
c01.indd 02/07/2018 Page 1

PART I

▸ CHAPTER 1: A Crash Course in C++ and the Standard Library

▸ CHAPTER 2: Working with Strings and String Views

▸ CHAPTER 3: Coding with Style

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 02/07/2018 Page 3

WHAT’S IN THIS CHAPTER?

➤ A brief overview of the most important parts and syntax of the
C++ language and the Standard Library

➤ The basics of smart pointers

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of the chapter’s
code download on this book’s website at www.wrox.com/go/proc++4e on the Download
Code tab.

The goal of this chapter is to cover briefl y the most important parts of C++ so that you have
a base of knowledge before embarking on the rest of this book. This chapter is not a com-
prehensive lesson in the C++ programming language or the Standard Library. Certain basic
points, such as what a program is and what recursion is, are not covered. Esoteric points, such
as the defi nition of a union, or the volatile keyword, are also omitted. Certain parts of the
C language that are less relevant in C++ are also left out, as are parts of C++ that get in-depth
coverage in later chapters.

This chapter aims to cover the parts of C++ that programmers encounter every day. For
example, if you’ve been away from C++ for a while and you’ve forgotten the syntax of a for
loop, you’ll fi nd that syntax in this chapter. Also, if you’re fairly new to C++ and don’t under-
stand what a reference variable is, you’ll learn about that kind of variable here, as well. You’ll
also learn the basics on how to use the functionality available in the Standard Library, such as
vector containers, string objects, and smart pointers.

1

4 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 4

If you already have signifi cant experience with C++, skim this chapter to make sure that there
aren’t any fundamental parts of the language on which you need to brush up. If you’re new to C++,
read this chapter carefully and make sure you understand the examples. If you need additional
 introductory information, consult the titles listed in Appendix B.

THE BASICS OF C++

The C++ language is often viewed as a “better C” or a “superset of C.” It was mainly designed to
be an object-oriented C, commonly called as “C with classes.” Later on, many of the annoyances
and rough edges of the C language were addressed as well. Because C++ is based on C, much of the
syntax you’ll see in this section will look familiar to you if you are an experienced C programmer.
The two languages certainly have their differences, though. As evidence, The C++ Programming
Language by C++ creator Bjarne Stroustrup (Fourth Edition; Addison-Wesley Professional, 2013)
weighs in at 1,368 pages, while Kernighan and Ritchie’s The C Programming Language (Second
Edition; Prentice Hall, 1988) is a scant 274 pages. So, if you’re a C programmer, be on the lookout
for new or unfamiliar syntax!

The Obligatory Hello, World
In all its glory, the following code is the simplest C++ program you’re likely to encounter:

// helloworld.cpp
#include <iostream>

int main()
{
 std::cout << "Hello, World!" << std::endl;
 return 0;
}

This code, as you might expect, prints the message, “Hello, World!” on the screen. It is a simple
program and unlikely to win any awards, but it does exhibit the following important concepts about
the format of a C++ program:

➤ Comments

➤ Preprocessor directives

➤ The main() function

➤ I/O streams

These concepts are briefl y explained in the following sections.

Comments
The fi rst line of the program is a comment, a message that exists for the programmer only and is
ignored by the compiler. In C++, there are two ways to delineate a comment. In the preceding and
following examples, two slashes indicate that whatever follows on that line is a comment.

// helloworld.cpp

The Basics of C++ ❘ 5

c01.indd 02/07/2018 Page 5

The same behavior (this is to say, none) would be achieved by using a multiline comment. Multiline
comments start with /* and end with */. The following code shows a multiline comment in action
(or, more appropriately, inaction).

/* This is a multiline comment.
 The compiler will ignore it.
 */

Comments are covered in detail in Chapter 3.

Preprocessor Directives
Building a C++ program is a three-step process. First, the code is run through a preprocessor, rr
which recognizes meta-information about the code. Next, the code is compiled, or translated into
machine-readable object fi les. Finally, the individual object fi les are linked together into a single
application.

Directives aimed at the preprocessor start with the # character, as in the line #include <iostream>
in the previous example. In this case, an #include directive tells the preprocessor to take everything
from the <iostream> header fi le and make it available to the current fi le. The most common use of
header fi les is to declare functions that will be defi ned elsewhere. A function declaration tells the
compiler how a function is called, declaring the number and types of parameters, and the function
return type. A defi nition contains the actual code for the function. In C++, declarations usually go
into header fi les, typically with extension .h, while defi nitions usually go into source fi les, typically
with extension .cpp. A lot of other programming languages, such as C# and Java, do not separate
declarations and defi nitions into separate fi les.

The <iostream> header declares the input and output mechanisms provided by C++. If the program
did not include that header, it would be unable to perform its only task of outputting text.

NOTE In C, the names of the Standard Library header fi les usually end in .h,
such as <stdio.h>, and namespaces are not used.

In C++, the .h suffi x is omitted for Standard Library headers, such as
<iostream>, and everything is defi ned in the std namespace or a sub-namespace
of std.

The Standard Library headers from C still exist in C++ but in two versions:

➤ The new and recommended versions without a .h suffi x but with a c pre-
fi x. These versions put everything in the std namespace (for example,
<cstdio>).

➤ The old versions with the .h suffi x. These versions do not use namespaces
(for example, <stdio.h>).

6 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 6

The following table shows some of the most common preprocessor directives.

PREPROCESSOR

DIRECTIVE

FUNCTIONALITY COMMON USES

#include [file] The specifi ed fi le is inserted into
the code at the location of the
directive.

Almost always used to include header
fi les so that code can make use of
 functionality defi ned elsewhere.

#define [key]
[value]

Every occurrence of the speci-
fi ed key is replaced with the
specifi ed value.

Often used in C to defi ne a constant
value or a macro. C++ provides better
mechanisms for constants and most
types of macros. Macros can be dan-
gerous, so use them cautiously. See
Chapter 11 for details.

#ifdef [key]
#endif

#ifndef [key]
#endif

Code within the ifdef (“if
defi ned”) or ifndef (“if not
defi ned”) blocks are condition-
ally included or omitted based
on whether the specifi ed key
has been defi ned with #define.

Used most frequently to protect
against circular includes. Each header
fi le starts with an #ifndef checking
the absence of a key, followed by
a #define directive to defi ne that
key. The header fi le ends with an
#endif. This prevents the fi le from
being included multiple times; see the
 example after this table.

#pragma [xyz] xyz is compiler dependent. It
often allows the programmer
to display a warning or error if
the directive is reached during
preprocessing.

See the example after this table.

One example of using preprocessor directives is to avoid multiple includes, as shown here:

#ifndef MYHEADER_H
#define MYHEADER_H
// ... the contents of this header file
#endif

If your compiler supports the #pragma once directive, and most modern compilers do, then this can
be rewritten as follows:

#pragma once
// ... the contents of this header file

Chapter 11 discusses this in more details.

The main() Function
main() is, of course, where the program starts. The return type of main() is an int, indicating
the result status of the program. You can omit any explicit return statements in main(), in which

The Basics of C++ ❘ 7

c01.indd 02/07/2018 Page 7

case zero is returned automatically. The main() function either takes no parameters, or takes two
parameters as follows:

int main(int argc, char* argv[])

argc gives the number of arguments passed to the program, and argv contains those arguments.
Note that argv[0] can be the program name, but it might as well be an empty string, so do not rely
on it; instead, use platform-specifi c functionality to retrieve the program name. The important thing
to remember is that the actual parameters start at index 1.

I/O Streams
I/O streams are covered in depth in Chapter 13, but the basics of output and input are very simple.
Think of an output stream as a laundry chute for data. Anything you toss into it will be output
appropriately. std::cout is the chute corresponding to the user console, or standard out. There are
other chutes, including std::cerr, which outputs to the error console. The << operator tosses data
down the chute. In the preceding example, a quoted string of text is sent to standard out. Output
streams allow multiple types of data to be sent down the stream sequentially on a single line of code.
The following code outputs text, followed by a number, followed by more text:

std::cout << "There are " << 219 << " ways I love you." << std::endl;

std::endl represents an end-of-line sequence. When the output stream encounters std::endl, it
will output everything that has been sent down the chute so far and move to the next line. An alter-
nate way of representing the end of a line is by using the \n character. The \n character is an escape
sequence, which refers to a new-line character. Escape sequences can be used within any quoted
string of text. The following table shows the most common ones:

\n new line

\r carriage return

\t tab

\\ backslash character

\" quotation mark

Streams can also be used to accept input from the user. The simplest way to do this is to use the >>
operator with an input stream. The std::cin input stream accepts keyboard input from the user.
Here is an example:

int value;
std::cin >> value;

User input can be tricky because you can never know what kind of data the user will enter. See
Chapter 13 for a full explanation of how to use input streams.

If you’re new to C++ and coming from a C background, you’re probably wondering what has been
done with the trusty old printf() and scanf() functions. While these functions can still be used
in C++, I recommend using the streams library instead, mainly because the printf() and scanf()

family of functions do not provide any type safety.

8 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 8

Namespaces
Namespaces address the problem of naming confl icts between different pieces of code. For example,
you might be writing some code that has a function called foo(). One day, you decide to start using
a third-party library, which also has a foo() function. The compiler has no way of knowing which
version of foo() you are referring to within your code. You can’t change the library’s function
name, and it would be a big pain to change your own.

Namespaces come to the rescue in such scenarios because you can defi ne the context in which
names are defi ned. To place code in a namespace, enclose it within a namespace block. For example,
the following could be the contents of a fi le called namespaces.h:

namespace mycode {
 void foo();
}

The implementation of a method or function can also be handled in a namespace. The foo()
 function, for instance, could be implemented in namespaces.cpp as follows:

#include <iostream>
#include "namespaces.h"

void mycode::foo()
{
 std::cout << "foo() called in the mycode namespace" << std::endl;
}

Or alternatively:

#include <iostream>
#include "namespaces.h"

namespace mycode {
 void foo()
 {
 std::cout << "foo() called in the mycode namespace" << std::endl;
 }
}

By placing your version of foo() in the namespace “mycode,” you are isolating it from the foo()
function provided by the third-party library. To call the namespace-enabled version of foo(),
 prepend the namespace onto the function name by using ::, also called the scope resolution
 operator,rr as follows:

mycode::foo(); // Calls the "foo" function in the "mycode" namespace

Any code that falls within a “mycode” namespace block can call other code within the same
namespace without explicitly prepending the namespace. This implicit namespace is useful in mak-
ing the code more readable. You can also avoid prepending of namespaces with the using directive.
This directive tells the compiler that the subsequent code is making use of names in the specifi ed
namespace. The namespace is thus implied for the code that follows:

#include "namespaces.h"

using namespace mycode;

The Basics of C++ ❘ 9

c01.indd 02/07/2018 Page 9

int main()
{
 foo(); // Implies mycode::foo();
 return 0;
}

A single source fi le can contain multiple using directives, but beware of overusing this shortcut.
In the extreme case, if you declare that you’re using every namespace known to humanity, you’re
effectively eliminating namespaces entirely! Name confl icts will again result if you are using two
namespaces that contain the same names. It is also important to know in which namespace your
code is operating so that you don’t end up accidentally calling the wrong version of a function.

You’ve seen the namespace syntax before—you used it in the Hello, World program, where cout
and endl are actually names defi ned in the std namespace. You could have written Hello, World
with the using directive as shown here:

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello, World!" << endl;
 return 0;
}

A using declaration can be used to refer to a particular item within a namespace. For example, if
the only part of the std namespace that you intend to use is cout, you can refer to it as follows:

using std::cout;

Subsequent code can refer to cout without prepending the namespace, but other items in the std
namespace will still need to be explicit:

using std::cout;
cout << "Hello, World!" << std::endl;

C++17 makes it easier to work with nested namespaces. A nested namespace is a namespace inside
another one. Before C++17, you had to use nested namespaces as follows:

namespace MyLibraries {
 namespace Networking {
 namespace FTP {
 /* ... */
 }
 }
}

C++17

WARNING Never put a using directive or using declaration in a header fi le;
otherwise, you force it on everyone who is including your header fi le.

