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The Linear Model

The application of econometrics requires more than mastering a collection of tricks. It also
requires insight, intuition, and common sense.

(Jan R. Magnus, 2017, p. 31)

The natural starting point for learning about statistical data analysis is with a sample of independent
and identically distributed (hereafter i.i.d.) data, say Y = (Y1,… ,Yn), as was done in book III. The
linear regression model relaxes both the identical and independent assumptions by (i) allowing the
means of the Yi to depend, in a linear way, on a set of other variables, (ii) allowing for the Yi to have
different variances, and (iii) allowing for correlation between the Yi.

The linear regression model is not only of fundamental importance in a large variety of quantitative
disciplines, but is also the basis of a large number of more complex models, such as those arising
in panel data studies, time-series analysis, and generalized linear models (GLIM), the latter briefly
introduced in Section 1.6. Numerous, more advanced data analysis techniques (often referred to now
as algorithms) also have their roots in regression, such as the least absolute shrinkage and selection
operator (LASSO), the elastic net, and least angle regression (LARS). Such methods are often now
showcased under the heading of machine learning.

1.1 Regression, Correlation, and Causality

It is uncomfortably true, although rarely admitted in statistics texts, that many important areas
of science are stubbornly impervious to experimental designs based on randomisation of treat-
ments to experimental units. Historically, the response to this embarrassing problem has been
to either ignore it or to banish the very notion of causality from the language and to claim that
the shadows dancing on the screen are all that exists.

Ignoring the problem doesn’t make it go away and defining a problem out of existence doesn’t
make it so. We need to know what we can safely infer about causes from their observational
shadows, what we can’t infer, and the degree of ambiguity that remains.

(Bill Shipley, 2016, p. 1)1

1 The metaphor to dancing shadows goes back a while, at least to Plato’s Republic and the Allegory of the Cave. One can see
it today in shadow theater, popular in Southeast Asia; see, e.g., Pigliucci and Kaplan (2006, p. 2).
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4 Linear Models and Time-Series Analysis

The univariate linear regression model relates the scalar random variable Y to k other (possibly
random) variables, or regressors, x1,… , xk in a linear fashion,

Y = 𝛽1x1 + 𝛽2x2 + · · · + 𝛽kxk + 𝜖, (1.1)

where, typically, 𝜖 ∼ N(0, 𝜎2). Values 𝛽1,… , 𝛽k and 𝜎2 are unknown, constant parameters to be esti-
mated from the data. A more useful notation that also emphasizes that the means of the Yi are not
constant is

Yi = 𝛽1xi,1 + 𝛽2xi,2 + · · · + 𝛽kxi,k + 𝜖i, i = 1, 2,… , n, (1.2)

where now a double subscript on the regressors is necessary. The 𝜖i represent the difference between
the values of Yi and the model used to represent them,

∑k
j=1 𝛽jxi,j, and so are referred to as the error

terms. It is important to emphasize that the error terms are i.i.d., but the Yi are not. However, if we
take k = 1 and xi,1 ≡ 1, then (1.2) reduces to Yi = 𝛽1 + 𝜖i, which is indeed just the i.i.d. model with
Yi

i.i.d.∼ N(𝛽1, 𝜎
2). In fact, it is usually the case that xi,1 ≡ 1 for any k ⩾ 1, in which case the model is said

to include a constant or have an intercept term.
We refer to Y as the dependent (random) variable. In other contexts, Y is also called the endoge-

nous variable, while the k regressors can also be referred to as the explanatory, exogenous, or inde-
pendent variables, although the latter term should not be taken to imply that the regressors, when
viewed as random variables, are necessarily independent from one another.

The linear structure of (1.1) is one way of building a relationship between the Yi and a set of variables
that “influence” or “explain” them. The usefulness of establishing such a relationship or conditional
model for the Yi can be seen in a simple example: Assume a demographer is interested in the income of
people living and employed in Hamburg. A random sample of n individuals could be obtained using
public records or a phone book, and (rather unrealistically) their incomes Yi, i = 1,… , n, elicited.
Assuming that income is approximately normally distributed, an unconditional model for income
could be postulated as N(𝜇u, 𝜎

2
u), where the subscript u denotes the unconditional model and the

usual estimators for the mean and variance of a normal sample could be used.
(We emphasize that this example is just an excuse to discuss some concepts. While actual incomes

for certain populations can be “reasonably” approximated as Gaussian, they are, of course, not: They
are strictly positive, will thus have an extended right tail, and this tail might be heavy, in the sense of
being Pareto—this naming being no coincidence, as Vilfredo Pareto worked on modeling incomes,
and is also the source of what is now referred to in micro-economics as Pareto optimality. An alter-
native type of linear model, referred to as GLIM, that uses a non-Gaussian distribution instead of the
normal, is briefly discussed below in Section 1.6. Furthermore, interest might not center on model-
ing the mean income—which is what regression does—but rather the median, or the lower or upper
quantiles. This leads to quantile regression, also briefly discussed in Section 1.6.)

A potentially much more precise description of income can be obtained by taking certain factors
into consideration that are highly related to income, such as age, level of education, number of years
of experience, gender, whether he or she works part or full time, etc. Before continuing this simple
example, it is imperative to discuss the three Cs: correlation, causality, and control.

Observe that (simplistically here, for demonstration) age and education might be positively cor-
related, simply because, as the years go by, people have opportunities to further their schooling and
training. As such, if one were to claim that income tends to increase as a function of age, then one can-
not conclude this arises out of “seniority” at work, but rather possibly because some of the older people
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The Linear Model 5

have received more schooling. Another way of saying this is, while income and age are positively
correlated, an increase in age is not necessarily causal for income; age and income may be spuriously
correlated, meaning that their correlation is driven by other factors, such as education, which might
indeed be causal for income. Likewise, if one were to claim that income tends to increase with educa-
tional levels, then one cannot claim this is due to education per se, but rather due simply to seniority
at the workplace, possibly despite their enhanced education. Thus, it is important to include both of
these variables in the regression.

In the former case, if a positive relationship is found between income and age with education also in
the regression, then one can conclude a seniority effect. In the literature, one might say “Age appears
to be a significant predictor of income, and this being concluded after having also controlled for
education.” Examples of controlling for the relevant factors when assessing causality are ubiquitous
in empirical studies of all kinds, and are essential for reliable inference. As one example, in the field
of “economics and religion” (which is now a fully established area in economics; see, e.g., McCleary,
2011), in the abstract of one of the highly influential papers in the field, Gruber (2005) states “Re-
ligion plays an important role in the lives of many Americans, but there is relatively little study by
economists of the implications of religiosity for economic outcomes. This likely reflects the enormous
difficulty inherent in separating the causal effects of religiosity from other factors that are correlated
with outcomes.” The paper is filled with the expression “having controlled for”.

A famous example, in a famous paper, is Leamer (1983, Sec. V), showing how conclusions from a
study of the factors influencing the murder rate are highly dependent on which set of variables are
included in the regression. The notion of controlling for the right variables is often the vehicle for
critiquing other studies in an attempt to correct potentially wrong conclusions. For example, Farkas
and Vicknair (1996, p. 557) state “[Cancio et al.] claim that discrimination, measured as a residual
from an earnings attainment regression, increased after 1976. Their claim depends crucially on which
variables are controlled and which variables are omitted from the regression. We believe that the
authors have omitted the key control variable—cognitive skill.”

The concept of causality is fundamental in econometrics and other social sciences, and we have not
even scratched the surface. The different ways it is addressed in popular econometrics textbooks is
discussed in Chen and Pearl (2013), and debated in Swamy et al. (2015), Raunig (2017), and Swamy
et al. (2017). These serve to indicate that the theoretical framework for understanding causality and its
interface to statistical inference is still developing. The importance of causality for scientific inquiry
cannot be overstated, and continues to grow in importance in light of artificial intelligence. As a sim-
ple example, humans understand that weather is (global warming aside) exogenous, and carrying an
umbrella does not cause rain. How should a computer know this? Starting points for further reading
include Pearl (2009), Shipley (2016), and the references therein.

Our development of the linear model in this chapter serves two purposes: First, it is the required the-
oretical statistical framework for understanding ANOVA models, as introduced in Chapters 2 and 3.
As ANOVA involves designed experiments and randomization, as opposed to observational studies
in the social sciences, we can avoid the delicate issues associated with assessing causality. Second, the
linear model serves as the underlying structure of autoregressive time-series models as developed in
Part II, and our emphasis is on statistical forecasting, as opposed to the development of structural
economic models that explicitly need to address causality.

We now continue with our very simple illustration, just to introduce some terminology. Let xi,2
denote the age of the ith person. A conditional model with a constant and age as a regressor is given
by Yi = 𝛽1 + 𝛽2xi,2 + 𝜖i, where 𝜖i

i.i.d.∼ N(0, 𝜎2). The intercept is measured by 𝛽1 and the slope of income
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Figure 1.1 Scatterplot of age versus income overlaid with fitted regression curves.

is measured by 𝛽2. Because age is expected to explain a considerable part of variability in income, we
expect 𝜎2 to be significantly less than 𝜎2

u. A useful way of visualizing the model is with a scatterplot of
xi,2 and yi. Figure 1.1 shows such a graph based on a fictitious set of data for 200 individuals between the
ages of 16 and 60 and their monthly net income in euros. It is quite clear from the scatterplot that age
and income are positively correlated. If age is neglected, then the i.i.d. normal model for income results
in �̂�u = 1,797 euros and �̂�u = 1,320 euros. Using the techniques discussed below, the regression model
gives estimates 𝛽1 = −1,465, 𝛽2 = 85.4, and �̂� = 755, the latter being about 43% smaller than �̂�u. The
model implies that, conditional on the age x, the income Y is modeled as N(−1,465 + 85.4x, 7552). This
is valid only for 16 ⩽ x ⩽ 60; because of the negative intercept, small values of age would erroneously
imply a negative income. The fitted model y = 𝛽1 + 𝛽2x is overlaid in the figure as a solid line.

Notice in Figure 1.1 that the linear approximation underestimates income for both low and high
age groups, i.e., income does not seem perfectly linear in age, but rather somewhat quadratic. To
accommodate this, we can add another regressor, xi,3 = x2

i,2, into the model, i.e., Yi = 𝛽1 + 𝛽2xi,2 +

𝛽3xi,3 + 𝜖i, where 𝜖i
i.i.d.∼ N(0, 𝜎2

q) and 𝜎2
q denotes the conditional variance based on the quadratic model.

It is important to realize that the model is still linear (in the constant, age, and age squared). The fitted
model turns out to be Yi = 190 − 12.5xi,2 + 1.29xi,3, with �̂�q = 733, which is about 3% smaller than �̂�.
The fitted curve is shown in Figure 1.1 as a dashed line.

One caveat still remains with the model for income based on age: The variance of income appears
to increase with age. This is a typical finding with income data and agrees with economic theory. It
implies that both the mean and the variance of income are functions of age. In general, when the
variance of the regression error term is not constant, it is said to be heteroskedastic, as opposed
to homoskedastic. The generalized least squares extension of the linear regression model discussed
below can be used to address this issue when the structure of the heteroskedasticity as a function of
the X matrix is known.

