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Response Envelopes

Envelopes, which were introduced by Cook et al. (2007) and developed for
the multivariate linear model by Cook et al. (2010), encompass a class of
methods for increasing efficiency in multivariate analyses without altering
traditional objectives. They serve to reshape classical methods by exploiting
response–predictor relationships that affect the accuracy of the results but
are not recognized by classical methods. Multivariate data are often modeled
by combining a selected structural component to be estimated with an error
component to account for the remaining unexplained variation. Capturing
the desired signal and only that signal in the structural component can be an
elusive task with the consequence that, in an effort to avoid missing important
information, there may be a tendency to overparameterize, leading to over-
fitting and relatively soft inferences and interpretations. Essentially a type of
targeted dimension reduction that can result in substantial gains in efficiency,
envelopes operate by enveloping the signal and thereby account for extraneous
variation that might otherwise be present in the structural component.

In this chapter, we consider multivariate (multiresponse) linear regression
allowing for the presence of “immaterial variation” (described herein) in the
response vector. The possibility of such variation being present in the predictors
is considered in Chapter 4, where we develop a connection with partial least
squares regression. Section 1.1 contains a very brief review of the multivariate
linear model, with an emphasis on aspects that will play a role in later develop-
ments. Additional background is available from Muirhead (2005). The envelope
model for response reduction is introduced in Section 1.2. Introductory illus-
trations are given in Section 1.3 to provide intuition, to set the tone for later
developments, and to provide running examples. In later sections, we discuss
additional properties of the envelope model, maximum likelihood estimation,
and the asymptotic variance of the envelope estimator of the coefficient matrix.
Most of the technical materials used in this chapter are taken from Cook et al.
(2010). Some algebraic details are presented without justification. The miss-
ing development is given extensively in Appendix A, which covers the linear
algebra of envelopes.

An Introduction to Envelopes: Dimension Reduction for Efficient Estimation in Multivariate Statistics,
First Edition. R. Dennis Cook.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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2 1 Response Envelopes

1.1 The Multivariate Linear Model

Consider the multivariate regression of a response vector Y ∈ ℝr on a vector
of nonstochastic predictors X ∈ ℝp. The standard linear model for describing
a sample (Yi,Xi) can be represented in vector form as

Yi = 𝜶 + 𝜷Xi + 𝜺i, i = 1,… , n, (1.1)

where the predictors are centered in the sample
∑n

i=1 Xi = 0, the error vectors
𝜺i ∈ ℝr are independently and identically distributed normal vectors with mean
0 and covariance matrix 𝚺 > 0, 𝜶 ∈ ℝr is an unknown vector of intercepts, and
𝜷 ∈ ℝr×p is an unknown matrix of regression coefficients. Centering the pre-
dictors facilitates discussion and presentation of some results, but is technically
unnecessary. If X is stochastic, so X and Y have a joint distribution, we still
condition on the observed values of X since the predictors are ancillary under
model (1.1). The normality requirement for 𝜺 is not essential, as discussed in
Section 1.9 and in later chapters.

Let 𝕐 denote the n × r centered matrix with rows (Yi − Ȳ)T , let 𝕐0 denote the
n × r uncentered matrix with rows YT

i , and let 𝕏 denote the n × p matrix with
rows XT

i , i = 1,… , n. Also, let SY,X = 𝕐 T𝕏∕n and

SX = 𝕏T𝕏∕n = n−1
n∑

i=1
XiXT

i .

Then the maximum likelihood estimator of𝜶 is Ȳ, and the maximum likelihood
estimator of 𝜷 , which is also the ordinary least squares estimator, is

B = 𝕐 T𝕏(𝕏T𝕏)−1 = 𝕐 T
0 𝕏(𝕏T𝕏)−1 = SY,XS−1

X , (1.2)

where the second equality follows because the predictors are centered. To see
this result, let Ŷi = Ȳ + BXi and ri = Yi − Ŷi denote the ith vectors of fitted
values and residuals, i = 1,… , n, and let D = 𝜷 − B. Then after substituting Ȳ
for𝜶, the remaining log-likelihood L(𝜷,𝚺) to be maximized can be expressed as

(2∕n)L(𝜷,𝚺) = c − log |𝚺| − n−1
n∑

i=1
(Yi − Ȳ − 𝜷Xi)T𝚺−1(Yi − Ȳ − 𝜷Xi)

= c − log |𝚺| − n−1
n∑

i=1
(ri − DXi)T𝚺−1(ri − DXi)

= c − log |𝚺| − n−1 tr

( n∑
i=1

rirT
i 𝚺

−1

)

− n−1 tr

(
D

n∑
i=1

XiXT
i DT𝚺−1

)

= c − log |𝚺| − n−1 tr

( n∑
i=1

rirT
i 𝚺

−1

)
− tr(DSXDT𝚺−1),
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1.1 The Multivariate Linear Model 3

where c = −r log(2π) and the last step follows because
∑n

i=1 riXT
i = 0. Conse-

quently, L(𝜷,𝚺) is maximized over 𝜷 by setting 𝜷 = B so D = 0, leaving the
partially maximized log-likelihood

(2∕n)L(𝚺) = −r log(2π) − log |𝚺| − n−1 tr

( n∑
i=1

rirT
i 𝚺

−1

)
.

It follows that the maximum likelihood estimator of 𝚺 is SY|X ∶= n−1 ∑n
i=1 rirT

i
and that the fully maximized log-likelihood is

L̂ = −(nr∕2) log(2π) − nr∕2 − (n∕2) log |SY|X|.
We notice from (1.2) that B can be constructed by doing r separate univariate

linear regressions, one for each element of Y on X. The coefficients from the jth
regression then form the jth row of B, j = 1,… , r. The stochastic relationships
among the elements of Y are not used in forming these estimators. However,
as will be seen later, relationships among the elements of Y play a central role
in envelope estimation. Standard inference on (𝜷)jk , the (j, k) th element of 𝜷 ,
under model (1.1) is the same as inference obtained under the univariate linear
regression of Yj, the jth element of Y, on X. Model (1.1) becomes operational
as a multivariate construction when inferring simultaneously about elements
in different rows of 𝜷 or when predicting elements of Y jointly.

The sample covariance matrices of Y, Ŷ, and r can be expressed as

SY = n−1𝕐 T𝕐 = SY∘X + SY|X, (1.3)
SY∘X = n−1𝕐 T P𝕏𝕐 = SY,XS−1

X SX,Y, (1.4)

SY|X = n−1
n∑

i=1
rirT

i = n−1𝕐 T Q𝕏𝕐 , (1.5)

= SY − SY,XS−1
X ST

Y,X,

= SY − SY∘X,

where SX is nonstochastic, P𝕏 = 𝕏(𝕏T𝕏)−1𝕏T denotes the projection onto the
column space of 𝕏, Q𝕏 = In − P𝕏, SY∘X is the sample covariance matrix of the
fitted vectors Ŷi, and SY∣X is the sample covariance matrix of the residuals ri.

We will occasionally encounter the standardized version of B,

B̃ = S−1∕2
Y|X BS1∕2

X , (1.6)

which corresponds to the estimated coefficient matrix from the ordinary least
squares fit of the standardized responses S−1∕2

Y|X Y on the standardized predictors
S−1∕2

X X.
The joint distribution of the elements of B can be found by using the vec

operator to stack the columns of B: vec(B) = {(𝕏T𝕏)−1𝕏T ⊗ Ir}vec(𝕐 T
0 ), where

⊗ denotes the Kronecker product. Since vec(𝕐 T
0 ) is normally distributed with

mean 𝟏n ⊗ 𝜶 + (𝕏⊗ Ir)vec(𝜷) and variance In ⊗ 𝚺, it follows that vec(B) is
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4 1 Response Envelopes

normally distributed with mean and variance

E{vec(B)} = vec(𝜷), (1.7)
var{vec(B)} = (𝕏T𝕏)−1 ⊗ 𝚺 = n−1S−1

X ⊗ 𝚺. (1.8)

The covariance matrix can also be represented in terms of BT by using the
rp × rp commutation matrix Krp to convert vec(B) to vec(BT ): vec(BT ) =
Krp vec(B) and

var{vec(BT )} = n−1Krp(S−1
X ⊗ 𝚺)KT

rp = n−1𝚺⊗ S−1
X .

Background on the commutation matrix, vec and related operators is available
in Appendix A. The variance var{vec(B)} is typically estimated by substituting
the residual covariance matrix for 𝚺,

v̂ar{vec(B)} = n−1S−1
X ⊗ SY|X. (1.9)

Let ei ∈ ℝr denote the indicator vector with a 1 in the ith position and 0s
elsewhere. Then the covariance matrix for the ith row of B is

var{vec(eT
i B)} = (Ip ⊗ eT

i )var{vec(B)}(Ip ⊗ ei) = n−1S−1
X ⊗ (𝚺)ii.

We see from this that the covariance matrix for the ith row of B is the same as
that from the marginal linear regression of Yi on X. We refer to the estimator
(B)ij divided by its standard error {n−1(S−1

X )jj(SY|X)ii}1∕2 as a Z-score:

Z =
(B)ij

{n−1(S−1
X )jj(SY|X)ii}1∕2

. (1.10)

This statistic will be used from time to time for assessing the magnitude of (B)ij,
sometimes converting to a p-value using the standard normal distribution.

We will occasionally encounter a conditional variate of the form N ∣ CT N,
where N ∈ ℝr is a normal vector with mean 𝝁 and variance 𝚫, and C ∈ ℝr×q is
a nonstochastic matrix with q ≤ r. The mean and variance of this conditional
form are as follows:

E(N ∣ CT N) = 𝝁 + PT
C(𝚫)(N − 𝝁), (1.11)

var(N ∣ CT N) = 𝚫 − 𝚫C(CT𝚫C)−1CT𝚫
= 𝚫QC(𝚫)

= QT
C(𝚫)𝚫QC(𝚫). (1.12)

The usual log-likelihood ratio statistic for testing that 𝜷 = 0 is

Λ = n log
|SY||SY|X| , (1.13)

which is asymptotically distributed under the null hypothesis as a chi-square
random variable with pr degrees of freedom. We will occasionally use this
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1.1 The Multivariate Linear Model 5

statistic in illustrations to assess the presence of any detectable dependence of
Y on X. This statistic is sometimes reported with an adjustment that is useful
when n is not large relative to r and p (Muirhead 2005, Section 10.5.2).

The Fisher information J for (vecT (𝜷), vechT (𝚺))T in model (1.1) is

J =
(
𝚺X ⊗ 𝚺−1 𝟎

𝟎 1
2

ET
r (𝚺−1 ⊗ 𝚺−1)Er

)
, (1.14)

where Er is the expansion matrix that satisfies vec(A) = Er vech(A) for A ∈
𝕊r×r , and 𝚺X = limn→∞

∑n
i=1 XiXT

i ∕n > 0. It follows from standard likelihood
theory that

√
n(vec(B) − vec(𝜷)) is asymptotically normal with mean 0 and

variance given by the upper left block of J−1,

avar(
√

n vec(B)) = 𝚺−1
X ⊗ 𝚺. (1.15)

Asymptotic normality holds also without normal errors but with some techni-
cal conditions: if the errors have finite fourth moments and max1≤i≤n(P𝕏)ii → 0,
then

√
n(vec(B) − vec(𝜷)) converges in distribution to a normal vector with

mean 0 (e.g. Su and Cook 2012, Theorem 2).

1.1.1 Partitioned Models and Added Variable Plots

A subset of the predictors may occasionally be of special interest in multivari-
ate regression. Partition X into two sets of predictors X1 ∈ ℝp1 and X2 ∈ ℝp1 ,
p1 + p2 = p, and conformably partition the columns of 𝜷 into 𝜷1 and 𝜷2. Then
model (1.1) can be rewritten as

Y = 𝝁 + 𝜷1X1 + 𝜷2X2 + 𝜺, (1.16)

where 𝜷1 holds the coefficients of interest. We next reparameterize this model
to force the new predictors to be uncorrelated in the sample and to focus atten-
tion on 𝜷1.

Recalling that X̄ = 0, let R̂1|2 = X1 − SX1,X2
S−1

X2
X2 denote a typical residual

from the ordinary least squares fit of X1 on X2, and let 𝜷∗
2 = 𝜷1SX1,X2

S−1
X2

+ 𝜷2.
Then the partitioned model can be reexpressed as

Y = 𝝁 + 𝜷1R̂1|2 + 𝜷∗
2X2 + 𝜺. (1.17)

In this version of the partitioned model, the parameter vector 𝜷1 is the same
as that in (1.16), while 𝜷2 ≠ 𝜷∗

2 unless SX1 ,X2
= 0. The predictors – R̂1|2 and

X2 – in (1.17) are uncorrelated in the sample SR̂1|2,X2
= 0, and consequently the

maximum likelihood estimator of 𝜷1 is obtained by regressing Y on R̂1|2. The
maximum likelihood estimator of 𝜷1 can also be obtained by regressing R̂Y|2,
the residuals from the regression of Y on X2, on R̂1|2. A plot of R̂Y|2 versus R̂1|2 is
called an added variable plot (Cook and Weisberg 1982). These plots are often
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used in univariate linear regression (r = 1) as general graphical diagnostics for
visualizing how hard the data are working to fit individual coefficients.

Added variable plots and the partitioned forms of the multivariate linear
model (1.16) and (1.17) will be used in this book from time to time, particularly
in Chapter 3.

1.1.2 Alternative Model Forms

Because the elements of𝜷 and𝚺 > 0 are unconstrained, model (1.1) allows each
coordinate of Y to have a different linear regression on X. It could be necessary
in some applications to restrict the elements of 𝜷 so that they are linked over
rows and then iterations may be required because closed-form expressions for
the maximum likelihood estimators of 𝜷 and 𝚺 will not normally be possible.
The maximum likelihood estimator of 𝜷 will be in the form of a weighted least
squares estimator with weight matrix that depends on 𝚺. For instance, suppose
that we wish to restrict the coordinate regressions E(Yj ∣ X) to be parallel. This
can be accomplished by requiring 𝜷 to be a rank 1 matrix of the form 𝜷 = 𝟏rbT ,
where b ∈ ℝp. Then 𝜷X = 𝟏rXT b, and the model becomes Yi = 𝜶 + Wib + 𝜺i,
i = 1,… , n, where Wi = 𝟏rXT

i .
For a second instance, consider a longitudinal study where n independent

subjects are each observed at r times tj, j = 1,… , r, with the elements of Yi
corresponding to the ordered sequence of r observations on subject i. Sup-
pose further that E((Yi)j ∣ tj) = 𝛼 + fT (tj)b, where f(t) ∈ ℝp is a vector-valued
user-specified function of time and b ∈ ℝp. The elements of E(Y ∣ t1,… , tr)
then correspond to points along the curve 𝛼 + f(t)T b, and the linear model
becomes

Yi = 𝛼𝟏 + Wb + 𝜺i,

where W ∈ ℝr×p with rows fT (tj), j = 1,… , r. Many variations of this model are
available in the literature on longitudinal data (e.g. Weiss 2005). Again, the point
here is that the maximum likelihood estimator of b will in general no longer be
an ordinary least squares estimator because the parameters in the individual
coordinate regressions are linked. Instead, the maximum likelihood estimator
of b will be in the form of a weighted least squares estimator that depends on 𝚺.

We will employ model (1.1) in this book, unless stated otherwise, although
as discussed in Chapter 7, envelopes can apply regardless of the form of the
model.

