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Introduction and General Matrix Methods

1.1 Brief Introduction

The study of the convergence of infinite series is an ancient art. In ancient
times, people were more concerned with orthodox examinations of conver-
gence of infinite series. Series that did not converge were of no interest to
them until the advent of L. Euler (1707–1783), who took up a serious study
of “divergent series”; that is, series that did not converge. Euler was followed
by a galaxy of great mathematicians, such as C.F. Gauss (1777–1855), A.L.
Cauchy (1789–1857), and N.H. Abel (1802–1829). The interest in the study
of divergent series temporarily declined in the second half of the nineteenth
century. It was rekindled at a later date by E. Cesàro, who introduced the idea
of (C, 1) convergence in 1890. Since then, many other mathematicians have
been contributing to the study of divergent series. Divergent series have been
the motivating factor for the introduction of summability theory.
Summability theory has many uses in analysis and applied mathematics.

An engineer or physicist who works with Fourier series, Fourier transforms,
or analytic continuation can find summability theory very useful for his/her
research.
Throughout this chapter, we assume that all indices and summation indices

run from 0 to ∞, unless otherwise specified. We denote sequences by {xk} or
(xk), depending on convenience.
Consider the sequence

{sn} = {1, 0, 1, 0,…},

which is known to diverge. However, let

tn =
s0 + s1 + · · · + sn

n + 1
,

i.e., tn =

{ k+1
2k+1

, if n = 2k;
k+1
2k+2

, if n = 2k + 1,
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2 1 Introduction and General Matrix Methods

proving that

tn → 1∕2, n → ∞.

In this case, we say that the sequence {sn} converges to 1∕2 in the sense of
Cesàro or {sn} is (C, 1) summable to 1∕2. Similarly, consider the infinite series∑

n
an = 1 − 1 + 1 − 1 + · · · .

The associated sequence {sn} of partial sums is {1, 0, 1, 0,…}, which
is (C, 1)-summable to 1∕2. In this case, we say that the series Σnan =
1 − 1 + 1 − 1 + · · · is (C, 1)-summable to 1∕2.
With this brief introduction, we recall the following concepts and results.

1.2 General Matrix Methods

Definition 1.1 Given an infinite matrix A = (ank), and a sequence x = {xk},
by the A-transform of x = {xk}, we mean the sequence

A(x) = {(Ax)n},
(Ax)n = Σkankxk ,

where we suppose that the series on the right converges. If lim
n→∞

(Ax)n = t,
we say that the sequence x = {xk} is summable A or A-summable to t. If
lim
n→∞

(Ax)n = t whenever lim
k→∞

xk = s, then A is said to be preserving conver-
gence for convergent sequences, or sequence-to-sequence conservative (for
brevity, Sq-Sq conservative). If A is sequence-to-sequence conservative with
s = t, we say that A is sequence-to-sequence regular (shortly, Sq-Sq regular). If
lim
n→∞

(Ax)n = t, whenever, Σkxk = s, then A is said to preserve the convergence
of series, or series-to-sequence conservative (i.e., Sr-Sq conservative). If A is
series-to-sequence conservative with s = t, we say that A is series-to-sequence
regular (shortly, Sr-Sq regular).

In this chapter and inChapters 2 and 3, for conservative and regular, wemean
only Sq–Sq conservativity and Sq-Sq regularity.
If X,Y are sequence spaces, we write

A ∈ (X,Y ),

if {(Ax)n} is defined and {(Ax)n} ∈ Y , whenever, x = {xk} ∈ X. With this
notation, if A is conservative, we can write A ∈ (c, c), where c denotes the set
of all convergent sequences. If A is regular, we write

A ∈ (c, c;P),

P denoting the “preservation of limit.”
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1.2 General Matrix Methods 3

Definition 1.2 A method A = (ank) is said to be lower triangular (or simply,
triangular) if ank = 0 for k > n, and normal if A is lower triangular if ann ≠ 0 for
every n.

Example 1.1 Let A be the Zweier method; that is, A = Z1∕2, defined by the
lower triangular method A = (ank) where (see [2], p. 14) a00 = 1∕2 and

ank =

{
1
2
, if k = n − 1 and k = n;

0, if k < n − 1

for n ≥ 1. The method A = Z1∕2 is regular. The transformation (Ax)n for n ≥ 1
can be presented as

(Ax)n =
xn−1 + xn

2
.

