
�

� �

�

1

1

Analysis of Current Practices in Reliability Prediction
Lev M. Klyatis

1.1 Overview of Current Situation in Methodological
Aspects of Reliability Prediction

Because the problem of reliability prediction is so important there are many
publications in the area of the methods of reliability prediction, mostly in the
area of electronics. This is especially important when the reliability prediction
is necessary to provide a high degree of effectiveness for the products.

Most of these traditional methods of reliability prediction utilize failure data
collected from the field to estimate the parameters of the failure time distribu-
tion or degradation process. Using this data one can then estimate the reliability
measures of interest, such as the expected time to failure or quantity/quality
of degradation during a specified time interval and the mean time to failure
(or degradation).

Reliability prediction models that utilize accelerated degradation data, rather
than those models that utilize degradation data obtained under normal condi-
tions, are often performed because the degradation process is very slow under
normal field conditions and prediction modeling based on normal conditions
would require excessive time.

One example of such practices is the procedure used by Bellcore for both
hardware and software. O’Connor and Kleyner [1] provide a broad description
of a reliability prediction method that emphasizes reliability prediction consist-
ing of outputs from the reliability prediction procedure:

• steady-state failure rate;
• first year multiplier;
• failure rate curve;
• software failure rate.

The output from the reliability prediction procedure is various estimates
of how often failure occurs. With hardware, the estimates of interest are the
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steady-state failure rate, the first year multiplier, and the failure rate curve. The
steady-state failure rate is a measure of how often units fail after they are more
than 1 year old. The steady-state failure rate is measured in FIT (failures per 109

h of operation). A failure rate of 5000 FIT means that about 4% of the units that
are over a year old will fail during following one year periods. The first year mul-
tiplier is the ratio of the failure rate in the first year to that in subsequent years.
Using these, one generates a failure rate curve that provides the failure rate as a
function of the age (volume of work) of the equipment. For software, one needs
to know how often the system fails in the field as a result of faults in the software.

The Bellcore hardware reliability prediction is primarily designed for elec-
tronic equipment. It provides predictions at the device level, the unit level, and
for simple serial systems, but it is primarily aimed at units, where units are con-
sidered nonrepairable assemblies or plug-ins. The goal is to provide the user
with information on how often units will fail and will need to be replaced.

The software prediction procedure estimates software failure intensity and
applies to systems and modules.

There are many uses for reliability prediction information. One such example
is, it can be used as inputs to life-cycle cost or profit studies. Life-cycle cost
studies determine the cost of a product over its entire life. Required data include
how often a unit will have to be replaced. Inputs to this process include the
steady-state failure rate and the first year multiplier.

The Bellcore reliability prediction procedure consists of three methods [1]:
1. Parts count. These predictions are based solely by adding together the

failure rates for all the devices. This is the most commonly used method,
because laboratory and field information that is needed for the other meth-
ods is usually not available.

2. Incorporating laboratory information. Device or unit level predictions are
obtained by combining data from a laboratory test with the data from the
parts count method. This allows suppliers to use their data to produce pre-
dictions of failure rates, and it is particularly suited for new devices for
which little field data are available.

3. Incorporating field information. This method allows suppliers to combine
field performance data with data from the parts count method to obtain
reliability predictions.

Mechanical reliability prediction [2] uses various stress factors under
operating conditions as a key to reliability prediction for different devices. This
situation is more common in testing mechanical devices, such as bearings,
compressors, pumps, and so on than with electronic hardware.

Although, the number of factors that appear to be needed in reliability testing
calculations may appear excessive, tailoring methods can be used to remove
factors that have little or no influence, or for which limited data are available.
Generally, the problems encountered in attempting to predict the reliability of
mechanical systems are the lack of:
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• specific or generic failure rate data;
• information on the predominant failure modes;
• information on the factors influencing the reliability of the mechanical

components.

The mechanical reliability prediction approach can be useful if there is a close
connection with the source of information for calculation reliability during the
desired time, whether that be warranty period, service life, or other defined
period. Obtaining accurate initial information is a critical factor in prediction
testing.

Unfortunately, the approaches described earlier, and other prediction meth-
ods, provide little guidance on how one can obtain accurate initial information
that simulates real product reliability over time or amount of use (volume of
work, or duty cycle). Without accurate simulation information, its usefulness
is minimal.

Proper understanding of the role of testing and the requirement to do this
testing before the production and use of a product is critical and can easily
lead to poor product reliability prediction that will negatively impact financial
performance.

Prediction is only useful if it reduces early product degradation and prevents
premature failures of the product.

There are many recent publications addressing electronics, automotive, and
other product recalls. While they usually address reliability failures in terms
of safety matters that affect peoples lives by contributing to deaths or injuries,
they may also consider economic impacts.

As was mentioned previously, such reliability and other problems are results,
not causes. The actual causes of these recalls, and many other technical and
economic problems, were a direct result of the inefficient or inadequate pre-
diction of product reliability during the design, and prior to, the manufacturing
process.

In the end, it is poorly executed prediction that negatively impacts the orga-
nizations financial performance.

Therefore, while many popular and commonly used approaches appear to be
theoretically interesting, in the end they do not successfully predict reliability
for the product in real-world applications.

Consider the consequences of the recalls of Takata automobile air bag
inflators [3]:

So far, about 12.5 million suspect Takata inflators have been fixed of the
roughly 65 million inflators (in 42 million vehicles) that will ultimately
be affected by this recall, which spans 19 automakers. Carmakers and
federal officials organizing the response to this huge recall insist that
the supply chain is churning out replacement parts, most of which are
coming from companies other than Takata. For those who are waiting,
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NHTSA advises that people not disable the airbags; the exceptions are
the 2001–2003 Honda and Acura models that we listed on this page on
June 30, 2016—vehicles which NHTSA is telling people to drive only to
a dealer to get fixed.
Meanwhile, a settlement stemming from a federal probe into criminal
wrongdoing by Takata is expected early next year—perhaps as soon as
January—and could approach $1 billion.

A key to preventing these situations is the use of advanced test methods and
equipment; that is, accelerated reliability testing (ART) and accelerated durabil-
ity testing (ADT). Implementation of these systematic procedures greatly helps
in assuring successful prediction of industrial product reliability.

It is also true that advances in technology generally result in more compli-
cated products and increased economic development costs. Such advances
require even more attention to accurately predict product reliability.

When performed successfully, prediction is beneficial to all stages of the
product life cycle: start-up, production and manufacturing, warranty, and
long-term aftermarket support. It touches the lives of all concerned (designers,
suppliers, manufacturers, customers), and often even uninvolved third parties
who may be affected by the product’s failure. It also provides the mechanism for
product improvement at any time from the earliest stages of R&D throughout
the entire product life cycle.

Currently there are many other publications mostly related to the theoreti-
cal aspects of reliability prediction. Many of primarily relate to failure analysis.
Some popular failure analysis methods and tools include:

• Failure Reporting, Analysis, and Corrective Action System (FRACAS);
• Failure Mode, Effects and Critical Analysis (FMECA);
• Failure Mode and Effects Analysis (FMEA);
• Fault Tree Analysis (FTA).

FavoWeb is Advanced Logistic Developments’ (ADL’s) third-generation,
web-based and user-configurable FRACAS that captures information about
equipment or the processes throughout its life cycle, from design, through to
production, testing, and customer support.

FavoWeb has been adopted by world-class organizations who, for the first
time ever, implement a FRACAS application that seamlessly communicates
with any given enterprise resource planning (ERP) system (SAP, ORACLE,
MFGpro, etc.), while proving a user-friendly and flexible, yet robust, failure
management, analysis, and corrective action platform.

The FavoWeb FRACAS features include:

• full web-base application;
• user permission mechanism—complies with International Traffic in Arms

Regulations requirements;
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• flexible, user configurable application;
• seamless communication with ERP/product data management/Excel/Access

and other legacy systems;
• web services infrastructure;
• failure/event chaining and routing;
• compatible with PDAs;
• voice-enabled failure reporting;
• advanced query engine for user-defined reports.

It also allows the user to decompose the system or process into components
or subprocesses. And, for each functional block, it allows the user to define
name and function, and enter failure mode causes and effects manually or from
libraries. The “Process & Design FMEA” module provides full graphical and
textual visibility of the potential failure mode → cause → effects chain.

1.1.1 What is a Potential Failure Mode?

Potential failure mode is any manner in which a component, subsystem, or sys-
tem could potentially fail to meet the design intent. The potential failure mode
could also be the cause of a potential failure mode in a higher level subsystem
or system, or be the effect of a potential failure.

Reliability in statistics and psychometrics is the overall consistency of a mea-
sure. A measure is said to have a high reliability if it produces similar results
under consistent conditions [4]:

It is the characteristic of a set of test scores that relates to the amount of
random error from the measurement process that might be embedded in
the scores. Scores that are highly reliable are accurate, reproducible, and
consistent from one testing occasion to another. That is, if the testing
process were repeated with a group of test takers, essentially the same
results would be obtained. Various kinds of reliability coefficients, with
values ranging between 0.00 (much error) and 1.00 (no error), are usually
used to indicate the amount of error in the scores.

For example, measurements of people’s height and weight are often extremely
reliable [4, 5].

