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Historical Notes

. Introduction

Probability is the measure of how likely a future event is. It is not by “chance”
that most of the examples related to the understanding of probability are
connected to objects like dices, cards, or coins. Historical events show that
most primitive attempts on probability theory have the roots in gambling [1].
Given the implications that gambling had over time, particularly the social
consequences of it, great efforts have been made to avoid or understand
uncertainty. Historians have looked to Aristotle and beyond when searching
for the origins of the probabilistic concepts [1]. The very first ideas for this
fundamental principle may derive directly from Aristotle’s Ethics, where the
concept of “justice” took new forms over time [1]. Later, the medieval poem De
Vetula (“On the Old Woman”) appeared around the year 1250. This poem is
a long thirteenth-century elegiac comedy that contains first written references
on gambling [2]. The non-poetic content of De Vetula makes references to the
connection between the number of combinations and the expected frequency
of a given total [2]. Gerolamo Cardano (1501–1575) has made the first written
references in defining odds as the ratio of favorable to unfavorable outcomes
[1]. In his Liber de Ludo Aleae (“Book on Games of Chance”) published in 1564
or later, Cardano was among the first to approach probabilities in games of
chance [1]. A few decades later, uncertain events related to gambling resulted
in the well-known mathematical theory of probability formulated by Pierre de
Fermat and Blaise Pascal (1654) [3]. Just 3 years later in 1657, Christian Huy-
gens (1629–1695) published a dedicated book on probability theory related
to problems associated with games of chance, entitled De Ratiociniis in Ludo
Aleae (“On Reasoning in Games of Chance”) [4, 5]. A milestone contribution of
Jakob Bernoulli (1654–1705) in probability theory was published post-mortem
in 1713, under the title Ars conjectandi (“The Art of Conjecturing”) [6, 7].
Bernoulli was concerned with predicting the probability of unknown events
[7]. In his work Bernoulli describes what today is known as the weak law of large
numbers [7]. This law shows that the average of the results obtained from an
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increasing number of trials should converge toward the expected value [7].
For instance, consider the flipping of an unbiased coin. As the number of flips
goes to infinity, the proportion of heads will approach 1/2. Let us consider
another example: without our knowledge, x black balls and y white balls are
placed in a jar (Figure 1.1a). To determine the proportions of black balls and
white balls from the jar by experiment, a series of random draws must be per-
formed. Whenever a black ball or a white ball is drawn, the observation is
noted. The expected value of white versus black observations will converge
toward the real ratio from the jar as the number of extractions increases. There-
fore, Bernoulli proved that after many random draws (trials), the observations
of white balls versus black balls will converge toward the real ratio of black
balls versus white balls from the jar. Almost 100 years after Bernoulli, Pierre
de Laplace (1749–1827) severs the thinking monopoly that gambling had on
the probability theory [1–7]. In 1812, Laplace publishes the Théorie Analy-
tique des Probabilités (“Analytical Theory of Probability”) in which it introduces
probability to general sciences [8, 9].

. On the Wings of Dependent Variables

Another milestone in probability theory was made almost 100 years later by
Andrei Markov (1856–1922) [10, 11]. In the Bernoulli model, the outcome
of previous events does not change the outcome of current or future events.
Today it is obvious that the events are not independent in many cases; how-
ever, in the past, this was not that obvious (in the mathematical sense). The
term of dependent events, or dependent variables, refers to those situations
when the probability of an event is conditioned by the events that took place in
the past. A colleague of Markov, namely Pavel Nekrasov, assumed that inde-
pendence is a condition for the law of large numbers [12]. Following a dis-
pute with Pavel Nekrasov, Markov considered that the law of large numbers
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Figure . From Bernoulli model to the Markov model. (a) The Bernoulli model with a
single jar filled with different proportions of black and white balls. The curved arrows show
from which jar the extraction was done and to which jar the next draw will be made. Black
curved arrows show the extraction and observation of black balls whereas white curved
arrows show the extraction and observation of white balls. (b) Two Bernoulli jars. A white jar
and a black jar, each filled with different proportions of black and white balls. Here, draws
are still independent from one another. (c–f ) Shows how dependence occurs between the
two jars if the color of the curved arrows is “attracted” to the color of the jars. (g–j) Shows
how the two jars system is transformed into a Markov diagram by changing the angle of
viewing of the jars, from the side view to the top view.
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can be also valid in the case of dependent variables. In 1906, Markov extends
Bernoulli’s results to dependent variables and began developing his reasoning
about chains of linked probabilities (Figures 1.1a–j) [10]. Markov’s connection
with Bernoulli it is indirectly but deeply rooted in the history of the Academy
of Sciences in St. Petersburg. Prior to Markov’s time, the Academy included
none other than the great Leonhard Euler (1707–1783) and the sons of Jakob
Bernoulli, namely Nicholas Bernoulli (1687–1759) and Daniel Bernoulli (1700–
1782) [12]. In 1907, Markov proved that the independence of random variables
was not a required condition for the validity of the weak law of large numbers
and the central limit theorem [10, 11]. For his demonstration, he envisioned a
virtual machine (Figures 1.1f and 1.1j).