10 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 10

This can be simplifi ed a lot with C++17:

namespace MyLibraries::Networking::FTP {
 /* ... */
}

A namespace alias can be used to give a new and possibly shorter name to another namespace. For
example: namespace MyFTP = MyLibraries::Networking::FTP;

Literals
Literals are used to write numbers or strings in your code. C++ supports a number of standard liter-
als. Numbers can be specifi ed with the following literals (the examples in the list represent the same
number, 123):

➤ Decimal literal, 123

➤ Octal literal, 0173

➤ Hexadecimal literal, 0x7B

➤ Binary literal, 0b1111011

Other examples of literals in C++ include

➤ A fl oating-point value (such as 3.14f)

➤ A double fl oating-point value (such as 3.14)

➤ A single character (such as 'a')

➤ A zero-terminated array of characters (such as "character array")

It is also possible to defi ne your own type of literals, which is an advanced feature explained in
Chapter 11.

Digits separators can be used in numeric literals. A digits separator is a single quote character. For
example,

➤ 23'456'789

➤ 0.123'456f

C++17 adds support for hexadecimal fl oating-point literals—for example, 0x3.ABCp-10, 0Xb.cp12l.

Variables
In C++, variables can be declared just about anywhere in your code and can be used anywhere in
the current block below the line where they are declared. Variables can be declared without being
given a value. These uninitialized variables generally end up with a semi-random value based on
whatever is in memory at that time, and are therefore the source of countless bugs. Variables in C++
can alternatively be assigned an initial value when they are declared. The code that follows shows
both fl avors of variable declaration, both using ints, which represent integer values.

int uninitializedInt;
int initializedInt = 7;
cout << uninitializedInt << " is a random value" << endl;
cout << initializedInt << " was assigned an initial value" << endl;

C++17

The Basics of C++ ❘ 11

c01.indd 02/07/2018 Page 11

The following table shows the most common types used in C++.

TYPE DESCRIPTION USAGE

(signed) int

signed

Positive and negative inte-
gers; the range depends on
the compiler (usually 4 bytes).

int i = -7;

signed int i = -6;

signed i = -5;

(signed) short (int) Short integer (usually 2 bytes) short s = 13;

short int s = 14;

signed short s = 15;

signed short int s = 16;

(signed) long (int) Long integer (usually 4 bytes) long l = -7L;

(signed) long long (int) Long long integer; the range
depends on the compiler,
but is at least the same as for
long (usually 8 bytes).

long long ll = 14LL;

unsigned (int)

unsigned short (int)

unsigned long (int)

unsigned long long (int)

Limits the preceding types to
values >= 0

unsigned int i = 2U;

unsigned j = 5U;

unsigned short s = 23U;

unsigned long l =

5400UL;

unsigned long long ll =

140ULL;

float Floating-point numbers float f = 7.2f;

double Double precision numbers;
precision is at least the same
as for float.

double d = 7.2;

long double Long double precision num-
bers; precision is at least the
same as for double.

long double d = 16.98L;

char A single character char ch = 'm';

char16_t A single 16-bit character char16_t c16 = u'm';

char32_t A single 32-bit character char32_t c32 = U'm';

NOTE Most compilers will issue a warning or an error when code is using
uninitialized variables. Some compilers will generate code that will report an
error at run time.

continues

12 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 12

TYPE DESCRIPTION USAGE

wchar_t A single wide character; the
size depends on the compiler.

wchar_t w = L'm';

bool A Boolean type that can have
one of two values: true or
false

bool b = true;

std::byte1 A single byte. Before C++17,
a char or unsigned char
was used to represent a byte,
but those types make it look
like you are working with
characters. std::byte on the
other hand clearly states your
intention, that is, a single byte
of memory.

std::byte b{42};2

1Requires an include directive for the <cstddef> header fi le.
2Initialization of an std::byte requires direct list initialization with a single-element list. See the “Direct
List Initialization versus Copy List Initialization” section later in this chapter for the defi nition of direct list
initialization.

Variables can be converted to other types by casting them. For example, ag float can be cast to an int.
C++ provides three ways to explicitly change the type of a variable. The fi rst method is a holdover from
C; it is not recommended but unfortunately still commonly used. The second method is rarely used.
The third method is the most verbose, but is also the cleanest one, and is therefore recommended.

float myFloat = 3.14f;
int i1 = (int)myFloat; // method 1
int i2 = int(myFloat); // method 2
int i3 = static_cast<int>(myFloat); // method 3

The resulting integer will be the value of the fl oating-point number with the fractional part trun-
cated. Chapter 11 describes the different casting methods in more detail. In some contexts, variables
can be automatically cast, or coerced. For example, a short can be automatically converted into a
long because a long represents the same type of data with at least the same precision.

long someLong = someShort; // no explicit cast needed

When automatically casting variables, you need to be aware of the potential loss of data. For exam-
ple, casting a float to an int throws away information (the fractional part of the number). Most
compilers will issue a warning or even an error if you assign a float to an int without an explicit
cast. If you are certain that the left-hand side type is fully compatible with the right-hand side type,
it’s okay to cast implicitly.

C++17

NOTE C++ does not provide a basic string type. However, a standard imple-
mentation of a string is provided as part of the Standard Library, as described
later in this chapter and in more detail in Chapter 2.

(continued)

The Basics of C++ ❘ 13

c01.indd 02/07/2018 Page 13

Operators
What good is a variable if you don’t have a way to change it? The following table shows the most
common operators used in C++ and sample code that makes use of them. Note that operators in
C++ can be binary (operate on two expressions), unary (operate on a single expression), or even ter-
nary (operate on three expressions). There is only one ternary operator in C++, and it is explained in
the “Conditional Statements” section later in this chapter.

OPERATOR DESCRIPTION USAGE

= Binary operator to assign the value on the right to
the expression on the left

int i;

i = 3;

int j;

j = i;

! Unary operator to complement the true/false
(non-0/0) status of an expression

bool b = !true;

bool b2 = !b;

+ Binary operator for addition int i = 3 + 2;

int j = i + 5;

int k = i + j;

-

*

/

Binary operators for subtraction, multiplication,
and division

int i = 5 - 1;

int j = 5 * 2;

int k = j / i;

% Binary operator for the remainder of a division
operation. This is also referred to as the mod ord
modulo operator.

int remainder = 5 % 2;

++ Unary operator to increment an expression by 1. If
the operator occurs after the expression, or post-
increment, the result of the expression is the unin-
cremented value. If the operator occurs before
the expression, or pre-increment, the result of the
expression is the new value.

i++;

++i;

-- Unary operator to decrement an expression by 1 i--;

--i;

+= Shorthand syntax for i = i + j i += j;

-=

*=

/=

%=

Shorthand syntax for

i = i - j;

i = i * j;

i = i / j;

i = i % j;

i -= j;

i *= j;

i /= j;

i %= j;

continues

14 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 14

OPERATOR DESCRIPTION USAGE

&

&=

Takes the raw bits of one expression and performs
a bitwise “AND” with the other expression

i = j & k;

j &= k;

|

|=

Takes the raw bits of one expression and performs
a bitwise “OR” with the other expression

i = j | k;

j |= k;

<<

>>

<<=

>>=

Takes the raw bits of an expression and “shifts”
each bit left (<<) or right (>>) the specifi ed number
of places

i = i << 1;

i = i >> 4;

i <<= 1;

i >>= 4;

^

^=

Performs a bitwise “exclusive or,” also called
“XOR” operation, on two expressions

i = i ^ j;

i ^= j;

The following program shows the most common variable types and operators in action. If you are
unsure about how variables and operators work, try to fi gure out what the output of this program
will be, and then run it to confi rm your answer.

int someInteger = 256;
short someShort;
long someLong;
float someFloat;
double someDouble;

someInteger++;
someInteger *= 2;
someShort = static_cast<short>(someInteger);
someLong = someShort * 10000;
someFloat = someLong + 0.785f;
someDouble = static_cast<double>(someFloat) / 100000;
cout << someDouble << endl;

The C++ compiler has a recipe for the order in which expressions are evaluated. If you have a com-
plicated line of code with many operators, the order of execution may not be obvious. For that
reason, it’s probably better to break up a complicated expression into several smaller expressions,
or explicitly group sub-expressions by using parentheses. For example, the following line of code is
confusing unless you happen to know the C++ operator precedence table by heart:

int i = 34 + 8 * 2 + 21 / 7 % 2;

Adding parentheses makes it clear which operations are happening fi rst:

int i = 34 + (8 * 2) + ((21 / 7) % 2);

For those of you playing along at home, both approaches are equivalent and end up with i equal to
51. If you assumed that C++ evaluated expressions from left to right, your answer would have been
1. C++ evaluates /, *, and % fi rst (in left-to-right order), followed by addition and subtraction, then
bitwise operators. Parentheses let you explicitly tell the compiler that a certain operation should be
evaluated separately.

(continued)

The Basics of C++ ❘ 15

c01.indd 02/07/2018 Page 15

Types
In C++, you can use the basic types (int, bool, and so on) to build more complex types of your own
design. Once you are an experienced C++ programmer, you will rarely use the following techniques,
which are features brought in from C, because classes are far more powerful. Still, it is important to
know about the following ways of building types so that you will recognize the syntax.

Enumerated Types
An integer really represents a value within a sequence—the sequence of numbers. Enumerated types
let you defi ne your own sequences so that you can declare variables with values in that sequence.
For example, in a chess program, you could represent each piece as and int, with constants for the
piece types, as shown in the following code. The integers representing the types are marked const

to indicate that they can never change.

const int PieceTypeKing = 0;
const int PieceTypeQueen = 1;
const int PieceTypeRook = 2;
const int PieceTypePawn = 3;
//etc.
int myPiece = PieceTypeKing;

This representation is fi ne, but it can become dangerous. Since a piece is just an int, what would
happen if another programmer added code to increment the value of a piece? By adding 1, a king
becomes a queen, which really makes no sense. Worse still, someone could come in and give a piece
a value of -1, which has no corresponding constant.

Enumerated types solve these problems by tightly defi ning the range of values for a variable. The
following code declares a new type, PieceType, which has four possible values, representing four of
the chess pieces:

enum PieceType { PieceTypeKing, PieceTypeQueen, PieceTypeRook, PieceTypePawn };

Behind the scenes, an enumerated type is just an integer value. The real value of PieceTypeKing
is 0. However, by defi ning the possible values for variables of type PieceType, your compiler can
give you a warning or an error if you attempt to perform arithmetic on PieceType variables or treat
them as integers. The following code, which declares a PieceType variable, and then attempts to
use it as an integer, results in a warning or an error on most compilers:

PieceType myPiece;
myPiece = 0;

It’s also possible to specify the integer values for members of an enumeration. The syntax is as
follows:

enum PieceType { PieceTypeKing = 1, PieceTypeQueen, PieceTypeRook = 10, PieceTypePawn };

In this example, PieceTypeKing has the integer value 1, PieceTypeQueen has the value 2 assigned
by the compiler, PieceTypeRook has the value 10, and PieceTypePawn has the value 11 assigned
automatically by the compiler.

16 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 16

If you do not assign a value to an enumeration member, the compiler automatically assigns it a value
that is the previous enumeration member incremented by 1. If you do not assign a value to the fi rst
enumeration member yourself, the compiler assigns it the value 0.