There are several general classes of reliability estimates:

• Inter-rater reliability assesses the degree of agreement between two or more
raters in their appraisals.

• Test–retest reliability assesses the degree to which test scores are consistent
from one test administration to the next. Measurements are gathered from a
single rater who uses the same methods or instruments and the same testing
conditions [6]. This includes intra-rater reliability.
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• Inter-method reliability assesses the degree to which test scores are consis-
tent when there is a variation in the methods or instruments used. This allows
inter-rater reliability to be ruled out. When dealing with forms, it may be
termed parallel-forms reliability [6].

• Internal consistency reliability, assesses the consistency of results across
items within a test [6].

A test that is not perfectly reliable cannot be perfectly valid, either as a means
of measuring attributes of a person or as a means of predicting scores on a
criterion. While a reliable test may provide useful valid information, a test that
is not reliable cannot be valid [7].

1.1.2 General Model

Recognizing that, in practice, testing measures are never perfectly consistent,
theories of statistical test reliability have been developed to estimate the effects
of inconsistency on the accuracy of measurement. The starting point for almost
all theories of test reliability is the concept that test scores reflect the influence
of two types of factors [7]:

1. Factors that contribute to consistency—stable characteristics of the individ-
ual or the attribute that one is trying to measure.

2. Factors that contribute to inconsistency—features of the individual or the
situation that can affect test scores but have nothing to do with the attribute
being measured.

These factors include [7]:

• Temporary, but general, characteristics of the individual—health, fatigue,
motivation, emotional strain;

• Temporary and specific characteristics of the individual—comprehension of
the specific test task, specific tricks or techniques of dealing with the partic-
ular test materials, fluctuations of memory, attention or accuracy;

• Aspects of the testing situation—freedom from distractions, clarity of
instructions, interaction of personality, sex, or race of examiner;

• Chance factors—luck in selection of answers by sheer guessing, momentary
distractions.

1.1.3 Classical Test Theory

The goal of reliability theory is to estimate errors in measurement and to suggest
ways of improving tests so that these errors are minimized. The central assump-
tion of reliability theory is that measurement errors are essentially random. This
does not mean that errors arise from random processes. For any individual, an
error in measurement is not a completely random event. However, across a
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large number of individuals, the causes of measurement error are assumed to
be so varied that measure errors act as random variables. If errors have the
essential characteristics of random variables, then it is reasonable to assume
that errors are equally likely to be positive or negative, and that they are not
correlated with true scores or with errors on other tests.

𝜌xx′ =
𝜎2

T

𝜎2
X
= 1 −

𝜎2
E

𝜎2
X

Unfortunately, there is no way to directly observe or calculate the true
score, so a variety of methods are used to estimate the reliability of a test.
Some examples of the methods used to estimate reliability include test–retest
reliability, internal consistency reliability, and parallel-test reliability. Each
method approaches the problem of accounting for the source of error in the
test somewhat differently.

1.1.4 Estimation

The goal of estimating reliability is to determine how much of the variability in
test scores is due to errors in measurement and how much is due to variability
in true scores. There are several strategies, including [7]:

1. Test–retest reliability method. Directly assesses the degree to which test
scores are consistent from one test administration to the next. It involves:
• administering a test to a group of individuals;
• readministering the same test to the same group at some later time; and
• correlating the first set of scores with the second.
The correlation between scores on the first test and the scores on the
retest is used to estimate the reliability of the test using the Pearson
product-moment correlation coefficient; see also item-total correlation in
Ref. [7].

2. Parallel-forms method. The key to this method is the development of
alternate test forms that are equivalent in terms of content, response
processes and statistical characteristics. For example, alternate forms exist
for several tests of general intelligence, and these tests are generally seen as
equivalent [7].

With the parallel test model it is possible to develop two forms of a test that
are equivalent, in the sense that a person’s true score on form A would be iden-
tical to their true score on form B. If both forms of the test were administered
to a number of people, differences between scores on form A and form B may
be due to errors in measurement only [7].

This method treats the two halves of a measure as alternate forms. It pro-
vides a simple solution to the problem that the parallel-forms method faces:
the difficulty in developing alternate forms [7]. It involves:
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• administering a test to a group of individuals;
• splitting the test in half;
• correlating scores on one half of the test with scores on the other half of the

test.

There are many situations in which one needs to make a prediction about a
product’s performance before the product is in production. This means predic-
tion is needed prior to production or warranty data being available for analy-
sis. Many companies have product development programs that require design
engineers to produce designs that will meet a certain reliability goal before the
project is permitted to move on to the following phases (building prototypes,
pre-manufacturing, and full manufacturing). This is to avoid committing the
business to investing significant resources to a product with unproven relia-
bility before leaving the design stage. This is especially difficult because a new
design can involve components or subsystems that have no previous testing,
and have no history of being used in the field by customers. Often, they encom-
pass totally new items and not redesigned components or subsystems of exist-
ing components which would have prior histories [7].

In other cases, companies that may not have the capabilities, resources, or
time to test certain (noncrucial) components/subsystems of a system, but still
need to use some estimates of the failure rate of those components to complete
their system reliability analysis.

Lastly, manufacturers are often required to submit reliability predictions usu-
ally based on a specific prediction standard with their bid or proposal for a
project.

As was written in Ref. [7], the following are a few advantages and disadvan-
tages related to standards based reliability prediction.

The advantages of using standards-based reliability prediction are:

• They can help to complete the system reliability block diagrams (RBDs) or
FTAs when data for certain components/subsystems within the system are
not available.

• It is sometimes accepted and/or required by government and/or industry
contracts for bidding purposes.

The disadvantages of using standards-based reliability prediction are:

• Reliance on standards that may not reflect the products actual performance.
• Although standards-based reliability prediction addresses prediction under

different usage levels and environmental conditions, these conditions may
not accurately reflect the products actual application.

• Some of the standards are old and have not been updated to reflect the latest
advances in technologies.

• The result from such predictions is a constant failure rate estimation that
can only be used within the context of an exponential reliability model
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(i.e., no wearouts, no early failures). This is not necessarily accurate for
all components, and certainly not for most mechanical components. In
addition, certain aspects of reliability analysis, such as preventive mainte-
nance analysis and burn-in analysis, cannot be performed on components/
subsystems that follow the exponential distribution.

So, the basic negative aspect of this approach of reliability prediction is that it
is not reflective of the product’s actual performance. Therefore, reliability pre-
diction results may be very different from field results, and, as a final result, the
reliability prediction will be unsuccessful.

1.1.5 Reliability Prediction for Mean Time Between Failures

Reliability prediction tools such as the ITEM ToolKit are essential when the
reliability of electronic and mechanical components, systems, and projects is
critical for life safety. Certain products and systems developed for commercial,
military, or other applications often need absolute ensured reliability and con-
sistent performance. However, electronics and mechanical products, systems,
and components are naturally prone to eventual breakdown owing to any num-
ber of environmental variables, such as heat, stress, moisture, and moving parts.
The main question is not if there will be failures, but “When?”

Reliability is a measure of the frequency of failures over time [7].

1.1.6 About Reliability Software

The reliability software modules of the ITEM ToolKit [7] provide a user-friendly
interface that allows one to construct, analyze, and display system models using
the module’s interactive facilities. Building hierarchies and adding new compo-
nents could not be easier. ToolKit calculates the failure rates, including mean
time between failures (MTBFs), associated with new components as they are
added to the system, along with the overall system failure rate. Project data may
be viewed via grid view and dialog view simultaneously, allowing predictions to
be performed with a minimum of effort.

Each reliability prediction module is designed to analyze and calculate
component, subsystem, and system failure rates in accordance with the appro-
priate standard. After the analysis is complete, ITEM ToolKit’s integrated
environment comes into its own with powerful conversion facilities to transfer
data to other reliability software modules. For example, you can transfer your
MIL-217 project data to FMECA or your Bellcore project to RBD. These
powerful features transfer as much of the available information as possible,
saving valuable time and effort [7].

The following is an interesting statement from ReliaSoft’s analysis of the cur-
rent situation in reliability prediction [8]:
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To obtain high product reliability, consideration of reliability issues
should be integrated from the very beginning of the design phase. This
leads to the concept of reliability prediction. The objective of reliability
prediction is not limited to predicting whether reliability goals, such as
MTBF, can be reached. It can also be used for:

• Identifying potential design weaknesses
• Evaluating the feasibility of a design
• Comparing different designs and life-cycle costs
• Providing models statement from system reliability/availability

analysis
• Aiding in business decisions such as budget allocation and scheduling

Once the product’s prototype is available, lab tests can be utilized to
obtain reliability predictions. Accurate prediction of the reliability of
electronic products requires knowledge of the components, the design,
the manufacturing process and the expected operating conditions.
Several different approaches have been developed to achieve reliability
prediction of electronic systems and components. Each approach has
its advantages and disadvantages. Among these approaches, three main
categories are often used within government and industry:

• empirical (standard bases);
• physics of failure, and;
• life testing.

The following provides an overview of all three approaches [8].

1.1.6.1 MIL-HDBK-217 Predictive Method
MIL-HDBK-217 is very well known in military and commercial industries. Ver-
sion MIL-HDBK-217F was released in 1991 and had two revisions.

