists an nε such that xn is within this open sphere for all n > nε.
Hence, the said sphere contains all points of {xn} from xnε on, that is, x is the limit
of the sequence {xn} in Rn if, given ε > 0, all but a finite number of terms of the
sequence are within ε of x.
A point x Rn is a limit (cluster) point of an infinite sequence {xk} if and only

if there exists an infinite subsequence xk k K of {xk} that converges to x, that is,
there exists an infinite subsequence {xk} such that limj ∞ xkj −x = 0or
xkj x as j ∞ . Stated alternatively, x is a limit point of {xk} if, given a δ > 0

and an index value k, there exists some k > k such that xk −x < δ for infinitely
many terms of {xk}.
What is the distinction between the limit of a sequence and a limit point of a

sequence? To answer this question, we state the following:

a. x is a limit of a sequence {xk} in Rn if, given a small and positive ε R, all but a
finite number of terms of the sequence are within ε of x.

b. x is a limit point of {xk} in Rn if, given a real scalar ε > 0 and given k, infinitely
many terms of the sequence are within ε of x.

Thus, a sequence {xk} in Rn may have a limit but no limit point. However, if a
convergent sequence {xk} in Rn has infinitely many distinct points, then its limit
is a limit point of {xk}. Likewise, {xk} may possess a limit point but no limit. In
fact, if the sequence {xk} in Rn has a limit point x, then there is a subsequence
xk k K of {xk} that has x as a limit; but this does not necessarily mean that the

entire sequence {xk} converges to x.3

3 If xk = n= constant for all k, then {xk} converges to the limit n. But since the range of this
sequence contains only a single point, it is evident that the sequence has no limit point. If xk = 1 k ,
then the sequence {xk} converges to a limit of zero, which is also a limit point. In addition,

if xk = −1 k , then the sequence {xk} has limit points at ±1, but has no limit.
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A sufficient condition that at least one limit point of an infinite sequence {xk}
in Rn exists is that {xk} is bounded, that is, there exists a scalarM R such that
xk ≤M for all k. In this regard, if an infinite sequence of points {xk} in Rn is

bounded and it has only one limit point, then the sequence converges and
has as its limit that single limit point.
The preceding definition of the limit of the sequence {xn} explicitly incorpo-

rated the actual limit x. If one does not know the actual value of x, then the fol-
lowing theorem enables us to prove that a sequence converges even if its actual
limit is unknown. To this end, we state first that a sequence is a Cauchy
sequence if for each ε > 0 there exists an index value Nε/2 such that
m, n >Nε 2 implies d xm,xn = xm−xn < ε.4 Second, Rn is said to be complete
in that to every Cauchy sequence {xn} defined on Rn there corresponds a point x
such that limn ∞ xn = x. Given these concepts, we may now state the

Cauchy Convergence Criterion: Given that Rn is complete, a sequence
{xn} in Rn converges to a limit x if and only if it is a Cauchy sequence, that
is, a necessary and sufficient condition for {xn} to be convergent in Rn is
that d xm,xn 0 asm,n ∞ .

Hence, every convergent sequence on Rn is a Cauchy sequence. The implica-
tion of this statement is that if the terms of a sequence approach a limit, then,
beyond some point, the distance between pairs of terms diminishes.
It should be evident from the preceding discussion that a complete metric

space is a metric space in which every Cauchy sequence converges, that is, the
space contains a point x to which the sequence converges or limn ∞ xn = x.
In this regard, it should also be evident that the real line R is a complete metric
space as is Rn.
We next define the limit superior and limit inferior of a sequence {xn} of real

numbers as, respectively,

a lim
n ∞

supxn = lim
n ∞

supxm
m ≥ n

and

b lim
n ∞

inf xn = lim
n ∞

inf xm
m ≥ n

1 3

Hence, the limit superior of the sequence {xn} is the largest number x such that
there is a subsequence of {xn} that converges to x—and no subsequence con-
verges to a higher value. Similarly, the limit inferior is the smallest limit attain-
able for some convergent subsequence of {xn}—and no subsequence converges
to a lower value. Looked at in another fashion, for, say, Equation (1.3a), a

4 That is, for ε > 0 there exists a positive integer Nε/2 such thatm ≥ Nε/2 implies d xm,x < ε 2; and
n ≥ Nε/2 implies d xn,x < ε 2. Hence, both m, n > Nε/2 imply, via the triangle inequality, that

d xm,xn ≤ d xm,x +d xn,x < ε
2 +

ε
2 = ε.

0003038343.3D 9 28/2/2017 12:01:47 PM

1.5 Limits of Sequences 9



number x is the limit superior of a sequence {xn} if (1) for every x < x, we have
x < xn for infinitely many n’s; and (2) for every x > x, we have x < xn for only
finitely many n’s. Generally speaking, when there are multiple points around
which the terms of a sequence tend to “pile up,” the limit superior and limit
inferior select the largest and smallest of these points, respectively.
We noted earlier that a sequence defined on a subsetX ofRn is a functionwhose

range is {xn}. If this function is bounded, then its range {xn} is bounded from both
above and below. In fact, if {xn} is a bounded sequence of real numbers, then
the limit superior and limit inferior both exist. It is also important to note that
limn ∞ xn exists if and only if the limit superior and limit inferior are equal.
We end this discussion of limits by mentioning that since any set of extended
real numbers has both a supremum and an infimum, it follows that every
sequence of extended real numbers has both a limit superior and a limit inferior.

1.6 Point-Set Theory

Let δ be any positive scalar. A δ-neighborhood of a point x0 Rn or sphere of
radius δ about x0 is the set δ x0 = x x−x0 < δ,δ > 0 . A point x is an interior
point of a set X in Rn if there exists a δ-neighborhood about x that contains only
points of X.
A setX in Rn is said to be open if, given any point x0 X , there exists a positive

scalar δ such that δ x0 X . Hence, X is open if it contains only interior points.
Moreover,

a. Ø, δ(x0), and Rn are all open sets.
b. Any union of open sets in Rn is open; and any finite intersection of open sets

in Rn is open.

LetX be a set in Rn. The complementary set of X, denotedX , is the collection
of all points of Rn lying outside of X. A point x X is an exterior point of X in Rn

if there exists a δ-neighborhood of x that contains only points ofX . A point x is a
boundary point of a set X in Rn if every δ-neighborhood of x encompasses
points in X and in X .
A set X in Rn is bounded if there exists a scalar M R such that x ≤M

for all x X. Stated alternatively, X is bounded if it has a finite dia-
meter d X = sup x−y x,y X .
A set X in Rn has an open cover if there exist a collection {Gi} of open

subsets from Rn such that X iG The open cover {Gi} of X in Rn is said to
contain a finite subcover if there are finitely many indices i1,…, im for
which X m

j= 1Gij .

A point x is termed a point of closure of a set X in Rn if every δ-neighborhood
of x contains at least one point of X, that is, δ x X ϕ. It is important to note
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that a point of closure of X need not be a member of X; however, every element
withinX is also a point of closure ofX. A subset X of Rn is closed if every point of
closure of X is contained in X. The closure of a set X in Rn, denoted X , is the set
of points of closure of X. Clearly, a set X in Rn is closed if and only if X =X . A set
X in Rn has a closed cover if there exists a collection {Gi} of closed subsets from
Rn such that X iG
Closely related to the concept of a point of closure of X is the notion of a limit

(cluster) point of a set X in Rn. Specifically, x is a limit point of X if each
δ-neighborhood about x contains at least one point of X different from x, that
is, points of X different from x tend to “pile up” at x. So if x is a limit point of a set
X in Rn, then X δ x is an infinite set—every δ-neighborhood of x contains
infinitely many points of X. Moreover,

a. If X is a finite set in Rn, then it has no limit point.
b. The limit point of X need not be an element of X.
c. The collection of all limit points ofX in Rn is called the derived set and will be

denoted Xd.

Based on the preceding discussion, we can alternatively characterize a set X in
Rn as closed if it contains each of its limit points or ifXd X . In addition, we can
equivalently state that the closure of a setX in Rn isX together with its collection
of limit points or X =X Xd . Furthermore,

a. Ø, a single point, and Rn are all closed sets.
b. Any finite union of closed sets in Rn is closed; any intersection of closed sets

in Rn is closed.
c. The closure of any set X in Rn is the smallest closed set containing X.
d. A subset X in Rn is closed if and only if its complementary set X is open.
e. A subset X in Rn is closed if and only if X contains its boundary.

