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Redundancy Resolution via Pseudoinverse and ZDModels

1.1 Introduction

Recently, robotics has played a more and more important role in scientific research
and engineering applications [1–4]. Being an essential topic, the problem of redun-
dancy resolution (or mostly say, the problem of inverse kinematics, which is related to
the kinematic control of some redundant robot manipulator) has attracted the exten-
sive attention of many researchers [5–9]. The general description of such a problem is
that, given the desired Cartesian path rd(t) ∈ ℝm of the end-effector versus time t ∈
[t0, tf] ⊆ [0,∞), the corresponding trajectories of joint-variable vector 𝜃(t) ∈ ℝn need
to be obtained online (or offline and in advance). In mathematics, to find 𝜃(t) such that

f(𝜃(t)) → rd(t),

where forward-kinematics mapping f(⋅) is nonlinear and differentiable with a known
structure and parameters for a given robot manipulator [1–3, 9]. Note that, for a
redundant robot manipulator, it possesses more degrees of freedom (DOF) than
necessary to perform a user-specified end-effector primary task (in mathematics,
m < n) [1–3]. The extra DOF allow the existence of an infinite number of feasible
solutions to the redundancy-resolution problem. This can be utilized to determine the
best joint-variable, joint-velocity, and/or joint-acceleration vectors in some sense (for a
specified end-effector pose, velocity, or acceleration vector), which corresponds to an
optimality criterion [9]. Thus, many studies have reported on the kinematic control of
redundant robot manipulators [5–11].
The pseudoinverse-based approach represents the conventional solution to the

redundancy-resolution problem, which can be analytical. In general, it contains
one minimum-norm particular solution plus a homogeneous solution. This simple
characteristic has made the research and application of such a pseudoinverse-based
approach popular in recent decades [3, 5–7, 9–11]. For example, in [7], a multi-objective
approach is investigated for the motion planning of redundant robot manipulators,
which combines the closed-loop pseudoinverse method and a multi-objective genetic
algorithm. Among the pseudoinverse-based techniques for robotic redundancy resolu-
tion, the minimum velocity norm (MVN) scheme, which aims at minimizing the sum
of squares of joint velocities, has been widely adopted by researchers for the kinematic
control of redundant robot manipulators [1–3, 9]. In addition, to guarantee the high
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4 Robot Manipulator Redundancy Resolution

precision of the end-effector positioning (i.e., the small or tiny position error of the
end-effector), the corresponding feedback can be added to such a pseudoinverse-based
MVN scheme. Thus, with time argument t omitted here (and sometimes afterward)
for presentation convenience, the pseudoinverse-based MVN scheme with feedback
(being a closed-loop scheme) is formulated as

�̇� = J†(ṙd + 𝜅p(rd − f(𝜃))), (1.1)

where �̇� is the joint-velocity vector; J† ∈ ℝn×m denotes the pseudoinverse of the Jaco-
bian matrix J = 𝜕f(𝜃)∕𝜕𝜃 ∈ ℝm×n; and ṙd is the desired Cartesian velocity vector, that
is, the time-derivative vector of the desired end-effector path rd. Besides, 𝜅p > 0 ∈ ℝ
is the feedback gain of position error 𝜖 = rd − f(𝜃). Note that pseudoinverse-based
MVN scheme (1.1) can actually be obtained by defining the aforementioned error
function 𝜖 and exploiting the neural-dynamics method presented in [12, 13] (i.e.,
the method of zeroing dynamics, ZD, presented in this chapter as well). Compared
with the widely-used constraint (i.e., J �̇� = ṙd) in the existing literature [1, 2, 9], a
prominent advantage of the feedback-added constraint is that it guarantees the error 𝜖
with no drifting/diverging happened. This also means that the error drift/divergence
phenomenon in pseudoinverse-based MVN scheme (1.1) does not exist. Besides,
one of the main reasons for the popularity of the two-norm as an optimality crite-
rion is the fact that the related optimization problems yield closed-form analytical
expressions. Thus, in many robotic applications, the two-norm optimality criterion is
utilized, more because of its mathematical tractability than physical desirability [9].
On the basis of these considerations, pseudoinverse-based MVN scheme (1.1) for
redundant-manipulator kinematic control is the focus of this chapter.
In recent years, as a branch of artificial intelligence, artificial neural networks (ANNs)