The MIL-HDBK-217 predictive method consists of two parts: one is known
as the parts count method and the other is called the part stress method [8]. The
parts count method assumes typical operating conditions of part complexity,
ambient temperature, various electrical stresses, operation mode, and environ-
ment (called reference conditions). The failure rate for a part under the reference
conditions is calculated as

𝜆b,i =
n∑

i=1
(𝜆ref)i

where 𝜆ref is the failure rate under the reference conditions and i is the number
of parts.

Since the parts may not operate under the reference conditions, the real oper-
ating conditions may result in failure rates different than those given by the
“parts count” method. Therefore, the part stress method requires the specific
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part’s complexity, application stresses, environmental factors, and so on. These
adjustments are called Pi factors. For example, MIL-HDBK-217 provides many
environmental conditions, expressed as 𝜋E, ranging from “ground benign” to
“cannon launch.” The standard also provides multilevel quality specifications
that are expressed as 𝜋Q. The failure rate for parts under specific operating
conditions can be calculated as

𝜆 =
n∑

i=1
(𝜆ref,i × 𝜋S × 𝜋T × 𝜋E × 𝜋Q × 𝜋A)

where 𝜋S is the stress factor, 𝜋T is the temperature factor, 𝜋E is the environment
factor, 𝜋Q is the quality factor, and 𝜋A is the adjustment factor.

1.1.6.2 Bellcore/Telcordia Predictive Method
Bellcore was a telecommunication research and development company that
provided joint R&D and standards setting for AT&T and its co-owners. Bell-
core was not satisfied with the military handbook methods for application with
their commercial products, so Bellcore designed its own reliability prediction
standard for commercial telecommunication products. Later, the company was
acquired by Science Applications International Corporation (SAIC) and the
company’s name was changed to Telcordia. Telcordia continues to revise and
update the Bellcore standard. Presently, there are two updates: SR-332 Issue 2
(September 2006) and SR-332 Issue 3 (January 2011), both titled “Reliability
prediction procedure for electronic equipment.”

The Bellcore/Telcordia standard assumes a serial model for electronic parts
and it addresses failure rates at both the infant mortality stage and at the
steady-state stages utilizing Methods I, II, and III. Method I is similar to the
MIL-HDBK-217F parts count and part stress methods, providing the generic
failure rates and three part stress factors: device quality factor 𝜋Q, electrical
stress factor 𝜋S, and temperature stress factor 𝜋T. Method II is based on
combining Method I predictions with data from laboratory tests performed in
accordance with specific SR-332 criteria. Method III is a statistical prediction
of failure rate based on field tracking data collected in accordance with specific
SR-332 criteria. In Method III, the predicted failure rate is a weighted average
of the generic steady-state failure rate and the field failure rate.

1.1.6.3 Discussion of Empirical Methods
Although empirical prediction standards have been used for many years, it is
wise to use them with caution. The advantages and disadvantages of empiri-
cal methods have been discussed, and a brief summary from publications in
industry, military, and academia is presented next [8].

Advantages of empirical methods:

1. Easy to use, and a lot of component models exist.
2. Relatively good performance as indicators of inherent reliability.
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Disadvantages of empirical methods:

1. Much of the data used by the traditional models is out of date.
2. Failure of the components is not always due to component-intrinsic mech-

anisms, but can be caused by the system design.
3. The reliability prediction models are based on industry-average values of

failure rate, which are neither vendor specific nor device specific.
4. It is hard to collect good-quality field and manufacturing data, which

are needed to define the adjustment factors, such as the Pi factors in
MIL-HDBK-217.

1.1.7 Physics of Failure Methods

In contrast to empirical reliability prediction methods that are based on the sta-
tistical analysis of historical failure data, a physics of failure approach is based
on the understanding of the failure mechanism and applying the physics of fail-
ure model to the data. Several popularly used models are discussed next.

1.1.7.1 Arrhenius’s Law
One of the earliest acceleration models predicts how the time to failure of a
system varies with temperature. This empirically based model is known as
the Arrhenius equation. Generally, chemical reactions can be accelerated by
increasing the system temperature. Since it is a chemical process, the aging of
a capacitor (such as an electrolytic capacitor) is accelerated by increasing the
operating temperature. The model takes the following form:

L(T) = A exp
( Ea

kT

)

where L(T) is the life characteristic related to temperature, A is a scaling
factor, Ea is the activation energy, k is the Boltzmann constant, and T is the
temperature.

1.1.7.2 Eyring and Other Models
While the Arrhenius model emphasizes the dependency of reactions on tem-
perature, the Eyring model is commonly used for demonstrating the depen-
dency of reactions on stress factors other than temperature, such as mechanical
stress, humidity, or voltage. The standard equation for the Eyring model [8] is
as follows:

L(T , S) = AT𝛼 exp
[ Ea

kT
+
(

B + C
T

)
S
]

where L(T ,S) is the life characteristic related to temperature and another stress,
A, 𝛼, B, and C are constants, S is a stress factor other than temperature, and T
is absolute temperature.
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According to different physics of failure mechanisms, one more factor (i.e.,
stress) can be either removed or added to the standard Eyring model. Several
models are similar to the standard Eyring model.

Electronic devices with aluminum or aluminum alloy with small percentages
of copper and silicon metallization are subject to corrosion failures and there-
fore can be described with the following model [8]:

L(RH,V ,T) = B0 exp[(−a)RH] f (V ) exp
( Ea

kT

)

where B0 is an arbitrary scale factor, 𝛼 is equal to 0.1 to 0.15 per %RH, and f (V )
is an unknown function of applied voltage, with an empirical value of 0.12–0.15.

1.1.7.3 Hot Carrier Injection Model
Hot carrier injection describes the phenomena observed in metal–oxide–
semiconductor field-effect transistors (MOSFETs) by which the carrier gains
sufficient energy to be injected into the gate oxide, generate interface or bulk
oxide defects, and degrade MOSFET characteristics such as threshold voltage,
transconductance, and so on [8].

For n-channel devices, the model is given by

L(I,T) = B(Isub)−N exp
( Ea

kT

)

where B is an arbitrary scale factor, Isub is the peak substrate current during
stressing, N is equal to a value from 2 to 4 (typically 3), and Ea is equal to −0.1
to −0.2 eV.

For p-channel devices, the model is given by:

L(I,T) = B(Igate)−M exp
( Ea

kT

)

where B is an arbitrary scale factor, Igate is the peak gate current during stressing,
M is equal to a value from 2 to 4, and Ea is equal to −0.1 to −0.2 eV.

ReliaSoft’s “Reliability prediction methods for electronic products” [8] states:

Since electronic products usually have a long time period of useful life
(i.e., the constant line of the bathtub curve) and can often be modeled
using an exponential distribution, the life characteristics in the above
physics of failure models can be replaced by MTBF (i.e., the life char-
acteristic in the exponential distribution). However, if you think your
products do not exhibit a constant failure rate and therefore cannot be
described by an exponential distribution, the life characteristic usually
will not be the MTBF. For example, for the Weibull distribution, the life
characteristic is the scale parameter eta and for the lognormal distribu-
tion, it is the log mean.
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1.1.7.4 Black Model for Electromigration
Electromigration is a failure mechanism that results from the transfer of
momentum from the electrons, which move in the applied electric field, to
the ions, which make up the lattice of the interconnect material. The most
common failure mode is “conductor open.” With the decreased structure
of integrated circuits (ICs), the increased current density makes this failure
mechanism very important in IC reliability.

At the end of the 1960s, J. R. Black developed an empirical model to estimate
the mean time to failure (MTTF) of a wire, taking electromigration into con-
sideration, which is now generally known as the Black model. The Black model
employs external heating and increased current density and is given by

MTTF = A0(J − Jthreshold)−N exp
( Ea

kT

)

where A0 is a constant based on the cross-sectional area of the interconnect, J is
the current density, J threshold is the threshold current density, Ea is the activation
energy, k is the Boltzmann constant, T is the temperature, and N is a scaling
factor.

The current density J and temperature T are factors in the design process that
affect electromigration. Numerous experiments with different stress conditions
have been reported in the literature, where the values have been reported in the
range between 2 and 3.3 for N , and 0.5 to 1.1 eV for Ea. Usually, the lower the
values, the more conservative the estimation.

1.1.7.5 Discussion of Physics of Failure Methods
A given electronic component will have multiple failure modes, and the com-
ponent’s failure rate is equal to the sum of the failure rates of all modes (i.e.,
humidity, voltage, temperature, thermal cycling, and so on). The authors of this
method propose that the system’s failure rate is equal to the sum of the fail-
ure rates of the components involved. In using the aforementioned models, the
model parameters can be determined from the design specifications or operat-
ing conditions. If the parameters cannot be determined without conducting a
test, the failure data obtained from the test can be used to get the model param-
eters. Software products such as ReliaSoft’s ALTA can help analyze the failure
data; for example, to analyze the Arrhenius model. For this example, the life
of an electronic component is considered to be affected by temperature. The
component is tested under temperatures of 406, 416, and 426 K. The usage tem-
perature level is 400 K. The Arrhenius model and the Weibull distribution are
used to analyze the failure data in ALTA.