Let’s now briefly relate the concepts of a limit and a limit point of a sequence
in Rn to some of the preceding point-set notions that we just developed. In par-
ticular, we shall take another look at the point of closure concept. To this end,
a limit point (as well as a limit) of a sequence {xk} in Rn is a point of closure of
a set X in Rn if X contains {xk}. Conversely, if x is a point of closure of a set X
in Rn, then there exists a sequence {xk} in X (and hence also a subsequence
xk k K

in X) such that x is a limit point of {xk} (and thus a limit of xk k K
).

Hence, the closure of X ,X , consists of all limit points of convergent sequences
{xk} from X.
Similarly, we note that a subsetX in Rn is closed if and only if every convergent

sequence of points {xk} from X has a limit in X, that is, X is closed if for {xk} in X,
limk ∞ xk = x X . Also, a set X in Rn is bounded if every sequence of points {xk}
formed from X is bounded. In addition, if a set X in Rn is both closed and
bounded, then it is termed compact. (Equivalently, a set X in Rn is compact
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if it has the finite intersection property: every finite subclass has a nonempty
intersection.) We mention briefly the following:

a. A closed subset of a compact set X in Rn is compact.
b. The union of a finite number of compact sets in Rn is compact; the inter-

section of any number of compact sets in Rn is compact.
c. A set X in Rn is compact if and only if it is closed and bounded.
d. Any finite set of points in Rn is compact.
e. If X in Rn is a set consisting of a convergent sequence {xk} and its limit

x= limk ∞ xk , then X is compact. Conversely, if X in Rn is compact, every
sequence {xk} has a convergent subsequence xk k K

whose limit belongs
to X.

A set X in Rn is locally compact if each of its points has a δ-neighborhood

with compact closure, that is, for each x X, δ x is compact. In this regard,
any compact space is locally compact but not conversely, for example, Rn is
locally compact but not compact.

1.7 Continuous Functions

For metric spaces X and Y with metrics d1 and d2, respectively, let f: X Y be a
point-to-point mapping of X into Y. f is said to be continuous at a point x0 X
if either

a. for any ε > 0 there exists a δε > 0 such that d1 x,x0 < δε implies
d2 f x , f x0 < ε. (Note that the subscript on δmeans that “δ depends upon
the ε chosen.”); or

b. for each ε-neighborhood of f(x0), ε(f(x0)), there exists a δε-neighborhood
about x0, δε(x0), such that f δε x0 ε f x0 , that is, points “near” x0 are
mapped by f into points “near” f(x0).

In general, the point-to-point mapping f: X Y is continuous on X if it is
continuous at each point of X.
Theorems 1.7.1 and 1.7.2 provide us with a set of necessary and sufficient con-

ditions for the continuity of a point-to-point mapping at a specific point x0 X
and at any arbitrary x X, respectively. Specifically, we start with Theorem 1.7.1.

Theorem 1.7.1 (continuity in terms of convergent sequences). For metric
spaces X and Y, the point-to-point mapping f of X into Y is continuous at
x0 X if and only if xk x0 implies f(xk) f(x0) for every subsequence {xk} in X.

Hence, f is a continuousmapping ofX into Y if it “sends convergent sequences in
X into convergent sequences in Y.” Next comes Theorem 1.7.2.
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Theorem 1.7.2 (continuity in terms of open (resp. closed) sets). For metric
spaces X and Y, let f be a point-to-point mapping of X into Y. Then, (a) f is con-
tinuous if and only if f −1(A) is open in X whenever set A is open in Y; and (b) f is
continuous if and only if f −1(A) is closed in X whenever A is closed in Y.

Thus, f is continuous if it “pulls open (resp. closed) sets back to open (resp.
closed) sets,” that is, the inverse images of open (resp. closed) sets are open (resp.
closed).
We next consider Theorem 1.7.3 which states that continuous mappings

preserve compactness. That is,

Theorem 1.7.3 For metric spaces X and Y, let f be a continuous point-to-point
mapping from X into Y. If A is a compact subset of X, then so is its range f(A).

Next, let X be a subset of Rn. A continuous point-to-point mapping g Rn X
is termed a retraction mapping on Rn if g(x) = x for all x X. Here, X is
called a retraction of Rn. If X is contained within an arbitrary subset A of Rn

,

then g A X is a retraction of A onto X if g(x) = x for all x X.

1.8 Operations on Sequences of Sets

Let Ai , i= 1 2,…, represent a sequence of sets in a metric space X. If {Ai} is
such that Ai Ai+ 1, i= 1 2,…, then {Ai} is said to be a nondecreasing sequence
(if Ai Ai+ 1, then {Ai} is said to be an expanding sequence). In addition, if {Ai}
is such that Ai Ai+ 1, i= 1 2,…, then {Ai} is called a nonincreasing sequence
(if Ai Ai+ 1, i= 1 2,…, then {Ai} is termed a contracting sequence).
Amonotone sequence of sets is one which is either an expanding or contract-
ing sequence.
If the sequence Ai , i= 1 2,…, in X is nondecreasing or nonincreasing, then

its limit exists and we have the following:

lim
i ∞

Ai =
∞
i= 1Ai if Ai is nondecreasing ;

lim
n ∞

Ai =
∞
i= 1Ai if Ai is nonincreasing

In addition, for any sequence of sets Ai , i= 1 2,…, in X,

sup Ai = ∞
i=1Ai, inf Ai = ∞

i=1Ai;

with

sup ∞
i=1Ai = sup supAi, i= 1 2,… ,

inf ∞
i=1Ai = inf inf Ai, i= 1 2,… ; and
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sup ∞
i=1Ai ≤ inf supAi, i= 1 2,… ,

inf ∞
i=1Ai ≥ sup inf Ai, i= 1 2,…

Let Ai , i= 1 2,…, again depict a sequence of sets in X.
Then there are subsets Ei Ai of disjoint sets, with Ej Ek =ϕ for j k,

such that

∞
i=1Ei =

∞
i= 1Ai

We next consider the concepts of the limit superior and limit inferior of
a sequence of sets Ai , i= 1 2,…, in a metric space X. To this end, the limit
superior of a sequence {Ai} is defined as

lim
i ∞

supAi =
∞
i= 1 k ≥ iAk

= A1 A2 A2 A3

= x X x Ai for infinitely many i

Hence, lim sup Ai is the set S of points such that, for every positive integer i,
there exists a positive integer k ≥ i such that S Ai; thus S consists of those
points that belong to Ai for an infinite number of i values. Looked at in another
fashion, if x S, then x is in all of k ≥ iAk . Hence, no matter how large of an i
value is chosen, you can find a k ≥ i for which x is a member of Ai.
Similarly, the limit inferior of a sequence {Ai} is

lim
i ∞

inf Ai =
∞
i= 1 k ≥ iAk

= A1 A2 A2 A3

= x X x Ai for all but finitely many i

Thus, lim inf Ai is the set I of points such that, for some positive integer i, I Ai

for all positive integers k ≥ i; hence, I consists of those points that belong to Ai

for all except a finite number of i values. Stated alternatively, if x I, then x is an
element of k ≥ iAk so that x Ai for k ≥ i—xmust be in I with only finitely many
exceptions, that is, for x I, there is an index value such that x is in every Ai in
the remaining portion of the limit.5

5 Alternative definitions of the limit superior and limit inferior of a sequence of sets are the
following. Again, let {Ai} be a sequence of sets in a metric space X. Then

lim
i ∞

supAi = x X lim
i ∞

inf d x,Ai = 0 ;

lim
i ∞

inf Ai = x X d x,Ai =0 ,

where d(x, Ai) is the distance from x to Ai.
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We note briefly that if Ai , i= 1 2,…, is any sequence of sets in a metric
space X, then lim inf Ai lim sup Ai. A sequence of sets {Ai} is convergent
(or a subset A of X is the limit of {Ai}) if

lim
i ∞

supAi = lim
i ∞

inf Ai = lim
i ∞

Ai =A

Here, A is termed the limit set. In this vein, any monotone sequence of sets
Ai , i= 1 2,…, is convergent.