1.2 Envelope Model for Response Reduction

The motivation for response envelopes comes from allowing for the possibility
that there are linear combinations of the response vector whose distribution
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1.2 Envelope Model for Response Reduction 7

is invariant to changes in the nonstochastic predictor vector. We refer to such
linear combinations of Y as X-invariants. If X-invariants exist, then allowing for
them in model (1.1) can result in substantial reduction in estimative variation.
The linear transformation GT Y, where G ∈ ℝr×q with q ≤ r, is X-invariant if and
only if AT GT Y is X-invariant for any nonstochastic full-rank matrix A ∈ ℝq×q.
Consequently, a specific transformation G is not identifiable but span(G) is
identifiable, which leads us to consider subspaces rather than individual coor-
dinates. The envelope model arises by parameterizing the multivariate linear
model (1.1) in terms of the smallest subspace  of ℝr with the properties that,
for all relevant x1 and x2,

(i) QY ∣ (X = x1) ∼ QY ∣ (X = x2) and (ii) PY ⫫ QY ∣ X,

(1.18)

where P is the projection onto  and Q = Ir − P . These properties serve to
identify parametrically the X-invariant part of Y, QY. Condition (i) stipulates
that the marginal distribution of QY must be unaffected by changes in X. It
holds if and only if span(𝜷) ⊆  , because then

QY = Q𝜶 + Q𝜷X + Q𝜺 = Q𝜶 + Q𝜺.

Condition (ii) requires that QY be unaffected by changes in X through an asso-
ciation with PY, and it holds if and only if

cov(PY,QY ∣ X) = P𝚺Q = 0.

Conditions (i) and (ii) together imply that any dependence of Y on X must be
concentrated in PY, the X-variant part of Y that is material to the regression,
while QY is X-invariant and thus immaterial. The next two definitions, which
do not require model (1.1), formalize the construction of an envelope in general.

Definition 1.1 A subspace  ⊆ ℝr is said to be a reducing subspace of
M ∈ 𝕊r×r if  decomposes M as M = PMP + QMQ. If  is a reducing
subspace of M, we say that  reduces M.

This definition of a reducing subspace is equivalent to that used by Cook
et al. (2010), as described in Appendix A. It is common in the literature on
invariant subspaces and functional analysis, although the underlying notion of
“reduction” differs from the usual understanding in statistics. Here it is used to
guarantee condition (ii) of (1.18) since the decomposition holds if and only if
PMQ = 0. The following definition makes use of reducing subspaces.

Definition 1.2 Let M ∈ 𝕊r×r and let  ⊆ span(M). Then the M-envelope of
, denoted by M(), is the intersection of all reducing subspaces of M that
contain .
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Definition 1.2 is the definition of an envelope introduced by Cook et al. (2007,
2010). It formalizes the construction of the smallest subspace that satisfies
conditions (1.18) by asking for the intersection of all subspaces that envelop
span(𝜷), and thus that satisfy condition (i), from among those that satisfy
condition (ii). Further discussion of this definition is available in Section A.2.
We will often identify the subspace  as the span of a specified matrix
U:  = span(U). To avoid proliferation of notation in such cases, we will
occasionally use the matrix as the argument to M: M(U) ∶= M(span(U)).

The actual construction of M() can be characterized in terms of  and the
spectral structure of M. Suppose that M has q ≤ r distinct eigenvalues with
projections onto the corresponding eigenspaces represented by Pk , k = 1,… , q.
Then, as shown by Cook et al. (2010, see also Proposition A.2),

𝚺() =
q∑

k=1
Pk. (1.19)

This result shows that  is enveloped by using the eigenspaces of M. Figure 1.1
gives a schematic representation of (1.19) when r = 3. The three axes of the
plot represent three eigenvectors 𝓵k of M with corresponding eigenvalues 𝜑k ,
k = 1, 2, 3. Three different possibilities for a one-dimensional are represented
by the spanning vectors 𝜷 j, so j = span(𝜷 j), j = 1, 2, 3. The ordering of the
eigenvalues is irrelevant for this discussion, but equality among the eigenvalues
is relevant.

𝜷1: Since 𝜷1 aligns with 𝓵1, span(𝜷1) = span(𝓵1) and thus 𝚺(1) = 1
regardless of any equalities among the eigenvalues.

𝜷2: Since 𝜷2 falls in the (𝓵1,𝓵2)-plane, 𝚺(2) depends on the corre-
sponding eigenvalues. If 𝜑1 = 𝜑2, then regardless of the value for 𝜑3,
𝚺(2) = 2. But if 𝜑1 ≠ 𝜑2, then 𝚺(2) = span(𝓵1,𝓵2).

𝜷3: In the final case represented in Figure 1.1, 𝜷3 does not fall in any
subspace spanned by a subset of the eigenvectors represented in the
figure, except for the full space ℝ3 = span(𝓵1,𝓵2,𝓵3). Consequently,
if the eigenvalues are distinct, then 𝚺(3) = ℝ3. If 𝜑1 ≠ 𝜑2 = 𝜑3, then
there are two eigenspaces span(𝓵1) and span(𝓵2,𝓵3), and 𝚺(3) =
span(𝓵1,P2,3𝜷3), where P2,3 is the projection onto span(𝓵2,𝓵3). If
𝜑1 = 𝜑2 = 𝜑3, then there is only one eigenspace and 𝚺(3) = 3.

Back to model (1.1), let  = span(𝜷). The response projection P is then
defined as the projection onto 𝚺(), which by construction is the smallest
reducing subspace of 𝚺 that contains . Model (1.1) can be parameterized in
terms of 𝚺() by using a basis. Let u = dim(𝚺()), and let (𝚪,𝚪0) ∈ ℝr×r be
an orthogonal matrix with 𝚪 ∈ ℝr×u, span(𝚪) = 𝚺(), and span(𝚪0) = ⟂

𝚺 ().
Then the envelope model can be written as

Y = 𝜶 + 𝚪𝜼X + 𝜺, with 𝚺 = 𝚪𝛀𝚪T + 𝚪0𝛀0𝚪T
0 . (1.20)
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Figure 1.1 Schematic representation of
an envelope.

 1, φ1

 2, φ2

 3, φ3

β1

β2

β3

P2,3β3

The coefficient vector 𝜷 = 𝚪𝜼, where 𝜼 ∈ ℝu×p carries the coordinates of 𝜷
relative to the basis matrix 𝚪, and 𝛀 ∈ ℝu×u and 𝛀0 ∈ ℝ(r−u)×(r−u) are positive
definite matrices. To see how this model reflects the X-invariant part of Y,
multiply both sides by 𝚪T

0 to get 𝚪T
0 Y = 𝚪T

0 𝜶 + 𝚪T
0 𝜺, where var(𝚪T

0 𝜺) = 𝛀0.
We see from this representation that the marginal distribution of 𝚪T

0 Y
does not depend on X, so condition (i) of (1.18) is met. Further, since
cov(𝚪T Y,𝚪T

0 Y ∣ X) = 𝚪T𝚺𝚪0 = 0, we see also that condition (ii) of (1.18) holds.
The parameterization of (1.20) is intended to facilitate the estimation of 𝜷 and

𝚺. We normally do not attempt to reify or infer about the constituent param-
eters 𝚪, 𝜼, 𝛀, and 𝛀0. The values of 𝜼, 𝛀, and 𝛀0 depend on the choice of 𝚪 to
represent 𝚺(), and so may be difficult to interpret even if there is a desire to
do so, while 𝜷 and 𝚺 depend on 𝚺() but not on the particular basis. The basis
matrix 𝚪 is not identifiable in model (1.20) since, for any orthogonal matrix
O ∈ ℝu×u, replacing 𝚪 with 𝚪O leads to an equivalent model. For example,
𝜷 = 𝚪𝜼 = (𝚪O)(OT𝜼), so replacing𝚪with𝚪O and 𝜼with OT𝜼 leads to an equiv-
alent expression for 𝜷 . However, the envelope 𝚺() = span(𝚪) is identifiable,
which allows us to estimate 𝜷 . Additional properties of model (1.20) are dis-
cussed in Section 1.4.2.

Separate application of either of the two conditions in (1.18) does not nec-
essarily lead to progress, but see the discussion of reduced-rank regression in
Section 9.2.1. A subspace that reduces 𝚺 may have no useful connection with
. If is a proper subspace ofℝr , then there can be many subspaces that con-
tain , while any particular subspace may not reduce 𝚺. It is typically when the
two conditions of (1.18) are used in concert that we obtain substantial gains in
efficiency. The X-invariant component 𝚪T

0 Y induces extraneous variation into
the maximum likelihood estimator of 𝜷 under model (1.1). Envelopes distin-
guish between PY and QY in the estimation process and, as discussed in
Section 1.5, the envelope estimator of 𝜷 may then be more efficient than B, as
the variation from the X-invariant part of Y is effectively removed. Given the
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dimension u of the envelope and assuming normal errors, the envelope model
can be fitted by maximum likelihood. The details of this are described later in
Section 1.5; for now, we note that the maximum likelihood estimator of 𝜷 is
just the projection of B onto the estimated envelope, 𝜷 = P

̂
B. The asymptotic

covariance matrix of 𝜷 is described in Section 1.6.
Definitions 1.1 and 1.2 are quite general – they do not require normality or

even a linear model. Consequently, the envelope is still well defined if the linear
model holds, but the errors are not normal. In that case, the maximum likeli-
hood estimators under normality are still

√
n-consistent (Section 1.9), and the

variance of 𝜷 can be estimated by using the residual bootstrap (Section 1.11).
Figure 1.1 is applicable in the context of model (1.20) with r = 3 responses,

p = 1 predictor, the 𝓵js and 𝜑js interpreted as the eigenvectors and values of 𝚺,
and the 𝜷 js interpreted as three different possibilities for the coefficient vector.
Those three configurations represent three ways in which an X-invariant can
occur. Conversely, if part of Y is X-invariant, then a setting similar to those
represented in the figure must hold.

The dimension u ∈ {0, 1,… , r} can be selected based on any of the stan-
dard methods, including information criteria such as Akaike’s information cri-
terion (AIC) and Bayes information criterion (BIC), likelihood ratio testing,
cross-validation, or a hold out sample, as described later in Section 1.10. If
u = 0, then 𝜷 = 0 and there is no dependence of Y on X, a setting that is often
tested in practice. On the other extreme, if u = r, then 𝚺() = ℝr , the enve-
lope model reduces to the usual model (1.1), and the distribution of every linear
combination of Y responds to changes in X, a conclusion that might also be
useful in some applications.

1.3 Illustrations

Before expanding our discussion of the envelope model (1.20), we give in this
section illustrations to provide intuition about the working mechanism of
envelope estimation and its potential advantages over the standard estimators.
These will also be used as running examples to illustrate various phases of an
envelope analysis as they are developed in later sections.

1.3.1 A Schematic Example

Consider comparing the means 𝝁1 and 𝝁2 of two bivariate normal populations,
N2(𝝁1,𝚺) and N2(𝝁2,𝚺). This problem can be cast into the framework of model
(1.1) by letting Y = (Y1,Y2)T denote the bivariate response vector and letting
X be an indicator variable taking value X = 0 in population 1 and X = 1 in
population 2. Parameterizing so that 𝜶 = 𝝁1 is the mean of the first population
and 𝜷 = 𝝁2 − 𝝁1 is the mean difference, we have the multivariate linear model

Y = 𝝁1 + (𝝁2 − 𝝁1)X + 𝜺 = 𝜶 + 𝜷X + 𝜺.
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Starting with a sample, (Yi,Xi), i = 1,… , n, having independent response vec-
tors, the standard estimator of 𝜷 is just the difference in the sample means for
the two populations B = Ȳ2 − Ȳ1 and the corresponding estimator of 𝚺 is the
pooled intra-sample covariance matrix. As in the general multivariate normal
model (1.1), this estimator of 𝜷 does not make use of the dependence between
the responses and is equivalent to performing two univariate regressions of Yj
on X, j = 1, 2. Bringing envelopes into play can lead to a very different estima-
tor of 𝜷 , one with substantially smaller variation than the maximum likelihood
estimator B under model (1.1). In the remainder of this section, we illustrate
one way this can happen.

A standard analysis will likely be sufficient when the populations are well sep-
arated, as illustrated in Figure 1.2, even with a larger number of responses. The
two ellipses in that figure represent the two normal populations indicated by
the predictor values X = 0 and X = 1. However, a standard analysis may not do
as well when the populations are close, as illustrated in Figure 1.3. Without loss
of generality, we set 𝝁1 + 𝝁2 = 0, so that  = span(𝝁1,𝝁2) = span(𝝁1 − 𝝁2) =
span(𝜷). The left panel represents a standard likelihood analysis under model
(1.1). For inference on 𝛽2, the second element of 𝜷 , a standard analysis directly
projects the data “y” onto the Y2 axis following the dashed line marked A and
then proceeds with inference based on the resulting univariate samples. The
curves along the horizontal axis in the left panel stand for the projected dis-
tributions from the two populations. A standard analysis might involve con-
structing a two-sample t-test on samples drawn from these populations. There
is a considerable overlap between the two projected distributions, so it may take
a large sample size to infer that 𝛽2 ≠ 0 in a standard analysis. This illustration
is based on 𝛽2 to facilitate visualization; the same conclusions could be reached
using a different linear combination of the elements of 𝜷 .

The two populations depicted in Figure 1.3 have the same eigenvectors,
as they must because they have equal covariance matrices. We saw in (1.19)
that an envelope can be constructed as 𝚺() =

∑q
i=1 Pi. There are only two

Figure 1.2 Graphical illustration of a
relatively uncomplicated scenario. The axes
are centered responses.

Y1

Y2
0

0



�

� �

�

12 1 Response Envelopes

(a) (b)

Y1

Y2

A

B

B

yy

0

0

Y1

EΣ (B )EΣ (B )

Y2
0

0

E   (B )
Σ
⊥E   (B )

Σ
⊥

Figure 1.3 Graphical illustration envelope estimation. (a) Standard analysis; (b) envelope
analysis.

eigenspaces in Figure 1.3, so the envelope must have dimension u = 0, u = 1,
or u = 2. Since  equals the second eigenspace, we have u = 1 and  = 𝚺(),
although in higher dimensions only  ⊆ 𝚺() is required. Accordingly, the
eigenvector corresponding to the smaller eigenvalue is marked by the notation
for the envelope 𝚺(), and the first eigenvector is marked by notation for
the orthogonal complement of the envelope ⟂

𝚺 (). Condition (i) of (1.18)
holds because the two populations have equal distributions when projected
onto ⟂

𝚺 (); that is, QY ∣ (X = 0) ∼ QY ∣ (X = 1), where 𝚺() is shortened
to  for use in subscripts. Since the populations are normal and 𝚺() and
⟂
𝚺 () are spanned by eigenvectors, we also have condition (ii) of (1.18),

PY ⫫ QY ∣ X.
The maximum likelihood envelope estimator of 𝛽2 (see Section 1.5) can

be formed by first projecting the data onto 𝚺() to remove the X-invariant
component QY and extract the X-variant part of the response PY, and
then projecting onto the horizontal axis, as illustrated by the paths marked
“B” in Figure 1.3b. Figure 1.3b also shows the resulting projected distri-
butions corresponding to the projected distributions in Figure 1.3a. Now
the projected distributions are well separated, and the envelope estimator
of 𝛽2 should be much more efficient than the estimator represented in
Figure 1.3a. The estimative gain represented by passing from the standard
estimator in Figure 1.3a to the envelope estimator in Figure 1.3b is reflected
by the difference in the magnitude of the variances var(𝚪T Y ∣ X) = 𝛀 and
var(𝚪T

0 Y ∣ X) = 𝛀0. The distributions in Figure 1.3 were constructed so that
𝛀 ≪ 𝛀0, and consequently we anticipate substantial estimative gains.