Advantages of physics of failure methods:

1. Modeling of potential failure mechanisms based on the physics of failure.
2. During the design process, the variability of each design parameter can be

determined.
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Disadvantages of physics of failure methods:

1. The testing conditions do not accurately simulate the field conditions.
2. There is a need for detailed component manufacturing information, such as

material, process, and design data.
3. Analysis is complex and could be costly to apply.
4. It is difficult (almost impossible) to assess the entire system.

Owing to these limitations, this is not generally a practical methodology.

1.1.8 Life Testing Method

As mentioned earlier, time-to-failure data from life testing may be incorpo-
rated into some of the empirical prediction standards (i.e., Bellcore/Telcordia
Method II) and may also be necessary to estimate the parameters for some
of the physics of failure models. But the term life testing method should refer
specifically to a third type of approach for predicting the reliability of electronic
products. With this method, a test is conducted on a sufficiently large sample of
units operating under normal usage conditions. Times to failure are recorded
and then analyzed with an appropriate statistical distribution in order to esti-
mate reliability metrics such as the B10 life. This type of analysis is often referred
to as life data analysis or Weibull analysis.

ReliaSoft’s Weibull++ software is a tool for conducting life data analysis. As
an example, suppose that an IC board is tested in the lab and the failure data are
recorded. But failure data during long period of use cannot obtained, because
accelerated life testing (ALT) methods are not based on accurate simulation of
the field conditions.

1.1.8.1 Conclusions
In the ReliaSoft article [8], three approaches for electronic reliability predic-
tion were discussed. The empirical (or standards based) method, which is close
to the theoretical approach in practical usage, can be used in the pre-design
stage to quickly obtain a rough estimation of product reliability. The physics
of failure and life testing methods can be used in both design and production
stages. When using the physics of failure approach, the model parameters can
be determined from design specifications or from test data. But when employ-
ing the life testing method, since the failure data, the prediction results usually
are not more accurate than those from a general standard model.

For these reasons, the traditional approaches to reliability prediction are
often unsuccessful when used in industrial applications.

And one more important reason is these approaches are not closely con-
nected with the system of obtaining accurate initial information for calculating
reliability prediction during any period of use.
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Some of the topics covered in the ANSI/VITA 51.2 standard [9] include
reliability mathematics, organization and analysis of data, reliability modeling,
and system reliability evaluation techniques. Environmental factors and
stresses are taken into account in computing the reliability of the components
involved. The limitations of models, methods, procedures, algorithms, and
programs are outlined. The treatment of maintained systems is designed to aid
workers in analyzing systems with more realistic assumptions. FTA, including
the most recent developments, is also extensively discussed. Examples and
illustrations are included to assist the reader in solving problems in their
own area of practice. These chapters provide a guided presentation of the
subject matter, addressing both the difficulties expected for the beginner, while
addressing the needs of the more experienced reader.

Failures have been a problem since the very first computer. Components
burned out, circuits shorted or opened, solder joints failed, pins were bent,
and metals reacted unfavorably when joined. These and countless other failure
mechanisms have plagued the computer industry from the very first circuits
to today.

As a result, computer manufacturers realize that reliability predictions are
very important to the management of their product’s profitability and life cycle.
They employ these predictions for a variety of reasons, including those detailed
in ANSI/VITA 51.2 [9]:

• Helping to assess the effect of product reliability on the maintenance activity
and quantity of spare units required for acceptable field performance of any
particular system. Reliability prediction can be used to establish the number
of spares needed and predict the frequency of expected unit level mainte-
nance.

• Reliability prediction reasons.
– Prediction of the reliability of electronic products requires knowledge

of the components, the design, the manufacturing process, and the
expected operating conditions. Once the prototype of a product is
available, tests can be utilized to obtain reliability predictions. Several
different approaches have been developed to predict the reliability of elec-
tronic systems and components. Among these approaches, three main
categories are often used within government and industry: empirical
(standards based), physics of failure, and life testing.

– Empirical prediction methods are based on models developed from sta-
tistical curve fitting of historical failure data, which may have been col-
lected in the field, in-house, or from manufacturers. These methods tend
to present reasonable estimates of reliability for similar or slightly mod-
ified parts. Some parameters in the curve function can be modified by
integrating existing engineering knowledge. The assumption is made that
system or equipment failure causes are inherently linked to components
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whose failures are essentially independent of each other. There are many
different empirical methods that have been created for specific applica-
tions.

– The physics of failure approach is based on the understanding of the
failure mechanism and applying the physics of failure model to the
data. Physics of failure analysis is a methodology of identifying and
characterizing the physical processes and mechanisms that cause failures
in electronic components. Computer models integrating deterministic
formulas from physics and chemistry are the foundation of physics of
failure.

While these traditional approaches provide good theoretical approaches,
they are unable to reflect or account for actual reliability changes that occur
during service life when usage interaction, and the effects of real-world input,
influences the product’s reliability. For these reasons, it also is often not
successful.

1.1.8.2 Failure of the Old Methods
Today, we find that the old methods of predicting reliability in electronics have
begun to fail us. MIL-HDBK-217 has been the cornerstone of reliability pre-
diction for decades. But MIL-HDBK-217 is rapidly becoming irrelevant and
unreliable as we venture into the realm of nanometer geometry semiconduc-
tors and their failure modes. The uncertainty of the future of long established
methods has many in the industry seeking alternative methods.

At the same time, on the component supplier side, semiconductor suppliers
have been able to provide such substantial increases in component reliability
and operational lifetimes that they are slowly beginning to drop MIL-STD-883B
testing, and many have dropped their lines of mil-spec parts. A major rea-
son contributing to this is that instead of focusing on mil-spec parts they have
moved their focus to commercial-grade parts, where the unit volumes are much
higher. In recent times the purchasing power of military markets has dimin-
ished to the point where they no longer have the dominant presence and lever-
age. Instead, system builders took their commercial-grade devices, sent them
out to testing labs, and found that the majority of them would, in fact, oper-
ate reliably at the extended temperature ranges and environmental conditions
required by the mil-spec. In addition, field data gathered over the years has
improved much of the empirical data necessary for complex algorithms for reli-
ability prediction [10–14].

The European Power Supply Manufacturers Association [15] provides engi-
neers, operations managers, and applied statisticians with both qualitative and
quantitative tools for solving a variety of complex, real-world reliability prob-
lems. There is wealth of accompanying examples and case studies [15]:
• Comprehensive coverage of assessment, prediction, and improvement at

each stage of a product’s life cycle.
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• Clear explanations of modeling and analysis for hardware ranging from a
single part to whole systems.

• Thorough coverage of test design and statistical analysis of reliability data.
• A special chapter on software reliability.
• Coverage of effective management of reliability, product support, testing,

pricing, and related topics.
• Lists of sources for technical information, data, and computer programs.
• Hundreds of graphs, charts, and tables, as well as over 500 references.
• PowerPoint slides which are available from the Wiley editorial department.

Gipper [16] provides a comprehensive overview of both qualitative and quan-
titative aspects of reliability. Mathematical and statistical concepts related to
reliability modeling and analysis are presented along with an important bibliog-
raphy and a listing of resources, including journals, reliability standards, other
publications, and databases. The coverage of individual topics is not always
deep, but should provide a valuable reference for engineers or statistical pro-
fessionals working in reliability.

There are many other publications (mostly articles and papers) that relate
to the current situation in the methodological aspects of reliability prediction.
In the Reliability and Maintainability Symposiums Proceedings (RAMS) alone
there have been more than 100 papers published in this area. For example,
RAMS 2012 published six papers. Most of them related to reliability prediction
methods in software design and development.

Both physics-based modeling and simulation and empirical reliability have
been subjects of much interest in computer graphics.

The following provides the basic content of the abstracts of some of the arti-
cles in reliability prediction from the RAMS.

1. Cai et al. [17] present a novel method of field reliability prediction con-
sidering environment variation and product individual dispersion. Wiener
diffusion process with drift was used for degradation modeling, and a
link function which presents degradation rate is introduced to model
the impact of varied environments and individual dispersion. Gamma,
transformed-Gamma (T-Gamma), and the normal distribution with
different parameters are employed to model right-skewed, left-skewed,
and symmetric stress distribution in the study case. Results show obvious
differences in reliability, failure intensity, and failure rate compared with
a constant stress situation and with each other. The authors indicate that
properly modeled (proper distribution type and parameters) environmental
stress is useful for varied environment oriented reliability prediction.

2. Chigurupati et al. [18] explore the predictive abilities of a machine learn-
ing technique to improve upon the ability to predict individual component
times until failure in advance of actual failure. Once failure is predicted, an
impending problem can be fixed before it actually occurs. The developed
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algorithm was able to monitor the health of 14 hardware samples and notify
us of an impending failure providing time to fix the problem before actual
failure occurred.

3. Wang et al. [19] deals with the concept of space radiation environment
reliability for satellites and establishes a model of space radiation environ-
ment reliability prediction, which establishes the relationship among sys-
tem failure rate and space radiation environment failure rate and nonspace
radiation environment failure rate. It provides a method of space radiation
environment reliability prediction from three aspects:
(1) Incorporating the space radiation environment reliability into

traditional reliability prediction methods, such as FIDES and
MIL-HDBK-217.