Then,
lim

n
(Ax)n = lim

k
xk

for every x = {xk} ∈ c; that is, Z1∕2 ∈ (c, c;P).

We now prove a landmark theorem in summability theory due to
Silverman–Toeplitz, which characterizes a regular matrix in terms of the
entries of the matrix (see [3–5]).

Theorem 1.1 (Silverman-Toeplitz) A = (ank) is regular, that is, A ∈ (c, c;P),
if and only if

sup
n≥0

∑
k
|ank| < ∞; (1.1)

lim
n→∞

ank ∶= 𝛿k; (1.2)

and
lim
n→∞

∑
k

ank = 𝛿 (1.3)

with 𝛿k ≡ 0 and 𝛿 ≡ 1.

Proof : Sufficiency. Assume that conditions (1.1)–(1.3) with 𝛿k ≡ 0 and 𝛿 ≡ 1
hold. Let x = {xk} ∈ c with lim

k→∞
xk = s. Since {xk} converges, it is bounded; that

is, xk = O(1), k → ∞, or, equivalently, |xk| ≤ M, M > 0 for all k.
Now∑

k
|ankxk| ≤ M

∑
k
|ank| < ∞,

in view of (1.1), and so
(Ax)n =

∑
k

ankxk
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4 1 Introduction and General Matrix Methods

is defined. Now

(Ax)n =
∑

k
ank(xk − s) + s

∑
k

ank . (1.4)

Since lim
k→∞

xk = s, given an 𝜖 > 0, there exists an n ∈ ℕ, where ℕ denotes the set
of all positive integers, such that|xk − s| < 𝜖

2L
, k > N , (1.5)

where L > 0 is such that|xn − s| ≤ L,
∑

k
|ank| ≤ L, (1.6)

and hence∑
k

ank(xk − s) =
N∑

k=0
ank(xk − s) +

∞∑
k=N+1

ank(xk − s),

|||||
∑

k
ank(xk − s)

||||| ≤
N∑

k=0
|ank||xk − s| + ∞∑

k=N+1
|ank||xk − s|.

Using (1.5) and (1.6), we obtain
∞∑

k=N+1
|ank||xk − s| ≤ 𝜖

2L
∑

k
|ank| ≤ 𝜖

2L
L = 𝜖

2
.

By (1.2), there exists a positive integer n0 such that|ank| < 𝜖

2L(N + 1)
, k = 0, 1,… ,N , for n > n0.

This implies that
N∑

k=0
|ank||xk − s| < L(N + 1) 𝜖

2L(N + 1)
= 𝜖

2
, for n > n0.

Consequently, for every 𝜖 > 0, we have|||||
∑

k
ank(xk − s)

||||| < 𝜖

2
+ 𝜖

2
= 𝜖 for n > n0.

Thus,

lim
n→∞

∑
k

ank(xk − s) = 0. (1.7)

Taking the limit as n → ∞ in (1.4), we have, by (1.7), that

lim
n→∞

(Ax)n = s,

since 𝛿 = 1. Hence, A is regular, completing the proof of the sufficiency part.
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Necessity. Let A be regular. For every fixed k, consider the sequence x = {xn},
where

xn =

{
1, n = k;
0, otherwise.

For this sequence x, (Ax)n = ank . Since lim
n→∞

xn = 0 and A is regular, it follows
that 𝛿k ≡ 0. Again consider the sequence x = {xn}, where xn = 1 for all n. Note
that lim

n→∞
xn = 1. For this sequence x, (Ax)n = Σkank . Since lim

n→∞
xn = 1 and A is

regular, we have 𝛿 = 1. It remains to prove (1.1). First, we prove that Σk|ank|
converges. Suppose not. Then, there exists an N ∈ ℕ such that∑

k
|aNk| diverges.

In fact, Σk|aNk| diverges to∞. So we can find a strictly increasing sequence k( j)
of positive integers such that

k( j)−1∑
k=k( j−1)

|aNk| > 1, j = 1, 2,… . (1.8)

Define the sequence x = {xk} by

xk =

{|aNk |
jaNk

, if aNk ≠ 0 and k( j − 1) ≤ k < k( j), j = 1, 2,…;
0, if k = 0 or aNk = 0.