There are two noteworthy caveats to our discussion of Figure 1.3. First,
because the response is two-dimensional, the only nontrivial envelope must
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have dimension 1 and thus must align with one of the eigenvectors of 𝚺. This is
not required in higher dimensions, as shown by (1.19). Second, the illustration
is based on the true envelope. The envelope needs to be estimated in practice,
which has the effect of causing it to wobble in Figure 1.3b. That wobble
produces increased variation in the envelope distributions of Figure 1.3b. As
shown in Proposition 1.1, regardless of the degree of wobble, the asymptotic
variance of the envelope estimator will not exceed the asymptotic variance of
the standard estimator, which is reflected by the distributions in Figure 1.3a
(Cook et al. 2010). In other words, the envelope estimator will always do at
least as well as the standard maximum likelihood estimator asymptotically.

1.3.2 Compound Symmetry

Suppose that the elements (𝚺)ij of the residual covariance matrix for envelope
model (1.20) have the form (𝚺)ii = 𝜎2 and (𝚺)ij = 𝜎2𝜌 for−(r − 1)−1 < 𝜌 < 1 and
i ≠ j. Then 𝚺 can be decomposed as

𝚺𝜎−2 = 𝜌𝟏r𝟏T
r + (1 − 𝜌)Ir

= (1 + (r − 1)𝜌)P𝟏r
+ (1 − 𝜌)Q𝟏r

.

In consequence, 𝚺 has two eigenspaces span(𝟏r) and span⟂(𝟏r) with corre-
sponding eigenvalues 𝜑1 = 𝜎2(1 + (r − 1)𝜌) and 𝜑2 = 𝜎2(1 − 𝜌). It follows from
(1.19) that the envelope is the sum of the projections of  onto span(𝟏r) and
span⟂(𝟏r): 𝚺() = span(P𝟏r

𝜷) + span(Q𝟏r
𝜷), which has dimension at most

1 + min(p, r − 1).
Compound symmetry, which is a common name given to the covariance

structure considered in this section, is frequently used for analysis of longi-
tudinal data where the response vector is made up of repeated measures on
a single individual over time (Weiss 2005), as in the cattle weights illustration
introduced in Section 1.3.4.

1.3.3 Wheat Protein: Introductory Illustration

The classic wheat protein data (Fearn 1983) contain measurements on pro-
tein content and the logarithms of near-infrared reflectance at six wavelengths
across the range 1680–2310 nm measured on each of n = 50 samples of ground
wheat. To illustrate the ideas associated with Figure 1.3 in data analysis, we use
r = 2 wavelengths as responses Y = (Y1,Y2)T and convert the continuous mea-
sure of protein content into a categorical predictor X, indicating low and high
protein (24 and 26 samples, respectively).

The mean difference 𝝁2 − 𝝁1 corresponds to the parameter vector 𝜷 in
model (1.1), with X representing a binary indicator: X = 0 for high protein and
X = 1 for low protein wheat. For these data, which are shown in Figure 1.4,
BT = (7.5,−2.1) with standard errors (SEs) 8.6 and 9.5 (Figure 1.3a). There is
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Figure 1.4 Wheat protein data with the estimated envelope superimposed.

no indication from these marginal results that Y depends on X, while the
likelihood ratio test statistic (1.13) has the value 27.5 on 2 degrees of freedom
and thus indicates otherwise. The simultaneous occurrence in a standard
analysis of relatively small Z-scores and a relatively large likelihood ratio
statistic is often a clue that an envelope analysis will be advantageous, although
these conditions are certainly not necessary.

The envelope estimate is 𝜷
T
= (5.1,−4.7) with asymptotic standard errors

of 0.51 and 0.46 (Figure 1.3b). To more fully appreciate the magnitude of this
drop in standard errors, we would need for a standard analysis a sample size of
n ∼ 20 000 to reduce the standard error from 9.4 to 0.46. Figure 1.4 shows the
projected distributions of the data like those from Figure 1.3.

1.3.4 Cattle Weights: Initial Fit

Roundworm is an intestinal parasite that takes nutrients from animals and
lowers their resistance to disease, resulting in relatively low body weights.
Kenward (1987) presented data1 from a randomized experiment to compare
two treatments for controlling roundworm in cattle. The two treatments were
randomly assigned to 60 cows, with 30 cows per treatment. Their weights in

1 The data were obtained from the website for Weiss (2005) http://rem.ph.ucla.edu/~rob/mld/
data.html.



�

� �

�

1.3 Illustrations 15

kilograms were recorded at the beginning of the study prior to treatment appli-
cation and at 10 times during the study corresponding to weeks 2, 4, 6, ..., 18
and 19; that is, at two-week intervals except the last that was over a one-week
interval. The goal of the experiment was to determine if the treatments have a
differential effect on weight and, if so, to estimate the time point at which the
difference was first manifested. The experimenter evidently anticipated a lag
between the time of treatment application and manifestation of their effects.

The basal weights, which were taken before treatment, could be used as
covariates in an effort to control some of the variations between animals. In
this illustration, we take a simpler approach and neglect the basal weights
in our analysis. (Basal weights are included as covariates in an illustrative
analysis in Chapter 3.) Since treatments were assigned randomly this should
not introduce a bias, although we might incur variation that could otherwise
be removed. Figure 1.5a shows a profile plot, also called a parallel coordinate
plot, of animal weight against week, beginning with the first posttreatment
measurements in week 2. Each line traces the weight of an animal over time,
with the two treatments represented by different colors. Profile plots are useful
for seeing clusters over time, but for these data no clusters or treatment effects
seem apparent visually. Figure 1.5b shows a profile plot of mean weight by
week and treatment on the same scale as Figure 1.5a. The two mean profiles
are roughly parallel until week 12, cross between weeks 12 and 14, and then
cross back between weeks 18 and 19. Judged against the variation of the
individual profiles in Figure 1.5a and recognizing that the intra-animal weights
are surely positively correlated, these visual representations hint that there is
no detectable difference between the two treatments from these data.

Let Yi ∈ ℝ10, i = 1,… , 60, be the vector of weight measurements for
each animal over time, and let Xi = −0.5 or 0.5 indicate the two treatments,
so

∑60
i=1 Xi = 0. Our interest lies in the regression coefficient 𝜷 from the

multivariate linear regression Y = 𝜶 + 𝜷X + 𝜺, where it is still assumed that
𝜺 ∼ N10(0,𝚺). Recall that B denotes the ordinary least squares estimator of 𝜷 ,
which is also the maximum likelihood estimator under normality. For these
data B is simply the difference in the mean vectors for the two treatments,

B = Ȳ ∣ (X = 0.5) − Ȳ ∣ (X = −0.5),

and the corresponding estimator of 𝜶 is the grand mean Ȳ. The plot in
Figure 1.5b can also be described as a profile plot of the fitted weights
Ŷ = Ȳ + BX. The coefficient estimates B and their Z-scores (1.10) are given
in the second and third columns of Table 1.1. This fit supports the visual
impression from Figure 1.5, as the largest absolute Z-score is only 1.30. On the
other hand, the likelihood ratio statistic (1.13) for the hypothesis 𝜷 = 0 has the
value 26.9 on 10 degrees of freedom, which suggests differences somewhere
that are not manifested by the marginal Z-scores of Table 1.1. As mentioned in
the wheat protein illustration, the simultaneous occurrence of relatively small
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Figure 1.5 Cattle data: profile plots of weight for 60 cows over 10 time periods. Colors
designate the two treatments. (a) Profile plots for individual cows by treatment. (b) Profile
plots of average weight by treatment.
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Table 1.1 Cattle data: Estimated coefficients for the standard model and
envelope model with u = 1.

Week B Z-score 𝜷 Z-score R

2 2.43 0.83 −2.17 −2.48 3.32
4 3.33 1.05 −0.48 −0.65 4.27
6 3.13 0.89 0.88 1.23 4.89
8 4.73 1.22 2.38 2.82 4.56
10 4.73 1.14 2.89 4.14 5.94
12 5.50 1.30 5.40 5.30 4.15
14 −4.80 −1.11 −5.09 −5.55 4.69
16 −4.53 −0.97 −4.62 −5.36 5.40
18 −2.87 −0.54 −3.67 −4.06 5.86
19 5.00 0.86 4.21 4.92 6.78

The Z-score is the estimate divided by its standard error (se(⋅)) as defined in (1.10),
and R = se{(B)j}∕se{(𝜷)j}.

Z-scores and a relatively large likelihood ratio statistic is often a good clue that
an envelope analysis will offer advantages, although again these conditions are
not necessary. We next turn to an envelope analysis.

Using the LRT(.05) method of Section 1.10, we first estimated that u = 1, so
it was inferred that the treatment difference is manifested in only one linear
combination 𝚪T Y of the response vector. Then with u = 1, we estimated a basis
𝚪̂ for 𝚺() using the method of Section 1.5. The fourth and fifth columns of
Table 1.1 give the envelope coefficient estimates 𝜷 = P𝚪̂B and their Z-scores
determined by using the standard errors described in (1.33). Making use of
a Bonferroni inequality at level 0.05 to adjust for multiple testing, differential
treatment effects are indicated by at least week 10 and persist thereafter. The
final column of Table 1.1 gives the ratios of the standard errors for the elements
of B to those of 𝜷 . We see from these results that the standard errors for the
elements of B were 3.32–6.78 times those of 𝜷 . These ratios represent a sub-
stantial increase in efficiency of the envelope estimator relative to the usual
maximum likelihood estimator. To more fully appreciate the magnitude of this
drop in standard errors, we would need n ∼ 1500 for a standard analysis to
achieve the standard errors from an envelope analysis with n = 60.

Figure 1.6 shows a profile plot on the same scale as Figure 1.5 of the fitted
weights, Ŷ = 𝜶̂ + 𝚪̂𝜼̂X from the envelope model with u = 1. Comparing to
Figure 1.5b, the corresponding profile plot of the fitted weights from the
standard model, we see that the two plots agree well after about week 10,
but before then the fitted weights for the two treatments are closer from the
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Figure 1.6 Cattle data: profile plot of fitted weights from the envelope model with u = 1.
Colors designate the two treatments.

envelope fit than from the standard fit. This supports the prior notion of a lag
between treatment application and effect.

This example has 10 responses, so an overall graphical construction like that
shown in Figure 1.3 is not possible. However, marked plots of the weights
for week 𝑤 versus the weights for week 𝑤 + 2 provide some intuition on the
structure of the data. For instance, the plot for week 12 weight versus week 14
weight given in Figure 1.7 suggests a clear difference in weights and exhibits the
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envelope structure represented schematically in Figure 1.3. A formal envelope
analysis of these bivariate data indicates that u = 1 (Section 1.10), leading to
envelope standard errors that are about 5.7 times smaller than those from the
standard model and highly significant coefficient estimates. This level of reduc-
tion is commensurate with those shown previously in Table 1.1.

1.4 More on the Envelope Model

In this section, we revisit and expand upon the envelope model (1.20) intro-
duced in Section 1.2.

1.4.1 Relationship with Sufficiency

Suppose we know a subspace  that contains , so that condition (i) of (1.18)
holds; we are not yet enforcing condition (ii) of (1.18). The estimator of 𝜷 based
on PY is PB = SPY,XS−1

X . If PY is to capture the part of Y that is mate-
rial to the estimation of 𝜷 , then it is reasonable to require that the conditional
distribution of vec(B) ∣ vec(PB) not depend on 𝜷 .

Since vec(B) ∣ vec(PB) is normally distributed, we need to consider only its
mean and variance. Its variance does not depend on 𝜷 , but its mean may do so.
Writing vec(PB) = (Ip ⊗ P )vec(B), we have from (1.11) that

E{vec(B) ∣ vec(PB)} = vec(𝜷) + PT
Ip⊗P (V){vec(B) − vec(𝜷)},

where V = var{vec(B)} as given in (1.8). Because PIp⊗P (V)(Ip ⊗ P ) = Ip ⊗ P

and  ⊆  , we have
E{vec(B) ∣ vec(PB)} = (Ip ⊗ P + Ip ⊗ Q )E{vec(B) ∣ vec(PB)}

= vec(𝜷) + (Ip ⊗ P )PT
Ip⊗P (V){vec(B) − vec(𝜷)}

+(Ip ⊗ Q )PT
Ip⊗P (V){vec(B) − vec(𝜷)}

= vec(PB)+(Ip ⊗Q )PT
Ip⊗P (V){vec(B)−vec(𝜷)}.

The second term on the right-hand side will be free of 𝜷 if and only if
PIp⊗P (V)(Ip ⊗ Q ) = 0; that is, if and only if Ip ⊗ P is orthogonal to Ip ⊗ Q

in the V inner product. This holds if and only if P𝚺Q = 0, so  must reduce
𝚺. Consequently, we are led back to condition (ii) of (1.18).

The general point here is that conditions (i) and (ii) of (1.18) are designed to
insure that PB is sufficient for 𝜷 when  is known; that is, PY is a sufficient
reduction of Y. The context here is distinct from classical sufficiency because
 is unknown and must be estimated.

1.4.2 Parameter Count

The total number of real parameters required for the envelope model (1.20) is
Nu = r + pu + u(r − u) + u(u + 1)∕2 + (r − u)(r − u + 1)∕2 (1.21)

= r + pu + r(r + 1)∕2.
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This count arises as follows. The first addend on the right-hand side of (1.21)
corresponds to the intercept 𝜶 ∈ ℝr , and the second addend corresponds to
the unconstrained coordinate matrix 𝜼 ∈ ℝu×p. The last two addends corre-
spond to𝛀 and𝛀0. Their parameter counts arise because, for any integer k > 0,
it takes k(k + 1)∕2 numbers to specify a nonsingular k × k symmetric matrix.
The third addend u(r − u), which gives the parameter count for 𝚪, arises as
follows. As mentioned previously, the matrix 𝚪 is not identifiable since, for
any orthogonal matrix O ∈ ℝu×u, replacing 𝚪 with 𝚪O results in an equiva-
lent model. However, span(𝚪) = 𝚺() is identifiable. The parameter space for
𝚺() is the Grassmannian (u, r) of dimension u in ℝr : (u, r) is the collection
of all u-dimensional subspaces ofℝr. From basic properties of Grassmann man-
ifolds it is known that u(r − u) real parameters are needed to specify an element
of (u, r) uniquely. Once 𝚺() is determined, so is its orthogonal comple-
ment span(𝚪0), and no additional free parameters are required. The difference
between the total parameter count for the standard model (1.1) with r = u and
the envelope model (1.20) with u < r is therefore p(r − u). Further discussion
of Grassmannians is available from Edelman et al. (1998).

The number of real parameters u(r − u) needed to identify a subspace
can be seen intuitively as follows. ru parameters are needed to specify
uniquely an unconstrained matrix 𝚪 ∈ ℝr×u. But when dealing with subspaces,
span(𝚪) = span(𝚪A) for any nonsingular A ∈ ℝu×u. Since it requires u2

parameters to determine an A, specifying a subspace takes ru − u2 = u(r − u)
parameters.