(2) Summing up the total space radiation environment reliability failure rate
by summing the total hard failure rate and soft failure rate of the inde-
pendent failure rates of SEE, total ionizing dose (TID), and displacement
damage (DD).

(3) Transferring TID/DD effects into equivalent failure rate and considering
single event effects by failure mechanism in the operational conditions
of duty hours within calendar year. A prediction application case study
has been illustrated for a small payload. The models and methods of
space radiation environment reliability prediction are used with ground
test data of TID and single event effects for field programmable gate
arrays.

4. In order to utilize the degradation data from hierarchical structure appro-
priately, Wang et al. first collected and classified feasible degradation data
from a system and subsystems [20]. Second, they introduced the support
vector machine method to model the relationship among hierarchical
degradation data, and then all degradation data from subsystems are
integrated and transformed to the system degradation data. Third, with
this processed information, a prediction method based on Bayesian theory
was proposed, and the hierarchical product’s lifetime was obtained. Finally,
an energy system was taken as an example to explain and verify the method
in this paper; the method is also suitable for other products.

5. Jakob et al. used knowledge about the occurrence of failures and knowledge
of the reliability in different design stages [21]. To show the potential of
this approach, the paper presents an application for an electronic braking
system. In a first step, the approach presented shows investigations of the
physics of failure based on the corresponding acceleration model. With
knowledge of the acceleration factors, the reliability can be determined
for each component of the system for each design stage. If the failure
mechanisms occurring are the same for each design stage, the determined
reliability of earlier design stages could be used as pre-knowledge as well.
For the calculation of the system reliability, the reliability values of all
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system components are brought together. In this paper, the influence
of sample size, stress levels of testing, and test duration on reliability
characteristics are investigated. As already noted, an electronic braking
system served here as the system to be investigated. Accelerated testing was
applied (i.e., testing at elevated stress levels). If pre-knowledge is applied
and the same test duration is observed, this allows for the conclusion
of higher reliability levels. Alternatively, the sample size can be reduced
compared with the determination of the reliability without the usage of
pre-knowledge. It is shown that the approach presented is suitable to
determine the reliability of a complex system such as an electronic braking
system. An important part for the determination of the acceleration factor
(i.e., the ratio of the lifetime under use conditions to the lifetime under test
conditions) is the knowledge of the exact field conditions. Because that is
difficult in many cases, further investigations are deemed necessary.

6. Today’s complex designs, which have intricate interfaces and boundaries,
cannot rely on the MIL-HDBK-217 methods to predict reliability. Kana-
pady and Adib [22] present a superior reliability prediction approach for
design and development of projects that demand high reliability where the
traditional prediction approach has failed to do the job. The reliability of
a solder ball was predicted. Sensitivity analysis, which determines factors
that can mitigate or eliminate the failure mode(s), was performed. Prob-
abilistic analysis, such as the burden capability method, was employed to
assess the probability of failure mode occurrences, which provides a struc-
tured approach to ranking of the failure modes, based on a combination of
their probability of occurrence and severity of their effects.

7. Microelectronics device reliability has been improving with every genera-
tion of technology, whereas the density of the circuits continues to double
approximately every 18 months. Hava et al. [23] studied field data gathered
from a large fleet of mobile communications products that were deployed
over a period of 8 years in order to examine the reliability trend in the
field. They extrapolated the expected failure rate for a series of microproces-
sors and found a significant trend whereby the circuit failure rate increases
approximately half the rate of the technology, going up by approximately√

2 in that same 18-month period.
8. Thaduri et al. [24] studied the introduction, functioning, and importance

of a constant fraction discriminator in the nuclear field. Furthermore, the
reliability and degradation mechanisms that affect the performance of the
output pulse with temperature and dose rates act as input characteristics
was properly explained. Accelerated testing was carried out to define
the life testing of the component with respect to degradation in output
transistor–transistor logic pulse amplitude. Time to failure was to be
properly quantified and modeled accordingly.
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9. Thaduri et al. [25] also discussed several reliability prediction models
for electronic components, and comparison of these methods was also
illustrated. A combined methodology for comparing the cost incurred
for prediction was designed and implemented with an instrumentation
amplifier and a bipolar junction transistor (BJT). By using the physics of
failure approach, the dominant stress parameters were selected on the basis
of a research study and were subjected to both an instrumentation amplifier
and a BJT. The procedure was implemented using the methodology spec-
ified in this paper and modeled the performance parameters accordingly.
From the prescribed failure criteria, the MTTF was calculated for both the
components. Similarly, using the 217Plus reliability prediction book, the
MTTF was also calculated and compared with the prediction using physics
of failure. Then, the costing implications of both the components were
discussed and compared. For critical components like an instrumentation
amplifier, it was concluded that though the initial cost of physics of failure
prediction is too high, the total cost incurred, including the penalty costs,
is lower than that of a traditional reliability prediction method. But for
noncritical components like a BJT, the total cost of physics of failure
approach was too high compared with a traditional approach, and hence
a traditional approach was more efficient. Several other factors were also
compared for both reliability prediction methods.

Much more literature on methodological approaches to reliability prediction
are available.

The purpose of the MIL-HDBK-217F handbook [26] is to establish and main-
tain consistent and uniform methods for estimating the inherent reliability (i.e.,
the reliability of a mature design) of military electronic equipment and sys-
tems. It provides a common basis for reliability predictions during acquisition
programs for military electronic systems and equipment. It also establishes a
common basis for comparing and evaluating reliability predictions of related
or competitive designs.

Another document worthy for discussion is the Telecordia document, Issue
4 of SR-332 [27]. This provides all the tools needed for predicting device and
unit hardware reliability, and contains important revisions to the document.
The Telcordia Reliability Prediction Procedure has a long and distinguished his-
tory of use both within and outside the telecommunications industry. Issue 4 of
SR-332 provides the only hardware reliability prediction procedure developed
from the input and participation of a cross-section of major industrial compa-
nies. This lends the procedure and the predictions derived from it a high level
of credibility free from the bias of any individual supplier or service provider.

Issue 4 of SR-332 contains the following:

• Recommended methods for prediction of device and unit hardware relia-
bility. These techniques estimate the mean failure rate in FITs for electronic
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equipment. This procedure also documents a recommended method for pre-
dicting serial system hardware reliability.

• Tables needed to facilitate the calculation of reliability predictions.
• Revised generic device failure rates, based mainly on new data for many com-

ponents.
• An extended range of complexity for devices, and the addition of new

devices.
• Revised environmental factors based on field data and experience.
• Clarification and guidance on items raised by forum participants and by fre-

quently asked questions from users.

Lu et al. [28] describe an approach to real-time reliability prediction, applica-
ble to an individual product unit operating under dynamic conditions. The con-
cept of conditional reliability estimation is extended to real-time applications
using time-series analysis techniques to bridge the gap between physical mea-
surement and reliability prediction. The model is based on empirical measure-
ments is, self-generating, and applicable to online applications. This approach
has been demonstrated at the prototype level. Physical performance is mea-
sured and forecast across time to estimate reliability. Time-series analysis is
adapted to forecast performance. Exponential smoothing with a linear level and
trend adaptation is applied. This procedure is computationally recursive and
provides short-term, real-time performance forecasts that are linked directly
to conditional reliability estimates. Failure clues must be present in the physical
signals, and failure must be defined in terms of physical measures to accomplish
this linkage. On-line, real-time applications of performance reliability predic-
tion could be useful in operational control as well as predictive maintenance.

Section 8.1 in Chapter 8 of the Engineering Statistics e-Handbook [29]
considers lifetime or repair models. As seen earlier, repairable and nonre-
pairable reliability population models have one or more unknown parameters.
The classical statistical approach considers these parameters as fixed but
unknown constants to be estimated (i.e., “guessed at”) using sample data
taken randomly from the population of interest. A confidence interval for an
unknown parameter is really a frequency statement about the likelihood that
the numbers calculated from a sample capture the true parameter. Strictly
speaking, one cannot make probability statements about the true parameter
since it is fixed, not random. The Bayesian approach, on the other hand,
treats these population model parameters as random, not fixed, quantities.
Before looking at the current data, it uses old information, or even subjective
judgments, to construct a prior distribution model for these parameters.
This model expresses our starting assessment about how likely various values
of the unknown parameters are. We then make use of the current data (via
Bayes’ formula) to revise this starting assessment, deriving what is called the
posterior distribution model for the population model parameters. Parameter
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estimates, along with confidence intervals (known as credibility intervals), are
calculated directly from the posterior distribution. Credibility intervals are
legitimate probability statements about the unknown parameters, since these
parameters now are considered random, not fixed.

Unfortunately, it is unlikely in most applications that data will ever exist to
validate a chosen prior distribution model. But parametric Bayesian prior mod-
els are often chosen because of their flexibility and mathematical convenience.
In particular, conjugate priors are a natural and popular choice of Bayesian prior
distribution models.

1.1.9 Section Summary

1. Section 1.1 concludes that most of the approaches considered are difficult
to use successfully in practice.

2. The basic cause for this is a lack of close connection to the source, which is
necessary for obtaining accurate initial information that is needed for cal-
culating changing reliability parameters during the product’s life cycle.