Note that lim
k→∞

xk = 0 and Σkankxk converges. In particular, ΣkaNkxk converges.
However,∑

k
aNkxk =

∞∑
j=1

k( j)−1∑
k=k( j−1)

|aNk|
j

=
∞∑

j=1

1
j

k( j)−1∑
k=k( j−1)

|aNk| > ∞∑
j=1

1
j
.

This leads to a contradiction since
∞∑

j=1

1
j
diverges. Thus,

∑
k
|ank|converges for every n ∈ ℕ.

To prove that (1.1) holds, we assume that

sup
n≥0

∑
k
|ank| = ∞

and arrive at a contradiction.
We construct two strictly increasing sequences {m( j)} and {n( j)} of positive

integers in the following manner.
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Let m(0) = 0. Since Σk|am(0),k| < ∞, choose n(0) such that
∞∑

k=n(0)+1
|am(0),k| < 1.

Having chosen the positive integers m(0),m(1),… ,m( j − 1) and n(0), n(1),…,
n( j − 1), choose positive integers m( j) > m( j − 1) and n( j) > n( j − 1) such that∑

k
|am( j),k| > j2 + 2j + 2; (1.9)

n(j−1)∑
k=0

|am( j),k| < 1; (1.10)

and
∞∑

k=n(j)+1
|am( j),k| < 1. (1.11)

Now define the sequence x = {xk}, where

xk =

{|am( j),k |
jam( j),k

, if n( j − 1) < k ≤ n( j), am( j),k ≠ 0, j = 1, 2,…;

0, otherwise.

Note that lim
k→∞

xk = 0. Since A is regular, lim
n→∞

(Ax)n = 0. However, using
(1.9)–(1.11), we have

|(Ax)m( j)| = |||||
∑

k
am( j),kxk

|||||
=
||||||

n( j−1)∑
k=0

am( j),kxk +
n( j)∑

k=n( j−1)+1
am( j),kxk +

∞∑
k=n( j)+1

am( j),kxk

||||||
≥

||||||
n( j)∑

k=n( j−1)+1
am( j),kxk

|||||| −
n( j−1)∑

k=0
|am( j),kxk| − ∞∑

k=n( j)+1
|am( j),kxk|

>
1
j

n( j)∑
k=n( j−1)+1

|am( j),k| − 1 − 1

= 1
j

[∑
k
|am( j),k| − n( j−1)∑

k=0
|am( j),k| − ∞∑

k=n( j)+1
|am( j),k|] − 2

>
1
j
[( j2 + 2j + 2) − 1 − 1] − 2 = j + 2 − 2 = j, j = 1, 2,… .

Thus, {(Ax)m(j)} diverges, which contradicts the fact that {(Ax)n} converges.
Consequently, (1.1) holds. This completes the proof of the theorem.
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Example 1.2 Let A be the Cesàro method (C, 1); that is, A = (C, 1).
This method is defined by the lower triangular matrix A = (ank), where
ank = 1∕(n + 1) for all k ≤ n. It is easy to see that all of the conditions of
Theorem 1 are satisfied. Hence, (C, 1) ∈ (c, c;P).

Example 1.3 Let A−1,1 be the method defined by the lower triangular matrix
(ank), where a00 = 1 and

ank =
⎧⎪⎨⎪⎩
−1, if k = n − 1;
1, if k = n;
0, if k < n − 1

for n ≥ 1. It is easy to see that, in this case, 𝛿k ≡ 0, 𝛿 = 0 ≠ 1 and condition (1.1)
holds. Therefore, A−1,1 does not belong to (c, c;P). However, A−1,1 ∈ (c, c) and
A−1,1 ∈ (c0, c0), where c0 denotes the set of all sequences converging to 0 (see
Exercises 1.1 and 1.4).

Let m (or 𝓁∞) denote the set of all bounded sequences. For x = {xk} ∈ 𝓁∞,
define

∥x∥= sup
k≥0

|xk|. (1.12)

Then, it is easy to see that m is a Banach space and c is a closed subspace of m
with respect to the norm defined by (1.12).

Definition 1.3 ThematrixA = (ank) is called a Schurmatrix ifA ∈ (m, c); that
is, {(Ax)n} ∈ c, whenever, x = {xk} ∈ m.

The following result gives a characterization of a Schur matrix in terms of the
entries of the matrix (see [3–5]).