1.4.3 Potential Gains

A specific envelope model is identified by the value of u. All envelope models are
nested within the standard model (1.1), but two envelope models with different
values of u are not necessarily nested. To see this, notice that the number of
real parameters needed to specify an element of (1, r) is the same as that for
(r − 1, r). If u = r, then 𝚺() = ℝr , the envelope model degenerates to the
standard model (1.1) and enveloping offers no gain. If r ≤ p and dim() = r,
then again the envelope model reduces to the standard model. However, if (i)
r > p or (ii) if dim() < r ≤ p, then efficiency gains are possible. These gains can
arise in two ways. The first is through the parameter count. Since the number
of parameters in the envelope model is less than that in the standard model,
we can expect some efficiency gains from parsimony. But the second source is
where we have the potential to realize massive gains.

To explore envelope gains and in anticipation of maximum likelihood estima-
tion discussed in Section 1.5, consider the maximum likelihood estimator of 𝜷
when 𝚺() is known and represented by a semi-orthogonal basis matrix 𝚪. In
this case, the maximum likelihood estimator of 𝜷 under the envelope model
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(1.20) is again the projection of the standard estimator onto 𝚺(): 𝜷𝚪 = P𝚪B.
Using (1.8), the variance of this estimator is

var{vec(𝜷𝚪)} = var{vec(P𝚪B)}
= (Ip ⊗ P𝚪)var{vec(B)}(Ip ⊗ P𝚪)
= n−1(Ip ⊗ P𝚪)(S−1

X ⊗ 𝚺)(Ip ⊗ P𝚪)
= n−1S−1

X ⊗ 𝚪𝛀𝚪T . (1.22)

Comparing this to the variance of the standard estimator B,

var{vec(B)} − var{vec(𝜷𝚪)} = n−1S−1
X ⊗ 𝚪0𝛀0𝚪T

0 ≥ 0. (1.23)

From this we conclude that if the variance of the X-invariant part of Y,
var(𝚪T

0 Y ∣ X) = 𝛀0 is large relative to the variance of the X-variant part of Y,
var(𝚪T Y) = 𝛀, then the gain from the envelope model can be substantial. Using
the spectral norm || ⋅ || as a measure of overall size, the envelope model may be
particularly advantageous when ||𝚪𝛀𝚪T || = ||𝛀|| ≪ ||𝚪0𝛀0𝚪T

0 || = ||𝛀0||. The
envelope 𝚺() will normally be estimated in practice, and these results will
then be mitigated by the variability in its estimator. Nevertheless, experience
has shown that they are a useful indicator of the kinds of regressions in which
envelopes offer substantial gains.

1.5 Maximum Likelihood Estimation

1.5.1 Derivation

In this section, we discuss the derivation of the maximum likelihood estimators
of the parameters in envelope model (1.20), assuming that the dimension u =
dim(𝚺()) of the envelope is known.

The log-likelihood Lu(𝜶, 𝜼, 𝚺(),𝛀,𝛀0) under model (1.20) with known u
can be expressed as

Lu = −(nr∕2) log(2π) − (n∕2) log |𝚪𝛀𝚪T + 𝚪0𝛀0𝚪T
0 |

−(1∕2)
n∑

i=1
(Yi − 𝜶 − 𝚪𝜼Xi)T (𝚪𝛀𝚪T + 𝚪0𝛀0𝚪T

0 )
−1(Yi − 𝜶 − 𝚪𝜼Xi)

= −(nr∕2) log(2π) − (n∕2) log |𝛀| − (n∕2) log |𝛀0|
−(1∕2)

n∑
i=1

(Yi − 𝜶 − 𝚪𝜼Xi)T (𝚪𝛀−1𝚪T + 𝚪0𝛀−1
0 𝚪T

0 )(Yi − 𝜶 − 𝚪𝜼Xi),

where the second equality arises by applying the third and fourth conclusions
of Corollary A.1. Also, while the likelihood function depends on 𝚺(), we
have written it in terms of the semi-orthogonal basis matrix 𝚪 to facilitate the
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derivation. The original derivation by Cook et al. (2010) uses projections instead
of bases.

The maximum likelihood estimator of 𝜶 is 𝜶̂ = Ȳ because the predictors are
centered. Substituting this into the likelihood function and then decomposing
Yi − Ȳ = P𝚪(Yi − Ȳ) + Q𝚪(Yi − Ȳ) and simplifying, we arrive at the first par-
tially maximized log-likelihood,

L(1)
u (𝜼, 𝚺(),𝛀,𝛀0) = −(nr∕2) log(2π) + L(11)

u (𝜼, 𝚺(),𝛀)
+ L(12)

u (𝚺(),𝛀0),

where

L(11)
u = −(n∕2) log |𝛀|

−(1∕2)
n∑

i=1
{𝚪T (Yi − Ȳ) − 𝜼Xi}T𝛀−1{𝚪T (Yi − Ȳ) − 𝜼Xi},

L(12)
u = −(n∕2) log |𝛀0| − (1∕2)

n∑
i=1

(Yi − Ȳ)T𝚪0𝛀−1
0 𝚪T

0 (Yi − Ȳ).

Holding 𝚪 fixed, L(11)
u can be seen as the log-likelihood for the multivariate

regression of 𝚪T (Yi − Ȳ) on Xi, and thus L(11)
u is maximized over 𝜼 at the value

𝜼 = 𝚪T B. Substituting this into L(11)
u and simplifying, we obtain a partially max-

imized version of L(11)
u

L(21)
u (𝚺(),𝛀) = −(n∕2) log |𝛀| − (1∕2)

n∑
i=1

(𝚪T ri)T𝛀−1𝚪T ri,

where, as defined in Section 1.1, ri is the ith residual vector from the fit
of the standard model (1.1). From this it follows immediately that, still
with 𝚪 fixed, L(21)

u is maximized over 𝛀 at 𝛀 = 𝚪T SY|X𝚪. Consequently,
we arrive at the third partially maximized log-likelihood L(31)

u (𝚺()) =
−(n∕2) log |𝚪T SY|X𝚪| − nu∕2. By similar reasoning, the value of 𝛀0 that
maximizes L(21)

u (𝚺(),𝛀0) is 𝛀0 = 𝚪T
0 SY𝚪0. This leads to the maximization of

L(22)
u (𝚺()) = −(n∕2) log |𝚪T

0 SY𝚪0| − n(r − u)∕2.
Combining the above steps, we arrive at the partially maximized form

L(2)
u (𝚺()) = −(nr∕2) log(2π) − nr∕2 − (n∕2) log |𝚪T SY|X𝚪|

− (n∕2) log |𝚪T
0 SY𝚪0|.

Next, since log |𝚪T
0 SY𝚪0| = log |SY| + log |𝚪T S−1

Y 𝚪| (Lemma A.13), we can
express L(2)

u (𝚺()) as a function of 𝚪 alone:

L(2)
u (𝚺()) = −(nr∕2) log(2π) − nr∕2 − (n∕2) log |SY|

−(n∕2) log |𝚪T SY|X𝚪| − (n∕2) log |𝚪T S−1
Y 𝚪|. (1.24)
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Summarizing, the maximum likelihood estimators ̂𝚺() of 𝚺() and of the
remaining parameters are determined as

̂𝚺() = span{arg min
G

(log |GT SY|XG| + log |GT S−1
Y G|)}, (1.25)

𝜼̂ = 𝚪̂T B,
𝜷 = 𝚪̂ 𝜼̂ = P

̂
B, (1.26)

𝛀̂ = 𝚪̂T SY|X𝚪̂,
𝛀̂0 = 𝚪̂T

0 SY𝚪̂0,

𝚺̂ = 𝚪̂𝛀̂𝚪̂T + 𝚪̂0𝛀̂0𝚪̂T
0 ,

where minG is over all semi-orthogonal matrices G ∈ ℝr×u, 𝚪̂ is any semi-
orthogonal basis matrix for ̂𝚺(), and 𝚪̂0 is any semi-orthogonal basis matrix
for the orthogonal complement of ̂𝚺(). The fully maximized log-likelihood
for fixed u is then

L̂u = −(nr∕2) log(2π) − nr∕2 − (n∕2) log |SY|
−(n∕2) log |𝚪̂T SY|X𝚪̂| − (n∕2) log |𝚪̂T S−1

Y 𝚪̂|. (1.27)

The optimization required in (1.25) can be sensitive to starting values. Dis-
cussions of starting values and optimization algorithms are given in Chapter 6
within a broader context. The estimators 𝜷 and 𝚺̂ are invariant to the selection
of basis 𝚪̂ and thus are unique, but the remaining estimators 𝜼̂, 𝛀̂ and 𝛀̂0 are
basis dependent and thus not unique.

1.5.2 Cattle Weights: Variation of the X-Variant Parts of Y

The envelope estimates in Table 1.3.4 were constructed based on (1.25) and
the corresponding estimates of the other parameters. We commented at the
end of Section 1.4.2 that an envelope analysis will be particularly advantageous
when ||𝛀|| is substantially smaller than ||𝛀0||. From the fit of the envelope model
with u = 1 to the cattle data, we obtain ||𝛀̂|| = 27.8 and ||𝛀̂0|| = 2351.5, which
conforms qualitatively to the gains in Table 1.1 and the structure shown in
Figure 1.7.

In an envelope model with u = 1, 𝜷 is constrained to lie in a one-dimensional
reducing subspace of 𝚺. If the eigenvalues of 𝚺 are all distinct, then 𝜷 will align
with an eigenvector of 𝚺, as described previously in (1.19). The estimate 𝚪̂ will
not correspond to an eigenvector of SY|X, but informally we might expect 𝚪̂
to fall close to an eigenvector because of the result shown in (1.19). We can
often obtain intuition about the fit of an envelope model by considering the
correlations between 𝚪̂T Y and the elements of LT Y, where the columns of
L = (𝓵1,… ,𝓵r) are the ordered eigenvectors of SY|X. For the cattle data, the
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two largest absolute correlations 0.97 and 0.48 occur with the fourth and sixth
eigenvectors, giving 𝓵T

4 Y and 𝓵T
6 Y. Evidently, the treatment differences are

largely associated with the fourth eigenvector of SY|X.

1.5.3 Insights into ̂𝚺()

In this section, we provide different forms for ̂𝚺() that might aid intuition.
First, ̂𝚺() can be reexpressed as

̂𝚺() = arg min
∈(u,r)

{log |PSY|XP |0 + log |QSYQ |0}, (1.28)

where | ⋅ |0 denotes the product of the nonzero eigenvalues of the matrix
argument, and minimization min∈(u,r) is over the Grassmannian (u, r) of
dimension u in ℝr . This form highlights the fact that only the subspace is being
estimated, not a particular basis.

We next reexpress the objective function in (1.28) to show how it reflects
the constraints on 𝜷 and 𝚺 in envelope model (1.20). Let G and G0 be
semi-orthogonal basis matrices for a subspace  and its orthogonal comple-
ment ⟂. Then it follows from Lemma A.14 that |PSY|XP |0 = |GT SY|XG|
and |QSYQ |0 = |GT

0 SYG0|. Consequently,

log |PSY|XP |0 + log |QSYQ |0 = log |GT SY|XG| + log |GT
0 SYG0|

= log |SGT Y∣X| + log |SGT
0 Y|.

From (1.5), we can express

SGT
0 Y = SGT

0 Y∣X + SGT
0 Y∘X

= SGT
0 Y∣X + SGT

0 Y,XS−1
X ST

GT
0 Y,X

= SGT
0 Y∣X + BGT

0 Y∣XSXBT
GT

0 Y∣X

= SGT
0 Y∣X + S1∕2

GT
0 Y∣XB̃GT

0 Y∣XB̃T
GT

0 Y∣XS1∕2
GT

0 Y∣X,

where

B̃GT
0 Y|X = S−1∕2

GT
0 Y|XBGT

0 Y|XS1∕2
X

is the standardized version of the estimated coefficient matrix BGT
0 Y|X from the

fit of GT
0 Y on X (1.6). Consequently,

|SGT
0 Y| = |SGT

0 Y∣X| × |||Ir−u + B̃GT
0 Y∣XB̃T

GT
0 Y∣X

|||
and optimization (1.28) can now be reexpressed as

̂𝚺() = span
{

arg min
G

(
log |SGT Y|X| + log |SGT

0 Y|X|
+ log |||Ir−u + B̃GT

0 Y|XB̃T
GT

0 Y|X|||)} , (1.29)
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where the minimization is over semi-orthogonal matrices G ∈ ℝr×u. Since|SGT Y|X| × |SGT
0 Y|X| ≥ |SY|X| with equality if and only if span(G) reduces SY|X

(see Lemma A.14), the sum of the first two terms in the objective function
of (1.29) is minimized when the columns of G are any u eigenvectors of
SY|X. Thus, the role of these terms is to enforce the constraint on 𝚺 in model
(1.20). The third term measures bias using the standardized coefficients from
the regression of GT

0 Y on X, corresponding to the population constraint
that  ⊆ span(G). The third term will equal 0 for any subspace span(G)
that contains span(B), since then GT

0 B = 0. In short, the objective function
balances the two constraints on the envelope model (1.20), minimizing bias
while insuring that the solution is “close” to a reducing subspace of SY|X.

1.5.4 Scaling the Responses

Like principal component regression, ridge regression, partial least squares,
and other methods, the maximum likelihood estimators of 𝜷 and 𝚺 are
not invariant or equivariant under rescaling of Y. For instance, rescale
Y by a nonsingular diagonal matrix D with positive diagonal elements,
Y → DY. Expressed in terms of the parameters from the regression
of Y on X, the envelope for the regression of DY on X is D𝚺D(D).
Then generally D𝚺D(D) ≠ 𝚺() with possibly different dimensions
dim(D𝚺D(D)) ≠ dim(𝚺()). Let 𝜷D be the envelope estimator of 𝜷 from the
regression of DY on X. Then generally we do not have 𝜷D = 𝜷 or 𝜷D = D𝜷 . For
these reasons, envelope methods based on the constructions of this chapter
tend to work best when the responses are in the same or similar scales, although
this is not required. Nearly all of the examples in this book are of that type.
Similar comments hold for the predictor envelopes discussed in Chapter 4.

In Chapter 8, we extend the envelope model to allow for simultaneous estima-
tion of a rescaling matrix like D. Until then we stay close to the basic envelope
construction described in this chapter.

1.6 Asymptotic Distributions

Asymptotic variances of 𝜷 and 𝚺̂ can in principle be determined from the
inverse of the Fisher information matrix. However, we encounter complica-
tions when attempting to apply this general procedure to model (1.20) because
𝚪 is not identifiable due to its overparameterization. Results from Shapiro
(1986, Proposition 4.1) allow for overparameterization and show how to find
the asymptotic distribution of an estimable function of the parameters. In this
section, we sketch the process of determining the asymptotic distribution of
the estimable functions 𝜷 = 𝚪𝜼 and 𝚺 = 𝚪𝛀𝚪T + 𝚪0𝛀0𝚪T

0 of the parameters
in model (1.20). Additional details are available from Cook et al. (2010).
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The general procedure is the same for other envelope models described in later
chapters.