Let us consider two jars which represent the two states of a machine (Fig-
ure 1.1b). One is painted in black (state 1) and the other is painted in white
(state 0). Both contain certain proportions of both white and black balls. First,
an extraction of a ball from one of the jars is made; let us choose the black jar
(state 1). If the black ball is drawn, then the next draw is made again from the
black jar (state 1). If the white ball is drawn, then the next draw is made from
the white jar (state 0). Let us consider that a white ball has been pulled. There-
fore, the next draw is made from the white jar. If a white ball is drawn from
the white jar, then the next draw is made again from the white jar (state 1). If
a black ball is drawn from the white jar then the next draw is made from the
black jar (state 0). Thus, these events may continue indefinitely. What can be
immediately noticed is that the current extraction is dependent on the previous
extraction. As long as both states of the machine are reachable (each jar con-
tains both white and black balls), the number of visits to each jar will converge,
as in the Bernoulli model, to a specific ratio. By this simple example, Markov
showed that the law of large numbers applies in the case of dependent vari-
ables. But what does “both states are reachable” mean? If the black jar has only
black balls inside, then all drawings are made from the black jar; therefore, the
white jar is unreachable. However, what if draws are first started from the white
jar? Eventually, after a number of draws, a black ball is drawn from the white jar.
Once the black ball is drawn from the white jar, the next draw will be made from
the black jar. Since the black jar contains in this case only black balls, from this
point forward, all future draws will be made only from the black jar. Therefore,
the white jar will be unreachable. In order to make the white jar reachable, the
black jar must contain at least one white ball from the total number of balls (n).
That one white ball it will provide a very small chance (1/n > 0), of switching
the extraction of balls from the black jar to the white jar. Taking these observa-
tions into account, the probability of extracting a white ball from the black jar
will be:

P[white] = 1
n
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Whereas the probability of extracting a black ball from the black jar will be:

P[black] = (n − 1)
n

Also notice that:

P[white] + P[black] =
(1

n

)
+ (n − 1)

n
= 1

In 1913, by pencil and paper, Markov applied his method for a linguistic analysis
of the first 20,000 letters from one of Pushkin’s poems [12]. Thus, he showed
that the letter probabilities in Pushkin’s poem are not independent. This lin-
guistic analysis sparked the interest of many scientists at that time and quickly
brought a worldwide revolution in science and technology [12]. Many great
minds preoccupied by uncertainty made their contribution over time to the
probability theory. Nevertheless, what had begun as an analysis of gambling
rooted in decadence is now the main weapon used for the progress of mankind.

. From Bernoulli to Markov

Simple exemplifications are crucial for understanding the Markov process. A
stochastic process is visually represented by state diagrams. Circles inside a
diagram represent states while arrows indicate the probability of moving from
one state to another (Figure 1.1j). In our days, state diagrams are usually taken
for granted without any possible roots underlying these types of visual repre-
sentations. As stated above, A. Markov was influenced by Jacob Bernoulli [10].
Therefore, let us start from Bernoulli’s jar (Figure 1.1a). Consider an opaque jar
filled with white and black balls whose proportions are unknown. Of course,
a simple counting of the balls is not allowed. What is allowed is a repeated
extraction of balls from the jar and the notation on paper of how many balls
are white and how many balls are black. The question is: can a similar jar be
filled with the same proportion of white and black balls? The expected value of
white versus black observations will converge toward the real ratio from the jar,
as the number of extractions increases. Also notice that in Bernoulli model, the
outcome of previous events does not change the outcome of current or future
events. Thus, all draws are independent of each other. Let us consider that in
this Bernoulli model, the aim is to find out what is the probability of a spe-
cific sequence of draws, for instance black ball, white ball, black ball, black ball:
P[BWBB]. If these four independent events (BWBB) have probabilities P[B] and
P[W], the joint probability of all four events is the product:

P[BWBB] = P[B] × P[W] × P[B] × P[B]