have attracted considerable attention as candidates for novel computational systems [1,
2, 12, 13]. Being a special type of ANNs, recurrent neural networks (RNNs), which origi-
nate from the research of Hopfield neural network [14], have been developed and inves-
tigated for solving a wide variety of mathematical problems arising in numerous fields
of science and engineering [1, 2, 12]. Note that, compared with conventional numerical
algorithms, the dynamics approach based on RNNs has several potential advantages in
real-time applications, for example, high-speed parallel-processing, distributed-storage,
and adaptive self-learning natures. Therefore, such an approach is generally taken into
account as a powerful alternative to online computation and optimization. Especially for
robotic redundancy resolution, various RNN models have been developed, exploited,
and investigated [1, 2, 15–17].
As for pseudoinverse-based MVN scheme (1.1), the problem of time-varying matrix

pseudoinversion is involved in the scheme formulation. It is worth pointing out here
that, owing to its fundamental roles, much effort has been devoted to the fast solution of
matrix pseudoinversion problem, andmanymodels have been presented by researchers
[18–22]. However, the investigations and revisit on those models are not the emphases
in this book and thus will not be covered.
Gradient dynamics (GD) and zeroing dynamics (ZD) are two powerful dynamics

approaches based on RNNs, which are regarded as two alternatives for online compu-
tation, and have widely arisen in scientific and engineering fields, drawing extensive
interests and investigation of researchers [18, 23]. In particular especially, GD models
are proposed and investigated in [18], which use the Frobenius norm of the error matrix
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as the performance criterion and evolve along the negative gradient-descent direction
to make the error norm decrease to zero with time in the time-invariant case. Recent
researches have shown that such a GD approach can also be developed and generalized
for time-varying problems solving [12, 13]. Besides, the ZD approach, which is based on
an indefinite matrix/vector-valued error function, has been presented for time-varying
problems solving, such as the time-varying matrix pseudoinversion [12, 23]. It is worth
providing the conceptions of ZD and GD here to lay a basis for further investigation.

Concept 1.1 Zeroing dynamics (ZD), where the state dimension can be one or more,
has been derived from the zeroing neural network. It is viewed as a systematic approach
to the online solution of time-varying problems; it differs from the conventional GD in
terms of the error function, design formula, dynamic equation, and the utilization of
time derivatives [12, 23, 24].

Concept 1.2 Gradient dynamics (GD), which uses the Frobenius norm of the error
matrix as the performance criterion and evolves along the negative gradient-descent
direction to make the error norm decrease to zero with time, is another type of dynamic
approach. It is intrinsically feasible and efficient to solve time-invariant problems and
can be developed and generalized to solve time-varying problems. For more details
about the differences between ZD and GD, please refer to [13].

Compared with GD, the ZD design is based on a matrix-valued indefinite error func-
tion and an exponent-type formula (i.e., the ZD design formula), which makes every
element of the error function exponentially converge to zero. By making good use of the
time-derivative information of the time-varying coefficient, the resultant ZD models
can effectively avoid the lagging errors and can exponentially converge to the theoret-
ical pseudoinverse of time-varying matrix (e.g., the Jacobian matrix J involved in this
chapter) [23].
On the basis of the successful work [12, 23, 24], this chapter presents and investigates

the application of discrete-time ZD models to kinematic control of redundant robot
manipulators via time-varying Jacobian matrix pseudoinversion. That is, by comput-
ing the time-varying pseudoinverse of the Jacobian matrix, the resultant ZD models
are applied to redundant-manipulator kinematic control. Simulation results based on a
five-link robot manipulator and a three-link robot manipulator are illustrated to show
the effectiveness of the presented ZD models for time-varying matrix pseudoinversion
applied to the redundancy resolution of robot manipulators.

1.2 Problem Formulation and ZDModels

In this section, based on the previous work [12, 23, 24], the discrete-time ZD models
are presented and investigated for time-varying Jacobian matrix pseudoinversion.