We begin by defining the vector𝝓 of parameters associated with model (1.20)
along with the estimable functions h(𝝓). We do not include the intercept 𝜶
because it is not typically of interest and its maximum likelihood estimator is
asymptotically independent of the others in the model. Let

𝝓 =

⎛⎜⎜⎜⎜⎝
vec(𝜼)
vec(𝚪)

vech(𝛀)
vech(𝛀0)

⎞⎟⎟⎟⎟⎠
∶=

⎛⎜⎜⎜⎜⎝
𝝓1

𝝓2

𝝓3

𝝓4

⎞⎟⎟⎟⎟⎠
(1.30)

and

h(𝝓) =

(
vec(𝜷)

vech(𝚺)

)
=

(
vec(𝚪𝜼)

vech(𝚪𝛀𝚪T + 𝚪0𝛀0𝚪T
0 )

)
∶=

(
h1(𝝓)
h2(𝝓)

)
.

We will also require the gradient matrix,

H ∶=

(
𝜕h1∕𝜕𝝓

T
1 · · · 𝜕h1∕𝜕𝝓

T
4

𝜕h2∕𝜕𝝓
T
1 · · · 𝜕h2∕𝜕𝝓

T
4

)

=

(
Ip ⊗ 𝚪 𝜼T ⊗ Ir 𝟎 𝟎

𝟎 H22 Cr(𝚪⊗ 𝚪)Eu Cr(𝚪0 ⊗ 𝚪0)E(r−u)

)
,

where H22 = 2Cr(𝚪𝛀⊗ Ir − 𝚪⊗ 𝚪0𝛀0𝚪T
0 ), and Cr and Eu are the contraction

and expansion matrices that connect the vec and vech operators. The deriva-
tives needed for H are also required in other asymptotic calculations. These and
related derivatives are summarized in Section A.6 along with basic properties
of the contraction and expansion matrices in Appendix A.5.

Because of the overparameterization in 𝚪, H is not of full rank and standard
likelihood methods cannot be applied directly. But h is estimable, allowing us
to use Shapiro (1986, Proposition 4.1) to conclude that

Proposition 1.1 Under the envelope model (1.20) with normal errors and
known u = dim{𝚺()},

√
n{h(𝝓̂) − h(𝝓)} is asymptotically normal with mean

𝟎 and covariance matrix

avar{
√

nh(𝝓̂)} = PH(J)J−1PT
H(J) = H(HT JH)†HT , (1.31)

where J is the information matrix (1.14) for (vecT (𝜷), vechT (𝚺)) in the model
(1.1). Since J−1 − avar(

√
nh(𝝓̂)) ≥ 0, the envelope estimator never does worse

than the standard estimator.
Additionally,

√
n(𝜷 − 𝜷) is asymptotically normal with mean 0 and variance

avar{
√

n vec(𝜷)} = 𝚺−1
X ⊗ 𝚪𝛀𝚪T + (𝜼T ⊗ 𝚪0)U†(𝜼⊗ 𝚪T

0 ), (1.32)
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where

U = 𝜼𝚺X𝜼
T ⊗𝛀−1

0 +𝛀⊗𝛀−1
0 +𝛀−1 ⊗𝛀0 − 2Iu ⊗ Ir−u

= 𝜼𝚺X𝜼
T ⊗𝛀−1

0 + (𝛀1∕2 ⊗𝛀−1∕2
0 −𝛀−1∕2 ⊗𝛀1∕2

0 )2.

These results can be used in practice to construct an asymptotic standard
error for (𝜷)ij, i = 1,… , r, j = 1,… , p, by first substituting estimates for the
unknown quantities on the right-hand side of (1.32) to obtain an estimated
asymptotic variance âvar{

√
n vec(𝜷)}. The estimated asymptotic variance

âvar{
√

n(𝜷)ij} is then the corresponding diagonal element of âvar{
√

n vec(𝜷)},
and its asymptotic standard error is

se{(𝜷)ij} =
[âvar{

√
n(𝜷)ij}]1∕2√

n
, (1.33)

with corresponding Z-score equal to (𝜷)ij∕se{(𝜷)ij}. This is the method that is
used to obtain standard errors in the previous illustrations. The bootstrap can
also be used, as described in Section 1.11.

If u = r, then 𝚪𝛀𝚪T = 𝚺, and the second addend on the right-hand side of
(1.32) does not appear. The first addend on the right-hand side of (1.32) is the
asymptotic variance of 𝜷𝚪, the envelope estimator of 𝜷 when 𝚪 is known (cf.
(1.22)),

avar{
√

n vec(𝜷𝚪)} = 𝚺−1
X ⊗ 𝚪𝛀𝚪T .

The second addend can be interpreted as the “cost” of estimating 𝚺(). The
total on the right does not exceed avar{

√
n vec(B)}; that is,

avar{
√

n vec(B)} − avar{
√

n vec(𝜷)} ≥ 0.

The asymptotic variance (1.32) can be reexpressed informatively as

avar{
√

n vec(𝜷)} = avar{
√

n vec(𝜷𝚪)} + avar{
√

n vec(Q𝚪𝜷𝜼)}. (1.34)

As mentioned previously, the first addend avar{
√

n vec(𝜷𝚪)} on the right-
hand side is the asymptotic variance of 𝜷𝚪, and in the second addend
avar{

√
n vec(𝜷𝜼)} is the asymptotic variance of the maximum likelihood esti-

mator 𝜷𝜼 of 𝜷 when 𝜼 is known, both corresponding to asymptotic variances
in multivariate linear models.

We next consider a special case to gain intuition about the gains offered
by envelopes over the standard method. In preparation, write the asymptotic
variance of the estimator B of 𝜷 under the standard model in terms of the
envelope parameters as

avar{
√

n vec(B)} = 𝚺−1
X ⊗ 𝚺 = 𝚺−1

X ⊗ 𝚪𝛀𝚪T + 𝚺−1
X ⊗ 𝚪0𝛀0𝚪T

0 .
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Let D = avar{
√

n vec(B)} − avar{
√

n vec(𝜷)} denote the difference in asymp-
totic variances. We then have

D =𝚺−1
X ⊗ 𝚪0𝛀0𝚪T

0 − (𝜼T ⊗ 𝚪0)U†(𝜼⊗ 𝚪T
0 ) ≥ 0.

Suppose now that 𝜷 has full column rank p, 𝛀 = 𝜔Iu and 𝛀0 = 𝜔0Ir−u. Com-
pound symmetry is an instance of this structure (see Section 1.3.2). As a conse-
quence, we see that 𝚺 has two eigenspaces, one corresponding to 𝜔 and the
other to 𝜔0. Since  is contained in the eigenspace corresponding to 𝜔, we
must have  = 𝚺(), u = p, 𝚪 = 𝜷(𝜷T𝜷)−1∕2, and 𝜼 = (𝜷T𝜷)1∕2. Then after a
little algebra, we can write

D = 𝚺−1
X ⊗𝚪0𝚪T

0 𝜔0 −𝜼T{𝜼𝚺X𝜼
T𝜔−1

0 +(𝜔𝜔−1
0 +𝜔−1𝜔0 −2)Iu}−1𝜼⊗ 𝚪0𝚪T

0 .

Simplifying 𝜔𝜔−1
0 + 𝜔−1𝜔0 − 2 = (𝜔 − 𝜔0)2∕𝜔𝜔0 and using the fact that

𝜼 = (𝜷T𝜷)1∕2 ∈ ℝp×p is nonsingular,

D = 𝚺−1
X ⊗ 𝚪0𝚪T

0 𝜔0 − {𝚺X + 𝜔−1(𝜔 − 𝜔0)2(𝜷T𝜷)−1}−1 ⊗ 𝚪0𝚪T
0 𝜔0 ≥ 0.

Recall that if 𝚺() is known, the envelope model will offer substantial gains
when 𝜔 ≪ 𝜔0. The second addend on the right-hand side of the last expression
shows the cost of estimating 𝚺(). From the expression, we see that the cost
will be relatively small when again 𝜔 ≪ 𝜔0. It can also be small if 𝜔 ≠ 𝜔0 and
(𝜷T𝜷)−1 is large relative to 𝚺X.

The next corollary summarizes an important special case of this illustration.

Corollary 1.1 Assume that 𝚺 = 𝜔Ir and that rank(𝜷) = p. Then the asymp-
totic variance of the envelope estimator is the same as the asymptotic
variance of the usual maximum likelihood estimator, avar{

√
n vec(B)} =

avar{
√

n vec(𝜷)}.

Gains are still possible when 𝚺 = 𝜔Ir if the rank of 𝜷 is less than p. In that
case,  = 𝚺(), 𝜔𝜔−1

0 + 𝜔−1𝜔0 − 2 = 0, and

D = {𝚺−1
X − 𝜼T (𝜼𝚺X𝜼

T )−1𝜼}⊗ 𝚪0𝚪T
0 𝜔0

= Q𝜼T (𝚺X) ⊗ 𝚪0𝚪T
0 𝜔0 ≥ 0.

1.7 Fitted Values and Predictions

The previous asymptotic results can be used to derive the asymptotic distribu-
tion of the fitted values, as well as the asymptotic prediction variance. The fitted
values at a particular X can be written as Ŷ = Ȳ + 𝜷X = Ȳ + (XT ⊗ Ir)vec(𝜷).
Hence, the fitted value Ŷ has the following asymptotic distribution:√

n(Ŷ − E(Ŷ))


−−→Nr[0, avar{
√

n vec(Ȳ + 𝜷X)}]. (1.35)
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Using (1.34) and the fact that Ȳ and 𝜷 are asymptotically independent, the
asymptotic variance in this distribution can be expressed informatively as

avar{
√

n vec(Ȳ + 𝜷X)}

= 𝚺 + (XT ⊗ Ir)avar{
√

n vec(𝜷)}(X ⊗ Ir))

= 𝚺 + (XT ⊗ Ir)avar{
√

n vec(𝜷𝚪)}(X ⊗ Ir)

+ (XT ⊗ Ir)avar{
√

n vec(Q𝚪𝜷𝜼)}(X ⊗ Ir)

= 𝚺 + avar{
√

n vec(𝜷𝚪X)} + avar{
√

n vec(Q𝚪𝜷𝜼X)}.

Consequently, the variance of a fitted value has the same essential decomposi-
tion as the variance of 𝜷 discussed previously.

Turning to prediction, suppose that at some value of X, we wish to infer about
a new Y, say Ynew, independently of the past observations. Then

E{(Ŷ − Ynew)(Ŷ − Ynew)T}

= E{(Ŷ − E(Ŷ))(Ŷ − E(Ŷ))T} + E{(E(Ŷ) − Ynew)(E(Ŷ) − Ynew)T},

where the cross-product terms vanish because Ynew and Ŷ are independent.
Combining this with expression (1.35), we see that the mean squared error of
the prediction is approximated by

E{(Ŷ − Ynew)(Ŷ − Ynew)T} = n−1avar{
√

n vec(𝜷X)}
+ (1 + n−1)𝚺 + o(n−1). (1.36)

Envelope model (1.20) can be quite effective at reducing avar{
√

n vec(𝜷X)},
but it has no impact on the underlying variance 𝚺 except for the induced
structure. Envelopes give greatest estimative gain when var(𝚪T

0 Y ∣ X) = 𝛀0 is
large relative to the material variation var(𝚪T Y ∣ X) = 𝛀. Nevertheless, the
X-invariant variation is still present in 𝚺, and consequently the advantages that
model (1.20) bring in the estimation of 𝜷 may not be present to the same degree
in prediction. This can be seen in the schematic illustration of Figure 1.3, where
the distributions represented in the left-hand display contribute to prediction,
but not to estimation as shown in the right-hand display. Greater predictive
gain might be realized by using partial envelopes for prediction, as discussed
in Section 3.4, or by using envelopes for predictor reduction, as discussed in
Chapter 4.

1.8 Testing the Responses

1.8.1 Test Development

In some regressions, we may wish to test the hypothesis that the part of Y rep-
resented by the projection PY onto a known user-specified subspace  ⊂ ℝr
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holds the entire X-variant part of Y. That is, starting with model (1.20), we may
wish to test the hypothesis that

(i) QY ∣ (X = x1) ∼ QY ∣ (X = x2) and (ii) PY ⫫ QY ∣ X. (1.37)

This is similar to specification (1.18), except here we are not requiring  to
be the smallest subspace. Equivalently, this hypothesis specifies that QY
is X-invariant, while allowing for the possibility that PY may also contain
an X-invariant part of Y. Since 𝚺() is defined as the intersection of all
subspaces that satisfy (1.37), it follows that 𝚺() is contained in any subspace
that satisfies (1.37) and thus 𝚺() ⊆ . Hypothesis (1.37) can be tested by
using the likelihood ratio test statistic Λu() = 2(L̂u − L̂u()), where L̂u is
the maximized envelope log-likelihood (1.27), and L̂u() is the maximized
log-likelihood under the hypothesis. As in previous sections, we treat u
as known in this development. Methods for selecting u are discussed in
Section 1.10.

To construct L̂u(), let 𝑣 = dim() ≥ u denote the known dimension of ,
let H ∈ ℝr×𝑣 be a semi-orthogonal basis matrix for , and let (H,H0) ∈ ℝr×r

be an orthogonal matrix. Under hypothesis (1.37),  is a reducing subspace of
𝚺 that contains . It follows from Proposition A.6 that 𝚺() = HHT𝚺H(HT).
Let h ∈ ℝ𝑣×u be a semi-orthogonal basis matrix for HT𝚺H(HT), which corre-
sponds to the envelope regression of HT Y on X. Then we have that 𝚪 = Hh is
a basis for 𝚺(). Let 𝚪01 = Hh0 be a semi-orthogonal basis for the orthogonal
complement of 𝚺() within , where h0 ∈ ℝ𝑣×(𝑣−u) is semi-orthogonal and
hT h0 = 0. Envelope model (1.20) can now be expressed under (1.37) as

Y = 𝜶 + Hh𝜼X + 𝜺, (1.38)
𝚺 = Hh𝛀hT HT + Hh0𝛀01hT

0 HT + H0𝛀00HT
0 , (1.39)

where the structure of 𝚺 follows because hT HT Y, hT
0 HT Y, and HT

0 Y are
mutually independent given X. The terms 𝜶, 𝛀, and 𝜼 that occur in envelope
model (1.20) are the same as those under hypothesis (1.37), while 𝜷 = Hh𝜼,
𝚪0 = (Hh0,H0), and 𝛀0 = bdiag(𝛀01,𝛀00). We see from (1.38) and (1.39)
that HT Y ∣ X follows an envelope model, which is helpful when studying the
likelihood.

The log-likelihood

Lu() ∶= Lu(𝜶, 𝜼,h,𝛀,𝛀01,𝛀00 ∣ )

for this model can now be expressed as

Lu() = −(nr∕2) log(2π) − (n∕2) log |𝚺|
−(1∕2)

n∑
i=1

(Yi − 𝜶 − Hh𝜼Xi)T𝚺−1(Yi − 𝜶 − Hh𝜼Xi),



�

� �

�

1.8 Testing the Responses 31

where 𝚺 is as given in (1.39). Continuing,

Lu() = −(nr∕2) log(2π) − (n∕2) log |𝛀|
−(n∕2) log |𝛀01| − (n∕2) log |𝛀00|
−(1∕2)

n∑
i=1

(Yi − 𝜶 − Hh𝜼Xi)T (Hh𝛀−1hT HT )(Yi − 𝜶 − Hh𝜼Xi)

−(1∕2)
n∑

i=1
(Yi −𝜶−Hh𝜼Xi)T (Hh0𝛀−1

01 hT
0 HT )(Yi − 𝜶 − Hh𝜼Xi)

−(1∕2)
n∑

i=1
(Yi − 𝜶 − Hh𝜼Xi)T (H0𝛀−1

00 HT
0 )(Yi − 𝜶 − Hh𝜼Xi).

Rearranging terms to match regressions of HT Y and HT
0 Y on X, we get

Lu() = −(nr∕2) log(2π) − (n∕2) log |𝛀| − (n∕2) log |𝛀01|
−(1∕2)

n∑
i=1

(HT (Yi − 𝜶) − h𝜼Xi)T h𝛀−1hT (H(Yi − 𝜶) − h𝜼Xi)

−(1∕2)
n∑

i=1
(HT (Yi − 𝜶))T h0𝛀−1

01 hT
0 (H

T (Yi − 𝜶))

−(n∕2) log |𝛀00| − (1∕2)
n∑

i=1
(HT

0 (Yi − 𝜶))T𝛀−1
00 (H

T
0 (Yi − 𝜶)).