1.9 Classes of Subsets of Ω

1.9.1 Topological Space

We previously defined a metric space (Ω, μ) as consisting of the space Ω and a
metric μ defined on Ω. Let A denote the class of open sets in the metric space.
Then A satisfies the following conditions:

i. Ø, Ω A.
ii. If A1,A2,…,An A, then n

i= 1Ai A (the intersection of every finite class of
sets in A is itself a set in A).

iii. IfAα A for α I, then α IAα A (the union of every arbitrary class of sets
in A is itself a set in A).

Armed with properties (i)–(iii), let us generalize a metric space to that of a top-
ological space. That is, given a nonempty space Ω and a given class A of subsets
ofΩ consisting of the “open sets” inΩ, a class T of subsets ofΩ is called a topol-
ogy onΩ if (i)–(iii) hold. (Thus, the class of open setsA determines the topology
in Ω.) Hence, a topological space consists of Ω and a topology T on Ω and is
denoted Ω, .
A subset A of a topological space (Ω, T) is said to be (everywhere) dense if its

closure Ā equals Ω, . Hence, A is dense if and only if (a) A intersects every
nonempty set; or (b) the only open set disjoint from A is Ø.

1.9.2 σ-Algebra of Sets and the Borel σ-Algebra

A ring R is a nonempty class of subsets that contains Ø and is closed under
the operations of union, intersection, and difference. A σ-ring is a ring R that
is closed under countable unions and intersections, that is, if Ai R, i = 1, 2,…,
then A= ∞

i=1Ai R and ∞
i= 1Ai = A− ∞

i= 1 A−Ai R.
Next, we can define a σ-algebra as a class of sets F that contains Ω and is a

σ-ring. More formally, forΩ a given space, a σ-algebra onΩ is a family F of sub-
sets of Ω that satisfies the following conditions:

i. Ω F.
ii. If a set A F, then its complement A F, where A =Ω−A.
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iii. If Ai i ≥ 1 F, then ∞
i= 1Ai F, that is, countable unions of sets in F are

also in F.

Note that since Ω F, we must have Ω = Ø F; with ∞
i= 1Ai = ∞

i=1Ai,
it follows that F is closed under countable intersections as well. Note also that if
Ai i ≥ 1 F, then limi ∞ Ai F, limi ∞ supAi F, and limi ∞ inf Ai F.

The pair (Ω, F) is called a measurable space and the sets in F are termed
(F-) measurable sets.
Given a family C of subsets of Ω, there exists a smallest σ-algebra σ(C) on Ω

that contains C, is contained in every σ-algebra that contains C, and is unique.
Here, σ(C) is termed the σ-algebra generated by C and is specified as

σ C = Hj Hj a σ-algebra on Ω, C Hj

(For instance, if C = {E}, E Ω, then σ (C) = {Ø, E,E ,Ω}.) Now, ifΩ = Rn and C is a
family of open sets in Rn, then Bn = σ C is called the Borel σ-algebra on Ω and
an element B Bn is called a Borel set. Hence, the Borel σ-algebra on Ω is the
smallest σ-algebra generated by all the open subsets of Rn; and the class of Borel
sets Bn in Rn is the σ-algebra generated by the open sets in Rn. In fact, the class of
half-open intervals in Rn generates the σ-algebraBn of Borel sets in Rn. Borel sets
also include all open and closed sets, all countable unions of closed sets, among
others.
Since σ-algebras will be of paramount importance in our subsequent analysis

(especially in our review of the essentials of probability theory), let us consider
Example 1.1.

Example 1.1 To keep the analysis manageable, suppose Ω= 1,2,3,4 . Then
possibly, F = {Ø,{1,2},{3,4},Ω}. Does F satisfy (i)–(iii) given earlier? If so, then
F is a legitimate σ-algebra. Specifically,

1. As constructed, Ø F and Ω F. Hence, (i) holds.
2. Ø =Ω,Ω = Ø 1,2 = 3,4 , 3,4 = 1,2 . Clearly each of these subsets is a

member of F and thus (ii) is valid.
3. Since F contains four disjoint subsets, partition the index set I = 1,2,3,4

into four disjoint subsets according to

I1 = i Ai = Ø Ø I2 = i Ai = 1,2 Ø
I3 = i Ai = 3,4 Ø , and I4 = i Ai =Ω Ø

Then
∞
i=1Ai =

i I
Ai

=
i I1

Ai
i I2

Ai
i I3

Ai
i I4

Ai

= Ø 1,2 3,4 Ω F

and thus F is a σ-algebra on Ω. ■
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1.10 Set and Measure Functions

1.10.1 Set Functions

We previously defined the concept of a point-to-point function or mapping as a
rule f that associates with a point x from a nonempty set X a unique point y = f(x)
in a nonempty set Y, where X, a set of points, was called the domain of the func-
tion. Now, let’s consider a real-valued function whose domain is a class of sets,
that is, we have a function of sets rather than a function of points. In this regard,
consider a function μ: C R∗, where C is a nonempty class of sets and R∗ denotes
the set of extended real numbers. Thus μ is a rule that associates with each set E

C a unique element μ(E), which is either a real number or ±∞. Some
important types of set functions follow.
First, a set function μ: C R∗ is said to be (finitely) additive if

i. μ(Ø) = 0; and
ii. for every finite collection E1, E2,…, En of disjoint sets (Ej Ek = Ø, j k) in C

such that n
i= 1Ei C, we have μ n

i= 1Ei =
n

i=1
μ Ei R∗.

Remember that the domain C of μ is a finitely additive class of sets {Ei, i = 1,…, n}

and
n

i= 1
μ Ei is defined in R∗. (If Ω = R, C is the class of all finite intervals of

R, and if E is taken to be (a, b) or (a, b] or [a, b) or [a, b], then μ(E) = b − a.)
It should be evident that a suitable domain of definition of an additive set

function μ is a ring R since, if Ei R, i= 1,…,n, then n
i= 1 Ei R. So if C is a ring,

then the set function μ: R∗ is additive if and only if μ(Ø) = 0 and, if Ej and Ek are
disjoint sets in C, then μ Ej Ek = μ Ej + μ Ek . In this regard, suppose μ: C
R∗ is an additive set function defined as a ring C with sets Ej, Ek C. Then

i. if Ej Ek and μ(Ej) is finite, then μ(Ek − Ej) = μ(Ek) − μ(Ej) ≥ 0;
ii. if Ej Ek and μ(Ej) is infinite, then μ(Ej) = μ(Ek);
iii. if Ej Ek and μ(Ek) is finite, then μ(Ej) is finite; and
iv. if μ(Ek) = +∞, then μ(Ej) −∞.

Next, a set function μ: C R∗ is termed σ-additive (or countably or com-
pletely additive) provided

i. the domain of μ is a σ-ring of sets C;
ii. μ(Ø) = 0; and
iii. for any disjoint sequence E1, E2, … of sets in C such that

∞
i= 1 Ei C, we have

μ ∞
i=1Ei =

∞

i=1

μ Ei R∗

Here, the domain C of μ is a countably additive class of sets {Ei, i = 1, 2,…} and
∞

i= 1
μ Ei R∗ is defined in the extended real numbers. Clearly, a σ-additive
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set function is also (finitely) additive, though the converse is not generally true.
However, if C is a finite class of sets, then the additivity of μ: C R∗ implies
σ-additivity.
A set function μ: R∗ is said to be σ-finite if, for each set E C, there is

a sequence of sets Ei C, i = 1, 2, …, such that E = ∞
i= 1 Ei and μ(Ei) < +∞ for

all i. As this definition reveals, additivity is not a property of σ-finite set func-
tions. For instance, consider the Borel σ-algebra in Rn that is generated by
the collection of all “cubes” of the form C = a1,b1 × a2,b2 × × an,bn ,
with bi > ai, i= 1,…,n. Then, μ C = n

i=1 bi−ai . Here, μ is σ-finite since
Rn = ∞

i=1 − i, i n.
A set function μ defined on C is nondecreasing if μ(Ek) ≥ μ(Ej) whenever

Ej Ek; it is nonincreasing if μ(Ek) ≤ μ(Ej) when Ej Ek; and it is said to be
monotone if it is either nondecreasing or nonincreasing. Now, if μ is additive
and nondecreasing (resp. nonincreasing), then it is everywhere non-negative
(resp. nonpositive). In fact, the reverse implication holds, that is, if μ is additive
and everywhere non-negative (resp. nonpositive), then it is also nondecreasing
(resp. nonincreasing).