1.2.1 Problem Formulation

In order to lay a basis for further investigation, the preliminaries and problem formula-
tion of time-varying matrix pseudoinversion are presented next.
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Definition 1.1 [19, 25, 26] For a given time-varyingmatrix J(t) ∈ ℝm×n, ifX(t) ∈ ℝn×m

satisfies at least one of the following four Penrose equations:

J(t)X(t)J(t) = J(t), X(t)J(t)X(t) = X(t),
(J(t)X(t))T = J(t)X(t), (X(t)J(t))T = X(t)J(t),

X(t) is called the generalized inverse of J(t). If matrix X(t) satisfies all of the Penrose
equations, then matrix X(t) is called the pseudoinverse of matrix J(t), which is often
denoted by J†(t).

Note that the time-varying Jacobian pseudoinverse J†(t) always exists and is unique
[25]. In this chapter, we only consider the situation of m < n. In particular, if Jacobian
matrix J(t) is of full rank at any time instant t, that is, rank(J(t)) = m,∀t ∈ [t0, tf] ⊆
[0,∞), we have the following lemma about the time-varying pseudoinverse of J(t).

Lemma 1.1 [25] For time-varying matrix J(t) ∈ ℝm×n with m < n, if rank(J(t)) =
m, ∀t ∈ [t0, tf] ⊆ [0,∞), then the unique time-varying pseudoinverse J†(t) can be
formulated as

J†(t) = JT(t)(J(t)JT(t))−1. (1.2)

Besides, for time-varying matrix X(t) ∈ ℝn×m with full rank, its unique time-varying
pseudoinverse X†(t) = (XT(t)X(t))−1XT(t).

As the time-varying pseudoinverse J†(t) ∈ ℝn×m satisfies the corresponding matrix
equation J†(t)J(t)JT(t) = JT(t), the following problem formulation of continuous-time
varying Jacobianmatrix pseudoinversion can be considered and/or checked for the solu-
tion correctness:

X(t)J(t)JT(t) − JT(t) = 0 ∈ ℝn×m, (1.3)

where X(t) ∈ ℝn×m is the time-varying unknown matrix to be obtained. To lay a basis
for further discussion, J(t) is assumed to be of full rank at any time instant t ∈ [t0, tf] ⊆
[0,∞). In other words, the configuration singularity for the redundant robot manipula-
tor does not exist during the motion-task execution.

1.2.2 Continuous-Time ZDModel

To design and control the solving process of the problem (1.3), the following matrix-
valued indefinite error function is defined:

E(t) = J(t) − X†(t) ∈ ℝm×n. (1.4)

Then, based on the ZD design methodology [12], specifically, ZD design for-
mula Ė(t) = −𝛾E(t) with 𝛾 > 0, we can obtain J̇(t) − Ẋ†(t) = −𝛾(J(t) − X†(t)). From
X†(t)X(t) = I, with I being the identity matrix, we have an underdetermined sys-
tem: Ẋ†(t)X(t) = −X†(t)Ẋ(t), of which the minimum norm solution is Ẋ†(t) =
−X†(t)Ẋ(t)X†(t). Thus, we have the following dynamic equation:

X†(t)Ẋ(t)X†(t) = −J̇(t) − 𝛾(J(t) − X†(t)). (1.5)
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From (1.5), postmultiplying X(t) and knowing X†(t)X(t) = I, we have

X†(t)Ẋ(t) = X†(t)Ẋ(t)X†(t)X(t) = −J̇(t)X(t) − 𝛾(J(t)X(t) − I). (1.6)

Evidently, Equation (1.6) is underdetermined and for this the minimum norm solution
exists. That is, we have the minimum norm solution to it:

Ẋ(t) = −X(t)J̇(t)X(t) − 𝛾(X(t)J(t)X(t) − X(t)), (1.7)

which is termed the continuous-time ZD model. Note that continuous-time ZD model
(1.7) is also theGetz–Marsden (G-M)dynamic system for time-varying pseudoinversion
[23].

1.2.3 Discrete-Time ZDModels

For the purposes of possible hardware implementation, for example, the digital com-
puter or the digital circuit, the discrete-time ZD (DTZD) models are presented and
developed in this section for time-varying pseudoinversion (1.3).