In certain applications, the ordering of the dependent variable and the regressors is important
because they are observed in time, usually equally spaced. Because of this, the notation Yt will be
used, t = 1,… ,T . Thus, (1.2) becomes

Yt = 𝛽1xt,1 + 𝛽2xt,2 + · · · + 𝛽kxt,k + 𝜖t, t = 1, 2,… ,T ,
where xt,i indicates the tth observation of the ith explanatory variable, i = 1,… , k, and 𝜖t is the tth
error term. In standard matrix notation, the model can be compactly expressed as

Y = X𝜷 + 𝝐, (1.3)
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where [X]t,i = xt,i, i.e., with xt = (xt,1,… , xt,k)′,

X =
⎡⎢⎢⎣

x′
1
⋮

x′
T

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣

x1,1 x1,2 · · · x1,k
x2,1 x2,2 · · · x2,k
⋮ ⋮ ⋮
xT ,1 xT ,2 xT ,k

⎤⎥⎥⎥⎦ , 𝝐 ∼ N(𝟎, 𝜎2I),

Y and 𝝐 are T × 1, X is T × k and 𝜷 is k × 1. The first column of X is usually 𝟏, the column of ones.
Observe that Y ∼ N(X𝜷, 𝜎2I).

An important special case of (1.3) is with k = 2 and xt,1 = 1. Then Yt = 𝛽1 + 𝛽2Xt + 𝜖t , t = 1,… ,T ,
is referred to as the simple linear regression model. See Problems 1.1 and 1.2.

1.2 Ordinary and Generalized Least Squares

1.2.1 Ordinary Least Squares Estimation

The most popular way of estimating the k parameters in 𝜷 is the method of least squares,2 which
takes 𝜷 = arg min S(𝜷), where

S(𝜷) = S(𝜷;Y ,X) = (Y−X𝜷)′(Y−X𝜷) =
T∑

t=1
(Yt − x′

t𝜷)2, (1.4)

and we suppress the dependency of S on Y and X when they are clear from the context.
Assume that X is of full rank k. One procedure to obtain the solution, commonly shown in most

books on regression (see, e.g., Seber and Lee, 2003, p. 38), uses matrix calculus; it yields 𝜕 S(𝜷)∕𝜕𝜷 =
−2X′(Y−X𝜷), and setting this to zero gives the solution

𝜷 = (X′X)−1X′Y. (1.5)

This is referred to as the ordinary least squares, or o.l.s., estimator of 𝜷 . (The adjective “ordinary” is
used to distinguish it from what is called generalized least squares, addressed in Section 1.2.3 below.)
Notice that 𝜷 is also the solution to what are referred to as the normal equations, given by

X′X𝜷 = X′Y. (1.6)

To verify that (1.5) indeed corresponds to the minimum of S(𝜷), the second derivative is checked for
positive definiteness, yielding 𝜕2 S(𝜷)∕𝜕𝜷𝜕𝜷 ′ = 2X′X, which is necessarily positive definite when X is
full rank. Observe that, if X consists only of a column of ones, which we write as X=𝟏, then 𝜷 reduces
to the mean, Ȳ , of the Yt . Also, if k = T (and X is full rank), then 𝜷 reduces to X−1Y, with S(𝜷) = 0.

Observe that the derivation of 𝜷 in (1.5) did not involve any explicit distributional assumptions.
One consequence of this is that the estimator may not have any meaning if the maximally existing
moment of the {𝜖t} is too low. For example, take X=𝟏 and {𝜖t} to be i.i.d. Cauchy; then 𝛽 = Ȳ is
a useless estimator. If we assume that the first moment of the {𝜖t} exists and is zero, then, writing
𝜷 = (X′X)−1X′(X𝜷 + 𝝐) = 𝜷 + (X′X)−1X′𝝐, we see that 𝜷 is unbiased:

𝔼[𝜷] = 𝜷 + (X′X)−1X′𝔼[𝝐] = 𝜷. (1.7)

2 This terminology dates back to Adrien-Marie Legendre (1752–1833), though the method is most associated in its origins
with Carl Friedrich Gauss, (1777–1855). See Stigler (1981) for further details.
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Next, if we have existence of second moments, and 𝕍 (𝝐) = 𝜎2I, then 𝕍 (𝜷 ∣ 𝜎2) is given by

𝔼[(𝜷 − 𝜷)(𝜷 − 𝜷)′ ∣ 𝜎2] = (X′X)−1X′𝔼[𝝐𝝐′]X(X′X)−1 = 𝜎2(X′X)−1. (1.8)

It turns out that 𝜷 has the smallest variance among all linear unbiased estimators; this result is often
referred to as the Gauss–Markov Theorem, and expressed as saying that 𝜷 is the best linear unbi-
ased estimator, or BLUE. We outline the usual derivation, leaving the straightforward details to the
reader. Let 𝜷

∗
= A′Y, where A′ is a k × T nonstochastic matrix (it can involve X, but not Y). Let

D = A − X(X′X)−1. First calculate 𝔼[𝜷
∗
] and show that the unbiased property implies that D′X = 𝟎.

Next, calculate 𝕍 (𝜷
∗
∣ 𝜎2) and show that 𝕍 (𝜷

∗
∣ 𝜎2) = 𝕍 (𝜷 ∣ 𝜎2) + 𝜎2D′D. The result follows because

D′D is obviously positive semi-definite and the variance is minimized when D = 𝟎.
In many situations, it is reasonable to assume normality for the {𝜖t}, in which case we may easily

estimate the k + 1 unknown parameters 𝜎2 and 𝛽i, i = 1,… , k, by maximum likelihood. In particu-
lar, with

fY(y) = (2𝜋𝜎2)−T∕2 exp
{
− 1

2𝜎2 (y − X𝜷)′(y − X𝜷)
}
, (1.9)

and log-likelihood

𝓁(𝜷, 𝜎2;Y) = −T
2

log(2𝜋) − T
2

log(𝜎2) − 1
2𝜎2 S(𝜷), (1.10)

where S(𝜷) is given in (1.4), setting
𝜕𝓁
𝜕𝜷

= − 2
2𝜎2 X′(Y−X𝜷) and 𝜕𝓁

𝜕𝜎2 = − T
2𝜎2 + 1

2𝜎4 S(𝜷)

to zero yields the same estimator for 𝜷 as given in (1.5) and �̃�2 = S(𝜷)∕T . It will be shown in Section
1.3.2 that the maximum likelihood estimator (hereafter m.l.e.) of 𝜎2 is biased, while estimator

�̂�2 = S(𝜷)∕(T − k) (1.11)

is unbiased.
As 𝜷 is a linear function of Y, (𝜷 ∣ 𝜎2) is multivariate normally distributed, and thus characterized

by its first two moments. From (1.7) and (1.8), it follows that (𝜷 ∣ 𝜎2) ∼ N(𝜷, 𝜎2(X′X)−1).

1.2.2 Further Aspects of Regression and OLS

The coefficient of multiple determination, R2, is a measure many statisticians love to hate. This
animosity exists primarily because the widespread use of R2 inevitably leads to at least occa-
sional misuse.

(Richard Anderson-Sprecher, 1994)

In general, the quantity S(𝜷) is referred to as the residual sum of squares, abbreviated RSS. The
explained sum of squares, abbreviated ESS, is defined to be

∑T
t=1 (Ŷt − Ȳ )2, where the fitted value

of Yt is Ŷt ∶= x′
t𝜷 , and the total (corrected) sum of squares, or TSS, is

∑T
t=1 (Yt − Ȳ )2. (Annoyingly,

both words “error” and “explained” start with an “e”, and some presentations define SSE to be the error
sum of squares, which is our RSS; see, e.g., Ravishanker and Dey, 2002, p. 101.)
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The term corrected in the TSS refers to the adjustment of the Yt for their mean. This is done because
the mean is a “trivial” regressor that is not considered to do any real explaining of the dependent
variable. Indeed, the total uncorrected sum of squares,

∑T
t=1 Y 2

t , could be made arbitrarily large just
by adding a large enough constant value to the Yt , and the model consisting of just the mean (i.e.,
an X matrix with just a column of ones) would have the appearance of explaining an arbitrarily large
amount of the variation in the data.

While certainly Yt − Ȳ = (Yt − Ŷt) + (Ŷt − Ȳ ), it is not immediately obvious that
T∑

t=1
(Yt − Ȳ )2 =

T∑
t=1

(Yt − Ŷt)2 +
T∑

t=1
(Ŷt − Ȳ )2,

i.e.,

TSS = RSS + ESS. (1.12)

This fundamental identity is proven below in Section 1.3.2.
A popular statistic that measures the fraction of the variability of Y taken into account by a linear

regression model that includes a constant, compared to use of just a constant (i.e., Ȳ ), is the coefficient
of multiple determination, designated as R2, and defined as

R2 = ESS
TSS

= 1 − RSS
TSS

= 1 −
S(𝜷,Y,X)
S(Ȳ ,Y, 𝟏)

, (1.13)

where 𝟏 is a T-length column of ones. The coefficient of multiple determination R2 provides a measure
of the extent to which the regressors “explain” the dependent variable over and above the contribution
from just the constant term. It is important that X contain a constant or a set of variables whose linear
combination yields a constant; see Becker and Kennedy (1992) and Anderson-Sprecher (1994) and the
references therein for more detail on this point.

By construction, the observed R2 is a number between zero and one. As with other quantities
associated with regression (such as the nearly always reported “t-statistics” for assessing individual
“significance” of the regressors), R2 is a statistic (a function of the data but not of the unknown param-
eters) and thus is a random variable. In Section 1.4.4 we derive the F test for parameter restrictions.
With J such linear restrictions, and �̂� referring to the restricted estimator, we will show (1.88), repeated
here, as

F =
[S(�̂�) − S(𝜷)]∕J

S(𝜷)∕(T − k)
∼ F(J ,T − k), (1.14)

under the null hypothesis H0 that the J restrictions are true. Let J = k − 1 and �̂� = Ȳ , so that the
restricted model is that all regressor coefficients, except the constant are zero. Then, comparing (1.13)
and (1.14),

F = T − k
k − 1

R2

1 − R2 , or R2 = (k − 1)F
(T − k) + (k − 1)F

. (1.15)

Dividing the numerator and denominator of the latter expression by T − k and recalling the relation-
ship between F and beta random variables (see, e.g., Problem I.7.20), we immediately have that

R2 ∼ Beta
(

k − 1
2

,
T − k

2

)
, (1.16)
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so that𝔼[R2] = (k − 1)∕(T − 1) from, for example, (I.7.12). Its variance could similarly be stated. Recall
that its distribution was derived under the null hypothesis that the k − 1 regression coefficients are
zero. This implies that R2 is upward biased, and also shows that just adding superfluous regressors
will always increase the expected value of R2. As such, choosing a set of regressors such that R2 is
maximized is not appropriate for model selection.

However, the so-called adjusted R2 can be used. It is defined as

R2
adj = 1 − (1 − R2)T − 1

T − k
. (1.17)

Virtually all statistical software for regression will include this measure. Less well known is that it
has (like so many things) its origin with Ronald Fisher; see Fisher (1925). Notice how, like the Akaike
information criterion (hereafter AIC) and other penalty-based measures applied to the obtained log
likelihood, when k is increased, the increase in R2 is offset by a factor involving k in R2

adj.
Measure (1.17) can be motivated in (at least) two ways. First, note that, under the null hypothesis,

𝔼[R2
adj] = 1 −

(
1 − k − 1

T − 1

)
T − 1
T − k

= 0,

providing a perfect offset to R2’s expected value simply increasing in k under the null. A second way
is to note that, while R2 = 1 − RSS∕TSS from (1.13),

R2
adj = 1 −

RSS∕(T − k)
TSS∕(T − 1)

= 1 − 𝕍 (�̂�)
𝕍 (Y)

,

the numerator and denominator being unbiased estimators of their respective variances, recalling
(1.11). The use of R2

adj for model selection is very similar to use of other measures, such as the (cor-
rected) AIC and the so-called Mallows’ Ck ; see, e.g., Seber and Lee (2003, Ch. 12) for a very good
discussion of these, and other criteria, and the relationships among them.