Addends 2–5 plus −(n𝑣∕2) log(2π) correspond to an envelope likelihood with
𝑣 responses, as described in Section 1.5.1, and the last two addends plus
−(n(r − 𝑣)∕2) log(2π) correspond to a mean only regression. The sum
−(n𝑣∕2) log(2π) − (n(r − 𝑣)∕2) log(2π) = −(nr∕2) log(2π) is the first addend.

Let L(1)
u (h, 𝜼,𝛀,𝛀01 ∣ )denote the log-likelihood for the envelope regression

of HT Y on X:

L(1)
u = −(n𝑣∕2) log(2π) − (n∕2) log |𝛀| − (n∕2) log |𝛀01|

−(1∕2)
n∑

i=1
(HT (Yi − 𝜶) − h𝜼Xi)T h𝛀−1hT (H(Yi − 𝜶) − h𝜼Xi)

−(1∕2)
n∑

i=1
(HT (Yi − 𝜶))T h0𝛀−1

01 hT
0 (H

T (Yi − 𝜶)).

Let L(2)
u (𝛀00 ∣ ) denote the log-likelihood arising from the mean-only regres-

sion HT
0 Y = HT

0 𝜶 + HT
0 𝜺:

L(2)
u = −(n(r − 𝑣)∕2) log(2π) − (n∕2) log |𝛀00|

− (1∕2)
n∑

i=1
(Yi − 𝜶)T H0𝛀−1

00 HT
0 (Yi − 𝜶).
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Then

Lu() = L(1)
u (h, 𝜼,𝛀,𝛀01 ∣ ) + L(2)

u (𝛀00 ∣ ).

and the estimators of the parameters in (1.38) and (1.39) can be found by fol-
lowing the derivation in Section 1.5.1:

ĥ = arg min
G

{log |GT SHT Y∣XG| + log |GT S−1
HT YG|},

𝜼̂ = ĥT SHT Y,XS−1
X ,

𝜷 = Hĥ𝜼̂,
𝛀̂ = ĥT SHT Y∣Xĥ,

𝛀̂01 = ĥT
0 SHT Yĥ0,

𝛀̂00 = SHT
0 Y,

𝚺̂ = Hĥ𝛀̂ĥT HT + Hĥ0𝛀̂01ĥT
0 HT + H0SHT

0 YHT
0 ,

where the minimum is over all semi-orthogonal matrices G ∈ ℝ𝑣×u. Let L̂(1)
u and

L̂(2)
u denote the maximized values of L(1)

u and L(2)
u :

L̂(1)
u = −(n𝑣∕2) log(2π) − n𝑣∕2 − (n∕2) log |SHT Y|

−(n∕2) log |ĥT SHT Y∣Xĥ| − (n∕2) log |ĥT S−1
HT Yĥ|,

L̂(2)
u = −(n(r − 𝑣)∕2) log(2π) − n(r − 𝑣)∕2 − (n∕2) log |SHT

0 Y|,
L̂u() = L̂(1)

u + L̂(2)
u

= −(nr∕2) log(2π) − (nr∕2) − (n∕2) log |SHT Y| − (n∕2) log |SHT
0 Y|

−(n∕2) log |ĥT SHT Y∣Xĥ| − (n∕2) log |ĥT S−1
HT Yĥ|.

Combining these results with (1.27), we obtain

Λu() = n
{

log |SHT Y| + log |SHT
0 Y| − log |SY| + log |ĥT SHT Y∣Xĥ|

+ log |ĥT S−1
HT Yĥ| − log |𝚪̂T SY|X𝚪̂| − log |𝚪̂T S−1

Y 𝚪̂|} . (1.40)

Under the hypothesis, Λu() is distributed asymptotically as a chi-square ran-
dom variable with 𝑣(r − 𝑣) degrees of freedom.

1.8.2 Testing Individual Responses

In this section, we discuss tests to determine if the distribution of a selected
subset of the responses, Y1 ∈ ℝs, s < r, is unaffected by changing the predictors.
Without loss of generality, assume that those responses are the first s compo-
nents in Y = (YT

1 ,YT
2 )

T , so we can write a partitioned form of model (1.1) as(
Y1
Y2

)
=
(
𝜶1
𝜶2

)
+
(
𝜷1X
𝜷2X

)
+
(
𝜺1
𝜺2

)
, (1.41)
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where Y2 ∈ ℝr−s, and the partitioning of 𝜷 corresponds to the partitioning of
Y, with 𝜷1 ∈ ℝs×p and 𝜷2 ∈ ℝ(r−s)×p. The specific requirements on Y1 under this
hypothesis are

(i) Y1 ∣ (X = x1) ∼ Y1 ∣ (X = x2) and (ii) Y1 ⫫ Y2 ∣ X. (1.42)

This hypothesis corresponds to (1.37) with H = (0, Ir−s)T ∈ ℝr×(r−s), 𝑣 = r − s,
and H0 = (Is, 0)T ∈ ℝr×s. Assuming that (1.42) holds, the responses in Y1
are X-invariant. Generally, the response subvector Y2 may hold X-invariant
responses as well because they are not determined solely by the value of the
corresponding regression coefficients 𝜷1. It follows from (1.42(i)) that 𝜷1 = 0
is a necessary condition for Y1 to be X-invariant, but it is not sufficient since
we also require (1.42(ii)) to hold so information from Y1 does not contribute
to the estimation of 𝜷2 via an association with Y2. Additionally, it follows from
the discussion in Section 1.8.1 that under (1.42) semi-orthogonal bases 𝚪 and
𝚪0 for 𝚺() and ⟂

𝚺 () can be constructed as

𝚪 =
(

0
𝚪2

)
, 𝚪0 =

(
Is 0
0 𝚪2,0

)
,

where 𝚪2 ∈ ℝ(r−s)×u, 𝚪2,0 ∈ ℝ(r−s)×(r−s−u), and still u = dim(𝚺()). We will
return to this line of reasoning when considering sparse envelopes for
response selection in Section 7.5. The estimator of h and the likelihood ratio
statistic simplify a bit to

ĥ = arg min
h

{log |hT SY2∣Xh| + log |hT S−1
Y2

h|},
Λu() = n{log |SY2

| + log |SY1
| − log |SY| + log |ĥT SY2∣Xĥ|

+ log |ĥT S−1
Y2

ĥ| − log |𝚪̂T SY|X𝚪̂| − log |𝚪̂T S−1
Y 𝚪̂|}.

A brief illustration on the use of this methodology is given in Section 2.8.
We conclude this section by giving additional discussion to emphasize an

important difference between inference on responses and coefficients, using
results from Su et al. (2016). Suppose that an oracle told us that in fact 𝜷1 = 0
in (1.41). Should we now estimate 𝜷2 from the constrained model(

Y1
Y2

)
=
(
𝜶1
𝜶2

)
+
(

0
𝜷2X

)
+
(
𝜺1
𝜺2

)
(1.43)

or the reduced model

Y2 = 𝜶2 + 𝜷2X + 𝜺2?

We address this question by comparing B2,C, the maximum likelihood esti-
mator of 𝜷2 from the constrained model, and B2,R, the maximum likelihood
estimator of 𝜷2 from the reduced model. We need some additional notation
for this comparison. Let B1 and B2 denote the maximum likelihood estima-
tors from the separate regressions of Y1 and Y2 on X. Let r1 and r2 denote
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the residual vectors from the separate regressions of Y1 and Y2 on X, and let
B2∣1 denote the coefficient matrix from the ordinary least squares regression
of r2 on r1, which is the same as the estimate of 𝜷2 from the full model (1.41).
Let 𝚺jj = var(Yj ∣ X), let 𝚺ij = cov(Yi,Yj ∣ X), i, j = 1, 2, and let 𝚺2∣1 = var(Y2 ∣
Y1,X) = 𝚺22 − 𝚺21𝚺−1

11 𝚺12. Then (Su et al. 2016),

B2,C = B2 − B2∣1B1 with avar(
√

nB2,C) = 𝚺−1
X ⊗ 𝚺2∣1,

B2,R = B2 with avar(
√

nB2,R) = 𝚺−1
X ⊗ 𝚺22.

From this we see that B2,C ≠ B2,R, with B2,C being an adjusted version of
B2,R that accounts for the conditional correlation between Y1 and Y2. More
importantly,

avar(
√

nB2,R) − avar(
√

nB2,C) = 𝚺−1
X ⊗ 𝚺21𝚺−1

11 𝚺12 ≥ 0,

so the estimator B2,C from the constrained model is always at least as good
as the estimator B2,R from the reduced model and may be substantially better
depending on 𝚺12, the two estimators being asymptotically equivalent when
𝚺12 = 0.

1.8.3 Testing Containment Only

In some regressions, we may wish to test the hypothesis 𝚺() ⊆  of con-
tainment only. This hypothesis satisfies (1.37(i)), but not necessarily (1.37(ii)).
Under this hypothesis, we still can represent the basis 𝚪 for 𝚺() as 𝚪 = Hh,
but we no longer necessarily have HT Y ⫫ HT

0 Y ∣ X. As a consequence, the esti-
mator of h is determined as

ĥ = arg min
G

{log |GT SHT Y∣XG| + log |GT S−1
HT Y∣H0YG|},

where the second term of the objective function is now the residual covariance
matrix from the regression of HT Y on HT

0 Y, rather than the marginal covari-
ance matrix of HT Y. The remaining parameters and the likelihood ratio statistic
can be determined following the steps in the previous development.

1.9 Nonnormal Errors

Again consider model (1.1), but now relax the condition that the errors are
normally distributed. The structure of an envelope described in Definition
1.2 requires only 𝜷 and 𝚺; it does not require normality. This implies that
the coordinate form of the envelope model (1.20) is still applicable with non-
normal errors, although now the condition 𝚪T Y ⫫ 𝚪T

0 Y ∣ X is replaced with
cov(𝚪T Y,𝚪T

0 Y ∣ X) = 0. Nevertheless, the goal under model (1.20) remains the
estimation of 𝜷 = 𝚪𝜼 and 𝚺 = 𝚪𝛀𝚪T + 𝚪0𝛀0𝚪T

0 .
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Lacking knowledge of the distribution of the errors, we need to decide how
to estimate 𝜷 and𝚺. One natural route is to base estimation on the least squares
estimators B and SY|X by selecting an objective function to fit the mean and vari-
ance structures of model (1.20). There are likely many ways to proceed, but one
good way is to use the partially maximized log-likelihood L2(𝚺()) (1.24) to
fill this role for the purpose of estimating the envelope. It can be used straight-
forwardly since it is a function of only B and SY|X. The remaining parameters
are then estimated as described in Section 1.5. Since we are not assuming nor-
mality, these estimators no longer inherit optimality properties from general
likelihood theory, so a different approach is needed to study them.

Lemma 1.1 The sample matrices B, SY|X and SY are
√

n consistent estima-
tors of their population counterparts 𝜷 , 𝚺 = 𝚪𝛀𝚪T + 𝚪0𝛀0𝚪T

0 and 𝚺Y = 𝚺 +
𝚪𝜼𝚺X𝜼

T𝚪T .

Recall from (1.25) that ̂𝚺() = span{arg minG(log |GT SY|XG|+ log |GT
0 SYG0|)}.

It follows from this lemma that log |GT SY|XG| + log |GT
0 SYG0| converges in

probability to log |GT𝚺G| + log |GT
0 (𝚺 + 𝚪𝜼𝚺X𝜼

T𝚪T )G0|. This population
objective function is covered by Proposition 6.1, and consequently it follows
that

𝚺() = span{arg min
G

(log |GT𝚺G| + log |GT
0 𝚺YG0|)},

and thus that the normal-theory objective function recovers 𝚺() in the pop-
ulation without actually assuming normality.

Going further, assume that the errors have finite fourth moments and that
as n → ∞ the maximum diagonal element of P𝕏 converges to 0. Under these
conditions,√

n
(

vec(B) − vec(𝜷)
vech(SY|X) − vech(𝚺)

)
converges to a normal random vector with mean 0 and nonsingular covari-
ance matrix (Su and Cook 2012). It then follows from Shapiro (1986) that with
known u√

n
(

vec(𝜷) − vec(𝜷)
vech(𝚺̂) − vech(𝚺)

)
also converges to a normal random vector with mean 0 and nonsingular covari-
ance matrix. Consequently, using the normal likelihood for estimation under
nonnormality still produces asymptotically normal

√
n-consistent estimators.

Efficiency gains, as illustrated in Figure 1.3, can still accrue without nor-
mality, but now they are judged relative to the least squares estimators B and
SY|X rather than maximum likelihood estimators. However, the normal-theory
asymptotic variances given in Section 1.6 are no longer applicable. While
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expressions for the asymptotic variances can be derived, it will likely be
difficult to use them as the basis for estimated variances in practice. The
residual bootstrap (see Section 1.11 and Freedman 1981) offers a practically
useful alternative.

1.10 Selecting the Envelope Dimension, u

The dimension u is in effect a model-selection parameter, rather like the rank
of 𝜷 in reduced-rank regression (see Section 9.2.1), the power when transform-
ing the response in linear regression, the degree in polynomial regression, or
the number of components in a mixture regression. Our discussion so far has
treated u as known, but this will typically not be so in applications.

1.10.1 Selection Methods

In this section, we discuss selecting u by using sequential likelihood ratio test-
ing, an information criterion such as AIC or BIC, or cross-validation.

1.10.1.1 Likelihood Ratio Testing
As mentioned in Section 1.4, two envelope models with different values for u
are not necessarily nested, but an envelope model is always nested within the
standard model (1.1), which arises when u = r. The likelihood ratio for test-
ing an envelope model against the standard model can be cast as a test of the
hypothesis u = u0 versus the alternative u = r. The likelihood ratio statistic for
this hypothesis is Λ(u0) = 2(L̂r − L̂u0

), where L̂u0
is the maximized envelope

log-likelihood given in (1.27), and L̂r is the maximized log-likelihood under the
standard model, L̂r = −(nr∕2) log(2π) − nr∕2 − (n∕2) log |SY|X|, giving

Λ(u0) = n log |SY| + n log |𝚪̂T SY|X𝚪̂| + n log |𝚪̂T S−1
Y 𝚪̂| − n log |SY|X|.

(1.44)

Under the null hypothesis, this statistic is distributed asymptotically as a
chi-squared random variable with p(r − u0) degrees of freedom. Schott (2013)
obtained improved approximations for the asymptotic null distribution of
Λ(u0) by using a saddlepoint expansion and he demonstrated that his method
can outperform the chi-squared approximation in some settings. He also
demonstrated by simulation that the chi-squared approximation can produce
very large significance levels when the sample size is small. Due to its simplicity,
we will use the chi-squared approximation in illustrations.