Strongly Typed Enumerations
Enumerations as explained in the previous section are not strongly typed, meaning they are not type
safe. They are always interpreted as integers, and thus you can compare enumeration values from
completely different enumeration types.

The strongly-typed enum class enumerations solve this problem. For example, the following defi nes
a type-safe version of the earlier-defi ned PieceType enumeration:

enum class PieceType
{
 King = 1,
 Queen,
 Rook = 10,
 Pawn
};

For an enum class, the enumeration value names are not automatically exported to the enclosing
scope, which means that you always have to use the scope resolution operator:

PieceType piece = PieceType::King;

This also means that you can give shorter names to the enumeration values, for example, King
instead of PieceTypeKing.

Additionally, the enumeration values are not automatically converted to integers, which means the
following is illegal:

if (PieceType::Queen == 2) {...}

By default, the underlying type of an enumeration value is an integer, but this can be changed as
follows:

enum class PieceType : unsigned long
{
 King = 1,
 Queen,
 Rook = 10,
 Pawn
};

Structs
Structs let you encapsulate one or more existing types into a new type. The classic example of
a struct is a database record. If you are building a personnel system to keep track of employee

NOTE It is recommended to use the strongly-typed enum class enumerations
instead of the type-unsafe enum enumerations.

The Basics of C++ ❘ 17

c01.indd 02/07/2018 Page 17

information, you might want to store the fi rst initial, last initial, employee number, and salary for
each employee. A struct that contains all of this information is shown in the employeestruct.h
header fi le that follows:

struct Employee {
 char firstInitial;
 char lastInitial;
 int employeeNumber;
 int salary;
};

A variable declared with type Employee will have all of these fi elds built in. The individual fi elds
of a struct can be accessed by using the “.” operator. The example that follows creates and then
 outputs the record for an employee:

#include <iostream>
#include "employeestruct.h"

using namespace std;

int main()
{

// Create and populate an employee.
 Employee anEmployee;
 anEmployee.firstInitial = 'M';
 anEmployee.lastInitial = 'G';
 anEmployee.employeeNumber = 42;
 anEmployee.salary = 80000;

// Output the values of an employee.
 cout << "Employee: " << anEmployee.firstInitial <<
 anEmployee.lastInitial << endl;
 cout << "Number: " << anEmployee.employeeNumber << endl;
 cout << "Salary: $" << anEmployee.salary << endl;
 return 0;
}

Conditional Statements
Conditional statements let you execute code based on whether or not something is true. As shown
in the following sections, there are three main types of conditional statements in C++: if/else state-
ments, switch statements, and conditional operators.

if/else Statements
The most common conditional statement is the if statement, which can be accompanied by an
else. If the condition given inside the if statement is true, the line or block of code is executed. If
not, execution continues with the else case if present, or with the code following the conditional
statement. The following code shows a cascading if statement, a fancy way of saying that the if
statement has an else statement that in turn has another if statement, and so on:

if (i > 4) {
 // Do something.
} else if (i > 2) {

18 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 18

 // Do something else.
} else {
 // Do something else.
}

The expression between the parentheses of an if statement must be a Boolean value or evaluate to
a Boolean value. A value of 0 evaluates to false, while any non-zero value evaluates to true. For
example: if(0) is equivalent to if(false). Logical evaluation operators, described later, provide
ways of evaluating expressions to result in a true or false Boolean value.

Initializers for if Statements
C++17 allows you to include an initializer inside an if statement using the following syntax:

if (<initializer> ; <conditional_expression>) { <body> }

Any variable introduced in the <initializer> is only available in the <conditional_expression>
and in the <body>. Such variables are not available outside the if statement.

It is too early in this book to give a useful example of this feature, but here is what it looks like:

if (Employee employee = GetEmployee() ; employee.salary > 1000) { ... }

In this example, the initializer gets an employee and the condition checks whether the salary of the
retrieved employee exceeds 1000. Only in that case is the body of the if statement executed.

More concrete examples will be given throughout this book.

switch Statements
The switch statement is an alternate syntax for performing actions based on the value of an expres-
sion. In C++, the expression of a switch statement must be of an integral type, a type convertible
to an integral type, an enumerated type, or a strongly typed enumeration, and must be compared
to constants. Each constant value represents a “case.” If the expression matches the case, the subse-
quent lines of code are executed until a break statement is reached. You can also provide a default
case, which is matched if none of the other cases match. The following pseudocode shows a com-
mon use of the switch statement:

switch (menuItem) {
 case OpenMenuItem:
 // Code to open a file
 break;
 case SaveMenuItem:
 // Code to save a file
 break;
 default:
 // Code to give an error message
 break;
}

A switch statement can always be converted into if/else statements. The previous switch state-
ment can be converted as follows:

if (menuItem == OpenMenuItem) {
 // Code to open a file

C++17

The Basics of C++ ❘ 19

c01.indd 02/07/2018 Page 19

} else if (menuItem == SaveMenuItem) {
 // Code to save a file
} else {
 // Code to give an error message
}

switch statements are generally used when you want to do something based on more than 1 specifi c
value of an expression, as opposed to some test on the expression. In such a case, the switch state-
ment avoids cascading if-else statements. If you only need to inspect 1 value, an if or if-else
statement is fi ne.

Once a case expression matching the switch condition is found, all statements that follow it are
executed until a break statement is reached. This execution continues even if another case expres-
sion is encountered, which is called fallthrough. The following example has a single set of statements
that is executed for several different cases:

switch (backgroundColor) {
 case Color::DarkBlue:
 case Color::Black:
 // Code to execute for both a dark blue or black background color
 break;
 case Color::Red:
 // Code to execute for a red background color
 break;
}

Fallthrough can be a source of bugs, for example if you accidentally forget a break statement.
Because of this, compilers might give a warning if a fallthrough is detected in a switch statement,
unless the case is empty as in the above example. Starting with C++17, you can tell the compiler that
a fallthrough is intentional using the [[fallthrough]] attribute as follows:

switch (backgroundColor) {
 case Color::DarkBlue:
 doSomethingForDarkBlue();
 [[fallthrough]];
 case Color::Black:
 // Code is executed for both a dark blue or black background color
 doSomethingForBlackOrDarkBlue();
 break;
 case Color::Red:
 case Color::Green:
 // Code to execute for a red or green background color
 break;
}

Initializers for switch Statements
Just as for if statements, C++17 adds support for initializers to switch statements. The syntax is as
follows:

switch (<initializer> ; <expression>) { <body> }

Any variables introduced in the <initializer> are only available in the <expression> and in the
<body>. They are not available outside the switch statement.

C++17

C++17

20 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 20

The Conditional Operator
C++ has one operator that takes three arguments, known as a ternary operator. It is used as a short-rr
hand conditional expression of the form “if [something] then [perform action], otherwise [perform
some other action].” The conditional operator is represented by a ? and a :. The following code
 outputs “yes” if the variable i is greater than 2, and “no” otherwise:

std::cout << ((i > 2) ? "yes" : "no");

The parentheses around i > 2 are optional, so the following is equivalent:

std::cout << (i > 2 ? "yes" : "no");

The advantage of the conditional operator is that it can occur within almost any context. In the
preceding example, the conditional operator is used within code that performs output. A convenient
way to remember how the syntax is used is to treat the question mark as though the statement that
comes before it really is a question. For example, “Is i greater than 2? If so, the result is ‘yes’; if not,
the result is ‘no.’”

Unlike an if statement or a switch statement, the conditional operator doesn’t execute code blocks
based on the result. Instead, it is used within code, as shown in the preceding example. In this way,
it really is an operator (like + and -) as opposed to a true conditional statement, such as if and
switch.

Logical Evaluation Operators
You have already seen a logical evaluation operator without a formal defi nition. The > operator
compares two values. The result is “true” if the value on the left is greater than the value on the
right. All logical evaluation operators follow this pattern—they all result in a true or false.

The following table shows common logical evaluation operators:

OP DESCRIPTION USAGE

<

<=

>

>=

Determines if the left-hand side
is less than, less than or equal
to, greater than, or greater than
or equal to the right-hand side

if (i < 0) {

 std::cout << "i is negative";

}

== Determines if the left-hand
side equals the right-hand side.
Don’t confuse this with the =
(assignment) operator!

if (i == 3) {

 std::cout << "i is 3";

}

!= Not equals. The result of the
statement is true if the left-hand
side does not equal the right-
hand side.

if (i != 3) {

 std::cout << "i is not 3";

}

The Basics of C++ ❘ 21

c01.indd 02/07/2018 Page 21

OP DESCRIPTION USAGE

! Logical NOT.

This complements the true/false
status of a Boolean expression.
This is a unary operator.

if (!someBoolean) {

 std::cout << "someBoolean is false";

}

&& Logical AND. The result is true
if both parts of the expression
are true.

if (someBoolean && someOtherBoolean) {

 std::cout << "both are true";

}

|| Logical OR. The result is true if
either part of the expression is
true.

if (someBoolean || someOtherBoolean) {

 std::cout << "at least one is true";

}

C++ uses short-circuit logic when evaluating logical expressions. That means that once the fi nal
result is certain, the rest of the expression won’t be evaluated. For example, if you are performing
a logical OR operation of several Boolean expressions, as shown in the following code, the result is
known to be true as soon as one of them is found to be true. The rest won’t even be checked.

bool result = bool1 || bool2 || (i > 7) || (27 / 13 % i + 1) < 2;

In this example, if bool1 is found to be true, the entire expression must be true, so the other parts
aren’t evaluated. In this way, the language saves your code from doing unnecessary work. It can,
however, be a source of hard-to-fi nd bugs if the later expressions in some way infl uence the state of
the program (for example, by calling a separate function). The following code shows a statement
using && that short-circuits after the second term because 0 always evaluates to false:

bool result = bool1 && 0 && (i > 7) && !done;

Short-circuiting can be benefi cial for performance. You can put cheaper tests fi rst so that more
expensive tests are not even executed when the logic short-circuits. It is also useful in the context
of pointers to avoid parts of the expression to be executed when a pointer is not valid. Pointers and
short-circuiting with pointers are discussed later in this chapter.

Functions
For programs of any signifi cant size, placing all the code inside of main() is unmanageable.
To make programs easy to understand, you need to break up, or decompose, code into concise
functions.

In C++, you fi rst declare a function to make it available for other code to use. If the function is used
inside only a particular fi le, you generally declare and defi ne the function in the source fi le. If the
function is for use by other modules or fi les, you generally put the declaration in a header fi le and
the defi nition in a source fi le.

22 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 22

A function declaration is shown in the following code. This example has a return type of void,
indicating that the function does not provide a result to the caller. The caller must provide two
 arguments for the function to work with—an integer and a character.

void myFunction(int i, char c);

Without an actual defi nition to match this function declaration, the link stage of the compila-
tion process will fail because code that makes use of the function will be calling nonexistent code.
The following defi nition prints the values of the two parameters:

void myFunction(int i, char c)
{
 std::cout << "the value of i is " << i << std::endl;
 std::cout << "the value of c is " << c << std::endl;
}

Elsewhere in the program, you can make calls to myFunction() and pass in arguments for the two
parameters. Some sample function calls are shown here:

myFunction(8, 'a');
myFunction(someInt, 'b');
myFunction(5, someChar);

C++ functions can also return a value to the caller. The following function adds two numbers and
returns the result:

int addNumbers(int number1, int number2)
{
 return number1 + number2;
}

This function can be called as follows:

int sum = addNumbers(5, 3);

Function Return Type Deduction
With C++14, you can ask the compiler to fi gure out the return type of a function automatically.
To make use of this functionality, you need to specify auto as the return type:

auto addNumbers(int number1, int number2)
{
 return number1 + number2;
}

NOTE Function declarations are often called function prototypes or function
headers to emphasize that they represent how the function can be accessed, but
not the code behind it. The term function signature is used to denote the combi-
nation of the function name and its parameter list, but without the return type.