1.2.3.1 Euler-Type DTZDModel with ̇J(t) Known
In order to discretize the presented continuous-time ZD model (1.7) for solving time-
varying pseudoinverse, we refer to the following Euler forward-difference rule
[26, 27, 29]:

Ẋ(t = k𝜏) ≈ X((k + 1)𝜏) − X(k𝜏)
𝜏

, (1.8)

where 𝜏 > 0 denotes the sampling period, and update index k = 0, 1, 2, · · ·. In general,
we denote Xk = X(t = k𝜏) for presentation convenience. In addition, J(t) and J̇(t)(which
is assumed to be known) are discretized by the standard sampling method, of which
the sampling period is also 𝜏 = tk+1 − tk . For convenience and also for consistency with
Xk , we use Jk standing for J(t = k𝜏) and J̇k standing for J̇(t = k𝜏). Thus, we discretize
continuous-time ZD model (1.7) as

Xk+1 = Xk − 𝜏XkJ̇kXk − h(XkJkXk − Xk), (1.9)

where step-size h = 𝜏𝛾 > 0. For presentation convenience, in this chapter, the discrete-
time model (1.9) is called the Euler-type DTZD model with J̇(t) known, that is, the
EDTZD-K model.

1.2.3.2 Euler-Type DTZDModel with ̇J(t)Unknown
As probably we know, in real-world applications, the analytical form or numerical value
of J̇(t) may be difficult to know. Thus, it is worth investigating the discrete-time ZD
model when J̇(t) is unknown. In this situation, J̇(t) is generally estimated from the exist-
ing data of J(t) by employing the following Euler backward-difference rule [27]:

J̇(t = k𝜏) ≈ J(k𝜏) − J((k − 1)𝜏)
𝜏

,

where 𝜏 > 0 is defined the same as before. Similarly, we define Jk = J(t = k𝜏) and Jk−1 =
J(t = (k − 1)𝜏) for presentation convenience. FromEDTZD-Kmodel (1.9), we derive the
Euler-type DTZD model with J̇(t) unknown (i.e., EDTZD-U model) for time-varying
pseudoinversion as follows:

Xk+1 = Xk − Xk(Jk − Jk−1)Xk − h(XkJkXk − Xk). (1.10)
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Note that, from the Euler backward-difference rule, we can not estimate J̇(0) since t
starts from 0 s and J−1 is undefined. In this situation, we choose J̇(0) = 0 ∈ ℝm×n (i.e.,
J0 = J−1) to start the update (1.10). That is, at the first update, the EDTZD-U model is

X1 = X0 − h(X0J0X0 − X0),
which initiates the iterative computation of EDTZD-U model (1.10).

1.2.3.3 Taylor-Type DTZDModels
In order to achieve a higher computational accuracy in the ZD discretization for
solving time-varying pseudoinverse, we refer to the following Taylor forward-difference
rule [26]:

Ẋk ≈
2Xk+1 − 3Xk + 2Xk−1 − Xk−2

2𝜏
. (1.11)

Thus, we discretize continuous-time ZD model (1.7) as

Xk+1 = −𝜏Xk ̇JkXk − h(XkJkXk − Xk) +
3
2

Xk − Xk−1 +
1
2

Xk−2. (1.12)

For presentation convenience, Equation (1.12) is called the Taylor-type discrete-time
ZD model with J̇(t) known, that is, the TDTZD-K model.
As we know, it may be difficult to know or obtain the value of J̇(t) directly in

certain real-world applications. In this situation, J̇(t) can be estimated from J(t) by
employing the backward-difference rule of the first-order derivative with a third-order
accuracy [27]:

J̇k ≈
11Jk − 18Jk−1 + 9Jk−2 − 2Jk−3

6𝜏
. (1.13)

Thus, the Taylor-type discrete-time ZD model with J̇(t) unknown (i.e., the TDTZD-U
model) can be formulated as

Xk+1 = −Xk

(11
6

Jk − 3Jk−1 +
3
2

Jk−2 −
1
3

Jk−3

)
Xk

−h(XkJkXk − Xk) +
3
2

Xk − Xk−1 +
1
2

Xk−2. (1.14)

The classical Newton iteration is generalized and developed to solve (1.3), which is
formulated as [28]:

Xk+1 = Xk − (XkJkXk − Xk). (1.15)
It is noted that three initial states X0, X1 and X2 are needed for the initialization of

TDTZD-Umodel (1.14). Besides, from (1.13), we can not obtain J̇0 since t starts from 0 s
and thus J−1 is undefined.Thus, in the ensuing applications to the redundancy resolution
of robot manipulators, in view of the fact that the Newton iteration has the simplest
structure, we exploit Newton iteration (1.15) for the initializations of the TDTZD-K
(1.12) and TDTZD-U models (1.14).