1.10.2 Measure Functions

Let R+ denote the set of non-negative real numbers together with +∞, that is,
R+ = x R

∗
x ≥ 0 . A measure function on a σ-ring C is any non-negative

σ-additive set function μ: C R+. (For any subset A C we assume that
−∞ < μ A < +∞ .) Note that since a measure function μ on C is non-negative,
it must also be nondecreasing. A Borel measure is a measure function μ on the
σ-algebra B of Borel subsets of a given topological space (Ω, T), that is,

μ B 0, +∞

A couple of important characteristics of measure functions are as follows:

i. If μ is a measure function on C and if {Ei, i = 1, 2, …} is any sequence of sets

from C, then μ is countably subadditive or μ ∞
i=1Ei ≤

∞

i=1
μ Ei .

ii. If μ is a measure function on C and if {Ei, i = 1, 2, …} is any sequence of sets
from C with μ ∞

i= 1Ei < +∞, then μ limi ∞ Ei = limi ∞ μ Ei .

We next examine the continuity of set functions. To this end, suppose R is a
ring and the set function μ: R R∗ is additive with μ(A) > −∞ for all sets A R:

i. μ is continuous from below atA if limi ∞ μ Ei = μ A for every monotone
increasing sequence {Ei} in R that converges to A.

ii. μ is continuous from above atA if limi ∞ μ Ei = μ A for every monotone
decreasing sequence {Ei} in R for which μ(Ei) < +∞ for some i.

iii. μ is continuous at A R if it is continuous at A from both above and below.
Moreover, under the aforementioned assumptions, if
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iv. μ is σ-additive (and thus additive) on R, then μ is continuous at A for all sets
A R.

Given two classes C and D of subsets of Ω, with C D, and set functions μ:
C R∗ and τ: D R∗ respectively, τ is termed an extension of μ if, for all A
C, τ(A) = μ(A); and μ is called a restriction of τ to C.
In later chapters, we shall be concerned with issues pertaining to the conver-

gence of sequences of random variables. To adequately address these issues, we
need to be able to define measures on countable unions and intersections of
“measurable sets.” To accomplish this task, we need to assume that the collec-
tion of measurable sets is a σ-algebra F, that is, F containsΩ and is a σ-ring. This
requirement enables us to confine our analysis, for the most part, to “measure
spaces,” where a measure space is a triple (Ω, F, μ) consisting of a space Ω, a
σ-algebra F on Ω (a collection subsets of Ω), and μ: F R+ is a measure on F.

1.10.3 Outer Measure Functions

Suppose C is the class of all subsets of a space Ω. Then μ∗: C R+ is an outer
measure function on Ω if

i. μ∗(Ø) = 0;
ii. μ∗ is nondecreasing (i.e., for subsets Ej Ek, μ(Ej) ≤ μ(Ek)); and
iii. μ∗ is countably subadditive—i.e., for any sequence {Ei, i = 1, 2, …} of

subsets of Ω,

μ∗ ∞
i= 1Ei ≤

∞

i=1

μ∗ Ei 1 4

In sum, μ∗ is said to be non-negative, monotone, and countably subadditive.
We note that every measure on the class of all subsets of Ω is an outer measure
on Ω; and, in defining an outer measure on Ω, no “additivity” requirement was
in effect.
Given that μ∗ is an outer measure on Ω, a subset E is said to be measurable

with respect to μ∗, or simply μ∗-measurable, if for every set A Ω,

μ∗ A = μ∗ A E + μ∗ A E 1 5

(given that A= A E A E ). Thus, a subset E of Ω is μ∗-measurable if it
partitions a set A Ω into two subsets, A E and A E , on which μ∗ is additive.
As this definition reveals, a set E is not innately measurable—its measurability
depends upon the outer measure employed. That is, to define the measurability
of a set E, we start with an arbitrary set A and we examine the effect of E on
the outer measure of A, μ∗(A). If E is measurable, then it is sufficiently
“well-behaved” in that it does not partition A in a way that compromises the
additivity of μ∗, that is, if we partition A into A E and A E , then the outer
measures of A E and A E add up correctly to μ∗ (A).
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Since μ∗ is countably subadditive, we have, from (1.4), μ∗ A =
μ∗ A E + μ∗ A E for all sets A, E Ω. Hence, E is μ∗-measurable if
and only if

μ∗ A ≥ μ∗ A E + μ∗ A E 1 6

for every set A Ω. Since this inequality holds for any set A for which μ∗ (A) =
+∞, it follows that a necessary and sufficient condition for E to be
μ∗-measurable is that μ∗(A) < +∞ for every A Ω.
Some important properties of outer measures are the following:

i. If E Ω is μ∗-measurable, then E is also μ∗-measurable.
ii. If μ∗(E) = 0, then E Ω is measurable.
iii. Any finite union of μ∗-measurable sets in Ω is μ∗-measurable.
iv. If {Ei, i = 1, 2, …} is a sequence of disjoint μ∗-measurable sets in Ω and if

G= ∞
j= 1 Ej, then for any set A Ω, μ∗ A G =

∞

j= 1
μ∗ A Ej .

v. Any countable union of μ∗-measurable sets in Ω is μ∗-measurable.
vi. Any countable union of disjoint μ∗-measurable sets in Ω is μ∗-measurable.
vii. If {Ei, i = 1, 2, …} is a sequence of disjoint μ∗-measurable sets in Ω and

if, for each n, Gn = n
j= 1 Ej, then, for each set A Ω, μ∗ A Gn =

n

j=1
μ∗ A Ej .

Why are outer measures important? Simply because they are useful for con-
structing measure functions. That is, given that the outer measure μ∗ has as its
domain the class of all subsets of the space Ω, a restriction of μ∗ to a “smaller”
domain always generates a measure function. In this regard, suppose μ∗ is an
outer measure function on Ω and let be the class of μ∗-measurable sets. Then
is a completely additive class (a σ-algebra) and the restriction of μ∗ to is a

measure function μ.
An outer measure μ∗ is said to be regular if, for every subset A Ω, there is a

μ∗-measurable set E A such that μ∗(E) = μ∗(A). (Here, E is said to be ameasur-
able cover for A.) Thus, an outer measure is regular if it effectuates measurable
sets in a manner that guarantees that every set A Ω has a measurable cover E.
Key properties of regular outer measures are the following:

i. If μ∗ is a regular outer measure on Ω and {Ei, i = 1, 2, …} is an increasing
sequence of sets, then μ∗ limi ∞ Ei = limi ∞ μ∗ Ei .

ii. If μ∗ is a regular outer measure on Ω for which μ∗ (Ω) < +∞, then a subset
E Ω is measurable if and only if μ∗ Ω = μ∗ Ω E + μ∗ Ω E =
μ∗ E + μ∗ E . (This result follows from Equation (1.5) with A =Ω, since
(1.5) must hold for any set A.)

Next, let Ω be a metric space. An outer measure μ∗ on Ω is a metric outer
measure if μ∗(Ø) = 0; μ∗ is nondecreasing and countably subadditive; and μ∗
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is additive on separated sets (i.e., for subsets E and F in Ω with d(E, F) > 0,
μ∗(E F) = μ∗E + μ∗(F)).6 We note briefly the following:

i. If μ∗ is a metric outer measure, then any closed set is measurable.
ii. If μ∗ is a metric outer measure, then every Borel set is measurable (since the

class of μ∗-measurable sets contains the open sets, and thus contains B, the
class of Borel sets).

1.10.4 Complete Measure Functions

Given a measure function μ: C R+, the class C of subsets ofΩ is complete with
respect to μ if E F, F C, and μ(F) = 0 implies E C. Now, if μ: C R+ is such
that C is complete with respect to μ, then μ is said to be complete. Hence, μ is
complete if its domain contains all subsets of sets of measure zero, that is, every
subset of a set of measure zero is measurable.
For a measure space (Ω, F, μ), the completion of F, denoted Fc, with respect

to a measure μ on F involves all subsets A Ω such that there exist sets E, F F,
with E A F, and μ(F − E) = 0. The completion of μ, μc, is defined on Fc

as μc(A) = μc (E) = μc(F); it is the unique extension of μ to Fc. For
A Fc,μc A = inf μ F F F,A F = sup μ E E F,E A .
The completemeasure space (Ω, Fc, μc) is thus the completion of (Ω, F, μ). In

fact, (Ω, Fc, μc) is the smallest complete measure space that contains (Ω, F, μ).
If a measure μ is obtained by restricting an outer measure μ∗ to , the class of

sets of Ω that are μ∗-measurable, then μ is a complete measure. In fact, any
measure generated by an outer measure is complete.