Section 1.2.3 extends the model to the case in which Y = X𝜷 + 𝝐 from (1.3), but 𝝐 ∼ N(𝟎, 𝜎2𝚺),
where 𝚺 is a known, positive definite variance–covariance matrix. There, an appropriate expression
for R2 will be derived that generalizes (1.13). For now, the reader is encouraged to express R2 in (1.13)
as a ratio of quadratic forms, assuming 𝝐 ∼ N(𝟎, 𝜎2𝚺), and compute and plot its density for a given X
and 𝚺, such as given in (1.31) for a given value of parameter a, as done in, e.g., Carrodus and Giles
(1992). When a = 0, the density should coincide with that given by (1.16).

We end this section with an important remark, and an important example.

Remark It is often assumed that the elements of X are known constants. This is quite plausible in
designed experiments, where X is chosen in such a way as to maximize the ability of the experiment
to answer the questions of interest. In this case, X is often referred to as the design matrix. This
will rarely hold in applications in the social sciences, where the x′

t reflect certain measurements and
are better described as being observations of random variables from the multivariate distribution
describing both x′

t and Yt . Fortunately, under certain assumptions, one may ignore this issue and
proceed as if x′

t were fixed constants and not realizations of a random variable.
Assume matrix X is no longer deterministic. Denote by X an outcome of random variable  , with

kT-variate probability density function (hereafter p.d.f.) f (X ;𝜽), where 𝜽 is a parameter vector. We
require the following assumption:
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0. The conditional distribution Y ∣ ( = X) depends only on X and parameters 𝜷 and 𝜎 and such that
Y ∣ ( = X) has mean X𝜷 and finite variance 𝜎2I.

For example, we could have Y ∣ ( = X) ∼ N(X𝜷, 𝜎2I). Under the stated assumption, the joint den-
sity of Y and  can be written as

fY , (y,X ∣ 𝜷, 𝜎2,𝜽) = fY∣ (y ∣X;𝜷, 𝜎2) ⋅ f (X; 𝜷, 𝜎2,𝜽). (1.18)

Now consider the following two additional assumptions:

1) The distribution of  does not depend on 𝜷 or 𝜎2, so we can write f (X;𝜷, 𝜎2,𝜽) = f (X;𝜽).
2) The parameter space of 𝜽 and that of (𝜷, 𝜎2) are not related, that is, they are not restricted by one

another in any way.

Then, with regard to 𝜷 and 𝜎2, f is only a multiplicative constant and the log-likelihood correspond-
ing to (1.18) is the same as (1.10) plus the additional term log f (X;𝜽). As this term does not involve 𝜷
or 𝜎2, the (generalized) least squares estimator still coincides with the m.l.e. When the above assump-
tions are satisfied, 𝜽 and (𝜷, 𝜎2) are said to be functionally independent (Graybill, 1976, p. 380), or
variation-free (Poirier, 1995, p. 461). More common in the econometrics literature is to say that one
assumes X to be (weakly) exogenous with respect to Y.

The extent to which these assumptions are reasonable is open to debate. Clearly, without them, esti-
mation of 𝜷 and 𝜎2 is not so straightforward, as then f (X; 𝜷, 𝜎2,𝜽) must be (fully, or at least partially)
specified. If they hold, then

𝔼[𝜷] = 𝔼 [𝔼[𝜷 ∣  = X]] = 𝔼 [𝜷 + (X′X)−1X′𝔼[𝝐 ∣ ]] = 𝔼 [𝜷] = 𝜷

and

𝕍 (𝜷 ∣ 𝜎2) = 𝔼 [𝔼[(𝜷 − 𝜷)(𝜷 − 𝜷)′ ∣  = X, 𝜎2]] = 𝜎2𝔼 [( ′)−1],

the latter being obtainable only when f (X;𝜽) is known.
A discussion of the implications of falsely assuming that X is not stochastic is provided by Binkley

and Abbott (1987).3 ◾

Example 1.1 Frisch–Waugh–Lovell Theorem
It is occasionally useful to express the o.l.s. estimator of each component of the partitioned vector
𝜷 = (𝜷 ′

1, 𝜷
′
2)′, where 𝜷1 is k1 × 1, 1 ⩽ k1 < k. With the appropriate corresponding partition of X, model

(1.3) is then expressed as

Y =
(

X1 X2
)( 𝜷1

𝜷2

)
+ 𝝐 = X1𝜷1 + X2𝜷2 + 𝝐.

The normal equations (1.6) then read(
X′

1
X′

2

)(
X1 X2

)( 𝜷1
𝜷2

)
=

(
X′

1
X′

2

)
Y,

or

X′
1X1𝜷1 + X′

1X2𝜷2 = X′
1Y and X′

2X1𝜷1 + X′
2X2𝜷2 = X′

2Y, (1.19)

3 We use the tombstone, QED, or halmos, symbol ◾ to denote the end of proofs of theorems, as well as examples and
remarks, acknowledging that it is traditionally only used for the former, as popularized by Paul Halmos.
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so that

𝜷1 = (X′
1X1)−1X′

1(Y − X2𝜷2) (1.20)

and 𝜷2 = (X′
2X2)−1X′

2(Y − X1𝜷1). To obtain an expression for 𝜷2 that does not depend on 𝜷1, let M1 =
I − X1(X′

1X1)−1X′
1, premultiply (1.20) by X1, and substitute X1𝜷1 into the second equation in (1.19)

to get

X′
2(I − M1)(Y − X2𝜷2) + X′

2X2𝜷2 = X′
2Y,

or, expanding and solving for 𝜷2,

𝜷2 = (X′
2M1X2)−1X′

2M1Y. (1.21)

A similar argument (or via symmetry) shows that

𝜷1 = (X′
1M2X1)−1X′

1M2Y, (1.22)

where M2 = I − X2(X′
2X2)−1X′

2.
An important special case of (1.21) discussed further in Chapter 4 is when k1 = k − 1, so that X2 is

T × 1 and 𝜷2 in (1.21) reduces to the scalar

𝛽2 =
X′

2M1Y
X′

2M1X2
. (1.23)

This is a ratio of a bilinear form to a quadratic form, as discussed in Appendix A.
The Frisch–Waugh–Lovell theorem has both computational value (see, e.g., Ruud, 2000, p. 66, and

Example 1.9 below) and theoretical value; see Ruud (2000), Davidson and MacKinnon (2004), and also
Section 5.2. Extensions of the theorem are considered in Fiebig et al. (1996). ◾

1.2.3 Generalized Least Squares

Now consider the more general assumption that 𝝐 ∼ N(𝟎, 𝜎2𝚺), where 𝚺 is a known, positive definite
variance–covariance matrix. The density of Y is now given by

fY(y) = (2𝜋)−T∕2|𝜎2𝚺|−1∕2 exp
{
− 1

2𝜎2 (y − X𝜷)′𝚺−1(y − X𝜷)
}
, (1.24)

and one could use calculus to find the m.l.e. of 𝜷 . Alternatively, we could transform the model in
such a way that the above results still apply. In particular, with 𝚺−1∕2 the symmetric matrix such that
𝚺−1∕2𝚺−1∕2 = 𝚺−1, premultiply (1.3) by 𝚺−1∕2 so that

𝚺−1∕2Y = 𝚺−1∕2X𝜷 + 𝚺−1∕2𝝐, 𝚺−1∕2𝝐 ∼ NT (𝟎, 𝜎2I). (1.25)

Then, using the previous maximum likelihood approach as in (1.10), with

Y∗ ∶= 𝚺−1∕2Y and X∗ ∶= 𝚺−1∕2X (1.26)

in place of Y and X implies the normal equations

(X′𝚺−1X)𝜷𝚺 = X′𝚺−1Y (1.27)

that generalize (1.6), and

𝜷𝚺 = (X′
∗X∗)−1X′

∗Y∗ = (X′𝚺−1X)−1X′𝚺−1Y, (1.28)
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where the notation 𝜷𝚺 is used to indicate its dependence on knowledge of 𝚺. This is known as the
generalized least squares (g.l.s.) estimator, with variance given by

𝕍 (𝜷𝚺 ∣ 𝜎2) = 𝜎2(X′𝚺−1X)−1. (1.29)

It is attributed to A. C. Aitken from 1934. Of course, 𝜎2 is unknown. The usual estimator of (T − k)𝜎2

is given by

S(𝜷;Y∗,X∗) = (Y∗ − X∗𝜷𝚺)′(Y∗ − X∗𝜷𝚺) = (Y−X𝜷𝚺)′𝚺−1(Y−X𝜷𝚺). (1.30)

Example 1.2 Let 𝜖t
ind∼ N(0, 𝜎2kt), where the kt are known, positive constants, so that 𝚺−1 =

diag(k−1
1 ,… , k−1

T ). Then 𝜷𝚺 is referred to as the weighted least squares estimator. If in the Hamburg
income example above, we take kt = xt , then observations {yt , xt} receive weights proportional to
x−1

t . This has the effect of down-weighting observations with high ages, for which the uncertainty of
the slope parameter is higher, and vice versa. ◾

Example 1.3 Let the model be given by Yt = 𝜇 + 𝜖t , t = 1,… ,T . With X=𝟏, we have

(X′X)−1X′ = [T−1,… ,T−1],

and the o.l.s. estimator of 𝜇 is just the simple average of the observations, Ȳ = (X′X)−1X′Y. Assume,
however, that the 𝜖t are not i.i.d., but are given by the recursion 𝜖t = a𝜖t−1 + Ut , |a| < 1, and Ut

i.i.d.∼
N(0, 𝜎2). This is referred to as a stationary first order autoregressive model, abbreviated AR(1), and is
the subject of Chapter 4. There, the covariance matrix of 𝝐 = (𝜖1,… , 𝜖T )′ is shown to be Cov(𝝐) = 𝜎2𝚺
with

𝚺 = 1
1 − a2

⎡⎢⎢⎢⎢⎢⎢⎣

1 a a2 · · · aT−1

a 1 a · · · aT−2

a2 a 1 · · · aT−3

⋮ ⋮ ⋮ ⋱ ⋮

aT−1 aT−2 aT−3 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦
. (1.31)

The g.l.s. estimator of 𝜇 is now a weighted average of the Yt , where the weight vector is given by w =
(X′𝚺−1X)−1X′𝚺−1. Straightforward calculation shows that, for a = 0.5, (X′𝚺−1X)−1 = 4∕(T + 2) and

X′𝚺−1 =
[1

2
,

1
4
,

1
4
,… ,

1
4
,

1
2

]′
,

so that the first and last weights are 2∕(T + 2) and the middle T − 2 are all 1∕(T + 2). Note that the
weights sum to one. A similar pattern holds for all |a| < 1, with the ratio of the first and last weights to
the center weights converging to 1∕2 as a → −1 and to ∞ as a → 1. Thus, we see that (i) for constant
T , the difference between g.l.s. and o.l.s. grows as a → 1 and (ii) for constant a, |a| < 1, the difference
between g.l.s. and o.l.s. shrinks as T → ∞. The latter is true because a finite number of observations,
in this case only two, become negligible in the limit, and because the relative weights associated with
these two values converges to a constant independent of T .

Now consider the model Yt = 𝜇 + 𝜖t , t = 1,… ,T , with 𝜖t = bUt−1 + Ut , |b| < 1, Ut
i.i.d.∼ N(0, 𝜎2).

This is referred to as an invertible first-order moving average model, or MA(1), and is discussed in
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detail in Chapter 6. There, it is shown that Cov(𝝐) = 𝜎2𝚺 with

𝚺 =

⎡⎢⎢⎢⎢⎢⎣

1 + b2 b 0 · · · 0
b 1 + b2 ⋱ ⋮
0 b ⋱ 0
⋮ 0 ⋱ b
0 · · · 0 b 1 + b2

⎤⎥⎥⎥⎥⎥⎦
.