3. Three basic methods of reliability prediction were discussed:
• Empirical reliability prediction methods that are based on the statisti-

cal analysis of historical failure data models, developed from statistical
curves. These methods are not considered accurate simulations of field
situations and are an obstacle to obtaining accurate initial information
for calculating the dynamics of changing failure (degradation) parame-
ters during a product or technology service life.

• Physics of failure approach, which is based on the understanding of the
failure mechanism and applying the physics of failure model to the data.
However, one cannot obtain data for service life during the design and
manufacturing stages of a new model of product/technology. Accurate
initial information from the field during service life is not available during
these stages of development.

• Laboratory-based or proving ground based life testing reliability predic-
tion, which uses ALT in the laboratory but does not accurately simulate
changing parameters encountered in the field during service life of the
product/technology.

4. Recalls, complaints, injuries and deaths, and significant costs are direct
results of these prediction failures.

5. Real products rarely exhibit a constant failure rate and, therefore, cannot be
accurately described by exponential, lognormal, or other theoretical distri-
butions. Real-life failure rates are mostly random.

6. Reliability prediction is often considered as a separate issue, but, in
real life, reliability prediction is an essential interacted element of a
product/technology performance prediction [30].
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Analysis demonstrates that the current status of product/technology
methodological aspects of reliability prediction for industries such as
electronic, automotive, aircraft, aerospace, off-highway, farm machinery, and
others is not very successful. The basic cause is the difficulty of obtaining
accurate initial information for specific product prediction calculations during
the real-world use of the product.

Accurate prediction requires information similar to that experienced in the
real world.

There are many publications on the methodological aspects of reliability pre-
diction that commonly have similar problems; for example, see Refs [31–40].

1.2 Current Situation in Practical Reliability Prediction

There are far fewer publications that relate to the practical aspects of reliability
prediction. Sometimes authors call their publications by some name indicating
practical reliability prediction, but the approaches they present are not gener-
ally useful in a practical way.

The electronics community is comprised of representatives from electron-
ics suppliers, system integrators, and the Department of Defense (DoD). The
majority of the reliability work is driven by the user community that depends
heavily on solid reliability data. BAE Systems, Bechtel, Boeing, General Dynam-
ics, Harris, Lockheed Martin, Honeywell, Northrop Grumman, and Raytheon
are some of the better known demand-side contributors to the work done by the
reliability community. These members have developed consensus documents
to define electronics failure rate prediction methodologies and standards. Their
efforts have produced a series of documents that have been ANSI and VITA
ratified. In some cases, these standards provide adjustment factors to existing
standards.

The reliability community addresses some of the limitations of traditional
prediction practices with a series of subsidiary specifications that contain “best
practices” within the industry for performing electronics failure rate predic-
tions. The members recognize that there are many industry reliability methods,
each with a custodian and a methodology of acceptable practices, to calculate
electronics failure rate predictions. If additional standards are required, for use
by electronics module suppliers, a new subsidiary specification will be consid-
ered by the working group.

ANSI/VITA 51.3 Qualification and Environmental Stress Screening in Sup-
port of Reliability Predictions provides information on how qualification levels
and environmental stress screening may be used to influence reliability.

Although they sometimes call what are essentially empirical prediction meth-
ods “practical methods”, these approaches do not provide accurate and success-
ful prediction during the product’s service life. Let us briefly review these and
some other relevant publications.
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David Nicholls provides an overview in this area [41]:

• For more than 25 years, there has been a passionate dialog throughout the
reliability engineering community as to the appropriate use of empirical and
physics-based reliability models and their associated benefits, limitations,
and risks.

• Over its history, the Reliability Information Analysis Center has been inti-
mately involved in this debate. It has developed models for MIL-HDBK-217,
as well as alternative empirically based methodologies such as 217Plus. It
has published books related to physics-of-failure modeling approaches and
developed the Web-Accessible Repository for Physics-based Models to sup-
port the use of physics-of-failure approaches. In DoD-sponsored documents
it also had published ideal attributes to identify future reliability predicting
methods.

• Empirical predicting methods, particularly those based on field data, pro-
vide average failure rates based on the complexities of actual environmental
and operational stresses. Generally, they should be used only in the absence
of actual relevant comparison data. They are frequently criticized, however,
for being grossly inaccurate in prediction of actual field failure rates, and for
being used and accepted primarily for verification of contractual reliability
requirements.

• What should your response be (if protocol allows) if you are prohibited from
using one prediction approach over another because it is claimed that, his-
torically, those prediction methods are “inaccurate,” or they are deemed too
labor intensive/cost ineffective to perform based on past experience?

• Note that the terms “predicting,” “assessment,” and “estimation” are not
always distinguishable in the literature.

• A significant mistake typically made in comparing actual field reliability data
with the original prediction is that the connection is lost between the root
failure causes experienced in the field and the intended purpose/coverage
of the reliability prediction approach. For example, MIL-HDBK-217
addresses only electronic and electromechanical components. Field failures
whose root failure cause is traced to mechanical components, software,
manufacturing deficiencies, and so on, should not be scored against a
MIL-HDBK-217 prediction.

• Data that form the basis for either an empirical or physics-based pre-
diction has various factors that will influence any uncertainty in the
assessments made using the data. One of the most important factors is
relevancy. Relevancy is defined as the similarity between the predicted
and fielded product/system architectures, complexities, technologies, and
environmental/operational stresses.

• Empirical reliability prediction models based on field data inherently
address all of the failure mechanisms associated with reliability in the
field, either explicitly (e.g., factors based on temperature) or implicitly
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(generic environmental factors that “cover” all of the failure mechanisms not
addressed explicitly). They do not, however, assess or consider the impact of
these various mechanisms on specific failure modes, nor do they (generally)
consider “end-of-life” issues.

• The additional insight required to ensure an objective interpretation of
results for physics-based prediction includes:
– What failure mechanisms/modes of interest are addressed by the predict-

ing?
– What are the reliability or safety risks associated with the failure mecha-

nisms/modes not addressed by the prediction?
– Does the prediction consider interactions between failure mechanisms

(e.g., combined maximum vibration level and minimum temperature
level).

As a result of the overview, Nicholls concluded:

1. As the reader may have noticed, there was one question brought up in
the paper that was never addressed: “How can one ensure that predic-
tion results will not be misinterpreted or misapplied, even though all
assumptions and rationale have been meticulously documented and clearly
stated?”

2. Unfortunately, the answer is: “You can’t.” Regardless of the care taken
to ensure a technically valid and supportable analysis, empirical and
physics-based predicting will always need to be justified as to why the
predicted reliability does not reflect the measured reliability in the field.

From the aforementioned information we can conclude that current predic-
tion methods in engineering are primarily related to computer science, and
even there they are not entirely successful. Given this fact, how much less is
known about prediction, especially accurate prediction, that relates to auto-
motive, aerospace, aircraft, off-highway, farm machinery, and others? We need
to conclude that it is even less developed in these areas.

A fatigue life prediction method for practical engineering use was proposed
by Theil [42]:

• According to this method, the influence of overload events can be taken in
account.

• The validation was done using uniaxial tests carried out on metallic speci-
mens.

It is generally accepted that during a product’s service life high load cycles will
occur in addition to the normally encountered operational loads. Therefore, the
development of an accurate fatigue life prediction rule which takes into account
overloads in the vicinity of and slightly above yield strength, with a minimal
level of effort for use in practical engineering at the design stress level, would
still be highly significant.
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Theil’s paper [42] presents a fatigue life prediction method based on an S/N
curve for constant-amplitude loading. Similarities and differences between the
proposed method and the linear cumulative damage rule of Pålmgren–Miner
are briefly discussed. Using the method presented, an interpretation of the
Pålmgren–Miner rule from the physical point of view is given and clarified
with the aid of a practical two-block loading example problem.

Unfortunately however, statistical reliability predictions rarely correlate with
field performance. The basic cause is that they are based on testing methods
that incorrectly simulate the real-world interacted conditions.

Therefore, similar to the contents of Section 1.1, current practical reliability
prediction approaches cannot provide industry with with the necessary or
appropriate tools to dramatically increase reliability, eliminate (or dramatically
reduce) recalls, complaints, costs, and other technical and economic aspects
of improved product performance.

1.3 From History of Reliability Prediction Development

The term “reliability prediction” has historically been used to denote the pro-
cess of applying mathematical models and data for the purpose of estimating
the field reliability of a system before empirical data are available for the system
[43, 44].

Jones [45] considered information on the history of reliability prediction
allowing his work to be placed in context with general developments in
the field. This includes the development of statistical models for lifetime
prediction using early life data (i.e., prognostics), the use of nonconstant
failure rates for reliability prediction, the use of neural networks for reliability
prediction, the use of artificial intelligence systems to support reliability
engineers’ decision-making, the use of a holistic approach to reliability, the
use of complex discrete events simulation to model equipment availability,
the demonstration of the weaknesses of classical reliability prediction, an
understanding of the basic behavior of no fault founds, the development of a
parametric drift model, the identification of the use of a reliability database
to improve the reliability of systems, and an understanding of the issues that
surround the use of new reliability metrics in the aerospace industry.