1.10.5 Lebesgue Measure

In what follows, our discussion will focus in large part on a class M of open sets
(containing Ø) in Ω=R. This will then facilitate our development of the Lebes-
gue integral.
Let us express the length of a bounded interval I (whichmay be open, closed,

or half-open) with endpoints a and b, a < b, as l I = b−a. Our objective herein is
to extend this “length” concept to arbitrary subsets of R, for example, for a sub-
set E R, the notion of the “length of E” is simply its measure μ(E). In particular,
we need to explore the concept of Lebesgue measure of a set E, μ(E), and specify
the family of Lebesgue measurable sets. Our starting point is the concept of
Lebesgue outer measure.

6 For sets E,F Rn, the distance between sets E, F is d E,F = inf x−y x E,y F .
If E F Ø ,d E,F = 0.
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For each subset E R, the Lebesgue outer measure μ∗ (E) is defined as

μ∗ E = inf
n

i= 1

l Ii Ii is a sequence of open intervals with E n
i= 1Ii

What is the significance of this expression? Suppose E can be covered by
multiple sets of open intervals, where the union of each particular set of open
intervals contains E. Since the total length of any set of intervals can overesti-
mate the measure of E (it may contain points not in E), we need to take the
greatest lower bound of the lengths of the interval sets in order to isolate the
covering set whose length fits E as closely as possible and whose constituent
intervals do not overlap.
Given the discussion on outer measures in Section 1.10.3, it follows that

the key properties of Lebesgue outer measures are the following:

i. For every set E R,0≤ μ∗ E ≤ +∞ .
ii. μ∗ is nondecreasing.
iii. μ∗ is countably subadditive, that is, for any sequence Ei, i= 1 2,… of

subsets of R,

μ∗ ∞
i=1Ei ≤

n

i= 1

μ∗ Ei

iv. μ∗ generalizes or extends the concept of “length” in that μ∗ I = l I .

How does the concept of Lebesgue outer measure translate to the notion of
Lebesgue measure itself? In order to transition from μ∗ (E) to μ(E), we need
an additional condition on E. Specifically, a set E R is Lebesgue measurable
if for every set A R,

μ∗ A = μ∗ A E + μ∗ A E 1 5

This requirement is not new (see the discussion underlying Equation (1.5) of
Section 1.10.3). As explained therein, if for every A the partition of A induced
by E (the sets A E and A E ) has outer measures that correctly add up to the
outer measure of A itself, then set E is “well-behaved” in that E does not
adversely impact or distort the outer measure of A when E is used to partition
A. The upshot of all this is that, under (1.5), μ∗ (E) yields μ(E). That is, if E is
Lebesgue measurable, then the Lebesguemeasure of E is defined to be its outer
measure μ∗ (E) and simply written as μ(E).
As far as the properties of Lebesgue measure μ(E) are concerned, they mirror

those of μ∗ (E) (see properties (i)–(iv)), but with one key exception—property
(iii) involving countable subadditivity is replaced by countable additivity: if
Ei, i= 1 2,… is a sequence of disjoint subsets of R, then

iii μ ∞
i= 1Ei =

∞

i= 1

μ Ei
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How should the family of Lebesgue measurable sets (denoted M) be
defined? Clearly, we need to specify the largest familyM of subsets of R for which
μ: M R+ and properties (i), (ii), (iii) , and (iv) hold. Hence, the family of
Lebesgue measurable sets M encompasses the collection of all open intervals
as well as all finite unions of intervals on the real line. Then for E M, μ(E), the
Lebesgue measure of E, is the total length of E when E is decomposed into the
union of a finite number of disjoint intervals.
We note in passing that Ø and R are Lebesgue measurable with μ (Ø) = 0 and

μ R = +∞ , respectively; open and closed intervals of real numbers are Lebes-
gue measurable; every open set and every closed set is Lebesgue measurable;
every Borel set (which includes countable sets, open and closed intervals, all
open sets and all closed sets) is Lebesgue measurable; any countable set of real
numbers has Lebesgue measure equal to zero; if E is Lebesgue measurable, then
so is E ; and if Ei, i= 1 2,… is a sequence of Lebesgue measurable sets, then

∞
i=1Ei and

∞
i=1Ei are Lebesgue measurable sets.

Example 1.2 Let E = a,b M with x1,x2,x3 a,b ,a < x1 < x2 < x3 < b.
Consider the set A= E x1,x2,x3 . For the measure function μ: M R+,

μ A = μ a,x1 x1,x2 x2,x3 x3,b

= μ a,x1 + μ x1,x2 + μ x2,x3 + μ x3,b

= x1−a + x2−x1 + x3−x2 + b−x3 = b−a= μ E ■

1.10.6 Measurable Functions

Let (X, D) and (Y, G) be measurable spaces, where D is a σ-algebra on X and is a
σ-algebra on Y, respectively. Ameasurable function is a mapping f:X Y such
that f −1(G) D for every set G G. Clearly, the measurability of f depends
upon D and G and not on the particular measures defined on these σ-algebras.
As this definition indicates, measurable functions are defined in terms of inverse
images of sets. (Thus, measurable functions are mappings that occur between
measurable spaces in much the same way that continuous functions are map-
pings between topological spaces.) To elaborate on this notion, if f: Ω G and
A , let f −1 A = x Ω f x A and call f −1 A the inverse image of set A
under rule f. (Note: f −1 A contains all of the points in the domain Ω of f
mapped by f into A; it does not denote the inverse function of f.) Key properties
of the inverse image of A are the following:

i. f −1 A = f −1 A for all A G.
ii. If A, B G, then f −1 A B = f −1 A f −1 B .
iii. If Ak G, then f −1 ∞

k =1Ak = ∞
k =1 f

−1 Ak .
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In addition, if C is a collection of subsets of G, let f −1 C = f −1 A A C . In this
regard, if f: Ω G and C is a collection of subsets of G, then (a) for C a σ-algebra
on G, f −1 C is a σ-algebra onΩ; and (b) f −1 F C =F f −1 C , (Ω, F) a measur-
able space.
A measurable mapping g X Y on a measure space (Ω, F, μ) is measure

preserving if μ g −1 A = μ A for all measurable sets A.
We previously termed the σ-algebra generated by intervals (open, closed, half-

open) in R the Borel σ-algebra B. In this regard, if (Ω, F) is a measurable space,
the mapping f:Ω R is F-measurable if f −1 B F for every Borel set B R. In
fact, the collection of sets f −1 B , where B is contained within the Borel subsets
of R, is a σ-algebra on Ω. In addition, if the collection C of Borel subsets of R
generates the Borel σ-algebra, then f: Ω R is F-measurable if and only if
f −1 C F. Equivalently, the mapping f: Ω R is F-measurable if and only if
the set x Ω f x ≤ a is measurable (i.e., it is a member of F) for all a R.
(Note: “≤” can be replaced by “<, ≥, >.”)
The indicator or characteristic function of a set A Ω is defined as

χA x =
1, x A;

0, x A
1 7

If A, B are two subsets of Ω, then

χA B =min χA,χB = χA χB;

χA B =max χA,χB = χA + χB−χA χB; and

χA = 1−χA

Moreover, if Ai, i= 1,…,n, andBj, j= 1,…,m, are subsets of Ω and X =
n

i= 1
xiχAi

andY =
m

j=1
yjχBj

, then

X Y =
n

i= 1

m

j= 1

xiyjχAi Bj

In addition, if Ai
n
i=1 and Bj

m
j=1 are partitions ofΩ, then Ai Bj all i, j is also a

partition of Ω, and thus

X +Y =
n

i= 1

m

j=1

xi + yj χAi Bj

If F is a σ-algebra on Ω, then Ø and Ω are members of F. In addition,
with set A F, it follows that A F. Hence, FχA = Ø ,A,A ,Ω , and thus
χA is F-measurable if and only if A F. Note also that if X and Y are
F-measurable functions on Ω, then X +Y ,X −Y ,X Y , and cX(c a real scalar)
are all F-measurable. Suppose Y x 0 for all x Ω. Then X/Y is also
F-measurable.
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Suppose f Ω R∗ is a measurable function with A= x f x ≥ 0 and
B= x f x ≤ 0 . If f + = f χA and f