NOTE In C++, unlike C, a function that takes no parameters just has an empty
parameter list. It is not necessary to use void to indicate that no parameters are
taken. However, you must still use void to indicate when no value is returned.

The Basics of C++ ❘ 23

c01.indd 02/07/2018 Page 23

The compiler deduces the return type based on the expressions used for the return statements.
There can be multiple return statements in the function, but they should all resolve to the same
type. Such a function can even include recursive calls (calls to itself), but the fi rst return statement
in the function must be a non-recursive call.

Current Function’s Name
Every function has a local predefi ned variable __func__ containing the name of the current func-
tion. One use of this variable would be for logging purposes:

int addNumbers(int number1, int number2)
{
 std::cout << "Entering function " << __func__ << std::endl;
 return number1 + number2;
}

C-Style Arrays
Arrays hold a series of values, all of the same type, each of which can be accessed by its position in
the array. In C++, you must provide the size of the array when the array is declared. You cannot give
a variable as the size—it must be a constant, or a constant expression (constexpr). Constant expres-
sions are discussed in Chapter 11. The code that follows shows the declaration of an array of three
integers followed by three lines to initialize the elements to 0:

int myArray[3];
myArray[0] = 0;
myArray[1] = 0;
myArray[2] = 0;

The next section discusses loops that you can use to initialize each element. However, instead of
using loops, or using the previous initialization mechanism, you can also accomplish the zero-
initialization with the following one-liner:

int myArray[3] = {0};

You can even drop the 0 as follows:

int myArray[3] = {};

An array can also be initialized with an initializer list, in which case the compiler can deduce the
size of the array automatically. For example,

int myArray[] = {1, 2, 3, 4}; // The compiler creates an array of 4 elements.

If you do specify the size of the array, and the initializer list has less elements than the given size, the
remaining elements are set to 0. For example, the following code only sets the fi rst element in the
array to the value 2, and sets all the other elements to 0:

int myArray[3] = {2};

WARNING In C++, the fi rst element of an array is always at position 0, not
position 1! The last position of the array is always the size of the array minus 1!

24 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 24

To get the size of a stack-based C-style array, you can use the C++17 std::size() function
(requires <array>). For example:

unsigned int arraySize = std::size(myArray);

If your compiler is not yet C++17 compliant, the old trick to get the size of a stack-based C-style
array is to use the sizeof operator. The sizeof operator returns the size of its argument in bytes.
To get the number of elements in a stack-based array, you divide the size in bytes of the array by the
size in bytes of the fi rst element. For example:

unsigned int arraySize = sizeof(myArray) / sizeof(myArray[0]);

The preceding examples show a one-dimensional array, which you can think of as a line of inte-
gers, each with its own numbered compartment. C++ allows multi-dimensional arrays. You might
think of a two-dimensional array as a checkerboard, where each location has a position along the
x-axis and a position along the y-axis. Three-dimensional and higher arrays are harder to picture
and are rarely used. The following code shows the syntax for allocating a two-dimensional array of
characters for a Tic-Tac-Toe board and then putting an “o” in the center square:

char ticTacToeBoard[3][3];
ticTacToeBoard[1][1] = 'o';

Figure 1-1 shows a visual representation of this board with the position of each square.

TicTacToeBoard[0][0] TicTacToeBoard[0][1] TicTacToeBoard[0][2]

TicTacToeBoard[1][0] TicTacToeBoard[1][1] TicTacToeBoard[1][2]

TicTacToeBoard[2][0] TicTacToeBoard[2][1] TicTacToeBoard[2][2]

FIGURE 1-1

NOTE In C++, it’s best to avoid C-style arrays as discussed in this section,
and instead use Standard Library functionality, such as std::array, and
std::vector, as discussed in the next two sections.

The Basics of C++ ❘ 25

c01.indd 02/07/2018 Page 25

std::array
The arrays discussed in the previous section come from C, and still work in C++. However, C++
has a special type of fi xed-size container called std::array, defi ned in the <array> header fi le. It’s
basically a thin wrapper around C-style arrays.

There are a number of advantages to using std::arrays instead of C-style arrays. They always
know their own size, are not automatically cast to a pointer to avoid certain types of bugs, and have
iterators to easily loop over the elements. Iterators are discussed in detail in Chapter 17.

The following example demonstrates how to use the array container. The use of angle brackets
after array, as in array<int, 3>, will become clear during the discussion of templates in Chapter
12. However, for now, just remember that you have to specify two parameters between the angle
brackets. The fi rst parameter represents the type of the elements in the array, and the second one
represents the size of the array.

array<int, 3> arr = {9, 8, 7};
cout << "Array size = " << arr.size() << endl;
cout << "2nd element = " << arr[1] << endl;

If you want an array with a dynamic size, it is recommended to use std::vector, as explained in
the next section. A vector automatically increases in size when you add new elements to it.

std::vector
The C++ Standard Library provides a number of different non-fi xed-size containers that can be
used to store information. std::vector, declared in <vector>, is an example of such a container.
The vector replaces the concept of C-style arrays with a much more fl exible and safer mechanism.
As a user, you need not worry about memory management, as the vector automatically allocates
enough memory to hold its elements. A vector is dynamic, meaning that elements can be added and
removed at run time. Chapter 17 goes into more detail regarding containers, but the basic use of a
vector is straightforward, which is why it’s introduced in the beginning of this book so that it can
be used in examples. The following code demonstrates the basic functionality of vector.

// Create a vector of integers
vector<int> myVector = { 11, 22 };

// Add some more integers to the vector using push_back()
myVector.push_back(33);
myVector.push_back(44);

// Access elements
cout << "1st element: " << myVector[0] << endl;

NOTE Both the C-style arrays and the std::arrays have a fi xed size, which
must be known at compile time. They cannot grow or shrink at run time.

26 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 26

myVector is declared as vector<int>. The angle brackets are required to specify the template
parameters, just as with std::array. A vector is a generic container. It can contain almost any
kind of object; that’s why you have to specify the type of object you want in your vector between
the angle brackets. Templates are discussed in detail in Chapters 12 and 22.

To add elements to a vector, you can use the push_back() method. Individual elements can be
accessed using a similar syntax as for arrays, i.e. operator[].

Structured Bindings
C++17 introduces the concept of structured bindings. Structured bindings allow you to declare mul-
tiple variables that are initialized with elements from an array, struct, pair, or tuple.

For example, assume you have the following array:

std::array<int, 3> values = { 11, 22, 33 };

You can declare three variables, x, y, and z, initialized with the three values from the array as
 follows. Note that you have to use the auto keyword for structured bindings. You cannot, for
 example, specify int instead of auto.

auto [x, y, z] = values;

The number of variables declared with the structured binding has to match the number of values in
the expression on the right.

Structured bindings also work with structures if all non-static members are public. For example,

struct Point { double mX, mY, mZ; };
Point point;
point.mX = 1.0; point.mY = 2.0; point.mZ = 3.0;
auto [x, y, z] = point;

Examples with std::pair and std::tuple are given in chapters 17 and 20 respectively.

Loops
Computers are great for doing the same thing over and over. C++ provides four looping mecha-
nisms: the while loop, do/while loop, for loop, and range-based for loop.

The while Loop
The while loop lets you perform a block of code repeatedly as long as an expression evaluates to
true. For example, the following completely silly code will output “This is silly.” fi ve times:

int i = 0;
while (i < 5) {
 std::cout << "This is silly." << std::endl;
 ++i;
}

C++17

The Basics of C++ ❘ 27

c01.indd 02/07/2018 Page 27

The keyword break can be used within a loop to immediately get out of the loop and continue
execution of the program. The keyword continue can be used to return to the top of the loop
and reevaluate the while expression. However, using continue in loops is often considered poor
style because it causes the execution of a program to jump around somewhat haphazardly, so use it
sparingly.

The do/while Loop
C++ also has a variation on the while loop called do/while. It works similarly to the while loop,
except that the code to be executed comes fi rst, and the conditional check for whether or not to con-
tinue happens at the end. In this way, you can use a loop when you want a block of code to always
be executed at least once and possibly additional times based on some condition. The example that
follows outputs the statement, “This is silly.” once, even though the condition ends up being false:

int i = 100;
do {
 std::cout << "This is silly." << std::endl;
 ++i;
} while (i < 5);

The for Loop
The for loop provides another syntax for looping. Any for loop can be converted to a while loop
and vice versa. However, the for loop syntax is often more convenient because it looks at a loop in
terms of a starting expression, an ending condition, and a statement to execute at the end of every
iteration. In the following code, i is initialized to 0; the loop continues as long as i is less than 5;
and at the end of every iteration, i is incremented by 1. This code does the same thing as the while
loop example, but is more readable because the starting value, ending condition, and per-iteration
statement are all visible on one line.

for (int i = 0; i < 5; ++i) {
 std::cout << "This is silly." << std::endl;
}

The Range-Based for Loop
The range-based for loop is the fourth looping mechanism. It allows for easy iteration over elements
of a container. This type of loop works for C-style arrays, initializer lists (discussed later in this
chapter), and any type that has begin() and end() methods returning iterators (see Chapter 17),
such as std::array, std::vector, and all other Standard Library containers discussed in
Chapter 17.

The following example fi rst defi nes an array of four integers. The range-based for loop then iterates
over a copy of every element in this array and prints each value. To iterate over the elements them-
selves without making copies, use a reference variable, as I discuss later in this chapter.

std::array<int, 4> arr = {1, 2, 3, 4};
for (int i : arr) {
 std::cout << i << std::endl;
}

28 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 28

Initializer Lists
Initializer lists are defi ned in the <initializer_list> header fi le and make it easy to write func-
tions that can accept a variable number of arguments. The initializer_list class is a template
and so it requires you to specify the type of elements in the list between angle brackets, similar to
how you have to specify the type of object stored in a vector. The following example shows how to
use an initializer list:

#include <initializer_list>

using namespace std;

int makeSum(initializer_list<int> lst)
{
 int total = 0;
 for (int value : lst) {
 total += value;
 }
 return total;
}

The function makeSum() accepts an initializer list of integers as argument. The body of the function
uses a range-based for loop to accumulate the total sum. This function can be used as follows:

int a = makeSum({1,2,3});
int b = makeSum({10,20,30,40,50,60});

Initializer lists are type safe and defi ne which type is allowed to be in the list. For the makeSum()
function shown here, all elements of the initializer list must be integers. Trying to call it with a
double results in a compiler error or warning, as shown here:

int c = makeSum({1,2,3.0});

Those Are the Basics
At this point, you have reviewed the basic essentials of C++ programming. If this section was a
breeze, skim the next section to make sure that you are up to speed on the more-advanced material.
If you struggled with this section, you may want to obtain one of the fi ne introductory C++ books
mentioned in Appendix B before continuing.

DIVING DEEPER INTO C++

Loops, variables, and conditionals are terrifi c building blocks, but there is much more to learn. The
topics covered next include many features designed to help C++ programmers with their code as well
as a few features that are often more confusing than helpful. If you are a C programmer with little
C++ experience, you should read this section carefully.

Diving Deeper into C++ ❘ 29

c01.indd 02/07/2018 Page 29

Strings in C++
There are three ways to work with strings of text in C++: the C-style, which represents strings as
arrays of characters; the C++ style, which wraps that representation in an easier-to-use string type;
and the general class of nonstandard approaches. Chapter 2 provides a detailed discussion.

For now, the only thing you need to know is that the C++ string type is defi ned in the <string>
header fi le, and that you can use a C++ string almost like a basic type. Just like I/O streams, the
string type lives in the std namespace. The following example shows that strings can be used just
like character arrays:

string myString = "Hello, World";
cout << "The value of myString is " << myString << endl;
cout << "The second letter is " << myString[1] << endl;

Pointers and Dynamic Memory
Dynamic memory allows you to build programs with data that is not of fi xed size at compile time.
Most nontrivial programs make use of dynamic memory in some form.