The likelihood ratio test statistic Λ(u0) can be used sequentially to esti-
mate u: Starting with u0 = 0, test the hypothesis u = u0 against u = r at a
selected level 𝛼. If the hypothesis is rejected, increment u0 by 1 and test again.
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The estimate û of u is the first hypothesized value that is not rejected. We
indicate this estimator using the notation LRT(𝛼). When testing u = 0 versus
u = r, the envelope basis 𝚪 = 0 under the null hypothesis, the two terms in
Λ(0) involving 𝚪̂ do not appear in (1.44) and the test statistic reduces to

Λ(0) = n log
|SY||SY|X| ,

which is asymptotically distributed under the null hypothesis as a chi-square
random variable with pr degrees of freedom. This is the same as the usual like-
lihood ratio statistic (1.13) for testing 𝜷 = 0 in model (1.1).

1.10.1.2 Information Criteria
The envelope dimension can also be selected by using an information criterion:

û = arg min
u

{−2L̂u + h(n)Nu}, (1.45)

where Nu is the number of envelope parameters given in (1.21) and h(n) = log n
for BIC and h(n) = 2 for AIC. Theoretical results (Su and Cook 2013, Proposi-
tion 4) supported by simulations indicate that AIC will tend to select a model
that contains the true model and thus will tend to overestimate u. BIC will select
the correct u with probability tending to 1 as n → ∞ (Yang 2005), but it can be
slow to respond in small samples. LRT(𝛼) can perform well depending on the
sample size, but asymptotically it makes an error with rate 𝛼. What constitutes
a small or large sample in any particular application depends on other charac-
teristics of the regression, including the strength of the signal. It may be useful
to use all three methods in applications, giving a preference to BIC and LRT
if there is disagreement, or using the largest estimate of u in cases where it is
desirable to be conservative.

1.10.1.3 Cross-validation
m-Fold cross-validation is used to select the dimension of the envelope based
on prediction performance. For each u, the data are randomly partitioned into
m parts of approximately equal size and each part is used in turn for testing pre-
diction performance while the remaining m − 1 parts are used for fitting. The
dimension selected is the one that minimizes the average prediction errors. A
positive definite inner product matrix M is necessary to map the fitted response
vectors to ℝ1, so the cross-validation criterion is

CV(u) = n−1
m∑

j=1

nj∑
k=1

(Yjk − Ŷ(u)
jk )T M(Yjk − Ŷ(u)

jk ),

where j indexes the part, k indexes observations within part j, and Ŷ(u)
jk indicates

the fitted vector for a selected u. Then û = arg minuCV(u). For best results,
this procedure should be repeated for several random partitions of the data
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and the conclusions based on the overall average. Cross-validation will tend
to balance variance and bias in its selection of u and so may naturally lead to
choices that are different from those indicated by LRT(𝛼) or an information
criterion. We use the identity inner product M = Ir in illustrations, unless
indicated otherwise.

1.10.2 Inferring About rank(𝜷)

The dimension u of the envelope cannot be less than the rank, k = rank(𝜷) ≤
min(r, p), of the population coefficient matrix. For this reason, it can be useful
to have some knowledge of k before using the methods of Section 1.10.1 to
select u. Bura and Cook (2003) developed a method for estimating k based on
a series of chi-squared tests, similar to the LRT method for determining u as
discussed in Section 1.10.1.

Let 𝜑̂1 ≥ 𝜑̂2 ≥ · · · ≥ 𝜑̂min(p,r) denote the singular values of the standardized
coefficient matrix

Bstd = ((n − p − 1)∕n)B̃ = ((n − p − 1)∕n)S−1∕2
Y|X BS1∕2

X ,

where B̃ is as defined previously in (1.6). The statistic for the hypothesis k = k0
is Λ(k0) = n

∑min(p,r)
i=k0+1 𝜑̂2

i . Under the hypothesis k = k0, Bura and Cook showed
that Λ(k0) is distributed asymptotically as a chi-squared random variable with
(p − k0)(r − k0) degrees of freedom. This conclusion is based essentially on only
the requirement that B be asymptotically normal. The statistic Λ(k0) can be
used in a sequential manner to provide an estimator of k: beginning with k0 = 0,
test k = k0 at a preselected level 𝛼. If the test is rejected, increment k0 by 1 and
test again, terminating the first time the hypothesis is not rejected, in which
case the current value of k0 is taken as the estimator of k.

1.10.3 Asymptotic Considerations

It has been a common practice in applied statistics to perform postselection
inference, treating the selected model as if it had been known a priori. This
practice can be problematic because it neglects the model selection process
that can distort classical inference in the known-model context. Nevertheless,
finding a general solution is challenging because model selection is often a com-
plex process that defies characterization. In the context of this book, choosing
u is the model selection step, although there could also be selection involved
in the choice of the original multivariate model, prior to the introduction of
envelopes.

The main point of this section is that in some settings it may be appropriate to
treat û as if it had been selected a priori, provided that Pr(û ≠ u) is sufficiently
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small. This is achieved asymptotically if Pr(û = u) → 1 as n → ∞, as it does with
BIC. To state this result in detail, let 𝜷u and 𝜷 û denote the envelope estimators
of 𝜷 at the true value and estimated values of u, and for any fixed vector c ∈
ℝpr , let 𝜉n(u, c) =

√
ncT vec(𝜷u − 𝜷). Then we know from Proposition 1.1 that

𝜉n(u, c) is asymptotically normal. The essential idea for the following proposi-
tion, which characterizes the asymptotic distribution of 𝜷 û, was provided by
Zhang (2017).

Proposition 1.2 Assume envelope model (1.20) holds. Then for any 𝛿 ∈ ℝ and
any c ∈ ℝpr,|Pr(𝜉n(û, c) > 𝛿) − Pr(𝜉n(u, c) > 𝛿)| ≤ Pr(û ≠ u).

In addition, if the method of selecting u is consistent, Pr(û = u) → 1 as n → ∞,
then as n → ∞,|Pr(𝜉n(û, c) > 𝛿) − Pr(𝜉n(u, c) > 𝛿)| → 0.

Proof : The proof of this proposition hinges on the fact that the parameter space
for u is discrete.

Pr(𝜉n(û, c) > 𝛿) = Pr(𝜉n(û, c) > 𝛿, û = u) + Pr(𝜉n(û, c) > 𝛿, û ≠ u)
= Pr(𝜉n(u, c) > 𝛿, û = u) + Pr(𝜉n(û, c) > 𝛿, û ≠ u)
≤ Pr(𝜉n(u, c) > 𝛿) + Pr(û ≠ u).

So

Pr(𝜉n(û, c) > 𝛿) − Pr(𝜉n(u, c) > 𝛿) ≤ Pr(û ≠ u).

Similarly,

Pr(𝜉n(û, c) > 𝛿) = 1 − Pr(𝜉n(û, c) ≤ 𝛿)
= 1 − Pr(𝜉n(û, c) ≤ 𝛿, û = u) − Pr(𝜉n(û, c) ≤ 𝛿, û ≠ u)
≥ 1 − Pr(𝜉n(u, c) ≤ 𝛿) − Pr(û ≠ u)
= Pr(𝜉n(u, c) > 𝛿) − Pr(û ≠ u).

So

Pr(𝜉n(u, c) > 𝛿) − Pr(𝜉n(û, c) > 𝛿) ≤ Pr(û ≠ u).

Consequently,|Pr(𝜉n(û, c) > 𝛿) − Pr(𝜉n(u, c) > 𝛿)| ≤ Pr(û ≠ u) → 0,

which is the desired conclusion. The Cramer–Wold device can be used
to extend this to the asymptotic distributions of

√
n vec(𝜷 û − 𝜷) and√

n vec(𝜷u − 𝜷). ◽
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To illustrate the implications of Proposition 1.2, the parameter estimates 𝜶̂,
𝜷 , and 𝚺̂ from the fit of the cattle data with u = 3 were taken as population
values. A new set of data was then generated as

Yi = 𝜶̂ + 𝜷Xi + 𝚺̂1∕2𝜺i, i = 1,… , n∗,

where n∗ denotes simulation sample size, and the errors 𝜺i are independent
copies of a N10(0, I) random vector. Because the predictors are fixed, the sim-
ulation sample size n∗ = r × n was increased in multiples r of the sample size
n = 60 for the cattle data, repeating the 60 values of X for each multiple. The
BIC estimates of u were then computed for 100 replicates of this scenario for
each of the simulation sample sizes n∗ = 2kn, k = 0, 1,… , 6. The percentage of
replicates in which BIC selected the true value u = 3 is shown in Figure 1.8 for
each n∗.

The simulation results indicate that BIC nearly always selects u = 3 at
n∗ = 16n and thereafter, with Pr(û ≠ u) estimated to be 0.01 at n∗ = 64n. For
regressions where the sample size may not be large enough to instill confidence
that Pr(û ≠ u) is sufficiently small, additional intuition and bootstrap methods
for gaining data-analytic guidance are discussed later in this chapter. An
alternative weighted estimator that does not require choosing a value for u is
presented in Section 1.11.4.

Proposition 1.2 may have implications in other model-selection problems
as well. Consider, for instance, the common practice of using the Box–Cox
method to estimate a power transformation Y (𝜆) of a univariate response Y to
induce a linear regression model. Can we reasonably treat the estimated power
𝜆̂ as being nonstochastic in subsequent inference statements? Or are we obliged
to take the variability in 𝜆̂ into account? This issue was the focus of considerable
discussion in the early 1980s (e.g. Bickel and Doksum 1981; Box and Cox 1982;
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Figure 1.8 Cattle data: simulation
results based on the fit of the cattle
data with u = 3. The horizontal axis
denotes the simulation sample size
n∗ = 2kn, where n = 60 is the
sample size for the original data.



�

� �

�

1.10 Selecting the Envelope Dimension, u 41

Hinkley and Runger 1984, with discussion). If the transformation parameter 𝜆
is restricted to a small finite set of plausible values and Pr(𝜆̂ ≠ 𝜆) is sufficiently
small, then it may well be reasonable to treat 𝜆̂ as nonstochastic.

1.10.4 Overestimation Versus Underestimation of u

For clarity in this section, we use u to denote the true dimension of the envelope,
and let uf denote the value used in fitting. In this discussion, we treat uf as if it
had been selected a priori. Overestimation occurs then uf > u, while underes-
timation occurs when uf < u. Overestimation is perhaps the less serious error.
Fitting with uf > u gives a

√
n-consistent estimator of 𝜷 , although the estima-

tor will be more variable than that with uf = u. For instance, fitting with uf = r
reduces the regression to the standard model (1.1). Underestimation produces
inconsistent estimators, and for this reason, it may be the more serious error.

We saw in Section 1.5.3 that the objective function serves to control a mea-
sure of bias. To gain intuition into the impact of underestimation of u, consider
the population version of the representation of the objective function given in
(1.29) allowing for fitting when uf ≠ u. Let

(G̃, G̃0) = arg min
uf

{
log |𝚺GT Y|X| + log |𝚺GT

0 Y|X|
+ log|Ir−uf

+ 𝜷̃GT
0 Y|X𝜷̃T

GT
0 Y|X|} ,

where the minimum is taken over the set uf
of all orthogonal r × r matrices

(G,G0) with G ∈ ℝr×uf and 𝜷̃GT
0 Y|X = (GT

0 𝚺G0)−1∕2GT
0 𝜷𝚺

1∕2
X is the population

coefficient matrix for the regression of the standardized response (GT
0 𝚺G0)−1∕2

GT
0 Y on the standardized predictor𝚺−1∕2

X X. The population version of the enve-
lope estimator at G is PG𝜷 , so the bias from underestimation is QG𝜷 = G0GT

0 𝜷 .
Thus, 𝜷̃GT

0 Y|X is a standardized version of the coordinates GT
0 𝜷 of this bias.

To facilitate exposition, we consider the case p = 1 and for clarity use 𝜎2
X

instead of 𝚺X. Then

B(G0) ∶= 𝜷̃
T
GT

0 Y|X𝜷̃GT
0 Y|X = 𝜷T G0(GT

0 𝚺G0)−1GT
0 𝜷𝜎

2
X

is a measure of the squared length of the bias at G0 for the standardized
regression,

log |||Ir−uf
+ 𝜷̃GT

0 Y|X 𝜷̃T
GT

0 Y|X||| = log{1 + B(G0)}

and
(G̃, G̃0) = arg min

uf

{log |𝚺GT Y|X| + log |𝚺GT
0 Y|X| + log{1 + B(G0)}}.

(1.46)

Our goal now is to provide a bound on the bias B(G̃0) that results from the
minimization in (1.46). Assume for ease of exposition that the eigenvalues of



�

� �

�

42 1 Response Envelopes

𝚺 are distinct and let m denote the collection of all subsets of m eigenvectors
of 𝚺. Then the columns of any G ∈ uf

form a subset of uf eigenvectors of 𝚺,
and G0 is the complementary subset of r − uf eigenvectors. A bound on B(G̃0)
can now be constructed by minimizing (1.46) over uf

instead of uf
. We know

from Lemma A.14 that the sum log |𝚺GT Y|X| + log |𝚺GT
0 Y|X| is minimized by any

G ∈ uf
and that its minimum value is log |𝚺|. Let Ġ0 = arg minG0∈r−uf

B(G0).
Then B(G̃0) ≤ B(Ġ0) since, by construction,

log |𝚺G̃T Y|X| + log |𝚺G̃T
0 Y|X| + log{1 + B(G̃0)}≤ log |𝚺| + log{1 + B(Ġ0)},

which implies that

0 ≤ log |𝚺G̃T Y|X| + log |𝚺G̃T
0 Y|X| − log |𝚺|

≤ log{1 + B(Ġ0)} − log{1 + B(G̃0)}.

We can gain insights about the potential bias B(G̃0) by studying its upper bound
B(Ġ0). Let (Ġ, Ġ0) be an orthogonal matrix. Since Ġ ∈ uf

reduces 𝚺, we have
the decomposition 𝚺 = Ġ𝚲ĠT + Ġ0𝚲0ĠT

0 , where the 𝚲’s are diagonal matrices
of eigenvalues, and thus

B(Ġ0) = 𝜷T Ġ0𝚲−1
0 ĠT

0 𝜷𝜎
2
X . (1.47)

From this representation, we see that the bias bound depends on (i) the length
of 𝜷 , (ii) the angles between 𝜷 and the eigenvectors of 𝚺 that comprise the
columns of Ġ0, and (iii) the associated eigenvalues in 𝚲0. Since Ġ0 minimizes
the bias, we expect that 𝜷 will be orthogonal to multiple columns of Ġ0 when
underestimating the dimension by one or two. Large eigenvalues 𝚲0 can also
result in a small bias. As discussed in Section 1.4.2, envelopes result in sub-
stantial variance reduction when ||𝛀0|| ≫ ||𝛀||. Consequently, we expect the
bias due to underestimation to be small when the corresponding analysis shows
substantial variance reduction. These comments are illustrated in Figure 1.9,
which was constructed like the stylized illustration of Figure 1.3, except that
 = span(𝜷) no longer aligns with the smallest eigenvector of 𝚺 and thus the
envelope 𝚺() = ℝ2. The figure illustrates the bias that can result when under-
estimating u with uf = 1. In Figure 1.9a, the bias is small because the angle
between and v2 is small and𝚲0, the eigenvalue associated with v1, is large. The
bias is larger in Figure 1.9b because we increased the length of 𝜷 and the angle
between  and v2. In this case, the dimension selection methods discussed in
Section 1.10.1 will likely indicate correctly that u = 2, depending on the sample
size, so underestimation of u may not be a worrisome issue.