The weight vectors w = (X′𝚺−1X)−1X′𝚺−1 for the two values, b = −0.9 and b = 0.9, are plotted in
Figure 1.2 for T = 100. This is clearly quite a different weighting structure than for the AR(1) model.

In the limiting case b → 1, we have

Y1 = 𝜇 + U0 + U1, Y2 = 𝜇 + U1 + U2, … , YT = 𝜇 + UT−1 + UT

so that
T∑

t=1
Yt = T𝜇 + U0 + UT + 2

T−1∑
t=1

Ut ,
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Figure 1.2 Weight vector for an MA(1) model with T = 100 and b = 0.9 (top) and b = −0.9 (bottom).
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𝔼[Ȳ ] = 𝜇 and

𝕍 (Ȳ ) = 𝜎2 + 𝜎2 + 4(T − 1)𝜎2

T2 = 4𝜎2

T
− 2𝜎2

T2 .

For T = 100 and 𝜎2 = 1, 𝕍 (Ȳ ∣ b = 1) ≈ 0.0398. Similarly, for b = −1,
∑T

t=1 Yt = T𝜇 + U0 + UT and
𝕍 (Ȳ ∣ b = −1) = 2𝜎2∕T2 = 0.0002. ◾

Consideration of the previous example might lead one to ponder if it is possible to specify conditions
such that 𝜷𝚺 will equal 𝜷I = 𝜷 for 𝚺 ≠ I. A necessary and sufficient condition for 𝜷𝚺 = 𝜷 is if the k
columns of X are linear combinations of k of the eigenvectors of 𝚺, as first established by Anderson
(1948); see, e.g., Anderson (1971, p. 19 and p. 561) for proof.

This question has generated a large amount of academic work, as illustrated in the survey of Pun-
tanen and Styan (1989), which contains about 90 references (see also Krämer et al., 1996). There are
several equivalent conditions for the result to hold, a rather useful and attractive one of which is that

𝜷𝚺 = 𝜷 if and only if P𝚺 is symmetric, (1.32)

i.e., if and only if P𝚺 = 𝚺P, where P = X(X′X)−1X′. Another is that there exists a matrix F satisfying
XF = 𝚺−1X, which is demonstrated in Example 1.5.

Example 1.4 With X = 𝟏 (a T-length column of ones), Anderson’s condition implies that 𝟏 needs
to be an eigenvector of 𝚺, or 𝚺1 = s𝟏 for some nonzero scalar s. This means that the sum of each row
of 𝚺 must be the same value. This obviously holds when 𝚺 = I, and clearly never holds when 𝚺 is a
diagonal weighting matrix with at least two weights differing.

To determine if 𝜷𝚺 = 𝜷 is possible for the AR(1) and MA(1) models from Example 1.3, we use a
result of McElroy (1967), who showed that, if X is full rank and contains 𝟏, then 𝜷𝚺 = 𝜷 if and only if
𝚺 is full rank and can be expressed as k1I + k2𝟏𝟏′, i.e., the equicorrelated case. We will see in Chapters
4 and 7 that this is never the case for AR(1) and MA(1) models or, more generally, for stationary and
invertible ARMA(p, q) models. ◾

Remark The previous discussion begets the question of how one could assess the extent to which
o.l.s. will be inferior relative to g.l.s., notably because, in many applications, 𝚺 will not be known.
This turns out to be a complicated endeavor in general; see Puntanen and Styan (1989, p. 154) and
the references therein for further details. Observe also how (1.28) and (1.29) assume the true 𝚺. The
determination of robust estimators for the variance of 𝜷 for unknown 𝚺 is an important and active
research area in statistics and, particularly, econometrics (and for other model classes beyond the
simple linear regression model studied here). The primary reference papers are White (1980, 1982),
MacKinnon and White (1985), Newey and West (1987), and Andrews (1991), giving rise to the class of
so-called heteroskedastic and autocorrelation consistent covariance matrix estimators, or HAC.
With respect to computation of the HAC estimators, see Zeileis (2006), Heberle and Sattarhoff (2017),
and the references therein. ◾

It might come as a surprise that defining the coefficient of multiple determination R2 in the g.l.s.
context is not so trivial, and several suggestions exist. The problem stems from the definition in the
o.l.s. case (1.13), with R2 = 1 − S(𝜷,Y,X)∕S(Ȳ ,Y, 𝟏), and observing that, if 𝟏 ∈ (X) (the column space
of X, as defined below), then, via the transformation in (1.26), 𝟏 ∉ (X∗).
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To establish a meaningful definition, we first need the fact that, with Ŷ = X𝜷𝚺 and �̂� = Y − Ŷ,

Y′𝚺−1Y = Ŷ′𝚺−1Ŷ + �̂�
′𝚺−1�̂�, (1.33)

which is derived in (1.47). Next, from the normal equations (1.27) and letting Xi denote the ith column
of X, i = 1,… , k, we have a system of k equations, the ith of which is, with 𝜷𝚺 = (𝛽1,… , 𝛽k)′,

(X′
i𝚺

−1X1)𝛽1 + (X′
i𝚺

−1X2)𝛽2 + · · · + (X′
i𝚺

−1Xk)𝛽k = X′
i𝚺

−1Y.

Similarly, premultiplying both sides of X𝜷𝚺 = Ŷ by X′
i𝚺

−1 gives

(X′
i𝚺

−1X1)𝛽1 + (X′
i𝚺

−1X2)𝛽2 + · · · + (X′
i𝚺

−1Xk)𝛽k = X′
i𝚺

−1Ŷ,

so that

X′
i𝚺

−1(Y − Ŷ) = 0,

which we will see again below, in the context of projection, in (1.63). In particular, with X1 = 𝟏 =
(1, 1,… , 1)′ the usual first regressor, 𝟏′𝚺−1Ŷ = 𝟏′𝚺−1Y. We now follow Buse (1973), and define the
weighted mean to be

Ȳ ∶= Ȳ𝚺 ∶= 𝟏′𝚺−1Y
𝟏′𝚺−1𝟏

(
= 𝟏′𝚺−1Ŷ

𝟏′𝚺−1𝟏

)
, (1.34)

which obviously reduces to the simple sample mean when 𝚺 = I. The next step is to confirm by simply
multiplying out that

(Y − Ȳ𝟏)′𝚺−1(Y − Ȳ𝟏) = Y′𝚺−1Y − (𝟏′𝚺−1Y)2

𝟏′𝚺−1𝟏
,

and, likewise,

(Ŷ − Ȳ𝟏)′𝚺−1(Ŷ − Ȳ𝟏) = Ŷ′𝚺−1Ŷ − (𝟏′𝚺−1Y)2

𝟏′𝚺−1𝟏
,

so that (1.33) can be expressed as

(Y − Ȳ𝟏)′𝚺−1(Y − Ȳ𝟏) = (Ŷ − Ȳ𝟏)′𝚺−1(Ŷ − Ȳ𝟏) + �̂�
′𝚺−1�̂�. (1.35)

The definition of R2 is now given by

R2 = R2
𝚺 = 1 − �̂�

′𝚺−1�̂�

(Y − Ȳ𝟏)′𝚺−1(Y − Ȳ𝟏)
, (1.36)

which is indeed analogous to (1.13) and reduces to it when 𝚺 = I.
Along with examples of other, less desirable, definitions, Buse (1973) discusses the benefits of this

definition, which include that it is interpretable as the proportion of the generalized sum of squares
of the dependent variable that is attributable to the influence of the explanatory variables, and that it
lies between zero and one. It is also zero when all the estimates coefficients (except the constant) are
zero, and can be related to the F test as was done above in the ordinary least squares case.
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1.3 The Geometric Approach to Least Squares

In spite of earnest prayer and the greatest desire to adhere to proper statistical behavior, I have
not been able to say why the method of maximum likelihood is to be preferred over other
methods, particularly the method of least squares.

(Joseph Berkson, 1944, p. 359)

The following sections analyze the linear regression model using the notion of projection. This com-
plements the purely algebraic approach to regression analysis by providing a useful terminology and
geometric intuition behind least squares. Most importantly, its use often simplifies the derivation and
understanding of various quantities such as point estimators and test statistics. The reader is assumed
to be comfortable with the notions of linear subspaces, span, dimension, rank, and orthogonality. See
the references given at the beginning of Section B.5 for detailed presentations of these and other
important topics associated with linear and matrix algebra.

1.3.1 Projection

The Euclidean dot product or inner product of two vectors u = (u1,u2,… ,uT )′ and v =
(𝑣1, 𝑣2,… , 𝑣T )′ is denoted by ⟨u , v⟩ = u′v =

∑T
i=1 ui𝑣i. Observe that, for y ,u ,w ∈ ℝT ,⟨y −u ,w⟩ = (y −u)′w = y′w − u′w = ⟨y ,w⟩ − ⟨u ,w⟩. (1.37)

The norm of vector u is ‖u‖ = ⟨u ,u⟩1∕2. The square matrix U with columns u1,…, uT is orthonormal
if UU′ = U′U= I, i.e., U′ = U−1, implying ⟨ui,uj⟩ = 1 if i = j and zero otherwise.

For a fixed T × k matrix X, k ⩽ T and usually such that k ≪ T (“is much less than”), the column
space of X, denoted (X), or the linear span of the k columns X, is the set of all vectors that can be
generated as a linear sum of, or spanned by, the columns of X, such that the coefficient of each vector
is a real number, i.e.,

(X) = {y ∶ y =Xb ,b ∈ ℝk}. (1.38)

In words, if y ∈ (X), then there exists b ∈ ℝk such that y =Xb.
It is easy to verify that (X) is a subspace of ℝT with dimension dim((X)) = rank(X) ⩽ k. If

dim((X)) = k, then X is said to be a basis matrix (for (X)). Furthermore, if the columns of X are
orthonormal, then X is an orthonormal basis matrix and X′X = I.

Let V be a basis matrix with columns v1,… , vk . The method of Gram–Schmidt can be used to con-
struct an orthonormal basis matrix U = [u1,… ,uk] as follows. First set u1 = v1∕‖v1‖ so that ⟨u1,u1⟩ =
1. Next, let u∗

2 = v2 − ⟨v2,u1⟩u1, so that⟨u∗
2,u1⟩ = ⟨v2,u1⟩ − ⟨v2,u1⟩⟨u1,u1⟩ = ⟨v2,u1⟩ − ⟨v2,u1⟩ = 0, (1.39)

and set u2 = u∗
2∕‖u∗

2‖. By construction of u2, ⟨u2,u2⟩ = 1, and from (1.39), ⟨u2,u1⟩ = 0. Continue with
u∗

3 = v3 − ⟨v3,u1⟩u1 − ⟨v3,u2⟩u2 and u3 = u∗
3∕‖u∗

3‖, up to u∗
k = vk −

∑k−1
i=1 ⟨vk ,ui⟩ui and uk = u∗

k∕‖u∗
k‖.

This renders U an orthonormal basis matrix for (V).
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The next example offers some practice with column spaces, proves a simple result, and shows how
to use Matlab to investigate a special case.