The Stack and the Heap
Memory in your C++ application is divided into two parts—the stack and the heap. One way to
visualize the stack is as a deck of cards. The current top card represents the current scope of the pro-
gram, usually the function that is currently being executed. All variables declared inside the current
function will take up memory in the top stack frame, the top card of the deck. If the current func-
tion, which I’ll call foo(), calls another function bar(), a new card is put on the deck so that bar()
has its own stack frame to work with. Any parameters passed from
foo() to bar() are copied from the foo() stack frame into the
bar() stack frame. Figure 1-2 shows what the stack might look
like during the execution of a hypothetical function foo() that has
declared two integer values.

Stack frames are nice because they provide an isolated memory
workspace for each function. If a variable is declared inside the
foo() stack frame, calling the bar() function won’t change it
unless you specifi cally tell it to. Also, when the foo() function is
done running, the stack frame goes away, and all of the variables declared within the function no
longer take up memory. Variables that are stack-allocated do not need to be deallocated (deleted) by
the programmer; it happens automatically.

The heap is an area of memory that is completely independent of the current function or stack
frame. You can put variables on the heap if you want them to exist even when the function in which
they were created has completed. The heap is less structured than the stack. You can think of it
as just a pile of bits. Your program can add new bits to the pile at any time or modify bits that are
already in the pile. You have to make sure that you deallocate (delete) any memory that you allo-
cated on the heap. This does not happen automatically, unless you use smart pointers, which are
discussed in the section “Smart Pointers.”

int i

int j

7

11

foo()

main()

FIGURE 1-2

30 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 30

Working with Pointers
You can put anything on the heap by explicitly allocating memory for it. For example, to put an
integer on the heap, you need to allocate memory for it, but fi rst you need to declare a pointer:

int* myIntegerPointer;

The * after the int type indicates that the variable you are declaring refers or points to some integer
memory. Think of the pointer as an arrow that points at the dynamically allocated heap memory.
It does not yet point to anything specifi c because you haven’t assigned it to anything; it is an unini-
tialized variable. Uninitialized variables should be avoided at all times, and especially uninitialized
pointers because they point to some random place in memory. Working with such pointers will most
likely make your program crash. That’s why you should always declare and initialize your pointers
at the same time. You can initialize them to a null pointer (nullptr—for more information, see the
“Null Pointer Constant” section) if you don’t want to allocate memory right away:

int* myIntegerPointer = nullptr;

A null pointer is a special default value that no valid pointer will ever have, and converts to false
when used in a Boolean expression. For example:

if (!myIntegerPointer) { /* myIntegerPointer is a null pointer */ }

You use the new operator to allocate the memory:

myIntegerPointer = new int;

In this case, the pointer points to the address of just a single integer value. To access this value,
you need to dereference the pointer. Think of dereferencing as following the pointer’s arrow to the
actual value on the heap. To set the value of the newly allocated heap integer, you would use code
like the following:

*myIntegerPointer = 8;

Notice that this is not the same as setting myIntegerPointer to the value 8. You are not changing
the pointer; you are changing the memory that it points to. If you were to reassign the pointer value,
it would point to the memory address 8, which is probably random garbage that will eventually
make your program crash.

After you are fi nished with your dynamically allocated memory, you need to deallocate the memory
using the delete operator. To prevent the pointer from being used after having deallocated the
memory it points to, it’s recommended to set your pointer to nullptr:

delete myIntegerPointer;
myIntegerPointer = nullptr;

WARNING A pointer must be valid before it is dereferenced. Dereferencing a
null pointer or an uninitialized pointer causes undefi ned behavior. Your pro-
gram might crash, but it might just as well keep running and start giving strange
results.

Diving Deeper into C++ ❘ 31

c01.indd 02/07/2018 Page 31

Pointers don’t always point to heap memory. You can declare a pointer that points to a variable on
the stack, even another pointer. To get a pointer to a variable, you use the & (“address of”) operator:

int i = 8;
int* myIntegerPointer = &i; // Points to the variable with the value 8

C++ has a special syntax for dealing with pointers to structures. Technically, if you have a pointer to
a structure, you can access its fi elds by fi rst dereferencing it with *, then using the normal. syntax,
as in the code that follows, which assumes the existence of a function called getEmployee().

Employee* anEmployee = getEmployee();
cout << (*anEmployee).salary << endl;

This syntax is a little messy. The -> (arrow) operator lets you perform both the dereference and the
fi eld access in one step. The following code is equivalent to the preceding code, but is easier to read:

Employee* anEmployee = getEmployee();
cout << anEmployee->salary << endl;

Remember the concept of short-circuiting logic, which was discussed earlier in this chapter? This
can be useful in combination with pointers to avoid using an invalid pointer, as in the following
example:

bool isValidSalary = (anEmployee && anEmployee->salary > 0);

Or, a little bit more verbose:

bool isValidSalary = (anEmployee != nullptr && anEmployee->salary > 0);

anEmployee is only dereferenced to get the salary if it is a valid pointer. If it is a null pointer, the
logical operation short-circuits, and the anEmployee pointer is not dereferenced.

Dynamically Allocated Arrays
The heap can also be used to dynamically allocate arrays. You use the new[] operator to allocate
memory for an array.

int arraySize = 8;
int* myVariableSizedArray = new int[arraySize];

This allocates memory for enough integers to satisfy the arraySize variable. Figure 1-3 shows what
the stack and the heap both look like after this code is executed. As you can see, the pointer variable
still resides on the stack, but the array that was dynamically created lives on the heap.

Now that the memory has been allocated, you can work with myVariableSizedArray as though it
were a regular stack-based array.

myVariableSizedArray[3] = 2;

32 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 32

When your code is done with the array, it should remove the array from the heap so that other vari-
ables can use the memory. In C++, you use the delete[] operator to do this.

delete[] myVariableSizedArray;
myVariableSizedArray = nullptr;

The brackets after delete indicate that you are deleting an array!

Null Pointer Constant
Before C++11, the constant NULL was used for null pointers. NULL is simply defi ned as the constant
0, and this can cause problems. Take the following example:

void func(char* str) {cout << "char* version" << endl;}
void func(int i) {cout << "int version" << endl;}

int main()
{
 func(NULL);
 return 0;
}

myVariableSizedArray

Stack Heap

myVariableSizedArray[0]

myVariableSizedArray[1]

myVariableSizedArray[2]

myVariableSizedArray[3]

myVariableSizedArray[4]

myVariableSizedArray[5]

myVariableSizedArray[6]

myVariableSizedArray[7]

FIGURE 1-3

NOTE Avoid using malloc() and free() from C. Instead, use new and delete,
or new[] and delete[].

WARNING To prevent memory leaks, every call to new should be paired with a
call to delete, and every call to new[] should be paired with a call to delete[].
Not calling delete or delete[], or mismatching calls, results in memory leaks.
Memory leaks are discussed in Chapter 7.

Diving Deeper into C++ ❘ 33

c01.indd 02/07/2018 Page 33

The main() function is calling func() with parameter NULL, which is supposed to be a null pointer
constant. In other words, you are expecting the char* version of func() to be called with a null
pointer as argument. However, since NULL is not a pointer, but identical to the integer 0, the integer
version of func() is called.

This problem is solved with the introduction of a real null pointer constant, nullptr. The following
code calls the char* version:

func(nullptr);

Smart Pointers
To avoid common memory problems, you should use smart pointers instead of “raw,” also called
“naked,” C-style pointers. Smart pointers automatically deallocate memory when the smart pointer
object goes out of scope, for example, when the function has fi nished executing.

The following are the two most important smart pointer types in C++, both defi ned in <memory>
and in the std namespace:

➤ std::unique_ptr

➤ std::shared_ptr

unique_ptr is analogous to an ordinary pointer, except that it automatically frees the memory or
resource when the unique_ptr goes out of scope or is deleted. As such, unique_ptr has sole own-
ership of the object pointed to. One advantage of a unique_ptr is that memory and resources are
always freed, even when return statements are executed, or when exceptions (discussed later in this
chapter) are thrown. This, for example, simplifi es coding when a function has multiple return state-
ments, because you don’t have to remember to free the resources before each return statement.

To create a unique_ptr, you should use std::make_unique<>(). For example, instead of writing
the following,

Employee* anEmployee = new Employee;
// ...
delete anEmployee;

you should write this:

auto anEmployee = make_unique<Employee>();

Note that you do not call delete anymore; it happens automatically for you. The auto keyword is
discussed in more detail in the “Type Inference” section later in this chapter. For now, it suffi ces to
know that the auto keyword tells the compiler to automatically deduce the type of a variable, so
that you don’t have to manually specify the full type.

unique_ptr is a generic smart pointer that can point to any kind of memory. That’s why it is a
template. Templates require the angle brackets, < >, to specify the template parameters. Between the
brackets, you have to specify the type of memory you want your unique_ptr to point to. Templates
are discussed in detail in Chapters 12 and 22, but the smart pointers are introduced in Chapter 1 so
that they can be used throughout the book—and as you will see, they are easy to use.

34 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 34

make_unique() has been available since C++14. If your compiler is not yet C++14 compliant, you
can make your unique_ptr as follows (note that you now have to specify the type, Employee,
twice):

unique_ptr<Employee> anEmployee(new Employee);

You can use the anEmployee smart pointer in the same way as a normal pointer, for example:

if (anEmployee) {
 cout << "Salary: " << anEmployee->salary << endl;
}

A unique_ptr can also be used to store a C-style array. The following example creates an array of
ten Employee instances, stores it in a unique_ptr, and shows how to access an element from the
array:

auto employees = make_unique<Employee[]>(10);
cout << "Salary: " << employees[0].salary << endl;

shared_ptr allows for distributed ownership of the data. Each time a shared_ptr is assigned, a
reference count is incremented indicating there is one more owner of the data. When a shared_ptr
goes out of scope, the reference count is decremented. When the reference count goes to zero, it
means there is no longer any owner of the data, and the object referenced by the pointer is freed.

To create a shared_ptr, you should use std::make_shared<>(), which is similar to
make_unique<>():

auto anEmployee = make_shared<Employee>();
if (anEmployee) {
 cout << "Salary: " << anEmployee->salary << endl;
}

Starting with C++17, you can also store an array in a shared_ptr, whereas older versions of C++
did not allow this. Note however that make_shared<>() of C++17 cannot be used in this case. Here
is an example:

shared_ptr<Employee[]> employees(new Employee[10]);
cout << "Salary: " << employees[0].salary << endl;

Chapter 7 discusses memory management and smart pointers in more details, but because the basic
use of unique_ptr and shared_ptr is straightforward, they are already used in examples through-
out this book.

NOTE Raw pointers are only allowed if there is no ownership involved.
Otherwise, use unique_ptr by default, and shared_ptr if you need shared
ownership. If you know about auto_ptr, forget it; it was deprecated in
C++11/14, and has been removed from C++17.

Diving Deeper into C++ ❘ 35

c01.indd 02/07/2018 Page 35

The Many Uses of const
The keyword const can be used in several different ways in C++. All of its uses are related, but there
are subtle differences. The subtleties of const make for excellent interview questions! Chapter 11
explains in detail all the ways that const can be used. This section outlines two common use-cases.

const Constants
If you assumed that the keyword const has something to do with constants, you have correctly
uncovered one of its uses. In the C language, programmers often use the preprocessor #define
mechanism to declare symbolic names for values that won’t change during the execution of the pro-
gram, such as the version number. In C++, programmers are encouraged to avoid #define in favor
of using const to defi ne constants. Defi ning a constant with const is just like defi ning a variable,
except that the compiler guarantees that code cannot change the value.

const int versionNumberMajor = 2;
const int versionNumberMinor = 1;
const std::string productName = "Super Hyper Net Modulator";

const to Protect Parameters
In C++, you can cast a non-const variable to a const variable. Why would you want to do this? It
offers some degree of protection from other code changing the variable. If you are calling a func-
tion that a coworker of yours is writing, and you want to ensure that the function doesn’t change
the value of a parameter you pass in, you can tell your coworker to have the function take a const
parameter. If the function attempts to change the value of the parameter, it will not compile.