− = − f χB, then the positive part of f is
defined as

f + =max f x ,0 =
f x , f x ≥ 0;

0, f x < 0;

and the negative part of f is defined as

f − =max − f x ,0 =
− f x , f x ≤ 0;

0, f x ≥ 0,

where f + and f − are both positive functions onΩ. With F a σ-algebra onΩ and
f is measurable, sets G = f −1 x x ≥ 0 andH = f −1 x x ≤ 0 are in the
σ-algebra generated by F (denoted Ff ). Hence, f + , f −and f are all Ff -measur-
able. The upshot of this discussion is that an arbitrary measurable function
f can be written in a canonical way as the difference between two positive
measurable functions as f = f + − f − . In addition, f = f + + f − .
A function Φ: Ω R defined on a measurable space (Ω, F) is a simple func-

tion if there are disjoint measurable sets A1,…, An and real scalars c1,…, cn
such that

Φ=
n

i=1

ci χAi
1 8

Clearly, Φ takes on finitely many, finite values ci, i= 1,…,n. Since simple func-
tions are measurable, any measurable function may be approximated by simple
functions. In fact, for f: Ω R+ a non-negative measurable function, there is a
monotone increasing sequence {Φi} of simple functions that converges point-
wise to f.
Given ameasure space (Ω, F, μ), ifΩ= n

i= 1Ai and the setsAi are disjoint, then
these sets are said to form a (finite) dissection of Ω. They are said to form an
F-dissection if Ai F, i= 1,…,n. A function f: Ω R is termed F-simple

if it can be expressed as f x =
n

i=1
ciχAi

, where the Ai’s, i= 1,…,n, form an

F-dissection ofΩ. Thus, f(x) takes on a constant value ci on the set Ai, given that
the Ai’s are disjoint subsets of F.
A sequence of measurable functions { fn} from a measure space (Ω, F, μ) to

R∗ converges pointwise to a function f:Ω R∗ if limn ∞ fn x = f x for every
x Ω. Moreover, f itself is measurable. A sequence {fn} converges pointwise
a.e.7 to f if it converges pointwise to f except on a set M of measure zero.

7 A set of measure zero is a measurable set M such that μ(M) = 0. A property or condition that
holds for all x Ω−M, where M is a set of measure zero, is said to hold almost everywhere
(abbreviated “a.e.”) or “except on a set of measure zero.”Note: a subset of a set of measure zero need
not be measurable; but if it is measurable, then it must have measure zero.
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If (Ω, F, μ) is a complete measure space and {fn} converges pointwise a.e. to f,
then f is measurable.
We note briefly that if the measurable space is (Rn, Bn), a Bn-measurable

function is termed a Borel-measurable function.

1.10.7 Lebesgue Measurable Functions

Suppose (X,D) and (Y, G) are measurable spaces, withX and Y equipped with the
σ-algebras D and G, respectively. Then, as indicated in Section 1.10.6, the func-
tion f X Y ismeasurable if the anti-image of E under f is inD for every E G,
that is, f −1 E = x X f x E D for all E G.
Let us now get a bit more specific. Suppose (R, L) and (R, B) are measurable

spaces, with L the σ-algebra of Lebesgue measurable sets and B the Borel
σ-algebra on R. (Remember that B is the smallest σ-algebra containing all the
open sets.) The function f R R is Lebesgue measurable if the anti-image
of B under f is a Lebesgue measurable subset of R for every Borel subset B of
R, that is, f −1 B = x R f x B L for all B B. (Clearly, the domain
and range of f involve different σ-algebras defined on the same set R.) In very
basic terms, for a bounded interval I, a function f I R is Lebesgue measurable
if, for every open set B R, the anti-image f −1 B is measurable in I.
An important alternative way of specifying a function that is Lebesgue meas-

urable is the following. If (X, L) is a measurable space, then f X R is Lebes-
gue measurable if and only if f −1 a, +∞ = x X f x > a L for all a R
(Figure 1.3). (Note: equivalent statements involve “>” being replaced by “ ≥ ” or
“<” or “ ≤ .”)
To summarize: A function f between measurable spaces is measurable if

the anti-image of each measurable set is measurable. A function f is Lebesgue

f 

a

x

Measurable for all a∈R 

Figure 1.3 A measurable subset of L.
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measurable if and only if the anti-image of each of the sets a, +∞ is a Lebesgue
measurable set.
We end this discussion by commenting that continuous functions, mono-

tone functions, step functions, and Riemann integrable functions are all
Lebesgue measurable. Moreover, if f ,g R R are Lebesgue measurable
functions and c R, then cf , f + g , fg, f and g , andmax f ,g are all Lebesgue
measurable.

1.11 Normed Linear Spaces

1.11.1 Space of Bounded Real-Valued Functions

Given a nonempty set A, suppose that each pair of elements x, y A can
be operated on, by a process called addition (“+”), to yield a new element
x + y = z A, where the operator “+” satisfies the following:

a. x + y = y + x (commutative law).
b. x + (y + z) = (x + y) + z (associative law).
c. 0 A such that x + 0 = x for every x A (zero is the additive identity).
d. –x A such that x + (−x) = 0 (−x is the additive inverse).

Suppose also that, for each real scalar α and for each element x A, α and x can
be operated on, by a process called scalar multiplication (“∙”), to yield a new
element αx = y A, where the operator “∙” satisfies the following:

a α x + y = αx+ αy

b α+ β x= αx+ βx
distributive laws

c αβ x= α βx associative law

d 1 x= x 1 is themultiplicative identity

Now, if A is closed under the operations of addition and scalar multiplication,
then A (which can be viewed as an algebraic system) is termed a linear space
(or vector space). A nonempty subset C of a linear space A constitutes a
linear subspace of A if x + y is in C when x, y C; and αx C (α a real scalar)
when x C. As was the case with A itself, 0 and −x are elements of C whenever
x C.
In Section 1.4, we introduced the concept of a norm—a function that assigns

to each x within a space a real number x such that the properties of non-
negativity, homogeneity, and the triangle inequality hold. If the norm “ ” is
defined on a linear space A, then A becomes a normed linear space. We also
noted in Section 1.4 that a normed linear space is a metric space with respect to
the metric d(x, y) = x−y induced by the norm (Equation (1.2)).
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We next consider the notion of a function space—a linear space whose ele-
ments are functions defined on some nonempty set X, with pointwise addition
and scalar multiplication satisfying the following:

a f + g x = f x + g x

b αf x = αf x

c the zero element 0 X is the constant function “0”

whose only value is the scalar 0

d − f x = − f x

1 9

Consider now the set of all real-valued functions defined on X. Clearly, X is
a real linear space whose elements satisfy (1.9). If we separate out from X the
subset B of all bounded real-valued functions (f ε B is bounded if there exists
a real scalarM such that f x ≤M), then B is itself a linear space. In addition, if
we define on the elements of B the norm

f = sup f x , 1 10

then B is a metric space.
Suppose {fn} is a sequence of real-valued functions defined on B and that,

for each x B, {fn(x)} is a Cauchy sequence (to review, {fn(x)} is a Cauchy
sequence if for all ε > 0 there exists an Nε 2 > 0 such that for all m, n >
Nε 2, fm x − fn x < ε . Thus, B is complete in that, for each x B and every
Cauchy sequence {fn} defined on B, there exists a well-defined continuous
limit function f x = limn ∞ fn x so that {fn(x)} converges pointwise to f(x).
In fact, any normed space with the property that every Cauchy sequence defined
on it is convergent is complete.
The preceding discussion enables us to conclude that B constitutes an impor-

tant type of function space, namely, aBanach space—a complete normed linear
(metric) space. We next turn to another type of function space that is also a
Banach space.