During World War II, electronic tubes were by far the most unreliable com-
ponent used in electronic systems. This observation led to various studies and
ad hoc groups whose purpose was to identify ways that electronic tube reliabil-
ity, and the reliability of the systems in which they operated, could be improved.
One group in the early 1950s concluded that:

1. There needed to be better reliability-data collected from the field.
2. Better components needed to be developed.
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3. Quantitative reliability requirements needed to be established.
4. Reliability needed to be verified by test before full-scale production.

The specification requirement to have quantitative reliability requirements in
turn led to the need to have a means of estimating reliability before the equip-
ment is built and tested so that the probability of achieving its reliability goal
could be estimated. This was the beginning of reliability prediction.

Then, in the 1960s, the first version of US MH-217 was published by the US
Navy. This document became the standard by which reliability predictions
were performed. Other sources of failure rates prediction gradually disap-
peared. These early sources of failure-rate predicting often included design
guidance on the reliable application of electronic components.

In the early 1970s, the responsibility for preparing MH-217 was transferred
to the Rome Air Development Center, who published revision B in 1974. While
this MH-217 update reflected the technology at that time, there were few other
efforts to change the manner in which predicting was performed. And these
efforts were criticized by the user community as being too complex, too costly,
and unrealistic.

While MH-217 was updated several times, in the 1980s other agencies
were developing reliability predicting models unique to their industries. For
example, the SAE Reliability Standard Committee developed a set of models
specific to automotive electronics. The SAE committee did this because it was
their belief that there were no existing prediction methodologies that applied
to the specific quality levels and environments appropriate for automotive
applications.

The Bellcore reliability-prediction standard is another example of a specific
industry developing methodologies for their unique conditions and equipment.
But regardless of the developed methodology, the conflict between the usability
of a model and its accuracy has always been a difficult compromise.

In the 1990s, much of the literature on reliability prediction centered around
whether the reliability discipline should focus on physics-of-failure-based or
empirically based models (such as MH-217) for the qualification of reliability.

Another key development in reliability prediction related to the effects of
acquisition reform, which overhauled the military standardization process.
These reforms in turn led to a list of standardization documents that required
priority action, because they were identified as barriers to commercial
acquisition processes, as well as major cost drivers in defense acquisitions.

The premise of traditional methods, such as MH-217, is that the failure rate
is primarily determined by components comprising the system. The prediction
methodologies that were developed toward the end of the 1990s had the fol-
lowing advantages:

• they used all available information to form the best estimate of field
reliability;
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• they were tailorable;
• they had quantifiable statistical-confidence bounds;
• they had sensitivity to the predominant system-reliability drivers.

During this time, some reliability professionals believed that reliability mod-
eling should focus more on physics-of-failure models to replace the traditional
empirical models. Physics-of-failure models attempt to model failure mecha-
nisms deterministically, as opposed to the traditional approach of using models
based on empirical data.

Physics-of-failure techniques can be effective for estimating lifetimes due to
specific failure mechanisms. These techniques are useful for ensuring that there
are no quantifiable failure mechanisms that will occur in a given time period.
However, many of the arguments that physics-of-failure proponents use are
based on erroneous assumptions regarding empirically based reliability pre-
diction. The fact that a failure rate can be predicted for a given part under a
specific set of conditions does not imply that a failure rate is an inherent quality
of a part.

Rather, the probability of failure is a complex interaction between the defect
density, defect severity, and stresses incurred in operation. Failure rates pre-
dicted using empirical models are therefore typical failure rates and represent
typical defect rates, design, and use conditions.

Therefore, there is a tradeoff between the model’s usability and its required
level of detailed data. This highlights the fact that the purpose of a reliability
prediction must be clearly understood before a methodology is chosen.

From the foregoing we can conclude that current prediction methods in engi-
neering mostly relate to computer science, and even they are not very successful.
And as relates to prediction (especially successful prediction) of automotive,
aircraft, off-highway, farm machinery, and others, we need to accept that pre-
diction methods are even less developed.

A similar conclusion was made by Wong [46]:

Inaccurate reliability predictions could lead to disasters such as in
the case of the U.S. Space Shuttle failure. The question is: ‘what is
wrong with the existing reliability prediction methods?’ This paper
examines the methods for predicting reliability of electronics. Based
on information in the literature the measured vs predicted reliability
could be as far apart as five to twenty times. Reliability calculated using
the five most commonly used handbooks showed that there could be a
100 times variation. The root cause for the prediction inaccuracy is that
many of the first-order effect factors are not explicitly included in the
prediction methods. These factors include thermal cycling, temperature
change rate, mechanical shock, vibration, power on/off, supplier quality
difference, reliability improvement with respect to calendar years, and
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ageing. As indicated in the data provided in this paper, any one of these
factors neglected could cause a variation in the predicted reliability by
several times. The reliability vs ageing-hour curve showed that there
was a 10 times change in reliability from 1000 ageing-hours to 10,000
ageing-hours. Therefore, in order to increase the accuracy of reliability
prediction the factors must be incorporated into the prediction methods.

1.4 Why Reliability Prediction is Not Effectively
Utilized in Industry

As one can see from Figure 1.1, reliability is a result of many interacting com-
ponents which influence the product’s performance. Therefore, one needs to
understand that, if we consider reliability separately, it is different from that in
the real-life situation. Reliability prediction is only one aspect that is a result
of the interacted product performance in real life (i.e., only one step of prod-
uct/technology performance). Klyatis [30] gives full consideration of product
performance prediction.

As was previously discussed, there are many methodological approaches to
different aspects of engineering prediction; these include Refs [47–59], but
there are many other publications on the subject.

The problems remain:
• How can one obtain common methodological (strategic and tactical) aspects

of interacted components performance for successful prediction? Reliability
is only one of many interacted factors of a product’s or a technology’s per-
formance (Figure 1.1).

• How does one obtain accurate initial information necessary for each particu-
lar product’s successful performance prediction, including reliability, safety,
durability, life cycle cost, and others?

DURABILITY

QUALITY

MAINTAINABILITY

LIFE CYCLE COSTPROFIT

OTHERS

RELIABILITY

Figure 1.1 Reliability as one from interacted performance components in the real world.
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In order to solve these problems, one needs to understand the basic causes
of why the approaches used until now cannot solve problems of successfully
predicting reliability.

One frequently encountered cause is that the management structure of many
large and middle-size companies is hierarchical, with managerial responsibili-
ties that provide no, or inadequate, interconnections or interactions with other
areas of the organization, or with outside entities supplying components or ser-
vices to their companies.

Too often this leads to parochial thinking and inadequate consideration of
how other sections of their organization influence their product’s effective-
ness. Figure 1.2 demonstrates sectors of responsibility of four vice presidents
(1, 2, 3, 4) in a large organization. Each vice-president’s sector of responsibility
consists of some subsectors, shown as subsectors 3a, 3b, and 3c, each with a
corresponding responsible technical director, or some similar title (example in
Figure 1.2). These subsector directors do not communicate enough with each
other, because each sub-director’s responsibility relates to their particular sub-
sector only. But their work interacts and influences the final reliability of the
product.

Let us consider some examples from author’s practice. After reading
author’s publications, Mr. Takashi Shibayama, Vice President of Jatco Ltd
(Japan) (design and manufacturing for automobile transmissions), indicated
that he was very interested in implementing these practices at Jatco Ltd.
Mr. Shibayama came to the SAE World Congress bringing his copy of author’s
book Accelerated Reliability and Durability Testing Technology, published by
Wiley, which he had studied. After discussion with Dr. Klyatis, Mr. Shibayama

1

2

3

4

3a
3b

3c

b

−b

−a

P2

P1

a

O

θ2

θ1

Figure 1.2 Common scheme of company’s vice-president’s sectors of responsibility. 1: one
vice-president’s area; 2: second vice-president’s area; 3: third vice-president’s area; 4: fourth
vice-president’s area; 3a: area of responsibilities of director of first department; 3b: area of
responsibilities of director of second department; 3c: area of responsibilities of director of
third department.
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and Jatco’s engineers and managers returned to Japan and asked by e-mail if I
could meet with Nissan management. It was agreed that a meeting would be
scheduled during the next SAE World Congress in Detroit. This meeting would
be attended by leaders in the Powertrain Engineering Division at Nissan. Mr.
Shibayama indicated these people would all be the expert leaders in Nissan
reporting directly to the highest levels in Nissan.

One participant was from the Engine Department, and another from the
Drive Train Department, one was the engineering director involved directly
in human factor problems, and another the engineering director in engine
problems. They first attended author’s presentation at the SAE 2013 World
Congress, Technical Session IDM300 Trends in Development Accelerated
Reliability and Durability Testing, as well as author’s “Chat with the Expert”
session. The company’s personnel had studied his book, Accelerated Reliability
and Durability Testing Technology, prior to the meeting. During the meeting,
they asked if he would help them to improve each of their separate areas for
reliability, and he replied that he could not. The reason for this answer was
that each of them was responsible for their specific area and they did not
interact with the other areas of Nissan’s engineering. He said that all sectors
and components of the vehicle interact and are interconnected, and if we
consider each component separately then you could not hope to obtain a
successful improvement in prediction. He pointed out that page 65 in his book
emphasized the need for solving reliability issues in a complex product, and
that as long as each area of the business worked independently, overall product
reliability prediction could not be improved.