In the following code, a string* is automatically cast to a const string* in the call to mys-
teryFunction(). If the author of mysteryFunction() attempts to change the value of the passed
string, the code will not compile. There are ways around this restriction, but using them requires
conscious effort. C++ only protects against accidentally changing const variables.

void mysteryFunction(const std::string* someString)
{
 *someString = "Test"; // Will not compile.
}

int main()
{
 std::string myString = "The string";
 mysteryFunction(&myString);
 return 0;
}

References
A reference in C++ allows you to give another name to an existing variable. For example:

int x = 42;
int& xReference = x;

36 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 36

Attaching & to a type indicates that the variable is a reference. It is still used as though it was a nor-
mal variable, but behind the scenes, it is really a pointer to the original variable. Both the variable
x and the reference variable xReference point to exactly the same value. If you change the value
through either one of them, the change is visible through the other one as well.

Pass By Reference
Normally, when you pass a variable into a function, you are passing by value. If a function takes an
integer parameter, it is really a copy of the integer that you pass in, so you cannot modify the value
of the original variable. Pointers to stack variables are often used in C to allow functions to modify
variables in other stack frames. By dereferencing the pointer, the function can change the memory
that represents the variable even though that variable isn’t in the current stack frame. The problem
with this approach is that it brings the messiness of pointer syntax into what is really a simple task.

Instead of passing pointers to functions, C++ offers a better mechanism, called pass by reference,
where parameters are references instead of pointers. Following are two implementations of an
addOne() function. The fi rst one has no effect on the variable that is passed in because it is passed
by value and thus the function receives a copy of the value passed to it. The second one uses a refer-
ence and thus changes the original variable.

void addOne(int i)
{
 i++; // Has no real effect because this is a copy of the original
}

void addOne(int& i)
{
 i++; // Actually changes the original variable
}

The syntax for the call to the addOne() function with an integer reference is no different than if the
function just took an integer:

int myInt = 7;
addOne(myInt);

If you have a function that needs to return a big structure or class (discussed later in this chapter)
that is expensive to copy, you’ll often see the function taking a non-const reference to such a struc-
ture or class which the function then modifi es, instead of directly returning it. This was the recom-
mended way a long time ago to prevent the performance penalty of creating a copy when you return
the structure or class from the function. Since C++11, this is not necessary anymore. Thanks to

NOTE There is a subtle difference between the two addOne() implementations.
The version using pass-by-value accepts literals without a problem; for example,
“addOne(3);” is legal. However, doing the same with the pass-by-reference
version of addOne() will result in a compiler error. This can be solved by using
const references, discussed in the next section, or rvalue references, an advanced
C++ feature explained in Chapter 9.

Diving Deeper into C++ ❘ 37

c01.indd 02/07/2018 Page 37

move semantics, directly returning structures or classes from functions is effi cient without any copy-
ing. Move semantics is discussed in detail in Chapter 9.

Pass By const Reference
You will often fi nd code that uses const reference parameters for functions. At fi rst, that seems
like a contradiction. Reference parameters allow you to change the value of a variable from within
another context. const seems to prevent such changes.

The main value in const reference parameters is effi ciency. When you pass a value into a function,
an entire copy is made. When you pass a reference, you are really just passing a pointer to the origi-
nal so the computer doesn’t need to make a copy. By passing a const reference, you get the best of
both worlds: no copy is made but the original variable cannot be changed.

const references become more important when you are dealing with objects because they can be
large and making copies of them can have unwanted side effects. Subtle issues like this are covered
in Chapter 11. The following example shows how to pass an std::string to a function as a const
reference:

void printString(const std::string& myString)
{
 std::cout << myString << std::endl;
}

int main()
{
 std::string someString = "Hello World";
 printString(someString);
 printString("Hello World"); // Passing literals works
 return 0;
}

Exceptions
C++ is a very fl exible language, but not a particularly safe one. The compiler will let you write code
that scribbles on random memory addresses or tries to divide by zero (computers don’t deal well
with infi nity). One language feature that attempts to add a degree of safety back to the language is
exceptions.

An exception is an unexpected situation. For example, if you are writing a function that retrieves
a web page, several things could go wrong. The Internet host that contains the page might be
down, the page might come back blank, or the connection could be lost. One way you could handle
this situation is by returning a special value from the function, such as nullptr or an error code.
Exceptions provide a much better mechanism for dealing with problems.

NOTE If you need to pass an object to a function, prefer to pass it by const
reference instead of by value. This prevents unnecessary copying. Pass it by
 non-const reference if the function needs to modify the object.

38 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 38

Exceptions come with some new terminology. When a piece of code detects an exceptional situation,
it throws an exception. Another piece of code catches the exception and takes appropriate action.
The following example shows a function, divideNumbers(), that throws an exception if the caller
passes in a denominator of zero. The use of std::invalid_argument requires <stdexcept>.

double divideNumbers(double numerator, double denominator)
{
 if (denominator == 0) {
 throw invalid_argument("Denominator cannot be 0.");
 }
 return numerator / denominator;
}

When the throw line is executed, the function immediately ends without returning a value. If the
caller surrounds the function call with a try/catch block, as shown in the following code, it
receives the exception and is able to handle it:

try {
 cout << divideNumbers(2.5, 0.5) << endl;
 cout << divideNumbers(2.3, 0) << endl;
 cout << divideNumbers(4.5, 2.5) << endl;
} catch (const invalid_argument& exception) {
 cout << "Exception caught: " << exception.what() << endl;
}

The fi rst call to divideNumbers() executes successfully, and the result is output to the user. The
second call throws an exception. No value is returned, and the only output is the error message that
is printed when the exception is caught. The third call is never executed because the second call
throws an exception, causing the program to jump to the catch block. The output for the preceding
block of code is as follows:

5
An exception was caught: Denominator cannot be 0.

Exceptions can get tricky in C++. To use exceptions properly, you need to understand what happens
to the stack variables when an exception is thrown, and you have to be careful to properly catch
and handle the necessary exceptions. Also, the preceding example uses the built-in std::invalid_
argument type, but it is preferable to write your own exception types that are more specifi c to the
error being thrown. Lastly, the C++ compiler doesn’t force you to catch every exception that might
occur. If your code never catches any exceptions but an exception is thrown, it will be caught by the
program itself, which will be terminated. These trickier aspects of exceptions are covered in much
more detail in Chapter 14.

Type Inference
Type inference allows the compiler to automatically deduce the type of an expression. There are two
keywords for type inference: auto and decltype.

Diving Deeper into C++ ❘ 39

c01.indd 02/07/2018 Page 39

The auto Keyword
The auto keyword has a number of completely different uses:

➤ Deducing a function’s return type, as explained earlier in this chapter.

➤ Structured bindings, as explained earlier in this chapter.

➤ Deducing the type of an expression, as discussed later in this section.

➤ Deducing the type of non-type template parameters, see Chapter 12.

➤ decltype(auto), see Chapter 12.

➤ Alternative function syntax, see Chapter 12.

➤ Generic lambda expressions, see Chapter 18.

auto can be used to tell the compiler to automatically deduce the type of a variable at compile time.
The following line shows the simplest use of the auto keyword in that context:

auto x = 123; // x will be of type int

In this example, you don’t win much by typing auto instead of int; however, it becomes useful
for more complicated types. Suppose you have a function called getFoo() that has a complicated
return type. If you want to assign the result of calling getFoo() to a variable, you can spell out the
 complicated type, or you can simply use auto and let the compiler fi gure it out:

auto result = getFoo();

This has the added benefi t that you can easily change the function’s return type without having to
update all the places in the code where that function is called.

However, using auto to deduce the type of an expression strips away reference and const qualifi ers.
Suppose you have the following function:

#include <string>

const std::string message = "Test";

const std::string& foo()
{
 return message;
}

You can call foo() and store the result in a variable with the type specifi ed as auto, as follows:

auto f1 = foo();

Because auto strips away reference and const qualifi ers, f1 is of type string, and thus a copy is
made. If you want a const reference, you can explicitly make it a reference and mark it const, as
follows:

const auto& f2 = foo();

40 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 40

The decltype Keyword
The decltype keyword takes an expression as argument, and computes the type of that expression,
as shown here:

int x = 123;
decltype(x) y = 456;

In this example, the compiler deduces the type of y to be int because that is the type of x.

The difference between auto and decltype is that decltype does not strip reference and const

qualifi ers. Take again the function foo() returning a const reference to a string. Defi ning f2
using decltype as follows results in f2 being of type const string&, and thus no copy is made.

decltype(foo()) f2 = foo();

On fi rst sight, decltype doesn’t seem to add much value. However, it is pretty powerful in the con-
text of templates, discussed in Chapters 12 and 22.

C++ AS AN OBJECT-ORIENTED LANGUAGE

If you are a C programmer, you may have viewed the features covered so far in this chapter as con-
venient additions to the C language. As the name C++ implies, in many ways the language is just a
“better C.” There is one major point that this view overlooks: unlike C, C++ is an object-oriented
language.

Object-oriented programming (OOP) is a very different, arguably more natural, way to write code.
If you are used to procedural languages such as C or Pascal, don’t worry. Chapter 5 covers all the
background information you need to know to shift your mindset to the object-oriented paradigm.
If you already know the theory of OOP, the rest of this section will get you up to speed (or refresh
your memory) on basic C++ object syntax.

Defi ning Classes
A class defi nes the characteristics of an object. In C++, classes are usually defi ned in a header fi le
(.h), while their defi nitions usually are in a corresponding source fi le (.cpp).

A basic class defi nition for an airline ticket class is shown in the following example. The class can
calculate the price of the ticket based on the number of miles in the fl ight and whether or not the
customer is a member of the “Elite Super Rewards Program.” The defi nition begins by declaring the
class name. Inside a set of curly braces, the data members (properties) of the class and its methods
(behaviors) are declared. Each data member and method is associated with a particular access level:
public, protected, or private. These labels can occur in any order and can be repeated. Members
that are public can be accessed from outside the class, while members that are private cannot be

WARNING Always keep in mind that auto strips away reference and const
qualifi ers, and thus creates a copy! If you do not want a copy, use auto& or
const auto&.

C++ as an Object-Oriented Language ❘ 41

c01.indd 02/07/2018 Page 41

accessed from outside the class. It’s recommended to make all your data members private, and if
needed, to give access to them with public getters and setters. This way, you can easily change the
representation of your data while keeping the public interface the same. The use of protected is
explained in the context of inheritance in Chapters 5 and 10.

#include <string>

class AirlineTicket
{
 public:
 AirlineTicket();
 ~AirlineTicket();

 double calculatePriceInDollars() const;

 const std::string& getPassengerName() const;
 void setPassengerName(const std::string& name);

 int getNumberOfMiles() const;
 void setNumberOfMiles(int miles);

 bool hasEliteSuperRewardsStatus() const;
 void setHasEliteSuperRewardsStatus(bool status);
 private:
 std::string mPassengerName;
 int mNumberOfMiles;
 bool mHasEliteSuperRewardsStatus;
};

This book follows the convention to prefi x each data member of a class with a lowercase ‘m’, such as
mPassengerName.