Example 1.5 Consider the equality of the generalized and ordinary least squares estimators. Let X
be a T × k regressor matrix of full rank,𝚺 be a T × T positive definite covariance matrix, A = (X′X)−1,
and B = (X′𝚺−1X) (both symmetric and full rank). Then, for all T-length column vectors Y ∈ ℝT ,

𝜷 = 𝜷𝚺 ⇐⇒ (X′𝚺−1X)−1X′𝚺−1Y = (X′X)−1X′Y
⇐⇒ B−1X′𝚺−1Y = AX′Y
⇐⇒ X′𝚺−1Y = BAX′Y ⇐⇒ Y′(𝚺−1X) = Y′(XAB)
⇐⇒ 𝚺−1X = XAB, (1.40)

where the ⇒ in (1.40) follows because Y is arbitrary. (Recall from (1.32) that equality of 𝜷 and 𝜷𝚺
depends only on properties of X and 𝚺. Another way of confirming the ⇒ in (1.40) is to replace Y in
Y′(𝚺−1X) = Y′(XAB) with Y = X𝜷 + 𝝐 and take expectations.)

Thus, if z ∈ (𝚺−1X), then there exists a v such that z = 𝚺−1Xv. But then (1.40) implies that

z = 𝚺−1Xv = XABv = Xw,

where w = ABv, i.e., z ∈ (X). Thus, (𝚺−1X) ⊂ (X). Similarly, if z ∈ (X), then there exists a v such
that z = Xv, and (1.40) implies that

z = Xv = 𝚺−1XB−1A−1v = 𝚺−1Xw,

where w = B−1A−1v, i.e., (X) ⊂ (𝚺−1X). Thus, 𝜷 = 𝜷𝚺 ⇐⇒ (X) = (𝚺−1X). This column space
equality implies that there exists a k × k full rank matrix F such that XF = 𝚺−1X. To compute F,
left-multiply by X′ and, as we assumed that X is full rank, we can then left-multiply by (X′X)−1, so
that F = (X′X)−1X′𝚺−1X.4

As an example, with JT the T × T matrix of ones, let 𝚺 = 𝜌𝜎2JT + (1 − 𝜌)𝜎2IT , which yields the
equi-correlated case. Then, experimenting with X in the code in Listing 1.1 allows one to numerically
confirm that 𝜷 = 𝜷𝚺 when 𝟏T ∈ (X), but not when 𝟏T ∉ (X). The fifth line checks (1.40), while the
last line checks the equality of XF and𝚺−1X. It is also easy to add code to confirm that P𝚺 is symmetric
in this case, and not when 𝟏T ∉ (X). ◾

The orthogonal complement of (X), denoted (X)⟂, is the set of all vectors in ℝT that are orthog-
onal to (X), i.e., the set {z ∶ z′y = 0, y ∈ (X)}. From (1.38), this set can be written as {z ∶ z′Xb =

1 s2=2; T=10; rho=0.8; Sigma=s2*( rho*ones(T,T)+(1-rho)*eye(T));
2 zeroone=[zeros(4,1);ones(6,1)]; onezero=[ones(4,1);zeros(6,1)];
3 X=[zeroone, onezero, randn(T,5)];
4 Si=inv(Sigma); A=inv(X'*X); B=X'*Si*X;
5 shouldbezeros1 = Si*X - X*A*B
6 F=inv(X'*X)*X'*Si*X; % could also use: F=X\(Si*X);
7 shouldbezeros2 = X*F - Si*X

Program Listing 1.1: For confirming that 𝜷 = 𝜷𝚺 when 𝟏T ∈ (𝐗).
4 In Matlab, one can also use the mldivide operator for this calculation.
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0, b ∈ ℝk}. Taking the transpose and observing that z′Xb must equal zero for all b ∈ ℝk , we may
also write

(X)⟂ = {z ∈ ℝT ∶ X′z=𝟎}.

Finally, the shorthand notation z ⟂ (X) or z ⟂ X will be used to indicate that z ∈ (X)⟂.
The usefulness of the geometric approach to least squares rests on the following fundamental result

from linear algebra.

Theorem 1.1 Projection Theorem Given a subspace  of ℝT , there exists a unique u ∈  and
v ∈ ⟂ for every y ∈ ℝT such that y = u + v. The vector u is given by

u = ⟨y,w1⟩w1 + ⟨y,w2⟩w2 + · · · + ⟨y,wk⟩wk , (1.41)

where {w1,w2,… ,wk} are a set of orthonormal T × 1 vectors that span  and k is the dimension of
 . The vector v is given by y − u.

Proof : To show existence, note that, by construction, u ∈  and, from (1.37) for i = 1,… , k,

⟨v,wi⟩ = ⟨y − u,wi⟩ = ⟨y,wi⟩ − k∑
j=1

⟨y,wj⟩ ⋅ ⟨wj,wi⟩ = 0,

so that v ⟂  , as required.
To show that u and v are unique, suppose that y can be written as y = u∗ + v∗, with u∗ ∈  and

v∗ ∈ ⟂. It follows that u∗ − u = v − v∗. But as the left-hand side is contained in  and the right-hand
side in ⟂, both u∗ − u and v − v∗ must be contained in the intersection  ∩ ⟂ = {0}, so that u = u∗

and v = v∗. ◾

Let T = [w1 w2 … wk], where the wi are given in Theorem 1.1 above. From (1.41),

u = [w1 w2 … wk]

⎡⎢⎢⎢⎢⎣
⟨y,w1⟩⟨y,w2⟩

⋮⟨y,wk⟩
⎤⎥⎥⎥⎥⎦
= T

⎡⎢⎢⎢⎢⎣
w′

1
w′

2
⋮

w′
k

⎤⎥⎥⎥⎥⎦
y = TT′y = Py, (1.42)

where the matrix P = TT′ is referred to as the projection matrix onto  . Note that T′T = I. Matrix
P is unique, so that the choice of orthonormal basis is not important; see Problem 1.4. We can
write the decomposition of y as the (algebraically obvious) identity y = Py + (IT − P )y. Observe
that (IT − P ) is itself a projection matrix onto ⟂. By construction,

Py ∈  , (1.43)
(IT − P )y ∈ ⟂. (1.44)

This is, in fact, the definition of a projection matrix, i.e., the matrix that satisfies both (1.43) and (1.44)
for a given  and for all y ∈ ℝT is the projection matrix onto  .

From Theorem 1.1, if X is a T × k basis matrix, then rank(P(X)) = k. This also follows from
(1.42), as rank(TT′) = rank(T) = k, where the first equality follows from the more general result
that rank(KBB′) = rank(KB) for any n × m matrix B and s × n matrix K (see, e.g., Harville, 1997,
Cor. 7.4.4, p. 75).
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Observe that, if u = Py, then Pu must be equal to u because u is already in  . This also fol-
lows algebraically from (1.42), i.e., P = TT′ and P 2 = TT′TT′ =TT′ = P , showing that the matrix
P is idempotent, i.e., PP = P . Therefore, if w = (IT − P )y ∈ ⟂, then Pw = P (IT − P )y =𝟎.
Another property of projection matrices is that they are symmetric, which follows directly from
P = TT′.

Example 1.6 Let y be a vector in ℝT and  a subspace of ℝT with corresponding projection matrix
P . Then, with P⟂ = IT − P from (1.44),‖P⟂y‖2 = ‖y − Py‖2 = (y − Py)′(y − Py)

= y′y − y′Py − y′P′y + y′P′Py = y′y − y′Py = ‖y‖2 − ‖Py‖2,

i.e., ‖y‖2 = ‖Py‖2 + ‖P⟂y‖2. (1.45)

For X a full-rank T × k matrix and  = (X), this implies, for regression model (1.3) with Ŷ = X𝜷 and
�̂� = Y−X𝜷 ,

Y′Y = Ŷ′Ŷ + �̂�
′
�̂�

= (Ŷ + �̂�)′(Ŷ + �̂�).
(1.46)

In the g.l.s. framework, use of (1.46) applied to the transformed model (1.25) and (1.26) yields, with
Ŷ∗ = X∗𝜷𝚺 and �̂�∗ = Y∗ − Ŷ∗,

Y′
∗Y∗ = Ŷ′

∗Ŷ∗ + �̂�
′
∗�̂�∗ = (Ŷ∗ + �̂�∗)′(Ŷ∗ + �̂�∗),

or, with Ŷ = X𝜷𝚺 and �̂� = Y − Ŷ,

Y′𝚺−1∕2𝚺−1∕2Y = Y′
∗Y∗

= (Ŷ∗ + �̂�∗)′(Ŷ∗ + �̂�∗) = (Ŷ + �̂�)′𝚺−1∕2𝚺−1∕2(Ŷ + �̂�),

or, finally,

Y′𝚺−1Y = Ŷ′𝚺−1Ŷ + �̂�
′𝚺−1�̂�, (1.47)

which is (1.33), as was used for determining the R2 measure in the g.l.s. case. ◾

An equivalent definition of a projection matrix P onto  is when the following are satisfied:
v ∈  ⇒ Pv= v (projection) (1.48)

w ⟂  ⇒ Pw=𝟎 (perpendicularity). (1.49)

The following result is both interesting and useful; it is proven in Problem 1.8, where further comments
are given.

Theorem 1.2 If P is symmetric and idempotent with rank(P) = k, then (i) k of the eigenvalues of P
are unity and the remaining T − k are zero, and (ii) tr(P) = k.

This is understood as follows: If T × T matrix P is such that rank(P) = tr(P) = k and k of the eigen-
values of P are unity and the remaining T − k are zero, then it is not necessarily the case that P is sym-
metric and idempotent. However, if P is symmetric and idempotent, then tr(P) = k ⇐⇒ rank(P) = k.
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1 function G=makeG(X) % G is such that M=G'G and I=GG'
2 k=size(X,2); % could also use k = rank(X).
3 M=makeM(X); % M=eye(T)-X*inv(X'*X)*X', where X is size TXk
4 [V,D]=eig(0.5*(M+M')); % V are eigenvectors, D eigenvalues
5 e=diag(D);
6 [e,I]=sort(e); % I is a permutation index of the sorting
7 G=V(:,I(k+1:end)); G=G';

Program Listing 1.2: Computes matrix 𝐆 in Theorem 1.3. Function makeM is given in Listing B.2.

Let M = IT − P with dim() = k, k ∈ {1, 2,… ,T − 1}. As M is itself a projection matrix, then,
similar to (1.42), it can be expressed as VV′, where V is a T × (T − k) matrix with orthonormal
columns. We state this obvious, but important, result as a theorem because it will be useful elsewhere
(and it is slightly more convenient to use V′V instead of VV′).

Theorem 1.3 Let X be a full-rank T × k matrix, k ∈ {1, 2,… ,T − 1}, and  = (X) with dim() =
k. Let M = IT − P . The projection matrix M may be written as M=G′G, where G is (T − k) × T and
such that GG′ = IT−k and GX=𝟎.

A less direct, but instructive, method for proving Theorem 1.3 is given in Problem 1.5. Matrix G can
be computed by taking its rows to be the T − k eigenvectors of M that correspond to the unit eigenval-
ues. The small program in Listing 1.2 performs this computation. Alternatively, G can be computed by
applying Gram–Schmidt orthogonalization to the columns of M and keeping the nonzero vectors.5
Matrix G is not unique and the two methods just stated often result in different values.

It turns out that any symmetric, idempotent matrix is a projection matrix:

Theorem 1.4 The symmetry and idempotency of a matrix P are necessary and sufficient conditions
for it to be the projection matrix onto the space spanned by its columns.

Proof : Sufficiency: We assume P is a symmetric and idempotent T × T matrix, and must show that
(1.43) and (1.44) are satisfied for all y ∈ ℝT . Let y be an element of ℝT and let  = (P). By the def-
inition of column space, Py ∈  , which is (1.43). To see that (1.44) is satisfied, we must show that
(I−P)y is perpendicular to every vector in  , or that (I−P)y ⟂ Pw for all w ∈ ℝT . But

((I−P)y)′Pw= y′Pw− y′P′Pw=𝟎
because, by assumption, P′P=P.