Theorem 1.2 (Schur) A = (ank) is a Schur matrix if and only if (1.2) holds
and ∑

k
|ank| converges uniformly in n. (1.13)

Proof : Sufficiency. Assume that (1.2) and (1.13) hold. Then, (1.13) implies that
the series Σk|ank| converge, n belongs to N . By (1.2) and (1.13), we obtain that

sup
n≥0

∑
k
|ank| = M < ∞.

Thus, for each r, we have

lim
n→∞

r∑
k=0

|ank| ≤ M.
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Hence,
r∑

k=0
|𝛿k| ≤ M for every r,

and so∑
k
|𝛿k| < ∞.

Thus, if x = {xk} ∈ m, it follows that Σkankxk converges absolutely and
uniformly in n. Consequently,

lim
n→∞

(Ax)n = lim
n→∞

∑
k

ankxk =
∑

k
𝛿kxk ,

proving that {(Ax)n} ∈ c; that is, A ∈ (m, c), proving the sufficiency part.
Necessity. Let A = (ank) ∈ (m, c). Then, A ∈ (c, c) and so (1.2) holds. Again,

since A ∈ (c, c), we get that (1.1) holds; that is,

sup
n≥0

∑
k
|ank| < ∞.

As in the sufficiency part of the present theorem, it follows thatΣk|𝛿k| < ∞.We
write

bnk = ank − 𝛿k .

Then, {Σkbnkxk} converges for all x = {xk} ∈ m. We now claim that∑
k
|bnk| → 0, n → ∞. (1.14)

Suppose not. Then,

lim
n→∞

∑
k
|bnk| = c > 0.

So, ∑
k
|bmk| → c, m → ∞

through some subsequence of positive integers. We also note that

lim
m→∞

bmk = 0 for all k ∈ ℕ.

We can now find a positive integer m(1) such that|||||
∑

k
|bm(1),k| − c

||||| < c
10

and |bm(1),0| + |bm(1),1| < c
10

.
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Since Σk|bm(1),k| < ∞, we can choose k(2) > 1 such that
∞∑

k=k(2)+1
|bm(1),k| < c

10
.

It now follows that||||||
k(2)∑
k=2

|bm(1),k| − c
|||||| =

||||||
(∑

k
|bm(1),k| − c

)
− (|bm(1),0| + |bm(1),1|) − ∞∑

k=k(2)+1
|bm(1),k|||||||

<
c
10

+ c
10

+ c
10

= 3c
10

.

Now choose a positive integer m(2) > m(1) such that|||||
∑

k
|bm(2),k| − c

||||| < c
10

and
k(2)∑
k=0

|bm(2),k| < c
10

.

Then, choose a positive integer k(3) > k(2) such that
∞∑

k=k(3)+1
|bm(2),k| < c

10
.

It now follows that||||||
k(3)∑

k=k(2)+1
|bm(2),k| − c

|||||| < 3c
10

.

Continuing this way, we find m(1) < m(2) < · · · and 1 = k(1) < k(2) < k(3) <
· · · so that

k(r)∑
k=0

|bm(r),k| < c
10

; (1.15)

∞∑
k=k(r+1)+1

|bm(r),k| < c
10

; (1.16)

and ||||||
k(r+1)∑

k=k(r)+1
|bm(r),k| − c

|||||| < 3c
10

. (1.17)

We now define a sequence x = {xk} as follows: x0 = x1 = 0 and

xk = (−1)rsgn bm(r),k ,
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if k(r) < k ≤ k(r + 1), r = 1, 2,…. Note that x = {xk} ∈ m and ∥x∥= 1. Now|||||
∑

k
bm(r),kxk − (−1)rc

||||| =
||||||

k(r)∑
k=0

bm(r),kxk +
k(r+1)∑

k=k(r)+1
bm(r),kxk

+
∞∑

k=k(r+1)+1
bm(r),kxk − (−1)rc

||||||
=
||||||
{ k(r+1)∑

k=k(r)+1
|bm(r),k| − c

}
(−1)r

+
k(r)∑
k=0

bm(r),kxk +
∞∑

k=k(r+1)+1
bm(r),kxk

||||||
<

3c
10

+ c
10

+ c
10

= c
2
,

using (1.15), (1.16) and (1.17).
Consequently, {Σkbnkxk} is not a Cauchy sequence and so it is not conver-

gent, which is a contradiction. Thus, (1.14) holds. So, given 𝜖 > 0, there exists
a positive integer n0 such that∑

k
|bnk| < 𝜖, n > n0. (1.18)

Since Σk|bnk| < ∞ for 0 ≤ n ≤ n0, we can find a positive integer M such that
∞∑

k=M
|bnk| < 𝜖, 0 ≤ n ≤ n0. (1.19)

In view of (1.18) and (1.19), we have
∞∑

k=M
|bnk| < 𝜖 for all n,

that is, Σk|bnk| converges uniformly in n. Since Σk|𝛿k| < ∞, it follows that
Σk|ank| converges uniformly in n, proving the necessity part. The proof of the
theorem is now complete.