From discussions with other industrial companies’ managements, as well as
reviewing their work, it became evident that similar situations are prevalent in
other areas of industry, including, for example, the aircraft industry.

Figure 1.3 is provided as an aid in understanding why the current discussions
in Sections 1.1 and 1.2 fail to provide accurate information for successful relia-
bility prediction. A short description of the basic causes depicted in Figure 1.3
follows:

1. Reliability and durability evaluation results are usually provided directly
after stress testing either in the laboratory or from proving grounds test-
ing. This evaluation only relates to the test conditions (the laboratory or
proving ground testing). But in order to know the test subject’s reliabil-
ity or durability in actual use, the laboratory or proving ground testing
results are not adequate, as field use normally entails probabilistic, random
(often nonstationary) characteristics that require more complicated meth-
ods than evaluation based on laboratory (with simple simulation of the
field) or proving ground test protocols. But, this more complex methodol-
ogy is seldom used. As a result, simpler evaluation methods are used, but
these are not reliable predictors.
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BASIC CAUSES WHY
ACCELERATED STRESS
TESTING CANNOT HELP

TO OBTAIN INFORMATION
FOR SUCCESSFUL

RELIABILITY PREDICTION

1. Inaccurate
simulation of real

world conditions

2. Ignoring interaction
of real world input

influences

3. Ignoring interaction
between components

and assemblies

10. Using

evaluation in test
conditions (lab.,
proving grounds,

etc.) instead of
predicting in real

world conditions

9. Using simulation of

constant stress, step stress,

or cycling stress
contradicts real world stress

8. Using loads higher
than maximum field

loads

4. There are no

standards that

connect testing with
successful prediction

5. Reliability testing

based on statistically
determined sample

sizes is often invalid 

6. Using separate
input influences 

7. Field loading

simulation is not based
on the true

representative region 

Others

Figure 1.3 The reasons why accelerated stress testing cannot provide information for
successful reliability prediction.

2. Typical testing is performed for several separate parameters, such as
vibration or temperature, with allowances possibly including a few others.
But in real-world operation there are many other factors influencing or
affecting the test subject. Temperature, humidity, air pollution (mechan-
ical and chemical), radiation (visible, ultraviolet, and infrared), air
fluctuation, features of the road (type of road, profile, density, etc.), speed
of movement, input voltage, electrostatic discharge, and other factors may
be present in different combinations. If laboratory or proving grounds
simulations use only several of the multi-environmental real-world input
influences described here, this ignores what may well be significant
interactions between different factors that will influence reliability and
durability. This is one reason why current accelerated stress testing fails
to accurately predict the reliability and durability of the product, whether
it be components or the completed product in the field.

3. Often, companies’ suppliers use only components (details) and assem-
blies (units) stress testing, ignoring the interconnections between these



�

� �

�

34 Reliability Prediction and Testing Textbook

components and assemblies. Therefore, the stress testing results are
different from the test subject’s results in the real world. These results
cannot help to predict accurately the reliability and durability of the
product in the field.

4. A basic reason for many product recalls is inaccurate simulation and mis-
takes in using stress testing results, which lead to inaccurate prediction of
a product’s reliability. The result is that an organization’s profit is reduced
from that which was projected or potentially could have been achieved. As
Kanapady and Adib noted [22], “Money was saved years earlier by gam-
bling with a substandard reliability program, but the short-term gain was
not a good long-term investment.”

5. In an attempt to compensate for unknown field factors, companies
sometimes use accelerated stress testing with loads greater than
maximum field loads. This alters the physics-of-degradation or the
chemistry-of-degradation process obtained in actual field use. As a result,
the time and character to failures, as well as the number and cost of
failures, during this testing can be different from the failures in the field
situation.

6. As each failure mechanism responds to stress differently, and each compo-
nent of the product has several different failure mechanisms, using acceler-
ated test data plus a single acceleration factor can result in a time between
failures (MTBF) estimate that is erroneous and misleading [37].

7. There is no standard stress stimulus portfolio. Because of the vast diversity
of products, each product and program will have differences. This is often
forgotten.

8. Reliability assumptions based on statistically determined sample sizes are
often invalid, because the samples rarely are truly random representations
of production parts.

9. Often, the parameters used for field loading simulation for stress testing
are not based on the truly representative region, and do not represents all
areas (including climatic) of the product’s use in the field.

10. Some accelerated testing uses simulation at constant stress, or step stress,
or cycling stress that contradicts the real-world situation, where loading
has a random stress nature.

11. As Wong noted [46], inaccurate reliability predictions could lead to dis-
asters, such as in the case of the US Space Shuttle failure. The question
is: “What is wrong with the existing reliability prediction methods?” This
textbook answers this question.

These are some of the reasons, why current accelerated stress testing does
not help accurately predict reliability and durability. But these limitations can
be reduced or eliminated by switching to ART and ADT. Descriptions of these
types of testing can be found in the literature [30, 60–66]. These publications
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provide guidance on how to accurately simulate the field situation for obtaining
initial information for accurate reliability development and prediction.

For successful ART/ADT technology implementation, a multidisciplinary
team will be needed to manage and engineer the application of this technology
to a particular product. The team should include, as a minimum, the following:

• A team leader who is both a high-level manager and who also understands
the strategy of this technology. The team leader must understand the princi-
ples of accurate simulation of the field situation, and what other professional
disciplines need to be included in the team.

• A program manager to act as a guide throughout the process and who can
remove any barriers that prevent the team from succeeding. The program
manager must also be knowledgeable in the design and technology of both
the product and the testing.

• Engineering resources to actually perform much of the testing. This includes
selection of appropriate candidate test units, failure analysis, chemical prob-
lems solution in simulation, physical problems solution in simulation, pre-
diction methodology, system of control development, design, diagnostic, and
corrective action for mechanical, electrical, hydraulic, and so on, as well as
both hardware and software development and implementation.

The team must work closely with those departments that are responsible for
design, manufacturing, marketing, and selling the product.
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Exercises

1.1 List three currently used traditional methods of reliability prediction.

1.2 Briefly describe the concept of the basic methods in Example 1.1.

1.3 Why are these methods mostly theoretical?

1.4 Why do most publications in reliability prediction relate to electronics?

1.5 Why are most approaches to reliability prediction of a theoretical nature?

1.6 What is the description of classical test theory?

1.7 What is the basic approach of the Bellcore/Telecordia prediction
method?

1.8 What is the basic approach of the MIL-HDBK-17 predictive method?

1.9 What is the basic approach of the ReliaSoft analysis in reliability predic-
tion?

1.10 Describe some of the advantages and disadvantages of empirical meth-
ods of reliability prediction.

1.11 Describe the basic concept of the physics-of-failure method of reliability
prediction.

1.12 What factors does the Black model for electromigration in electronic
products add to reliability prediction modeling?

1.13 What is the basic content of the reliability software modules of the ITEM
Toolkit?

1.14 What is the background for the reliability prediction as used by Bellcore
for hardware and software?

1.15 What are some of the software and hardware prediction procedures used
by Bellcore?

1.16 What procedures are used when employing the Bellcore reliability pre-
diction procedure?
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1.17 What problems are encountered with attempts to predict product
reliability of mechanical systems using the Handbook of Reliability
Prediction Procedures of Mechanical Equipment?

1.18 What is the real cause of many recalls?

1.19 What are the basic methods of failure analysis?

1.20 Give a short description of the methods you gave in Exercise 1.19.

1.21 What are the general classes of reliability estimates?

1.22 What are some of the major factors in general model reliability predic-
tion?

1.23 What are the basic strategies of estimating reliability methods?

1.24 Describe some of the advantages and disadvantages of using standards-
based reliability prediction.

1.25 Describe some of the advantages and disadvantages of using the
physics-of-failure methods.

1.26 What is the reliability factor projected by the life testing method?

1.27 Why are traditional approaches to reliability prediction not successful in
industrial practice?

1.28 Why should accurate reliability prediction be so important to a com-
pany’s management?

1.29 Give some of the reasons traditional methods of reliability prediction in
electronics have not been successful?

1.30 Provide a short overview of both qualitative and quantitative aspects of
reliability, and their differences.

1.31 Provide a short synopsis of any nine of the articles on reliability predic-
tion from the Reliability and Maintainability Symposium (RAMS) Pro-
ceedings that have been discussed in this chapter.

1.32 What are some of the key elements of the Telecordia reliability prediction
procedure?
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1.33 What is the basic meaning of the Bayesian approach to reliability
prediction?

1.34 List several of the basic causes for why traditional solutions using the-
oretical aspects of reliability prediction are not successful in industrial
applications of reliability prediction.

1.35 What is David Nicholls’s key conclusion in his published overview of
reliability prediction methods?

1.36 Why is fatigue life not an accurate prediction method for successful reli-
ability prediction?

1.37 Describe the basic history of reliability prediction methods.

1.38 Why are most traditional prediction methods related to computer sci-
ence and manufacture?

1.39 What is the problem with using separate testing aspects to make engi-
neering predictions?

1.40 Why are most presently used approaches failing to produce successful
product reliability predictions?

1.41 Describe some of the performance components that interact and affect
reliability.

1.42 Why does currently used accelerated stress testing not obtain accurate
needed information for successful reliability prediction? Describe some
of these causes and their potential effects on prediction.