For necessity, following Christensen (1987, p. 335), write y = y1 + y2, where y ∈ ℝT , y1 ∈  and
y2 ∈ ⟂. Then, using only (1.48) and (1.49), Py = Py1 + Py2 = Py1 = y1 and

P2y =P2y1 + P2y2 = Py1 = Py,

so that P is idempotent. Next, as Py1 = y1 and (I−P)y = y2,

y′P′(I−P)y = y′
1y2 = 0,

5 In Matlab, the orth function can be used. The implementation uses the singular value decomposition (svd) and attempts
to determine the number of nonzero singular values. Because of numerical imprecision, this latter step can choose too many.
Instead, just use [U,S,V]=svd(M); dim=sum(round(diag(S))==1); G=U(:,1:dim)’;, where dim will equal
T − k for full rank X matrices.
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because y1 and y2 are orthogonal. As y is arbitrary, P′(I−P) must be 𝟎 , or P′ = P′P. From this and
the symmetry of P′P, it follows that P is also symmetric. ◾

The following fact will be the key to obtaining the o.l.s. estimator in a linear regression model, as
discussed in Section 1.3.2.

Theorem 1.5 Vector u in  is the closest to y in the sense that‖y −u‖2 = min
ũ∈ ‖y − ũ‖2.

Proof : Let y = u + v, where u ∈  and v ∈ ⟂. We have, for any ũ ∈  ,‖y − ũ‖2 = ‖u+ v− ũ‖2 = ‖u− ũ‖2 + ‖v‖2 ⩾ ‖v‖2 = ‖y −u‖2,

where the second equality holds because v ⟂ (u − ũ). ◾

The next theorem will be useful for testing whether the mean vector of a linear model lies in a
subspace of (X), as developed in Section 1.4.

Theorem 1.6 Let 0 ⊂  be subspaces of ℝT with respective integer dimensions r and s, such that
0 < r < s < T . Further, let \0 denote the subspace  ∩ ⟂

0 with dimension s − r, i.e., \0 = {s ∶
s ∈ ; s ⟂ 0}. Then

a. PP0
= P0

and P0
P = P0

. d. P\0
= P⟂

0 \⟂ = P⟂
0
− P⟂ .

b. P\0
= P − P0

. e. PP\0
= P\0

P = P\0
.

c. ‖P\0
y‖2 = ‖Py‖2 − ‖P0

y‖2. f. ‖P⟂
0 \⟂ y‖2 = ‖P⟂

0
y‖2 − ‖P⟂ y2‖.

Proof : (part a) For all y ∈ ℝT , as P0
y ∈  , P (P0

y) = P0
y. Transposing yields the second result.

Another way of seeing this (and which is useful for proving the other results) is to partition ℝT into
subspaces  and ⟂, and then  into subspaces 0 and \0. Take as a basis for ℝT the vectors

0 basis
⏞⏞⏞⏞⏞
r1,… , rr,

\0 basis
⏞⏞⏞⏞⏞⏞⏞⏞⏞
sr+1,… , ss

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
 basis

, zs+1,… , zT
⏟⏞⏞⏞⏟⏞⏞⏞⏟

⊥ basis

(1.50)

and let y = r+ s+ z, where r ∈ 0, s ∈ \0 and z ∈ ⟂ are orthogonal. Clearly, P0
y = r while

Py = r+ s and P0
Py = P0

(r+ s) = r.
The remaining proofs are developed in Problem 1.9. ◾

1.3.2 Implementation

For the linear regression model

Y(T×1) = X(T×k)𝜷 (k×1) + 𝝐(T×1), (1.51)
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with subscripts indicating the sizes and 𝝐 ∼ N(𝟎, 𝜎2IT ), we seek that 𝜷 such that ‖Y − X𝜷‖2 is
minimized. From Theorem 1.5, X𝜷 is given by PXY, where PX ≡ P(X) is an abbreviated notation for
the projection matrix onto the space spanned by the columns of X. We will assume that X is of full
rank k, though this assumption can be relaxed in a more general treatment; see, e.g., Section 1.4.2.

If X happens to consist of k orthonormal column vectors, then T=X, where T is the orthonor-
mal matrix given in (1.42), so that PX = TT′. If (as usual), X is not orthonormal, with columns,
say, v1,… , vk , then T could be constructed by applying the Gram–Schmidt procedure to v1,… , vk .
Recall that, under our assumption that X is full rank, v1,… , vk forms a basis (albeit not orthonormal)
for (X).

This can be more compactly expressed in the following way: From Theorem 1.1, vector Y can
be decomposed as Y = PXY + (I − PX)Y, with PXY =

∑k
i=1 civi, where c = (c1,… , ck)′ is the unique

coefficient vector corresponding to the basis v1,… , vk of (X). Also from Theorem 1.1, (I − PX)Y is
perpendicular to (X), i.e., ⟨(I − PX)Y, vi⟩ = 0, i = 1,… , k. Thus,

⟨Y, vj⟩ = ⟨PXY + (I − PX)Y, vj⟩ = ⟨PXY, vj⟩ = ⟨ k∑
i=1

civi, vj

⟩
=

k∑
i=1

ci⟨vi, vj⟩,
j = 1,… , k, which can be written in matrix terms as⎡⎢⎢⎢⎢⎣

⟨Y, v1⟩⟨Y, v2⟩
⋮⟨Y, vk⟩

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
⟨v1, v1⟩ ⟨v1, v2⟩ · · · ⟨v1, vk⟩⟨v2, v1⟩ ⟨v2, v2⟩ · · · ⟨v2, vk⟩

⋮ ⋮ ⋮⟨vk , v1⟩ ⟨vk , v2⟩ ⟨vk , vk⟩
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

c1
c2
⋮
ck

⎤⎥⎥⎥⎥⎦
,

or, in terms of X and c, as X′Y = (X′X)c. As X is full rank, so is X′X, showing that c = (X′X)−1X′Y is
the coefficient vector for expressing PXY using the basis matrix X. Thus, PXY = Xc=X(X′X)−1X′Y,
i.e.,

PX = X(X′X)−1X′. (1.52)

As PXY is unique from Theorem 1.1 (and from the full rank assumption on X), it follows that the least
squares estimator 𝜷 = c. This agrees with the direct approach used in Section 1.2. Notice also that, if
X is orthonormal, then X′X= I and X(X′X)−1X′ reduces to XX′, as in (1.42).

It is easy to see that PX is symmetric and idempotent, so that from Theorem 1.4 and the uniqueness
of projection matrices (Problem 1.4), it is the projection matrix onto  , the space spanned by its
columns. To see that  = (X), we must show that, for all Y ∈ ℝT , PXY ∈ (X) and (IT − PX)Y ⟂
(X). The former is easily verified by taking b = (X′X)−1X′Y in (1.38). The latter is equivalent to the
statement that (IT − PX)Y is perpendicular to every column of X. For this, defining the projection
matrix

M ∶= I − PX = IT − X(X′X)−1X′, (1.53)

we have

X′MY = X′(Y − PXY) = X′Y−X′X(X′X)−1X′Y = 𝟎, (1.54)

and the result is shown. Result (1.54) implies MX=𝟎. This follows from direct multiplication, but can
also be seen as follows: Note that (1.54) holds for any Y ∈ ℝT , and taking transposes yields Y′M′X = 𝟎,
or, as M is symmetric, MX=𝟎.
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Example 1.7 The method of Gram–Schmidt orthogonalization is quite naturally expressed in terms
of projection matrices. Let X be a T × k matrix not necessarily of full rank, with columns z1,… , zk ,
z1 ≠ 𝟎. Define w1 = z1∕‖z1‖ and

P1 = P(z1) = P(w1) = w1(w′
1w1)−1w′

1 = w1w′
1.

Now let r2 = (I − P1)z2, which is the component in z2 perpendicular to z1. If ‖r2‖ > 0, then set w2 =
r2∕‖r2‖ and P2 = P(w1,w2), otherwise set w2 = 𝟎 and P2 = P1. This is then repeated for the remain-
ing columns of X. The matrix W with columns consisting of the j nonzero wi, 1 ⩽ j ⩽ k, is then an
orthonormal basis for (X). ◾

Example 1.8 Let PX be given in (1.52) with 𝟏 ∈ (X) and P𝟏 = 𝟏𝟏′∕T be the projection matrix onto
𝟏, i.e., the line (1, 1,… , 1) in ℝT . Then, from Theorem 1.6, PX − P𝟏 is the projection matrix onto
(X)\(𝟏) and‖(PX − P𝟏)Y‖2 = ‖PXY‖2 − ‖P𝟏Y‖2.

Also from Theorem 1.6, ‖PX\𝟏Y‖2 = ‖P𝟏⟂\X⟂Y‖2 = ‖P𝟏⟂Y‖2 − ‖PX⟂Y‖2. As‖PX\𝟏Y‖2 = ‖(PX − P𝟏)Y‖2 =
∑

(Ŷ − Ȳ )2,‖P𝟏⟂Y‖2 = ‖(I − P𝟏)Y‖2 =
∑

(Yt − Ȳ )2,‖PX⟂Y‖2 = ‖(I − PX)Y‖2 =
∑

(Yt − Ŷ )2,

we see that
T∑

t=1
(Yt − Ȳ )2 =

T∑
t=1

(Yt − Ŷ )2 +
T∑

t=1
(Ŷ − Ȳ )2, (1.55)

proving (1.12). ◾

Often it will be of interest to work with the estimated residuals of the regression (1.51), namely

�̂� ∶= Y−X𝜷 = (IT − PX)Y = MY = M(X𝜷 + 𝝐) = M𝝐, (1.56)

where M is the projection matrix onto the orthogonal complement of X, given in (1.53), and the last
equality in (1.56) follows because MX=𝟎, confirmed by direct multiplication or as shown in (1.54).
From (1.4) and (1.56), the RSS can be expressed as

RSS = S(𝜷) = �̂�
′
�̂� = (MY)′MY = Y′MY = Y′(I−PX)Y. (1.57)

Example 1.9 Example 1.1, the Frisch–Waugh–Lovell Theorem, cont.
From the symmetry and idempotency of M1, the expression in (1.21) can also also be written as

𝜷2 = (X′
2M1X2)−1X′

2M1Y = (X′
2M′

1M1X2)−1X′
2M′

1M1Y
= (Q′Q)−1Q′Z,

where Q =M1X2 and Z=M1Y. That is, 𝜷2 can be computed not by regressing Y onto X2, but by
regressing the residuals of Y onto the residuals of X2, where residuals refers to having removed the
component spanned by X1. If X1 and X2 are orthogonal, then

Q =M1X2 = X2 − X1(X′
1X1)−1X′

1X2 = X2,
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and, with I=M1 + P1,

(X′
2X2)−1X′

2Y = (X′
2X2)−1X′

2(M1 + P1)Y
= (X′

2X2)−1X′
2M1Y = (Q′Q)−1Q′Z ,

so that, under orthogonality, 𝜷2 can indeed be obtained by regressing Y onto X2. ◾

It is clear that M should have rank T − k, or T − k eigenvalues equal to one and k equal to zero. We
can thus express �̂�2 given in (1.11) as

�̂�2 =
S(𝜷)

T − k
= (MY)′MY

T − k
= Y′MY

rank(M)
=

Y′(I−PX)Y
rank(I−PX)

. (1.58)

Observe also that 𝝐′M𝝐 = Y′MY.
It is now quite easy to show that �̂�2 is unbiased. Using properties of the trace operator and the fact

M is a projection matrix (i.e., M′M=MM=M),

𝔼[�̂�′�̂�] = 𝔼[𝝐′M′M𝝐] = 𝔼[𝝐′M𝝐] = tr(𝔼[𝝐′M𝝐]) = 𝔼[tr(𝝐′M𝝐)]
= 𝔼[tr(M𝝐𝝐′)] = tr(M𝔼[𝝐𝝐′]) = 𝜎2tr(M) = 𝜎2rank(M) = 𝜎2(T − k),

where the fact that tr(M) = rank(M) follows from Theorem 1.2. In fact, a similar derivation was used
to obtain the general result (A.6), from which it directly follows that

𝔼[𝝐′M𝝐] = tr(𝜎2M) + 𝟎′M𝟎 = 𝜎2(T − k). (1.59)

Theorem A.3 shows that, if Y ∼ N(𝝁,𝚺) with 𝚺 > 0, then the vector CY is independent of the
quadratic form Y′AY if C𝚺A = 0. Using this with 𝚺 = I, C=P and A=M= I−P, it follows that
X𝜷 = PY and (T − k)�̂�2 = Y′MY are independent. That is:

Under the usual regression model assumptions (including that X is not stochastic, or is such
that the model is variation-free), point estimators 𝜷 and �̂�2 are independent.