Example 1.4 Let A = (ank) be defined by the lower triangular matrix

ank ∶= 1
(n + 1)(k + 1)

. (1.20)

Then, 𝛿k = 0 and∑
k
|ank| = 1

n + 1

n∑
k=0

1
k + 1

= 1
n + 1

O(ln(n + 1)) → 0 if n → ∞;

that is, condition (1.13) is fulfilled. Hence, A ∈ (m, c) byTheorem 1.2.
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UsingTheorems 1.1 and 1.2, we can deduce the following important result.

Theorem 1.3 (Steinhaus) An infinite matrix cannot be both regular and a
Schur matrix. In other words, given a regular matrix, there exists a bounded,
divergent sequence which is not A-summable.

Proof : Let A be a regular and a Schur matrix. Then, (1.2) and (1.3) hold with
𝛿k ≡ 0 and 𝛿 ≡ 1. Using (1.13), we get

lim
n→∞

∑
k

ank =
∑

k

(
lim
n→∞

ank

)
= 0

by (1.2), which contradicts (1.3). This establishes our claim.

For the proof of the following results, we need some additional notations. Let

cs ∶=

{
x = (xk) ∶ (Xn) ∈ c; Xn ∶=

n∑
k=0

xk

}
,

cs0 ∶=

{
x = (xk) | (Xn) ∈ c0; Xn ∶=

n∑
k=0

xk

}
,

l ∶=

{
x = (xk) ∶

∑
k
|xk| < ∞

}
,

b𝑣 ∶= {x = (xk) ∶ (Δxk) ∈ l},

where

Δxk ∶= (Δ1x)k = xk − xk+1,

and

b𝑣0 ∶= b𝑣 ∩ c0.

It is easy to see that the set of sequences cs is equivalent to the set of all conver-
gent series.

Theorem 1.4 (Hahn) Let A = (ank) be a matrix method. Then, A ∈ (l, c) if
and only if condition (1.2) holds and

ank = O(1). (1.21)

Proof : For every fixed k, let ek be the sequence in which 1 occurs in the
(k + 1)th place and 0 elsewhere. As ek ∈ l, then condition (1.2) is necessary. It
is easy to see that we can consider a matrix A as a continuous linear operator
from l to c with the norm ∥A∥= supn,k|ank|. The proof now follows from the
Banach–Steinhaus theorem.



�

� �

�

12 1 Introduction and General Matrix Methods

Example 1.5 It is easy to see that the methods Z1∕2, (C, 1), A−1,1 and the
methods A, defined by (1.20), considered in Examples 1.1–1.4, belong (l, c).

Theorem 1.5 Let A = (ank) be a matrix method. Then, A ∈ (cs, c) if and only
if condition (1.2) holds and∑

k
|Δkank| = O(1). (1.22)

Moreover,

lim
n

Anx = 𝛿0 lim Sx +
∑

k
Δ𝛿k(Xk − lim Sx) (1.23)

for every x ∶= (xk) ∈ cs.

Proof : First, we find conditions for the existence of the transform Ax for every
x ∈ cs. Define

ym
n =

m∑
k=0

ankxk (1.24)

for x ∶= (xk) ∈ cs. Using the Abel’s transform (see, e.g., [1], p. 18)
m∑

k=0
𝜖kxk =

m−1∑
k=0

Δ𝜖kXk + 𝜖mXm,

where

Xk ∶=
k∑

l=0
xl, (1.25)

we can write

ym
n =

m−1∑
k=0

ΔankXk + anmXm.