1.11.2 Space of Bounded Continuous Real-Valued Functions

A key property that the elements of a function space can possess is continuity.
To explore this characteristic, let’s assume at the outset that the set of all real-
valued functions is defined on a metric space X. Furthermore, given B above
(as defined earlier, B is the subset of X containing all bounded real-valued
functions), let C(X) B denote the set of all bounded continuous functions
defined on X.
It should thus be evident that

a. if f, g are continuous real-valued functions defined on X, then, pointwise, f + g
and αf (α a real scalar) are also continuous;
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b. C(X) is a linear subspace of the linear (metric) space B; and
c. C(X) is a closed8 subset of the linear (metric) space B.

But remember that B is a Banach space and, since a closed linear subspace of a
Banach space is also a Banach space, it follows that C(X), the set of all bounded
continuous real-valued functions defined on a metric space X with norm (1.10)
is a Banach space.

1.11.3 Some Classical Banach Spaces

1. Let Rn denote the set of all vectors or ordered n-tuples x= x1,x2,…,xn of
real numbers. For elements x= x1,x2,…,xn and y= y1,y2,…,yn in Rn, let
us define, coordinatewise, addition and scalar multiplication as

x+ y= x1 + y1,x2 + y2,…,xn + yn ,

αx= αx1,αx2,…,αxn ,α a real scalar,

respectively. In addition,, the zero (or null) element 0 = (0, 0, …, 0) (also an
n-tuple) and −x= −x1, −x2,…, −xn are elements in Rn. For any element
x Rn, let us define the norm of x, x , by

x =
n

i=1

xi
2

1
2

1 11

(See Section 1.4 for a discussion of the properties of this norm.) Given (1.11),
it is evident that Rn can be characterized as a normed linear (metric) space
(also called n-dimensional Euclidean space—since (1.11) is the Euclidean
norm). Moreover, it is complete with respect to the metric (1.2) and thus
amounts to a complete normed linear space or Banach space.

2. Let L
p
μ denote the set of all measurable functions f defined on a measure

space (Ω, F, μ) and having the property that |f(x)|p is integrable, with p-norm

f p = f x pdμ x

1
p

,1≤ p < +∞ 1 12

For p 1, +∞ ,Lp μ is complete with respect to (1.12) and thus constitutes
a Banach space.

8 Suppose f Bwith f C X (the closure of C(X)). Let d be the metric on X, with ε > 0 given. Since

f is inC X , there exists a function f0 inC(X) such that f − f0 < ε implies f x − f x0 < ε for each x
X, where ε is proportional to ε. With f0 continuous at x0, there exists a δε > 0 such that

d x,x0 = x−x0 < δε implies f x0 − f0 x0 < ε . Since x−x0 < δε implies that f x − f x0 < ε, we

see that f is continuous at x0 (x0 arbitrary). Hence, f C X =C X so that C(X) must be closed
(Simmons, 1963, p. 83).
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3. Let H be an n-dimensional linear (vector) space with the inner product
norm defined by

x = x,x
1
2, 1 13

where (x, x) is the inner product9 defined by

x,x =
n

i= 1

xi
2,x H

(A linear space equipped with an inner product is called an inner product
space.) Clearly, H is a normed linear space and is complete with respect to
the norm given by (1.13); it will be called a Hilbert space—a complete
normed inner product space. Although H is always a Banach space whose

norm is determined by an inner product , (i.e., f = f , f 1 2 for all f
in the space), the converse does not generally hold. So what is the essential
difference between a Banach space and a Hilbert space? The difference is in
the source of the norm, that is, for a Banach space, the norm is defined
directly as B 0, +∞ for all points x, y (and scalar c) satisfying the
properties outlined earlier in footnote 2; and for a Hilbert space, the norm
is defined by an inner product (Equation (1.13)). The inner product is not
defined on a Banach space.

The ordered n-tuples (vectors) x,y Rn are said to be orthogonal if

x,y =
n

i= 1
xiyi = 0. Elements x and y within a Hilbert space (H) are orthogo-

nal if (x, y) = 0 and orthonormal if, in addition, x = y = 1. An orthonormal
set in H is a nonempty subset of H that consists of mutually orthogonal unit
vectors ei, i= 1 2,…. (A unit vector ei has a “1” as its ith component and “0’s”
elsewhere.) That is, an orthonormal set is a non-empty subset ei, i= 1 2,…
of H with the properties (1) ei,ej = 0, i j; and (2) ei = 1 for all i.
An orthonormal sequence ei, i= 1 2,… inH is complete if the only member

of H that is orthogonal to every ei is the null vector 0 (which contains all zero
components). (Stated alternatively, we cannot find a vector e such that {{ei}, e} is
an orthonormal set that properly contains ei, i= 1 2,… .)
Suppose {e1, e2,…, en} is a finite orthonormal set in H. If x is any vector in

H, then

1.
n

i= 1
x,ei

2
≤ x 2;

9 The inner product (x, x) satisfies the following conditions:

a. For x H, (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0 (positive semidefiniteness).
b. For x, y H, x,y = y,x (symmetry).
c. For x, y H, with a, b real scalars, ax1 + bx2 ,y = ax1,y + bx2,y (linear in its first argument).
d. For x, y H, x,y ≤ x y (Cauchy–Schwarz inequality).
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2. x=
n

i= 1
x,ei ei; and

3. x−
n

i=1
x,ei ei,ej = 0 for each j.

An orthonormal basis for a Hilbert space (H) is a basis10 consisting of non-
zero orthonormal vectors. Such vectors are linearly independent and span H in
the sense that every element in H can be written as a linear combination of the
basis vectors. In fact, every Hilbert space contains a maximal orthonormal set
that serves as a basis.
Suppose in (1.12), we set p = 2. Then the class of real-valued square-integrable

functions

L2 μ = f 2 = f 2dμ x

1
2

< +∞ 1 12 1

is a Hilbert space. In addition, if (Ω, F, μ) is a measure space and the functions
f, g L2 (μ), then the inner product of f and g is

f ,g = fgdμ, 1 14

where f g ≤ f g .
The space L2(a, b), the collection of Borel measurable real-valued square

integrable functions f on (a, b) (i.e., b
a f t 2dt < +∞ , is a Hilbert space. For

this space, the inner product is f ,g = b
a f t g t dt, and the associated norm

and metric are, respectively, f 2 =
b
a f t 2dt

1 2
and d f ,g =

f −g = b
a f t −g t 2dt

1 2
. (Here, the functions f, g are considered equal

if they differ on (a, b) only on a set of measure zero.)

1.12 Integration

Our approach in this section is to first define the integral of a non-negative
simple function. We then define the integral of a non-negative measurable

10 To review, a vector x Rn is a linear combination of the vectors xj Rn , j=1,…,m, if there

exists scalars λj, j= 1,…,m, such that x=
m

j= 1
λjxj. A set of vectors is linearly independent if the

trivial combination 0x1 + + 0xn is the only linear combination of the xj which equals the null
vector. (The set of vectors xj , j=1,…,m is said to be linearly dependent if there exists scalars

λj , j=1,…,m, not all zero such that
m

j= 1
λjxj =0.) The vectors xj , j=1,…,m, span Rn if every element

of Rn can be written as a linear combination of the xj’s. Hence, the xj’s constitute a spanning set
for Rn. A basis for Rn is a linearly independent set of vectors from Rn which spans Rn. Thus, every
vector in Rn can be expressed as a linear combination of the basis vectors.
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function via an approximation by simple functions. Next comes the definition
of the integral of a measurable function, followed by the specification of the
integral of a measurable function on a measurable set. In what follows, (Ω, F,
μ) is taken to be a measure space. However, if Ω=R admits the Borel σ-algebra,
F is the σ-algebra of Lebesgue measurable sets in R, and the measure
μ F 0, +∞ is given by μ E = μ∗ E ,E F, then the integrals defined
below are also Lebesgue integrals. (Readers not familiar with the Lebesgue
integral are encouraged to read Appendix B to this chapter along with
Taylor (1973) before tackling this section.)