This generalizes the well-known result in the i.i.d. case: Specifically, if X is just a column of ones,
then PY = T−1𝟏𝟏′Y = (Ȳ , Ȳ ,… , Ȳ )′ and Y′MY=Y′M′MY =

∑T
t=1 (Yt − Ȳ )2 = (T − 1)S2, so that Ȳ

and S2 are independent.
As �̂� = M𝝐 is a linear transformation of the normal random vector 𝝐,

(�̂� ∣ 𝜎2) ∼ N(𝟎, 𝜎2M), (1.60)

though note that M is rank deficient (i.e., is less than full rank), with rank T − k, so that this is a
degenerate normal distribution. In particular, by definition, �̂� is in the column space of M, so that �̂�
must be perpendicular to the column space of X, or

�̂�
′X=𝟎. (1.61)

If, as usual, X contains a column of ones, denoted 𝟏T , or, more generally, 𝟏T ∈ (X), then (1.61) implies
that

∑T
t=1 𝜖t = 0.

We now turn to the generalized least squares case, with the model given by (1.3) and (1.24), and
estimator (1.28). In this more general setting when 𝝐 ∼ N(𝟎, 𝜎2𝚺), the residual vector is given by

�̂� = Y − X𝜷𝚺 = M𝚺Y, (1.62)
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where M𝚺 = IT − X(X′𝚺−1X)−1X′𝚺−1. Although M𝚺 is idempotent, it is not symmetric, and cannot
be referred to as a projection matrix. Observe also that the estimated residual vector is no longer
orthogonal to the columns of X. Instead we have

X′𝚺−1(Y − X𝜷𝚺) = 𝟎, (1.63)

so that the residuals do not necessarily sum to zero.
We now state a result from matrix algebra, and then use it to prove a theorem that will be useful for

some hypothesis testing situations in Chapter 5.

Theorem 1.7 Let V be an n × n positive definite matrix, and let U and T be n × k and n × (n − k)
matrices, respectively, such that, if W = [U,T], then W′W = WW′ = In. Then

V−1 − V−1U(U′V−1U)−1U′V−1 = T(T′VT)−1T′. (1.64)

Proof : See Rao (1973, p. 77). ◾

Let P = PX be the usual projection matrix on the column space of X from (1.52), let M = IT − P,
and let G and H be matrices such that M = G′G and P = H′H, in which case W = [H′,G′] satisfies
W′W = WW′ = IT .

Theorem 1.8 For the regression model given by (1.3) and (1.24), with �̂� = M𝚺Y from (1.62),

�̂�
′𝚺−1�̂� = 𝝐′G′(G𝚺G′)−1G𝝐. (1.65)

Proof : As in King (1980, p. 1268), using Theorem 1.7 with T = G′, U = H′, and V = 𝚺, and the fact
that H′ can be written as XK, where K is a k × k full rank transformation matrix, we have

𝝐′G′(G𝚺G′)−1G𝝐 = U′(𝚺−1 − 𝚺−1H′(H𝚺−1H′)−1H𝚺−1)U
= U′(𝚺−1 − 𝚺−1XK(K′X′𝚺−1XK)−1K′X′𝚺−1)U
= U′(𝚺−1 − 𝚺−1X(X′𝚺−1X)−1X′𝚺−1)U = �̂�

′𝚺−1�̂�,

which is (1.65). ◾

1.4 Linear Parameter Restrictions

[D]eleting a small unimportant parameter from the model is generally a good idea, because we
will incur a small bias but may gain much precision. This is true even if the estimated param-
eter happens to be highly ‘significant’, that is, have a large t-ratio. Significance indicates that
we have managed to estimate the parameter rather precisely, possibly because we have many
observations. It does not mean that the parameter is important.

(Jan R. Magnus, 2017, p. 30)

In much applied regression analysis, the analyst will wish to know the extent to which certain linear
restrictions on 𝜷 hold. As the quote above by Magnus (2017) suggests, we recommend doing so via
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means more related to the purpose of the research, e.g., forecasting, and, particularly, in applications in
the social sciences for which the notion of repeatability of the experiment does not apply, being aware
of the pitfalls of the classic significance testing (use of p-values) and Neyman–Pearson hypothesis
testing paradigm. This issue was discussed in some detail in Section III.2.8, where strong arguments
were raised, and evidence presented, that significance and hypothesis testing might one day make
it to the ash heap of statistical history. In addition to the numerous references provided in Section
III.2.8, such as Ioannidis (2005), the interested reader is encouraged to read Ioannidis (2014), and a
rebuttal to that paper in Leek and Jager (2017), as well as the very pertinent overview in Spiegelhalter
(2017), addressing this issue and the more general theme of trustworthiness in statistical reports, amid
concerns of reproducibility, fake news, and alternative facts.

1.4.1 Formulation and Estimation

A common goal in regression analysis is to test is whether an individual regression coefficient is “sig-
nificantly” different than a given value, often zero. More general tests might involve testing whether
the sum of certain coefficients is a particular value, or testing for the equality of two or more coef-
ficients. These are all special cases of a general linear test that can be expressed as (regrettably with
many Hs, but following standard terminology)

H0 ∶ H𝜷 = h, (1.66)

versus the alternative, H1, corresponding to the unrestricted model. The matrix H is of dimension
J × k and, without loss of generality, assumed to be of full rank J , so that J ⩽ k and h is J × 1. The null
hypothesis can also be written

H0 ∶ Y = X𝜸 + 𝝐, X𝜸 ∈ H , (1.67)

where

H = {z ∶ z=X𝜷, H𝜷 = h, 𝜷 ∈ ℝk}. (1.68)

If h ≠ 𝟎, then H is an affine subspace because it does not contain the zero element (provided both
X and H are full rank, as is assumed).

As an important illustration, for testing if the last J regressors are not significant, i.e., if 𝛽k−J+1 =
· · · = 𝛽k = 0, set h=𝟎 and H = [𝟎J×k−J | IJ ]. For example, if k = 6 and J = 2, then

H =
(

0 0 0 0 1 0
0 0 0 0 0 1

)
.

We next consider how 𝜸 in (1.67) can be estimated, followed by the distribution theory associated
with the formal frequentist testing framework of the null hypothesis for assessing whether or not the
data are in agreement with the proposed set of restrictions.

In many cases of interest, the reduced column space is easily identified. For example, if a set of
coefficients are taken to be zero, then the nonzero elements of �̂� are found by computing the o.l.s.
estimator using an X matrix with the appropriate columns removed. In general, however, it will not
always be clear how to identify the reduced column space, so that a more general method will be
required. Theorem 1.9 gives a nonconstructive proof, i.e., we state the result and confirm it satisfies
the requirements. We subsequently show two constructive proofs.
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Theorem 1.9 Assuming H and X are full rank, the least squares estimator of 𝜸 in (1.67) is given by

�̂� = 𝜷 + AH′[HAH′]−1(h−H𝜷), (1.69)

where A = (X′X)−1.

Proof : By definition, we require that �̂� is the least squares estimator subject to the linear constraint.
Thus, the proof entails showing that (1.69) satisfies the following two conditions:

1) H�̂� = h and
2) ‖Y−X�̂�‖2 ⩽ ‖Y−Xb‖2 for all b ∈ ℝk such that Hb=h.

This is straightforward and detailed in Problem 1.6. ◾

We will refer to �̂� in (1.69) as the restricted least squares, or r.l.s., estimator. It can be derived
in several ways, two important ones of which are now shown. A third way, using projection, is also
straightforward and instructive; see, e.g., Ravishanker and Dey (2002, Sec. 4.6.2) or Seber and Lee
(2003, p. 61).

Derivation of (1.69) Method I: This method makes use of the results for the generalized least
squares estimator and does not explicitly require the use of calculus. We will need the following
well-known matrix result: If matrices A ,B and D are such that A+BDB′ is a square matrix of full
rank, then

(A+BDB′)−1 = A−1 − A−1B(B′A−1B+D−1)−1B′A−1. (1.70)

See, e.g., Abadir and Magnus (2005, p. 107) for proof of the more general case of (A+BDC′)−1.
Let (uncharacteristically, using a lower case letter) v be a vector random variable with mean 𝟎 and

finite covariance matrix 𝜎2
v V, denoted v ∼ (𝟎, 𝜎2

v V). The constraint in (1.66) can be understood as the
limiting case, as 𝜎2

v → 0, of the stochastic set of extraneous information equations on 𝜷 ,

H𝜷 + v = h. (1.71)

The regression model Y=X𝜷 + 𝝐, 𝕍 (𝝐) = 𝜎2IT , can be combined with (1.71) via the so-called mixed
model of Theil and Goldberger (1961) to give(

Y
h

)
=

(
X
H

)
𝜷 +

(
𝝐

v

)
.

This can be expressed more compactly as

Ym = Xm𝜷m + 𝝐m, 𝝐m ∼ (𝟎 ,𝚺m), 𝚺m =
(
𝜎2IT 𝟎
𝟎 𝜎2

v V

)
,

where the subscript m denotes “mixed”. Using generalized least squares,

𝜷m = (X′
m𝚺−1

m Xm)−1X′
m𝚺−1

m Ym

= (𝜎−2X′X + 𝜎−2
v H′V−1H)−1(𝜎−2X′Y + 𝜎−2

v H′V−1h)
= (X′X + 𝜆H′V−1H)−1(X′Y + 𝜆H′V−1h),
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where 𝜆 ∶= 𝜎2∕𝜎2
v . Next, following Alvarez and Dolado (1994), use (1.70) with

A ∶= (X′X)−1 and C𝜆 ∶= AH′(HAH′ + 𝜆−1V)−1

to get

𝜷m = [A − C𝜆HA](X′Y+H′(𝜆−1V)−1h)
= AX′Y+AH′(𝜆−1V)−1h−C𝜆HAX′Y−C𝜆HAH′(𝜆−1V)−1h
= 𝜷 + C𝜆(HAH′ + 𝜆−1V)(𝜆−1V)−1h−C𝜆H𝜷 − C𝜆HAH′(𝜆−1V)−1h
= 𝜷 + C𝜆[HAH′(𝜆−1V)−1h+h−H𝜷 − HAH′(𝜆−1V)−1h]
= 𝜷 + C𝜆(h−H𝜷),

where 𝜷 is the unrestricted least squares estimator. Letting 𝜎2
v → 0 gives (1.69). Note that the inverse

of HAH′ exists because both H and X (and thus A) are full rank. ◾

Remark The mixed model structure is useful in several regression modeling contexts, and is related
to formal Bayesian methods, whereby model parameters are treated as random variables, though not
requiring Bayesian methodology. For example, as stated by Lee and Griffiths (1979, pp. 4–5), “Thus,
for stochastic prior information of the form given in [(1.71)], the mixed estimation procedure is more
efficient, is distribution free, and does not involve a Bayesian argument.”