Another perhaps more relevant gauge of bias is to compare B(Ġ) to the
squared length of 𝜷̃ = 𝚺−1∕2𝜷𝜎X , which is 𝜷 in the standardized scale akin to
𝜷̃GT

0 Y|X :

B(Ġ)||𝜷̃||2 =
𝜷T Ġ0𝚲−1

0 ĠT
0 𝜷𝜎

2
X

𝜷T𝚺−1𝜷𝜎2
X

=
𝜷̃

T Ġ0ĠT
0 𝜷̃

𝜷̃
T
𝜷̃

.
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Figure 1.9 Illustrations of
the potential bias that can
result from
underestimating u. The
context is the same as that
for Figure 1.3, v1 and v2
denote the eigenvectors of
𝚺 and  = span(𝜷). (a)
Small bias; (b) large bias.
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In this form, we see that the bias depends only on the angles between the stan-
dardized coefficients 𝜷̃ and the eigenvectors in Ġ0.

1.10.5 Cattle Weights: Influence of u

A first step in the analysis of the cattle data in Section 1.3.4 was to determine the
dimension u = dim(𝚺()) of the envelope. Using the methods of this section,
LRT(0.05) gave u = 1, which is the value used in the previous illustrations.
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On the other hand, AIC and BIC gave u = 3, and fivefold cross-validation gave
u = 5. In many applications, these methods agree on the value of u, but in some
cases they disagree, as in this illustration. We tend to give preference to BIC and
LRT since AIC has a propensity to overestimate u. Cross-validation is in effect
a different criterion, and it is possible that u = 5 is best for prediction.

Nevertheless, when the selection methods disagree, we often find that the
essential results are the same across the indicated values of u. To reinforce this
point, Figure 1.10 shows the fitted profiles from envelope models with u = 1
and u = 5. These fitted profiles are very similar and lead to the same infer-
ence about their key features: the first detected differential treatment effects
are around week 10 and persist thereafter.

Plots of the coordinates of Q𝚪̂Y versus the predictors, which show the esti-
mated X-invariant part of Y, can also be informative diagnostics. In these plots,
Q𝚪̂Y should appear independent of the predictors if the model and choice of
u are reasonable. Systematic variation with X may be an indication of model
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Figure 1.10 Cattle data: fitted profile plots from envelope models with (a) u = 1 and
(b) u = 5.
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Figure 1.11 Cattle data: mean of immaterial variation 𝚪T
0 Y for each treatment and time with

u = 3.

failure. For instance, shown in Figure 1.11 is a plot of the 10 coordinates in the
projection Q𝚪̂Ȳj of the average response vector Ȳj by treatment j = 1, 2. The two
curves, one for each treatment, are essentially identical and show no treatment
clear effects. The variation in the curves themselves reflects the variation in Y
that is common to the two treatments.

1.11 Bootstrap and Uncertainty in the Envelope
Dimension

In the previous section, we discussed selection methods, when it might be rea-
sonable to proceed as if û = u, overestimation versus underestimation, and the
possibility that key aspects of inference are unaffected over a reasonable set of
values for u. In this section, we turn to the bootstrap for standard errors and
for assistance in addressing the uncertainty in û.

1.11.1 Bootstrap for Envelope Models

In this section, we describe how the residual bootstrap can be used to estimate
the variance of 𝜷 assuming that the envelope dimension u is known, perhaps
relying on Proposition 1.2 to justify setting u = û. For emphasis, the envelope
estimator at the true value is denoted 𝜷u throughout our discussion of the
bootstrap.

The variance of 𝜷u can be obtained by using the asymptotic results of
Section 1.6 or by using the residual bootstrap. Recall from the setup of
Section 1.1 that ri denotes the ith vector of residuals from the ordinary least
squares fit of model (1.1). Let R ∈ ℝn×r denote the matrix with residual vectors
rT

i as its rows, let R∗ denote a resampled residual matrix constructed by
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sampling with replacement n rows of R, and let 𝕐 ∗ = 𝟏n𝜶̂
T +𝕏𝜷

T
u + R∗ denote

the n × r matrix of bootstrapped responses. Then a single bootstrap envelope
estimator 𝜷

∗
u of 𝜷 is found from the envelope fit of model (1.20) to the data

(𝕐 ∗,𝕏). Repeating this operation B times gives the bootstrap estimators 𝜷
∗
u,k ,

k = 1,… ,B. Then the sample variance of the vec(𝜷
∗
u,k)’s provides a bootstrap

estimator of var{vec(𝜷u)}. The justification of this bootstrap follows from
Andrews (2002, pp. 122–124 and Theorem 2) and from Eck (2017).

1.11.2 Wheat Protein: Bootstrap and Asymptotic Standard Errors,
u Fixed

To illustrate application of the bootstrap, we consider the wheat protein data
discussed in Section 1.3.3, but now with responses measured at six wavelengths
instead of two. The dimension of the envelope model was estimated to be 1 by
BIC, and for the purpose of this bootstrap it is assumed that u = 1. Two hun-
dred (B) bootstrap samples were used throughout. The first part of Table 1.2
shows the estimated coefficients under the standard model (1.1) along with
good agreement between their bootstrap and asymptotic standard errors. The
second part of Table 1.2 shows the estimated envelope coefficients and the cor-
responding bootstrap and asymptotic standard errors. There is again a good
agreement between the standard errors, which are much smaller than those for
the standard model. The advantages of the envelope model in this fit are indi-
cated roughly by the sizes of 𝛀̂ = 7.88 and ||𝛀̂0|| = 6517. Thus, the envelope
model has an apparent advantage because the variation 𝛀̂0 in the estimated
X-invariant part of Y is considerably larger than the variation 𝛀̂.

Table 1.2 Wheat protein data: bootstrap and asymptotic standard errors (SEs)
of the six elements in 𝜷 under the standard (1.1) and envelope models (1.20)
for the wheat protein data with six responses.

1. Standard model (1.1)

B 3.27 8.03 7.52 −2.06 3.22 0.65

Bootstrap SE 9.87 8.12 8.70 9.65 13.90 5.48
SE 9.78 8.12 8.70 9.49 13.65 5.39

2. Envelope model with u = 1

𝛽u −1.06 4.47 3.68 −5.97 0.69 −1.60

Bootstrap SE 0.35 0.48 0.39 0.64 0.20 0.69
Asymptotic SE (1.33) 0.35 0.43 0.35 0.59 0.21 0.86
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1.11.3 Cattle Weights: Bootstrapping u

In this section, we use the cattle data with BIC to illustrate how the bootstrap
and other sampling scenarios might be used to gain data-analytic guidance
on the choice of u. Part 1 of Table 1.3 gives the BIC bootstrap distribution
of u based on 100 residual bootstrap datasets constructed as described in
Section 1.11.1. We see from Part 1 of Table 1.3 that most of the mass is
concentrated between u = 1 and u = 4. The question is how we might use
these results to help with the choice of u.

Let 𝜶̂u, 𝜷u, and 𝚺̂u denote the estimates of 𝜶, 𝜷 , and 𝚺 from the fit of the
envelope model with the indicated value of u and consider generating reference
data as

Ŷ(u)
i = 𝜶̂u + 𝜷uXi + 𝚺̂1∕2

u 𝜺i, i = 1,… , 60, (1.48)

where errors 𝜺i are independent copies of a N10(0, I) random vector. Part 2 of
Table 1.3 shows the empirical distribution of the BIC estimate of u from 100
replications over the set of errors 𝜺i, i = 1,… , 60, with the value of u used in
the fit shown in the first column. The distributions for u = 3, 5, 7 are similar
and also similar to the distribution from the residual bootstrap in Part 1, while
the distribution for u = 1 is notably different. One possible explanation for this

Table 1.3 Cattle data: distributions of û from BIC based on various sampling scenarios.

û 0 1 2 3 4 5 6 Mean sd

1. Residual bootstrap

BIC 0 0.11 0.25 0.33 0.22 0.07 0.02 2.95 1.17

2. Normal errors
u = 1 0 0.65 0.28 0.06 0.01 0 0 1.43 0.66
u = 3 0 0.11 0.22 0.43 0.20 0.03 0.01 2.85 1.02
u = 5 0 0.14 0.28 0.36 0.19 0.02 0.01 2.70 1.05
u = 7 0 0.13 0.21 0.36 0.25 0.03 0.02 2.90 1.13

3. Residual bootstrap from normal errors

u = 1 0 0.43 0.27 0.22 0.04 0.04 0 1.99 1.09
u = 3 0 0.13 0.25 0.48 0.08 0.05 0.01 2.70 1.02
u = 5 0 0.16 0.23 0.33 0.15 0.10 0.03 2.89 1.29
u = 7 0 0.11 0.23 0.40 0.19 0.07 0 2.81 1.06

(1) 100 residual bootstrap datasets, (2) fit with the indicated value of u plus normal errors, (3)
residual bootstrap from one dataset generated from a fit with the indicated value of u plus normal
errors.
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is as follows. If the true u = 3, then a population fit with u > 3 must give a
subspace that contains the envelope. Hence, we are again led back to the model
with u = 3. In other words, the results u = 3, 5, 7 are roughly as expected if in
fact the true u = 3. Part 3 of Table 1.3 shows the BIC bootstrap distribution
of û from one dataset generated from (1.48) based on 100 bootstrap samples.
These distributions are similar to corresponding distributions shown in Part 2,
so it again seems plausible that the true u = 3. These results give data-analytic
support to the original BIC estimate û = 3. The estimate û = 5 might be used
if we wanted to be conservative.

1.11.4 Bootstrap Smoothing

In this section, we expand our notation a bit and let 𝜷 j denote the envelope esti-
mator computed by assuming u = j. The envelope estimator at the true value
is still denoted 𝜷u. In the previous sections, we discussed how data-analytic
methods might be used to help select the envelope dimension. In this section,
we discussed one way to avoid choosing a particular dimension and instead use
a weighted average of the estimators 𝜷 j, j = 1,… , r. By constraining j > 0, we
are considering only regressions in which 𝜷 ≠ 0, which will be reasonable in
numerous applications. Extensions of the following to allow j = 0 are straight-
forward.

Let bj = −2L̂j + Nj log(n) denote the BIC value (1.45) for the envelope model
of dimension j, where L̂j is the value of the maximized log-likelihood (1.27), and
Nj is the number of parameters (1.21), both for the envelope model of dimen-
sion j. The weighted estimator we consider, which was proposed by Eck and
Cook (2017), is of the form

𝜷𝑤 =
r∑

j=1
𝑤i𝜷 j, where 𝑤j =

e−bj∑r
i=1 e−bi

. (1.49)

Estimators of this form have been advocated in various contexts (Efron 2014;
Nguefack-Tsague 2014; Hjort and Claeskens 2003; Burnham and Anderson
2004; Buckland et al. 1997). The estimator (1.49) may be advantageous because
it bypasses the need to select a specific dimension and automatically incor-
porates model uncertainty in inference via BIC. It can be more variable than
a specific estimator, however. For instance, if j ≥ u, then 𝜷 j corresponds to a
true model, and the variability of 𝜷 j can be noticeably less than that of 𝜷𝑤,
depending on the sample size. The estimator 𝜷𝑤 is a

√
n-consistent estimator of

𝜷 , but analytic expressions of its asymptotic variance are unknown. However,
the bootstrap can still be used to assess its variance.

Following the construction of 𝜷𝑤, generate n bootstrap samples 𝜷
∗
𝑤,k ,

k = 1,… ,B, as described in Section 1.11.1, except replace 𝜷u with 𝜷𝑤 so the
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bootstrap responses are generated as 𝕐 ∗ = 𝟏n𝜶̂
T +𝕏𝜷

T
𝑤 + R∗. The following

proposition (Eck and Cook 2017) shows that the asymptotic distribution of 𝜷
∗
𝑤

is the same as the asymptotic distribution of 𝜷
∗
u, the bootstrapped envelope

estimator at the true dimension. In particular, the sample variance computed
from the 𝜷

∗
𝑤,k ’s provides a

√
n-consistent estimator of the asymptotic variance

of the envelope estimator 𝜷u.

Proposition 1.3 Assume envelope model (1.20) for some u = 1,… , r, and that
SX converges to 𝚺X > 0. Then as n → ∞,√

n
{

vec(𝜷
∗
𝑤) − vec(𝜷𝑤)

}
=
√

n
{

vec(𝜷
∗
u) − vec(𝜷u)

}
+ Op

{
n(1∕2−p)} + 2(u − 1)Op(1)

√
ne−n|Op(1)|. (1.50)

To gain some intuition about the orders in (1.50) write√
n{vec(𝜷

∗
𝑤) − vec(𝜷𝑤)} =

√
n

u−1∑
j=1

{𝑤∗
j vec(𝜷

∗
j ) −𝑤jvec(𝜷 j)}

+
√

n{𝑤∗
u vec(𝜷

∗
u) −𝑤u vec(𝜷u)}

+
√

n
r∑

j=u+1
{𝑤∗

j vec(𝜷
∗
j ) −𝑤j vec(𝜷 j)}.

Eck and Cook (2017) show that for j ≠ u,
√

n{𝑤∗
j vec(𝜷

∗
j ) −𝑤j vec(𝜷 j)} → 0,

so the first and third terms on the right-hand side vanish as n → 0. The term
Op{n(1∕2−p)} in (1.50) corresponds to the rate at which

√
n𝑤j and

√
n𝑤∗

j
converge to 0 for j = u + 1,… , r. This rate is a cost of overestimation of the
envelope. It decreases quite fast, particularly when p is not small, because
models with j > u are true and thus have no systematic bias due to choosing
the wrong dimension. The 2(u − 1)

√
ne−n∣Op(1)∣ term corresponds to the rate at

which
√

n𝑤j and
√

n𝑤∗
j vanish for j = 1,… ,u − 1. This rate arises from under

estimating the envelope space and it is affected by bias arising from choosing
the wrong dimension. Because we consider only regressions in which u ≥ 1,
this term is 0 when u = 1. When u = 1, underestimation is not possible in our
context and thus the term vanishes.

1.11.5 Cattle Data: Bootstrap Smoothing

Returning to the cattle data, Table 1.4 gives ratios of the standard errors of
the elements of B to the bootstrap standard errors of the elements of 𝜷𝑤 (sec-
ond column) and to the bootstrap standard errors of the elements of 𝜷 j from
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Table 1.4 Cattle data: ratios of standard errors of the elements
of B to the bootstrap standard errors from the weighted
envelope fit and the envelope fits for u = 1, 2, 3, 4.

Envelope dimension

Week Weighted 1 2 3 4

2 1.48 2.38 1.83 1.34 1.19
4 1.61 3.77 1.99 1.44 1.22
6 1.81 3.30 2.48 1.57 1.29
8 2.01 4.07 3.30 1.58 1.31
10 2.09 5.30 3.80 1.59 1.34
12 1.88 3.70 2.59 1.56 1.31
14 2.02 3.94 3.19 1.59 1.33
16 2.07 4.01 3.15 1.58 1.3
18 2.14 5.08 3.38 1.51 1.28
19 1.96 5.26 2.69 1.48 1.23

the envelope fits with j = 1, 2, 3, 4 (columns 3–6). The table illustrates that the
weighted estimator can be usefully less variable than the standard estimator.
It can also be seen from the table that the standard errors for the weighted
estimator all lie between those for envelope estimators with u = 2 and u = 3.