The method that has the same name as the class with no return type is a constructor. It is automati-rr
cally called when an object of the class is created. The method with a tilde (~) character followed by
the class name is a destructor. It is automatically called when the object is destroyed.rr

There are two ways of initializing data members with a constructor. The recommended way is
to use a constructor initializer, which follows a colon after the constructor name. Here is the rr
AirlineTicket constructor with a constructor initializer:

AirlineTicket::AirlineTicket()
 : mPassengerName("Unknown Passenger")
 , mNumberOfMiles(0)
 , mHasEliteSuperRewardsStatus(false)
{
}

NOTE To follow the const-correctness principle, it’s always a good idea to
declare member functions that do not change any data member of the object as
being const. These member functions are also called “inspectors,” compared to
“mutators” for non-const member functions.

42 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 42

A second way is to put the initializations in the body of the constructor, as shown here:

AirlineTicket::AirlineTicket()
{
 // Initialize data members
 mPassengerName = "Unknown Passenger";
 mNumberOfMiles = 0;
 mHasEliteSuperRewardsStatus = false;
}

If the constructor is only initializing data members without doing anything else, then there is no real
need for a constructor because data members can be initialized directly inside the class defi nition.
For example, instead of writing an AirlineTicket constructor, you can modify the defi nition of the
data members in the class defi nition as follows:

 private:
 std::string mPassengerName = "Unknown Passenger";
 int mNumberOfMiles = 0;
 bool mHasEliteSuperRewardsStatus = false;

If your class additionally needs to perform some other types of initialization, such as opening a fi le,
allocating memory, and so on, then you still need to write a constructor to handle those.

Here is the destructor for the AirlineTicket class:

AirlineTicket::~AirlineTicket()
{
 // Nothing much to do in terms of cleanup
}

This destructor doesn’t do anything, and can simply be removed from this class. It is just shown
here so you know the syntax of destructors. Destructors are required if you need to perform some
cleanup, such as closing fi les, freeing memory, and so on. Chapters 8 and 9 discuss destructors in
more detail.

The defi nitions of some of the AirlineTicket class methods are shown here:

double AirlineTicket::calculatePriceInDollars() const
{
 if (hasEliteSuperRewardsStatus()) {
 // Elite Super Rewards customers fly for free!
 return 0;
 }
 // The cost of the ticket is the number of miles times 0.1.
 // Real airlines probably have a more complicated formula!
 return getNumberOfMiles() * 0.1;
}

const string& AirlineTicket::getPassengerName() const
{
 return mPassengerName;
}

void AirlineTicket::setPassengerName(const string& name)
{
 mPassengerName = name;
}

Uniform Initialization ❘ 43

c01.indd 02/07/2018 Page 43

// Other get and set methods omitted for brevity.

Using Classes
The following sample program makes use of the AirlineTicket class. This example shows the
 creation of a stack-based AirlineTicket object as well as a heap-based one:

AirlineTicket myTicket; // Stack-based AirlineTicket
myTicket.setPassengerName("Sherman T. Socketwrench");
myTicket.setNumberOfMiles(700);
double cost = myTicket.calculatePriceInDollars();
cout << "This ticket will cost $" << cost << endl;

// Heap-based AirlineTicket with smart pointer
auto myTicket2 = make_unique<AirlineTicket>();
myTicket2->setPassengerName("Laudimore M. Hallidue");
myTicket2->setNumberOfMiles(2000);
myTicket2->setHasEliteSuperRewardsStatus(true);
double cost2 = myTicket2->calculatePriceInDollars();
cout << "This other ticket will cost $" << cost2 << endl;
// No need to delete myTicket2, happens automatically

// Heap-based AirlineTicket without smart pointer (not recommended)
AirlineTicket* myTicket3 = new AirlineTicket();
// ... Use ticket 3
delete myTicket3; // delete the heap object!

The preceding example exposes you to the general syntax for creating and using classes. Of course,
there is much more to learn. Chapters 8, 9, and 10 go into more depth about the specifi c C++ mech-
anisms for defi ning classes.

UNIFORM INITIALIZATION

Before C++11, initialization of types was not always uniform. For example, take the following defi -
nition of a circle, once as a structure, and once as a class:

struct CircleStruct
{
 int x, y;
 double radius;
};

class CircleClass
{
 public:
 CircleClass(int x, int y, double radius)
 : mX(x), mY(y), mRadius(radius) {}
 private:
 int mX, mY;
 double mRadius;
};

44 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 44

In pre-C++11, initialization of a variable of type CircleStruct and a variable of type CircleClass
looks different:

CircleStruct myCircle1 = {10, 10, 2.5};
CircleClass myCircle2(10, 10, 2.5);

For the structure version, you can use the {...} syntax. However, for the class version, you need to
call the constructor using function notation (...).

Since C++11, you can more uniformly use the {...} syntax to initialize types, as follows:

CircleStruct myCircle3 = {10, 10, 2.5};
CircleClass myCircle4 = {10, 10, 2.5};

The defi nition of myCircle4 automatically calls the constructor of CircleClass. Even the use of the
equal sign is optional, so the following is identical:

CircleStruct myCircle5{10, 10, 2.5};
CircleClass myCircle6{10, 10, 2.5};

Uniform initialization is not limited to structures and classes. You can use it to initialize anything in
C++. For example, the following code initializes all four variables with the value 3:

int a = 3;
int b(3);
int c = {3}; // Uniform initialization
int d{3}; // Uniform initialization

Uniform initialization can be used to perform zero-initialization* of variables; you just specify an
empty set of curly braces, as shown here:

int e{}; // Uniform initialization, e will be 0

Using uniform initialization prevents narrowing. C++ implicitly performs narrowing, as shown here:

void func(int i) { /* ... */ }

int main()
{
 int x = 3.14;
 func(3.14);
}

In both cases, C++ automatically truncates 3.14 to 3 before assigning it to x or calling func(). Note
that some compilers might issue a warning about this narrowing, while others won’t. With uniformt
initialization, both the assignment to x and the call to func() must generate a compiler error if your t
compiler fully conforms to the C++11 standard:

void func(int i) { /* ... */ }

int main()
{
 int x = {3.14}; // Error because narrowing
 func({3.14}); // Error because narrowing
}

*Zero-initialization constructs objects with the default constructor, and initializes primitive integer types
(such as char, int, and so on) to zero, primitive fl oating-point types to 0.0, and pointer types to nullptr.

Uniform Initialization ❘ 45

c01.indd 02/07/2018 Page 45

Uniform initialization can be used to initialize dynamically allocated arrays, as shown here:

int* pArray = new int[4]{0, 1, 2, 3};

It can also be used in the constructor initializer to initialize arrays that are members of a class.

class MyClass
{
 public:
 MyClass() : mArray{0, 1, 2, 3} {}
 private:
 int mArray[4];
};

Uniform initialization can be used with the Standard Library containers as well—such as the
std::vector, as demonstrated later in this chapter.

Direct List Initialization versus Copy List Initialization
There are two types of initialization that use braced initializer lists:

➤ Copy list initialization. T obj = {arg1, arg2, ...};

➤ Direct list initialization. T obj {arg1, arg2, ...};

In combination with auto type deduction, there is an important difference between copy- and direct
list initialization introduced with C++17.

Starting with C++17, you have the following results:

// Copy list initialization
auto a = {11}; // initializer_list<int>
auto b = {11, 22}; // initializer_list<int>

// Direct list initialization
auto c {11}; // int
auto d {11, 22}; // Error, too many elements.

Note that for copy list initialization, all the elements in the braced initializer must be of the same
type. For example, the following does not compile:

auto b = {11, 22.33}; // Compilation error

In earlier versions of the standard (C++11/14), both copy- and direct list initialization deduce an
initializer_list<>:

// Copy list initialization
auto a = {11}; // initializer_list<int>
auto b = {11, 22}; // initializer_list<int>

// Direct list initialization
auto c {11}; // initializer_list<int>
auto d {11, 22}; // initializer_list<int>

46 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 46

THE STANDARD LIBRARY

C++ comes with a Standard Library, which contains a lot of useful classes that can easily be used
in your code. The benefi t of using these classes is that you don’t need to reinvent certain classes and
you don’t need to waste time on implementing things that have already been implemented for you.
Another benefi t is that the classes available in the Standard Library are heavily tested and verifi ed
for correctness by thousands of users. The Standard Library classes are also tuned for high perfor-
mance, so using them will most likely result in better performance compared to making your own
implementation.

A lot of functionality is available to you in the Standard Library. Chapters 16 to 20 provide more
details; however, when you start working with C++ it is a good idea to understand what the
Standard Library can do for you from the very beginning. This is especially important if you are a C
programmer. As a C programmer, you might try to solve problems in C++ the same way you would
solve them in C. However, in C++ there is probably an easier and safer solution to the problem that
involves using Standard Library classes.

You already saw some Standard Library classes earlier in this chapter—for example, std::string,
std::array, std::vector, std::unique_ptr, and std::shared_ptr. Many more classes are
introduced in Chapters 16 to 20.

YOUR FIRST USEFUL C++ PROGRAM

The following program builds on the employee database example used earlier in the discussion
on structs. This time, you will end up with a fully functional C++ program that uses many of the
features discussed in this chapter. This real-world example includes the use of classes, exceptions,
streams, vectors, namespaces, references, and other language features.

An Employee Records System
A program to manage a company’s employee records needs to be fl exible and have useful features.
The feature set for this program includes the following abilities:

➤ To add an employee

➤ To fi re an employee

➤ To promote an employee

➤ To view all employees, past and present

➤ To view all current employees

➤ To view all former employees

The design for this program divides the code into three parts. The Employee class encapsulates the
information describing a single employee. The Database class manages all the employees of the
company. A separate UserInterface fi le provides the interactivity of the program.

Your First Useful C++ Program ❘ 47

c01.indd 02/07/2018 Page 47

The Employee Class
The Employee class maintains all the information about an employee. Its methods provide a way to
query and change that information. Employees also know how to display themselves on the console.
Methods also exist to adjust the employee’s salary and employment status.

Employee.h
The Employee.h fi le defi nes the Employee class. The sections of this fi le are described individually
in the text that follows.

The fi rst line contains a #pragma once to prevent the fi le from being included multiple times,
 followed by the inclusion of the string functionality.

This code also declares that the subsequent code, contained within the curly braces, lives in
the Records namespace. Records is the namespace that is used throughout this program for
 application-specifi c code.

#pragma once
#include <string>
namespace Records {

The following constant, representing the default starting salary for new employees, lives in the
Records namespace. Other code that lives in Records can access this constant as kDefaultStart-
ingSalary. Elsewhere, it must be referenced as Records::kDefaultStartingSalary.

 const int kDefaultStartingSalary = 30000;

Note that this book uses the convention to prefi x constants with a lowercase ‘k’, from the German
“Konstant,” meaning “Constant.”

The Employee class is defi ned, along with its public methods. The promote() and demote() meth-
ods both have integer parameters that are specifi ed with a default value. In this way, other code can
omit the integer parameters and the default will automatically be used.

A number of setters and getters provide mechanisms to change the information about an employee
or to query the current information about an employee.