This implies that Ax exists for every x ∈ cs if and only

yn ∶= lim
m

ym
n (1.26)

has a finite limit for every (Xk) ∈ c and n ∈ ℕ, since, for every (Xk) ∈ c there
exists an (xl) ∈ cs, such that (1.25) holds. Hence, for every n ∈ ℕ, the limit yn
in (1.26) exists for every (Xk) ∈ c if and only if the matrix Dn ∶= (dn

mk) ∈ (c, c),
where

dn
mk =

⎧⎪⎨⎪⎩
Δkank , if k < m;
anm, if k = m;
0, if k > m.
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As

lim
m

dn
mk = Δkank and

m∑
k=0

dn
mk = an0,

Dn ∈ (c, c) if and only if

m−1∑
k=0

|Δkank| + |anm| = On(1). (1.27)

As

|anm| ≤ m−1∑
k=0

|Δkank| + |an0|,
(1.27) is equivalent to the condition∑

k
|Δkank| = On(1). (1.28)

Moreover, using (1.38) (see Exercise 1.1), from the existence of the limits in
(1.26) we obtain

yn − an0 limk Xk =
∑

k
(Δkank)(Xk − lim

k
Xk). (1.29)

As (Xk − limkXk) ∈ c0, then, using Exercise 1.3, we conclude that transform
(1.29) and the finite limit limn(yn − an0 limk Xk) exists if and only if

there exists the finite limit lim
n

Δkank ∶= dk (1.30)

and condition (1.22) holds. We note also that condition (1.28) follows from
(1.22). In addition,

lim
n
(yn − an0 limk Xk) =

∑
k

dk(Xk − lim
k

Xk). (1.31)

Now (1.31) implies that, for the existence of the finite limit limnyn it is necessary
that

there exists the finite limit 𝛿0. (1.32)

Therefore, using (1.30), we obtain that, for every k ≥ 1 the existence of finite
limits 𝛿k ; that is, condition (1.2) is necessary. From the other side, condition
(1.30) follows from (1.2).
Finally, the validity of (1.23) follows from (1.31) and (1.32).

Example 1.6 Let A be the Zygmund method of order 1; that is, A = Z1,
defined by the lower triangular matrix (ank), where

ank = 1 − k
n + 1

.
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Then, 𝛿k ≡ 1 and Δank = 1∕(n + 1) for every k ≤ n. Hence,∑
k
|Δkank| = 1;

that is, condition (1.22) holds. Thus, Z1 ∈ (cs, c) byTheorem 1.5. Moreover, Z1

is Sr–Sq regular (see Exercise 1.5).

Theorem 1.6 Let A = (ank) be a matrix method.Then, A ∈ (b𝑣, c) if and only
if conditions (1.2), (1.3) hold and

m∑
k=0

ank = O(1). (1.33)

Moreover, for (b𝑣0, c) condition (1.3) is redundant.

Proof : As e ∈ b𝑣, then it is necessary for A ∈ (b𝑣, c) that

all series
∞∑

k=l
ank converge. (1.34)

Hence,
m∑

k=0
ank = On(1).

Let

xk − lim xk ∶= 𝑣k

and ym
n be defined by (1.24) for every x = (xk) ∈ b𝑣. As (𝑣k) ∈ c0 and∑

k
|𝑣k − 𝑣k−1| < ∞ (𝑣−1 = 0)

(i.e., (𝑣k − 𝑣k−1) ∈ l), then

ym
n − lim

k
xk

m∑
k=0

ank =
m∑

k=0
ank𝑣k = −

m∑
k=0

ank

∞∑
l=k+1

(𝑣l − 𝑣l−1)

= −
m∑

l=1

( l−1∑
k=0

ank

)
(𝑣l − 𝑣l−1) −

∞∑
l=m+1

( m∑
k=0

ank

)
(𝑣l − 𝑣l−1).

Hence, for m → ∞, we obtain

yn − lim
k

xk

∑
k

ank = −
∞∑

l=1

( l−1∑
k=0

ank

)
(𝑣l − 𝑣l−1), (1.35)

where limm ym
n = yn.Thus, transformation (1.35) exists if condition (1.34) holds.

So we can conclude from (1.35) that conditions (1.2) and (1.33) are necessary
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and sufficient for the existence of the finite limit limn
(

yn − limk xk
∑

k ank
)
by

Theorem 1.4, since the existence of the finite limits

lim
n

l−1∑
k=0

ank

is equivalent to (1.2). As e ∈ b𝑣, then condition (1.3) is necessary. Therefore,
from the existence of the finite limit limn

(
yn − limk xk

∑
k ank

)
follows (yn) ∈ c

for every x ∈ b𝑣.
It is easy to see that for (b𝑣0, c) the existence of the finite limit 𝛿 is

redundant.