1.12.1 Integral of a Non-negative Simple Function

Recall (Section 1.10.5) that a non-negative simple function has the form

Ø x =
n

i=1

ciχEi x ,ci ≥ 0, i= 1,…,n, 1 15

where the indicator function χEi is defined as

χEi x =
1,x Ei;

0,x Ei

The integral of a non-negative simple function with respect to μ is defined in
terms of the integral operator “ ” as

Ω
Ø dμ=

n

i= 1

ciμ Ei , 1 16

where Ei = x Ø x = ci ,
Ω
χEidμ=

Ei

dμ= μ Ei < +∞ and the sum on the

right-hand side of (1.16) is well defined since each of its terms is non-negative.
(It is important to note that since the specification of a simple function in
terms of indicator functions is not unique, this definition of the integral is inde-
pendent of the actual specification used.) For the simple function given in
Equation (1.15), suppose set A F is measurable. Then the integral of a
non-negative simple function over a set A is defined as

A
Ø dμ=

n

i=1

ciμ Ei A 1 16 1

As far as the essential properties of the integral operator “ ” are concerned,
it is linear as well as order preserving on the class of non-negative simple

functions. That is, given two non-negative simple functions Ø =
n

i=1
ciχEi

and ψ =
m

j=1
dj χFj , the simple function
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Ø +ψ =
n

i= 1

m

j=1
ci + dj χEi Fj , and thus

Ω
Ø +ψ dμ=

Ω
Ø dμ+

Ω
ψdμ; “ ” is linear 1 17

while, for Ø ≥ ψ ,

Ω
Ø dμ ≥

Ω
ψdμ “ ” isorderpreserving ormonotonic 1 18

1.12.2 Integral of a Non-negative Measurable Function Using
Simple Functions

Suppose the non-negative function f: Ω R+ is measurable. It was noted
in Section 1.10.5 that there exists a monotone increasing sequence {fn} of

simple functions that converge pointwise to f. Given that
Ω
fndμ is defined

for all n, and the said sequence is monotonic, it follows that the limit of

Ω
fndμ is an element of R+. Hence, we may define the operation of integration

for non-negative measurable functions as

Ω
f dμ= lim

n ∞ Ω
fndμ 1 19

Since
Ω
fdμmay be finite or infinite in R+, we may conclude that a non-negative

measurable function f is integrable with respect to a measure μ if the limit in
(1.19) is finite. In addition, if f ≥ 0 is measurable, then integration for non-
negative measurable functions over a set A is defined as

A
f dμ= sup

Ø A
Ø dμ < +∞ 1 19 1

where the supremum is taken over all simple functions Ø with 0 ≤Ø ≤ f.

1.12.3 Integral of a Measurable Function

Suppose the function f: Ω R+ is measurable. Then, as indicated earlier in
Section 1.10.5, so are f+ and f− . If f+ and f− are integrable with respect to μ,
then f = f+ − f− itself is integrable with respect to μ, and thus

Ω
fdμ=

Ω
f+ dμ−

Ω
f−dμ 1 20
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so that this expression defines integration for the class of integrable
measurable functions. Also, for set A F, f is integrable over a set A if

A
f dμ=

A
f+ dμ+

A
f−dμ < +∞ 1 20 1

1.12.4 Integral of a Measurable Function on a Measurable Set

Let set A F. Suppose f χAdμ is defined (e.g., either fχA is non-negative and

measurable, or fχA is measurable and integrable). Then

A
fdμ=

A
f χAdμ 1 21

Thus, f is integrable over a set A if fχA is integrable. (Note that if A F and

μ A = 0, then f: Ω R∗ is integrable over A with
A
fdμ= 0 )

For a measure space (Ω, F, μ) and f: Ω R∗ an integrable function with
respect to μ over Ω, some additional properties of the integral operator “ ”
are the following:

i. For A and B disjoint sets in F,

A B
fdμ=

A
fdμ+

B
fdμ

ii. |f| is integrable and
Ω
fdμ =

Ω
f dμ.

iii. For a constant c R, cf is integrable and
Ω
cfdμ= c

Ω
fdμ.

iv. If f ≥ 0, then
Ω
fdμ ≥ 0; but if f ≥ 0 and fdμ= 0, then f = 0 a.e.

v. If g: Ω R∗ is integrable with respect to μ over Ω, then if f = g a.e., it
follows that

Ω
fdμ=

Ω
gdμ

vi. If sets A, B F with A B and f ≥ 0, then
A
fdμ ≤

B
fdμ

vii. Let μ be the counting measure11 on Ω = {1, 2, 3, …} and define the
measurable function f: Ω R as f j = aj, j Ω. Then

11 Let (Ω, F, v) be a measure space. The counting measure v on Ω is defined as v(A) = number
of elements in A F. This measure is finite if Ω is a finite set; it is σ-finite if Ω is countable.
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Ω
f j dμ j =

∞

j= 1

aj

This integral is well-defined if f ≥ 0, or if the sum on the right-hand con-

verges absolutely. (If
∞

j=1
aj is convergent, then

∞

j= 1
aj is termed

absolutely convergent.) In either instance we say that f is integrable
with respect to μ.

viii. A measurable function f is integrable on A F if and only if | f | is
integrable on A.

ix. If f is integrable on setA F, if g is measurable, and if g ≤ f a.e. onA, then g

is integrable on A and
A
gdμ ≤

A
fdμ

x. If f is any function and for set A F, if μ A = 0, then
A
fdμ= 0.

1.12.5 Convergence of Sequences of Functions

Let (Ω, F, μ) be ameasure space. A sequence of functions { fn}, where fn Ω R+,
converges pointwise to a function f Ω R+ if limn ∞ fn x = f x for every
x Ω. Here f is termed a limiting function. The sequence { fn} converges
pointwise a.e. to f if it converges pointwise to f on Ω−A, where A F is a
set of measure zero.
In this regard, let { fn} be a sequence of functions that converges pointwise to a

limiting function f. When can we legitimately conclude that Ω fndμ converges
to Ω f dμ? Two conditions that guarantee the convergence of the integrals

Ω fndμ are (1) the monotone convergence of the sequence { fn}; and (2) a uni-
form bound on { fn} by an integrable function.
To set the stage for a discussion of the first condition, let us define

a sequence of functions { fn}, where fn Ω R+, as monotone
increasing if f1 x ≤ ≤ fn x ≤… for every x Ω. We then have Theorem
1.12.1.

Theorem 1.12.1 (Lebesgue) Monotone Convergence Theorem (MCT)

Let { fn} be a monotone increasing sequence of non-negative measurable func-
tions fn Ω 0, +∞ on ameasure space (Ω, F, μ) and let f Ω 0, +∞ be the
pointwise limit of { fn} or f x = limn ∞ fn x . Then

lim
n ∞ Ω

fndμ=
Ω
f dμ

(Note that if f is integrable onΩ limn ∞ Ω fndμ < +∞ , this theorem posits the
convergence of the integrals Ω fndμ to Ω fdμ. If f is not integrable on Ω, then
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possibly fn is integrable for all n and Ω fndμ +∞ asn +∞ .) A consequence
of the MCT is Corollary 1.12.1.

Corollary 1.12.1 (corollary to the MCT). Let { fn}, f Ω 0, +∞ , be a

sequence of non-negative measurable functions and set f =
∞

n= 1
fn. Then

Ω
fdμ=

∞

n=1 Ω
fndμ

A generalization of the MCT is provided by Lemma 1.12.1.

Lemma 1.12.1 Fatou’s lemma

Let {fn} be a sequence of non-negative measurable functions fn Ω 0,∞ on a
measure space (Ω, F, μ). Then

Ω
lim
n ∞

inf fn dμ ≤ lim
n ∞

inf
Ω
fndμ

As this lemma indicates, the limit of the integrals on the right-hand side of this
inequality is always at least as large as the integral of the limit function on the
left-hand side.
The second aforementioned condition is incorporated in Theorem 1.12.2.

Theorem 1.12.2 (Lebesgue) Dominated Convergence Theorem (DCT)

Let {fn} be a sequence of integrable functions, where fn: Ω R∗, on a measure
space (Ω, F, μ) that converge pointwise to a limit function f:Ω R∗. If there is an
integrable function g Ω 0,∞ such that fn x ≤ g x for all x Ω (and inde-
pendent of n), then f is integrable and

lim
n ∞ Ω

fndμ=
Ω
fdμ

We close this section with an additional useful Theorem 1.12.3.

Theorem 1.12.3 Let {An} be a sequence of disjoint measurable sets with
A= ∞

n=1An and let f be a non-negative measurable function that is integrable

on each set An. Then f is integrable on A if and only if
∞

n=1
An

fdμ < +∞,

so that

A
fdμ=

∞

n= 1 An

fdμ
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