The Employee class includes an explicitly defaulted constructor, as discussed in Chapter 8. It also
includes a constructor that accepts a fi rst and last name.

 class Employee
 {
 public:
 Employee() = default;
 Employee(const std::string& firstName,
 const std::string& lastName);

 void promote(int raiseAmount = 1000);
 void demote(int demeritAmount = 1000);
 void hire(); // Hires or rehires the employee
 void fire(); // Dismisses the employee
 void display() const;// Outputs employee info to console

48 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 48

 // Getters and setters
 void setFirstName(const std::string& firstName);
 const std::string& getFirstName() const;

 void setLastName(const std::string& lastName);
 const std::string& getLastName() const;

 void setEmployeeNumber(int employeeNumber);
 int getEmployeeNumber() const;

 void setSalary(int newSalary);
 int getSalary() const;

 bool isHired() const;

Finally, the data members are declared as private so that other parts of the code cannot modify
them directly. The setters and getters provide the only public way of modifying or querying those
values. The data members are also initialized here instead of in a constructor. By default, new
employees have no name, an employee number of -1, the default starting salary, and a status of not
hired.

 private:
 std::string mFirstName;
 std::string mLastName;
 int mEmployeeNumber = -1;
 int mSalary = kDefaultStartingSalary;
 bool mHired = false;
 };
}

Employee.cpp
The constructor accepting a fi rst and last name just sets the corresponding data members:

#include <iostream>
#include "Employee.h"

using namespace std;

namespace Records {
 Employee::Employee(const std::string& firstName,
 const std::string& lastName)
 : mFirstName(firstName), mLastName(lastName)
 {
 }

The promote() and demote() methods simply call the setSalary() method with a new value.
Note that the default values for the integer parameters do not appear in the source fi le; they are only
allowed in a function declaration, not in a defi nition.

 void Employee::promote(int raiseAmount)
 {
 setSalary(getSalary() + raiseAmount);
 }

Your First Useful C++ Program ❘ 49

c01.indd 02/07/2018 Page 49

 void Employee::demote(int demeritAmount)
 {
 setSalary(getSalary() - demeritAmount);
 }

The hire() and fire() methods just set the mHired data member appropriately.

 void Employee::hire()
 {
 mHired = true;
 }

 void Employee::fire()
 {
 mHired = false;
 }

The display() method uses the console output stream to display information about the current
employee. Because this code is part of the Employee class, it could access data members, such asd
mSalary, directly instead of using getters, such as getSalary(). However, it is considered good
style to make use of getters and setters when they exist, even within the class.

 void Employee::display() const
 {
 cout << "Employee: " << getLastName() << ", " << getFirstName() << endl;
 cout << "-------------------------" << endl;
 cout << (isHired() ? "Current Employee" : "Former Employee") << endl;
 cout << "Employee Number: " << getEmployeeNumber() << endl;
 cout << "Salary: $" << getSalary() << endl;
 cout << endl;
 }

A number of getters and setters perform the task of getting and setting values. Even though these
methods seem trivial, it’s better to have trivial getters and setters than to make your data members
public. For example, in the future, you may want to perform bounds checking in the setSalary()
method. Getters and setters also make debugging easier because you can insert a breakpoint in them
to inspect values when they are retrieved or set. Another reason is that when you decide to change
how you are storing the data in your class, you only need to modify these getters and setters.

 // Getters and setters
 void Employee::setFirstName(const string& firstName)
 {
 mFirstName = firstName;
 }

 const string& Employee::getFirstName() const
 {
 return mFirstName;
 }
 // ... other getters and setters omitted for brevity
}

50 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 50

EmployeeTest.cpp
As you write individual classes, it is often useful to test them in isolation. The following code
includes a main() function that performs some simple operations using the Employee class. Once
you are confi dent that the Employee class works, you should remove or comment-out this fi le so
that you don’t attempt to compile your code with multiple main() functions.

#include <iostream>
#include "Employee.h"

using namespace std;
using namespace Records;

int main()
{
 cout << "Testing the Employee class." << endl;
 Employee emp;
 emp.setFirstName("John");
 emp.setLastName("Doe");
 emp.setEmployeeNumber(71);
 emp.setSalary(50000);
 emp.promote();
 emp.promote(50);
 emp.hire();
 emp.display();
 return 0;
}

Another way of testing individual classes is with unit testing, which is discussed in Chapter 26.

The Database Class
The Database class uses the std::vector class from the Standard Library to store Employee
objects.

Database.h
Because the database will take care of automatically assigning an employee number to a new
employee, a constant defi nes where the numbering begins.

#pragma once
#include <iostream>
#include <vector>
#include "Employee.h"

namespace Records {
 const int kFirstEmployeeNumber = 1000;

The database provides an easy way to add a new employee by providing a fi rst and last name.
For convenience, this method returns a reference to the new employee. External code can also get
an employee reference by calling the getEmployee() method. Two versions of this method are
declared. One allows retrieval by employee number. The other requires a fi rst and last name.

 class Database
 {
 public:

Your First Useful C++ Program ❘ 51

c01.indd 02/07/2018 Page 51

 Employee& addEmployee(const std::string& firstName,
 const std::string& lastName);
 Employee& getEmployee(int employeeNumber);
 Employee& getEmployee(const std::string& firstName,
 const std::string& lastName);

Because the database is the central repository for all employee records, it has methods that output
all employees, the employees who are currently hired, and the employees who are no longer hired.

 void displayAll() const;
 void displayCurrent() const;
 void displayFormer() const;

mEmployees contains the Employee objects. The mNextEmployeeNumber data member keeps track
of what employee number is assigned to a new employee, and is initialized with the kFirstEm-
ployeeNumber constant.

 private:
 std::vector<Employee> mEmployees;
 int mNextEmployeeNumber = kFirstEmployeeNumber;
 };
}

Database.cpp
The addEmployee() method creates a new Employee object, fi lls in its information, and adds it to
the vector. The mNextEmployeeNumber data member is incremented after its use so that the next
employee will get a new number.

#include <iostream>
#include <stdexcept>
#include "Database.h"

using namespace std;

namespace Records {
 Employee& Database::addEmployee(const string& firstName,
 const string& lastName)
 {
 Employee theEmployee(firstName, lastName);
 theEmployee.setEmployeeNumber(mNextEmployeeNumber++);
 theEmployee.hire();
 mEmployees.push_back(theEmployee);
 return mEmployees[mEmployees.size() - 1];
 }

Only one version of getEmployee() is shown. Both versions work in similar ways. The meth-
ods loop over all employees in mEmployees using range-based for loops, and check to see if an
Employee is a match for the information passed to the method. An exception is thrown if no match
is found.

 Employee& Database::getEmployee(int employeeNumber)
 {
 for (auto& employee : mEmployees) {
 if (employee.getEmployeeNumber() == employeeNumber) {

52 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 52

 return employee;
 }
 }
 throw logic_error("No employee found.");
 }

The display methods all use a similar algorithm. They loop through all employees and tell each
employee to display itself to the console if the criterion for display matches. displayFormer() is
similar to displayCurrent().

 void Database::displayAll() const
 {
 for (const auto& employee : mEmployees) {
 employee.display();
 }
 }

 void Database::displayCurrent() const
 {
 for (const auto& employee : mEmployees) {
 if (employee.isHired())
 employee.display();
 }
 }
}

DatabaseTest.cpp
A simple test for the basic functionality of the database is shown here:

#include <iostream>
#include "Database.h"

using namespace std;
using namespace Records;

int main()
{
 Database myDB;
 Employee& emp1 = myDB.addEmployee("Greg", "Wallis");
 emp1.fire();

 Employee& emp2 = myDB.addEmployee("Marc", "White");
 emp2.setSalary(100000);

 Employee& emp3 = myDB.addEmployee("John", "Doe");
 emp3.setSalary(10000);
 emp3.promote();

 cout << "all employees: " << endl << endl;
 myDB.displayAll();

 cout << endl << "current employees: " << endl << endl;
 myDB.displayCurrent();

Your First Useful C++ Program ❘ 53

c01.indd 02/07/2018 Page 53

 cout << endl << "former employees: " << endl << endl;
 myDB.displayFormer();
}

The User Interface
The fi nal part of the program is a menu-based user interface that makes it easy for users to work
with the employee database.

The main() function is a loop that displays the menu, performs the selected action, then does it all
again. For most actions, separate functions are defi ned. For simpler actions, like displaying employ-
ees, the actual code is put in the appropriate case.

#include <iostream>
#include <stdexcept>
#include <exception>
#include "Database.h"

using namespace std;
using namespace Records;

int displayMenu();
void doHire(Database& db);
void doFire(Database& db);
void doPromote(Database& db);
void doDemote(Database& db);

int main()
{
 Database employeeDB;
 bool done = false;
 while (!done) {
 int selection = displayMenu();
 switch (selection) {
 case 0:
 done = true;
 break;
 case 1:
 doHire(employeeDB);
 break;
 case 2:
 doFire(employeeDB);
 break;
 case 3:
 doPromote(employeeDB);
 break;
 case 4:
 employeeDB.displayAll();
 break;
 case 5:
 employeeDB.displayCurrent();
 break;
 case 6:
 employeeDB.displayFormer();

54 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 54

 break;
 default:
 cerr << "Unknown command." << endl;
 break;
 }
 }
 return 0;
}

The displayMenu() function outputs the menu and gets input from the user. One important note is
that this code assumes that the user will “play nice” and type a number when a number is requested.
When you read about I/O in Chapter 13, you will learn how to protect against bad input.

int displayMenu()
{
 int selection;
 cout << endl;
 cout << "Employee Database" << endl;
 cout << "-----------------" << endl;
 cout << "1) Hire a new employee" << endl;
 cout << "2) Fire an employee" << endl;
 cout << "3) Promote an employee" << endl;
 cout << "4) List all employees" << endl;
 cout << "5) List all current employees" << endl;
 cout << "6) List all former employees" << endl;
 cout << "0) Quit" << endl;
 cout << endl;
 cout << "---> ";
 cin >> selection;
 return selection;
}

The doHire() function gets the new employee’s name from the user and tells the database to add
the employee.

void doHire(Database& db)
{
 string firstName;
 string lastName;

 cout << "First name? ";
 cin >> firstName;

 cout << "Last name? ";
 cin >> lastName;

 db.addEmployee(firstName, lastName);
}

Your First Useful C++ Program ❘ 55

c01.indd 02/07/2018 Page 55

doFire() and doPromote() both ask the database for an employee by their employee number and
then use the public methods of the Employee object to make changes.

void doFire(Database& db)
{
 int employeeNumber;

 cout << "Employee number? ";
 cin >> employeeNumber;

 try {
 Employee& emp = db.getEmployee(employeeNumber);
 emp.fire();
 cout << "Employee " << employeeNumber << " terminated." << endl;
 } catch (const std::logic_error& exception) {
 cerr << "Unable to terminate employee: " << exception.what() << endl;
 }
}

void doPromote(Database& db)
{
 int employeeNumber;
 int raiseAmount;

 cout << "Employee number? ";
 cin >> employeeNumber;

 cout << "How much of a raise? ";
 cin >> raiseAmount;

 try {
 Employee& emp = db.getEmployee(employeeNumber);
 emp.promote(raiseAmount);
 } catch (const std::logic_error& exception) {
 cerr << "Unable to promote employee: " << exception.what() << endl;
 }
}

Evaluating the Program
The preceding program covers a number of topics from the very simple to the relatively complex.
There are a number of ways that you could extend this program. For example, the user interface
does not expose all of the functionality of the Database or Employee classes. You could modify the
UI to include those features. You could also change the Database class to remove fi red employees
from mEmployees.

If there are parts of this program that don’t make sense, consult the preceding sections to review
those topics. If something is still unclear, the best way to learn is to play with the code and try
things out. For example, if you’re not sure how to use the conditional operator, write a short main()
function that uses it.

56 ❘ CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

c01.indd 02/07/2018 Page 56

SUMMARY

 Now that you know the fundamentals of C++, you are ready to become a professional C++ pro-
grammer. When you start getting deeper into the C++ language later in this book, you can refer to
this chapter to brush up on parts of the language you may need to review. Going back to some of the
sample code in this chapter may be all you need to bring a forgotten concept back to the forefront of
your mind.

The next chapter goes deeper in on how strings are handled in C++, because every program you
write will have to work with strings one way or another.