Remark 1.2 As for pseudoinverse-based MVN scheme (1.1) and ZD models, design
parameters 𝜅 and 𝛾 = h∕𝜏 play important roles. Specifically, 𝜅 is the gain of the outer
loop to solve for 𝜃 while 𝛾 decides the convergence rate of the inner loop for solving
the ZD for the pseudoinverse of Jacobian matrix. This is a cascaded system (see also
Figure 1.1), and it is thus necessary to choose the value of 𝛾 much larger than the value
of 𝜅 such that the inner loop converges much faster.
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θ
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path

planner

ṙd

ε

Figure 1.1 Block diagram of a kinematic-control system for a redundant robot manipulator by
combining the MVN scheme (1.1) and ZDmodel, where 𝜖 = rd − f(𝜃).

1.3 ZD Applications to Different-Type Robot Manipulators

In this section, based on a five-link planar robot manipulator and a three-link planar
robot manipulator, computer simulations are conducted to illustrate the effectiveness of
the presented discrete-time ZD models for redundant-manipulator kinematic control.
For a better understanding, the block diagram of the kinematic-control system that

incorporates pseudoinverse-based MVN scheme (1.1) and the presented ZD models is
illustrated in Figure 1.1.

1.3.1 Application to a Five-Link Planar Robot Manipulator

In this subsection, the presented discrete-time ZD models and Newton iteration are
applied to the kinematic control of a five-link planar robot manipulator with its geom-
etry illustrated in Figure 1.2. For such a robot manipulator, each element of Jacobian
matrix J ∈ ℝ2×5 is presented as follows:

J11 = −l1s1 − l2s2 − l3s3 − l4s4 − l5s5, J12 = −l2s2 − l3s3 − l4s4 − l5s5,
J13 − l3s3 − l4s4 − l5s5, J14 = −l4s4 − l5s5, J15 = −l5s5,
J21 = l1c1 + l2c2 + l3c3 + l4c4 + l5c5, J22 = l2c2 + l3c3 + l4c4 + l5c5,
J23 = l3c3 + l4c4 + l5c5, J24 = l4c4 + l5c5, J25 = l5c5,

where li (with i = 1, 2, 3, 4, 5) denotes the length of the ith link. In addition,
si = sin

(∑i
j=1 𝜃j

)
and ci = cos

(∑i
j=1 𝜃j

)
. For simplicity and illustration, with each

link length being 1 m, the five-link planar robot manipulator is investigated to
track a square path with the side length being 2.4 m, where T = 20 s and initial
joint state 𝜃(0) = [𝜋∕4, 𝜋∕12, 𝜋∕4, 𝜋∕12, 𝜋∕4]T rad. Besides, feedback gain is set as
𝜅 = 0, the sampling period is chosen as 𝜏 = 1 ms and step-size is set as h = 0.3. The
end-effector position error 𝜖 is defined as 𝜖 = rd − f(𝜃) ∈ ℝ2, where rd denotes the
desired end-effector square path.
Numerical results synthesized by pseudoinverse-basedMVN scheme (1.1) aided with

TDTZD-U model (1.14) are shown in Figure 1.3 and Figure 1.4. From Figure 1.3(a) and
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Figure 1.2 Geometry of a five-link planar robot manipulator used in simulations.
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Figure 1.3 Joint-angle and joint-velocity
profiles of a five-link planar robot
manipulator synthesized by
pseudoinverse-based MVN scheme (1.1)
aided with TDTZD-U model (1.14).
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Figure 1.4 (a) Motion process and (b)
position error of a five-link planar robot
manipulator synthesized by the
pseudoinverse-based MVN scheme (1.1)
and aided by the TDTZD-U model (1.14).