In other words, the probabilities are not linked. But what does that mean? How
can probabilities be linked? Consider two jars which represent the two states
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of a machine (Figure 1.1b). One jar is painted in black (state B) and the other
jar is painted in white (state W). Both jars contain white balls and black balls in
unknown proportions. Thus, the percentage of white versus black balls in each
jar is the aim of this example. What can be done? Consider that two individuals
are involved in an experiment. These two individuals are named Alice and Bob.
Presumably, a first draw is made from one of the jars by Alice. A draw rule is also
imposed, namely the color of the current ball indicates the color of the jar from
which the next draw will be made (Figure 1.1f ). By following this rule, suppose
80 draws are made by Alice behind a screen. Therefore, the interplay between
jars (states) is not observable by Bob. However, Alice shows Bob the ball each
time a black ball is drawn from the black jar, or a white ball is drawn from the
white jar. The color of the ball is written on paper by Bob each time Alice shows
him a ball. Thus, at the end of the 80th draw, Bob notes that Alice showed him
the black ball 20 times and the white ball 30 times. Thus, Alice asks Bob to tell
her the proportion of balls in each jar based exclusively on these observations.
Taking into account the draw rule, Bob immediately realizes that each time
Alice showed him the black ball she returned to the black jar, and each time she
showed him the white ball she returned to the white jar. Initially, Bob imagines
the jars as independent systems (Figures 1.1b and 1.1c). When regarded as an
independent Bernoulli experiment with a single jar, the proportion of balls can
be easily determined. Thus, the probability to draw a black ball (Pwhite jar[B]) or
a white ball (Pwhite jar[W]) from the white jar equals 1:

Pwhite jar[B] + Pwhite jar[W] = 1

If the probability of extracting a white ball (Pwhite jar[W]) from the white jar is
known, then the probability of extracting a black ball from the white jar can
also be found, namely (Figure 1.2b):

Pwhite jar[B] = 1 − Pwhite jar[W]

Similarly, the same rules apply to the black jar. The probability of extracting a
black or a white ball from the black jar is also equal to 1 (Figure 1.2c). Taking
into consideration the above properties, Bob wonders how he can approximate
the proportion of white versus black balls in each jar. In order to find out the
proportion of balls from the two jars, he must deduce the unknown probabili-
ties from the two jars, namely Pblack jar[W] and Pwhite jar[B] (Table 1.1). First, it
starts from what he knows and divides the number of observations by the total
number of draws to obtain Pblack jar[B] and Pwhite jar[W] (Table 1.1). Secondly, it
uses the expression 1 − Pwhite jar[W] to find Pwhite jar[B] and the expression 1 −
Pblack jar[B] to find Pblack jar[W] (Table 1.1). In the final step, Bob transforms the
probabilities into percentages by multiplying the probability values with 100.
Bob then shows his findings to Alice in the form of proportions: the white jar
contains ∼62.5% black balls and 37.5% white balls whereas the black jar con-
tains ∼75% white balls and 25% black balls. The value of Pblack jar[B] represents
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Figure . The two jars seen independently when disconnected from the Markov
diagram. (a) The Markov model represented by two jars. (b) The white jar observed
independently from the black jar. (c) The black jar observed independently from the white
jar. The black arrows signify the transitions to the black jar, and the white arrows signify the
transitions to the white jar.

the black balls in the black jar and the value of Pwhite jar[W] represents the white
balls in the white jar. Therefore, in this case, Pwhite jar[B] and Pblack jar[W] coun-
terparts represent the interplay between jars (states). Consequently, what was
initially hidden behind the screen by Alice is now clear to Bob. Approximately
62.5% of the time the extractions were shifted from the white to the black jar
and ∼75% of the time the extractions were shifted from the black to the white
jar. In other words, the number of trips from the white jar to the black jar repre-
sents the proportion of black balls inside the white jar (Figure 1.2b). In contrast,
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Table . Finding the unknown probabilities of the two jars.

In the black jar In the white jar

Pblack jar[B] = 20/80 = 0.25 Pwhite jar[W] = 30/80 = 0.375
Pblack jar[W] = 1 − Pblack jar[B] Pwhite jar[B] = 1 − Pwhite jar[W]
Pblack jar[W] = 1 − 0.25 Pwhite jar[B] = 1 − 0.375
Pblack jar[W] = 0.75 Pwhite jar[B] = 0.625

the number of trips from the black jar to the white jar represents the proportion
of white balls inside the black jar (Figure 1.2c). When the Markov rule applies,
the two jars have linked probabilities. Thus, at least one parameter of each jar
(state) must be known in order to rebuild the unknown transition probabilities
from the system (Figures 1.2b and 1.2c).