Example 1.7 As b𝑣 ⊂ c ⊂ m, then (see Examples 1.1–1.4) the methods Z1∕2,
(C, 1), A−1,1 and the method A, defined by (1.20), belong (b𝑣, c).

In addition toTheorems 1.1–1.6 we also need the following results.

Theorem 1.7 Let A = (ank) be a matrix method. Then, A ∈ (c0, cs) if and
only if

all series 𝔄k ∶=
∑

n
ank are convergent, (1.36)

∑
k

||||||
l∑

n=0
ank

|||||| = O(1). (1.37)

Theorem 1.8 LetA = (ank) be amatrixmethod.Then,A ∈ (c0, cs0) if and only
if𝔄k ≡ 0 and condition (1.37) holds.

Theorem 1.9 Let A = (ank) be a matrix method. Then, A ∈ (m, b𝑣) =
(c, b𝑣) = (c0, b𝑣) if and only if|||||

∑
n∈L

∑
k∈K

(ank − an−1,k)
||||| = O(1),

where K and L are arbitrary finite subsets of N.

As the proofs of Theorems 1.7–1.9 are rather complicated, we advise the
interested reader to consult proofs of these results from [7] and [6]. We also
note that the proofs of Theorems 1.1–1.6 can be found in monographs [1–3].
We now present some examples.

Example 1.8 For the method A−1,1,𝔄k ≡ 0 and∑
k

||||||
l∑

n=0
ank

|||||| = 1;

that is, condition (1.37) holds. Thus, byTheorem 1.8, A−1,1 ∈ (c0, cs0).
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Example 1.9 Let a lower triangular method A = (ank) be defined by

ank ∶= 1
(n + 1)2(k + 1)2

.

Then, clearly the series𝔄k converges to some non-zero number for every k, and∑
k=0

||||||
l∑

n=0
ank

|||||| =
l∑

k=0

1
(k + 1)2

l∑
n=k

1
(n + 1)2

= O(1);

that is, condition (1.37) holds. Thus, by Theorem 1.7, A ∈ (c0, cs), but A does
not belong to (c0, cs0).

Example 1.10 The method A, defined by (1.20), belongs (m, b𝑣) = (c, b𝑣) =
(c0, b𝑣). Indeed,|||||

∑
n∈L

∑
k∈K

(ank − an−1,k)
||||| =

∑
n∈L

1
n(n + 1)

∑
k∈K

1
k + 1

≤
∑
n∈L

1
n(n + 1)

n∑
k=0

1
k + 1

= O(1)
∑
n∈L

ln(n + 1)
n(n + 1)

= O(1);

that is, condition of Theorem 1.9 is fulfilled.

1.3 Excercise

Exercise 1.1 Prove that A = (ank) is conservative, that is, A ∈ (c, c) if and
only if (1.1) holds and the finite limits 𝛿k and 𝛿 exist.
In such a case, prove that

lim
n→∞

(Ax)n = s𝛿 +
∑

k
(xk − s)𝛿k , (1.38)

lim
k→∞

xk = s.

Hint. UseTheorem 1.1.

Exercise 1.2 Try to prove the Steinhaus theoremwithout usingTheorem1.2,
that is, given a regular matrix, construct a bounded, divergent sequence
x = {xk} such that {(Ax)n} diverges.

Exercise 1.3 Prove that A = (ank) ∈ (c0, c) if and only if conditions (1.1) and
(1.2) hold.

Hint. UseTheorem 1.1.

Exercise 1.4 Let A = (ank) be amatrix method. Prove that, A ∈ (c0, c0) if and
only if conditions (1.1) and (1.2) with 𝛿k ≡ 0 hold.
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Exercise 1.5 Prove that A = (ank) is Sr–Sq regular if and only if condition
(1.22) holds and 𝛿k ≡ 1.

Hint. Use the proof of Theorem 1.5.

Exercise 1.6 Prove that method A = (ank) ∈ (m,m) = (c,m) = (c0,m) if and
only if condition (1.1) is satisfied.

Hint. For the proof of the necessity, see the proof of Theorem 1.1.

Exercise 1.7 Prove that A = (ank) ∈ (c, c0) if and only if (1.2), (1.3) are
satisfied and

lim
n

∑
k

ank = 0.