−4 −3 −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

X (m)

Y (m)

(a) Motion process

0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
× 10−5

t (s)

(b) Position error

εX
ε (m)

εY

(b), we can see that the joint variables (i.e., the joint angle 𝜃 and the joint velocity �̇�)
are smooth and have not undergone abrupt changes, which is suitable for engineering
applications. In addition, it can be seen from Figure 1.4 that the simulated end-effector
trajectory of the robot manipulator is very close to the desired path, with the maxi-
mum end-effector position error being less than 2.0 × 10−5 m.This illustrates the effec-
tiveness of the presented TDTZD-U model (1.14). These results substantiate well that
pseudoinverse-basedMVN scheme (1.1) aided with TDTZD-Umodel (1.14) is effective
on redundant-manipulator kinematic control.
For further comparison, numerical results synthesized by the pseudoinverse-based

MVN scheme (1.1) aided with a EDTZD-U model (1.10) and Newton iteration (1.15)
are shown in Figure 1.5. Note that, similar to Figure 1.3 and Figure 1.4 synthesized by
TDTZD-U model (1.14), the joint-angle, joint-velocity, and motion process generated
by Newton iteration (1.15) are omitted due to space limitation.
It can be seen from Figure 1.5(a) that the maximum position error synthesized by

EDTZD-U model (1.10) is 6 × 10−5 m, which is roughly three times larger than that
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(a) By EDTZD-K model (1.9)
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Figure 1.5 Position error of a five-link
planar robot manipulator synthesized by
a pseudoinverse-based MVN scheme (1.1)
aided with the EDTZD-K model (1.9) or
Newton iteration (1.15).

TDTZD-Umodel (1.14) in Figure 1.4. Besides, themaximum position error synthesized
by Newton iteration (1.15) is 3 × 10−4 m, which is roughly 10 times larger than that
TDTZD-U model (1.14) in Figure 1.4.
This application to the motion generation of the five-link planar robot manipula-

tor further illustrates the superiority of the presented discrete-time ZD models for
time-varying matrix pseudoinversion applied to the redundancy resolution of robot
manipulators.

1.3.2 Application to a Three-Link Planar Robot Manipulator

In this section, the presented EDTZD-K model (1.9) and EDTZD-U model (1.10) are
applied to the kinematic control of a three-link planar robotmanipulator via online solu-
tion of time-varying pseudoinverse. In this application, the lengths of the links are set
as l1 = l2 = l3 = 1.0 m, and the initial joint state 𝜃(0) = [𝜋∕6, 𝜋∕6, 𝜋∕6]T rad. In addi-
tion, the end-effector of the three-link planar robot manipulator is expected to track a
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square path with the side length being 0.5 m, and the motion-task duration is 40 s. Also,
feedback gain is set as 𝜅 = 0.
It is worth pointing out that the motion process and the profiles of joint-angle and

joint-velocity are omitted due to space limitation and we only present the simulation
results on position error. Besides, the figure on position errors generated by EDTZD-U
model (1.10) is very similar to that generated by EDTZD-K model (1.9) and thus
omitted here.
EDTZD-K model (1.9) is applied to the robot’s kinematic control, with the results

shown in Figure 1.6. As seen from the figure, better control precision can also be
achieved by using EDTZD-K model (1.9) with appropriate values of step size h and
sampling period 𝜏 . That is, as synthesized by EDTZD-K model (1.9), the end-effector
trajectories of the three-link planar robot manipulator are both sufficiently close to the
desired square path with small position errors (i.e., of orders 10−4 and 10−5 m). These
substantiate the effectiveness of the discrete-time models on robots’ kinematic control.

Figure 1.6 Position errors of a three-link
planar robot manipulator synthesized by
a pseudoinverse-based MVN scheme (1.1)
aided with EDTZD-K model (1.9) with
h = 1.0.
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14 Robot Manipulator Redundancy Resolution

1.4 Chapter Summary

In this chapter, discrete-timeZDmodels have been presented and investigated for appli-
cation to kinematic control of redundant robot manipulators. Specifically, to obtain the
theoretical pseudoinverse of time-varying Jacobian matrix involved in robotic redun-
dancy resolution, the continuous-time ZD model (1.7) and different discrete-time ZD
models have been developed and investigated. Theoretical results have also been given
showing the ZDmodels’ feasibility for redundant-manipulator kinematic control.Then,
the presented discrete-time ZD models have been applied to different types of redun-
dant robot manipulators (i.e., the five-link planar robot manipulator and the three-link
planar robot manipulator). Simulation results have illustrated the effectiveness of the
presented discrete-time ZDmodels for time-varyingmatrix pseudoinversion applied to
the redundancy resolution of robot manipulators.