Exercise 1.8 Prove that a method A = (ank) ∈ (m, c) if and only if conditions
(1.1), (1.2) are satisfied and

lim
n

∑
k
|ank − 𝛿k| = 0.

Prove that in this case

lim
n

Anx =
∑

k
𝛿kxk

for every x ∶= (xk) ∈ m.

Hint.We note that this result is a modification of Theorem 1.2.

Exercise 1.9 Prove that A = (ank) ∈ (m, c0) if and only if

lim
n

∑
k
|ank| = 0.

Hint. UseTheorem 1.2.

Exercise 1.10 Prove that A = (ank) ∈ (l,m) if and only if condition (1.21)
holds.

Hint.AmatrixA can be considered as a continuous linear operator from l tom.
To find the norm of A, use the principle of uniform boundedness.

Exercise 1.11 ([Knopp–Lorentz theorem]) Prove that A = (ank) ∈ (l, l) if and
only if∑

n
|ank| = O(1).

Hint. The proof is similar to the proof of Theorem 1.4. See also hint of
Exercise 1.10.
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Exercise 1.12 Prove that A = (ank) ∈ (l, b𝑣) if and only if∑
n
|ank − an−1,k| = O(1).

Hint. Let

Yn ∶=
n∑

k=0
yk

If (yk) ∈ l, then (Yn) ∈ b𝑣, and vice versa, if (Yn) ∈ b𝑣, then (yk) ∈ l. Denoting
Yn ∶= Anx for every x = (xk) ∈ l, we can say that (Yn) ∈ b𝑣 for every x ∈ l if and
only (yk) ∈ l for every x ∈ l, where

yn = Yn − Yn−1 =
∑

k
(ank − an−1,k)xk .

To find conditions for the existence of Ax, use Theorem 1.4. Then, use
Exercise 1.10.

Exercise 1.13 Prove that A = (ank) ∈ (b𝑣, b𝑣) if and only if

series
∑

k
ank are convergent, (1.39)

∑
n

||||||
l∑

k=0
(ank − an−1,k)

|||||| = O(1).

Moreover, for (b𝑣0, b𝑣) condition (1.39) is redundant.

Hint. As e ∈ b𝑣, then for finding conditions for the existence of Ax, use
Theorem 1.4. Further use Exercise 1.10.

Exercise 1.14 Let A be defined by (1.20). Does A ∈ (c, c), A ∈ (cs, c),
A ∈ (m, c), A ∈ (l, l), A ∈ (l,m), A ∈ (l, b𝑣), and A ∈ (c0, cs)? Is A Sq–Sq or
Sr–Sq regular? Why?

Exercise 1.15 Does A−1,1 ∈ (m, c), A−1,1 ∈ (l, l), A−1,1 ∈ (l,m), A−1,1 ∈ (l, b𝑣),
and A−1,1 ∈ (m, b𝑣)? Why?

Exercise 1.16 Does Z1∕2 ∈ (m, c), Z1∕2 ∈ (c0, c0), Z1∕2 ∈ (l, l), Z1∕2 ∈ (l,m),
Z1∕2 ∈ (l, b𝑣), Z1∕2 ∈ (c0, cs), and Z1∕2 ∈ (m, b𝑣)? Why?

Exercise 1.17 Does Z1 ∈ (m, c), ZZ1 ∈ (c0, c0), Z1 ∈ (l, l), Z1 ∈ (l,m),
Z1 ∈ (l, b𝑣), and Z1 ∈ (m, b𝑣)? Why?
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Exercise 1.18 Prove that the method A = (ank), defined by the lower triangu-
lar matrix with

ank ∶= 2k
(n + 1)2

,

is Sq–Sq regular.

Exercise 1.19 Prove thatm is a Banach spacewith respect to the normdefined
by (1.1).

Exercise 1.20 Prove that c, c0 are closed subspaces of m under the norm
defined by (1.1).

Exercise 1.21 If A = (ank), B = (bnk) ∈ (c, c), prove that A + B, AB ∈ (c, c),
where AB denotes the usual matrix product.

Exercise 1.22 Is A regular, if (Ax)n = 2xn − xn+1 for all n? Why?

Exercise 1.23 Prove that A = (ank) is a Schur matrix if and only if A sums all
sequences of 0’s and 1’s.

Exercise 1.24 ([Mazur–Orlicz theorem]) If a conservative matrix sums a
bounded, divergent sequence, prove that it sums an unbounded one too.
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