It also provides the most straightforward derivation of the so-called Black–Litterman model for
incorporating viewpoints into a statistical model for financial portfolio allocation; see, e.g., Kolm et al.
(2008, p. 362), as well as Black and Litterman (1992), Meucci (2006), Giacometti et al. (2007), Brandt
(2010, p. 313), and the references therein. ◾

Derivation of (1.69) Method II: The calculus technique of Lagrange multipliers is applicable in this
setting.6 Besides being of interest in itself for deriving �̂�, we will subsequently need equation (1.72)
derived along the way, in Section 1.4.2.

The method implies that the k + J constraints
𝜕
𝜕�̂�i

{‖Y − X�̂�‖2 + 𝝀′(H�̂� − h)} = 0, i = 1,… , k,

H�̂� − h = 𝟎,

must be satisfied, where 𝝀 = (𝜆1,… , 𝜆J )′. The ith equation, i = 1,… , k, is easily seen to be

2
T∑

t=1
(Yt − x′

t �̂�)(−xit) + (the ith component of H′𝝀) = 0,

so that the first k equations can be written together as −2X′(Y − X�̂�) + H′𝝀 = 𝟎. These, in turn, can
be expressed together with constraint H�̂� = h as[

2X′X H′

H 𝟎

] [
�̂�

𝝀

]
=

[
2X′Y

h

]
, (1.72)

6 A particularly lucid discussion of Lagrange multipliers is provided by Hubbard and Hubbard (2002, Sec. 3.7).
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from which an expression for �̂� could be derived using the formula for the inverse of a partitioned
matrix. More directly, with A = (X′X)−1, the first set of constraints gives

�̂� = A
(

X′Y − 1
2

H′𝝀
)
. (1.73)

Inserting (1.73) into constraint H�̂� = h gives HAX′Y − 1
2

HAH′𝝀 = h or (as we assume that X and H
are full rank)

𝝀 = 2[HAH′]−1[HAX′Y − h] = 2[HAH′]−1[H𝜷 − h],

where 𝜷 = AX′Y is the unconstrained least squares estimator. Thus, from (1.73),

�̂� = A
(

X′Y − 1
2

H′𝝀
)

= A(X′Y − H′[HAH′]−1[H𝜷 − h])
= 𝜷 − AH′[HAH′]−1[H𝜷 − h],

which is the same as (1.69). ◾

Remark Up to this point, we have considered the linear model Y = X𝜷 + 𝝐 from (1.3). This is an
example of what we refer to as a static model, as opposed to the important class of models involving
time-varying coefficients 𝜷 t , which we refer to as a type of dynamic model. Section 5.6 is dedicated to
some dynamic model classes with time-varying 𝜷 t . The most flexible way of dealing with estimation
and inference of the linear model with time-varying parameters is via use of the so-called state space
representation and Kalman filtering techniques; see the remarks at the end of Section 5.6.1.

In some contexts, one is interested in the dynamic regression model Yt = x′
t𝜷 t + 𝜖t subject to

time-varying linear constraints Ht𝜷 t = ht , generalizing (1.66). Examples of econometric mod-
els that use such structures, as well as the augmentation of the Kalman filter required for its
estimation are detailed in Doran (1992) and Doran and Rambaldi (1997); see also Durbin and
Koopman (2012). ◾

1.4.2 Estimability and Identifiability

Expression (1.69) uses 𝜷 , which may not be well-defined, as occurs when X is rank deficient. In our
presentation of the linear model for regression analysis, we always assume that X is of full rank (or
can be transformed to be), so that (1.69) is computable. However, contexts exist for which it is natural
and convenient to work with a rank deficient X, such as the ANOVA models in Chapters 2 and 3. Use
of such X matrices are common in these and other designed experiments; see, e.g., Graybill (1976)
and Christensen (2011).

As a simple, unrealistic example to help illustrate the point, let the true data-generating process
be given by Yt = 𝜇 + 𝜖t , and consider using the model Yt = 𝜇1 + 𝜇2 + 𝜖t . Clearly, unique estimators
of 𝜇1 and 𝜇2 do not exist, though 𝜇1 + 𝜇2 can be estimated. More generally, 𝜇1 and 𝜇2 can also be
estimated, provided one imposes an additional linear constraint, e.g., 𝜇1 − 𝜇2 = 0. With this latter
constraint, one would choose H and h in (1.66) such that 𝜇1 and 𝜇2 are equal, i.e., H = [1,−1] and
h = 0. Of course, in this simple setting, �̂� is trivially obtained by fitting the regression with X = 𝟏,
but observe that (1.69) cannot be used for computing it. A straightforward resolution, as proposed
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in Greene and Seaks (1991), is to define the restricted least squares estimator as the solution to (1.72),
written, say, as Wd= v, which will be unique if rank(W) = k + J .

In our example, X is a T × 2 matrix of all ones, and

W =
[

2X′X H′

H 𝟎

]
=

⎡⎢⎢⎣
2T 2T 1
2T 2T −1

1 −1 0

⎤⎥⎥⎦ ,
which is full rank, with rank k + J = 3, for any sample size T . Let Y• =

∑T
t=1 Yt , so that v in (1.72) when

expressed as Wd= v is [2Y•, 2Y•, 0]′. The solution to

Wd =
⎡⎢⎢⎣

2T 2T 1
2T 2T −1

1 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
�̂�1
�̂�2
𝜆

⎤⎥⎥⎦ = v =
⎡⎢⎢⎣

2Y•
2Y•

0

⎤⎥⎥⎦
is �̂�i = Y•∕(2T) = Ȳ∕2, i = 1, 2, (and 𝜆 = 0), as was obvious from the simple structure of the setup. An
equivalent condition was derived in Bittner (1974): Estimator �̂� is unique if

rank
([

H
X

])
= k, (1.74)

which is clearly the case in this simple example.
We now briefly discuss the concept of estimability, which is related to identifiability, as defined

in Section III.5.1.1. In the previous simple example, 𝜇1 and 𝜇2 are not identifiable, though 𝜇1 + 𝜇2 is
estimable. For vector 𝓵 of size 1 × k, the linear combination 𝓵𝜷 is said to be estimable if it possesses
a linear, unbiased estimator, say 𝜿Y, where 𝜿 is a 1 × T vector. If 𝓵𝜷 is estimable, then 𝓵𝜷 = 𝔼[𝜿Y] =
𝜿𝔼[Y] = 𝜿X𝜷 , so that𝓵 = 𝜿X, or𝓵′ = X′𝜿′. This implies that𝓵𝜷 is estimable if and only if𝓵′ ∈ (X′),
recalling definition (1.38). In the simple example above, it is easy to see that, for 𝓵 = (1, 1), 𝓵𝜷 is
estimable, i.e., 𝜇1 + 𝜇2 can be estimated, as we stated above. However, for 𝓵 = (0, 1) and 𝓵 = (1, 0),
𝓵𝜷 is not estimable, as, obviously, ∄𝜿 such that𝓵′ = X′𝜿′, which agrees with our intuition that neither
𝜇1 nor 𝜇2 is identifiable.

Turning to a slightly less trivial example, consider the regression model with sample size T = 2n
and

X =
[
𝟏n 𝟏n 𝟎n
𝟏n 𝟎n 𝟏n

]
. (1.75)

The baseline (or null hypothesis) model is that all the observations have the same mean, which corre-
sponds to use of only the first column in X in (1.75), whereas interest centers on knowing if the two
populations, represented with samples Y1,… ,Yn and Yn+1,… ,YT , respectively, have different means,
in which case the alternative model takes X in (1.75) to be the latter two columns. This is an example
of a (balanced) one-way ANOVA model with a = 2 groups, studied in more detail in Chapter 2. The
first regressor corresponds to the mean of all the data, while the other two correspond to the means
specific to each of the two populations. It should be clear from the simple structure that the regression
coefficients 𝛽1, 𝛽2, and 𝛽3 are not simultaneously identified. However, it might be of interest to use the
model in this form, such that 𝛽1 refers to the overall mean, and 𝛽2 (𝛽3) is the deviation of the mean in
group one (two) from the overall mean 𝛽1, in which case we want the constraint that 𝛽2 + 𝛽3 = 0. This
is achieved by taking H = (0, 1, 1) and h = 0.
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1 X= [1 1 0 ; 1 1 0; 1 0 1; 1 0 1]; ell = [1 0 1];
2 kappaPRIME = pinv(X') * ell' % try to solve
3 % now check:
4 disc = ell' - X' * kappaPRIME; check = sum(abs(disc)) % should be zero if estimable

Program Listing 1.3: Attempts to solve 𝓵′ = 𝐗′𝜿′ for 𝜿 via use of the generalized inverse.

Clearly, X in (1.75) is rank deficient, with rank(X) = 2, also seen by deleting all redundant rows,
to give

X∗ =
[

1 1 0
1 0 1

]
,

which is (full) rank 2. From (1.74),

rank
([

H
X

])
= rank

([
H
X∗

])
= rank

⎛⎜⎜⎝
⎡⎢⎢⎣

0 1 1
1 1 0
1 0 1

⎤⎥⎥⎦
⎞⎟⎟⎠ = 3 = k,

so that estimator �̂� is unique, also seen from

W =
⎡⎢⎢⎢⎣

2n n n 0
n n 0 1
n 0 n 1
0 1 1 0

⎤⎥⎥⎥⎦ ,
which is (full) rank k + J = 4.

Without constraints on 𝜷 , for 𝓵 = (1, 1, 1) and 𝓵 = (0, 1, 1), 𝓵𝜷 is not estimable because ∄𝜿 such
that𝓵′ = X′𝜿′, which the reader should confirm, and also should make intuitive sense. Likewise,𝓵𝜷 is
estimable for 𝓵 = (1, 0, 1) and 𝓵 = (1, 1, 0) (both of which form the two unique rows of X). These
results can be checked using Matlab with the code given in Listing 1.3, taking n = 2. For example,
running it with 𝓵 = (1, 0, 1) yields solution 𝜿 = (0, 0, 1∕2, 1∕2). Inspection shows another solution
to be (1∕2,−1∕2, 1∕2, 1∕2), emphasizing that 𝜿 need not be unique, only that 𝓵′ ∈ (X′).

A good discussion of estimability (and also its connection to their software) is provided in SAS/S-
TAT 9.2 User’s Guide (2008, Ch. 15), from which our notation was inspired (they use L and K in place
of our 𝓵 and 𝜿).

1.4.3 Moments and the Restricted GLS Estimator

Derivation of the first two moments of �̂� is straightforward: As 𝜷 is unbiased, (1.69) implies

𝔼[�̂�] = 𝜷 + AH′(HAH′)−1(h − H𝜷), (1.76)

where, as usual, A = (X′X)−1. It is then easy to verify that �̂� − 𝔼[�̂�] = (I − B)(𝜷 − 𝜷), where
B = AH′(HAH′)−1H, and

(I−B)A(I−B′)=A−BA−AB′ +BAB′ =A−BA,
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so that
𝕍 (�̂� ∣ 𝜎2) = 𝔼[(�̂� − 𝔼[�̂�])(�̂� − 𝔼[�̂�])′ ∣ 𝜎2] = (I − B)𝕍 (𝜷 ∣ 𝜎2)(I − B)′

= 𝜎2(I − B)A(I − B)′ = 𝜎2(I − B)A = 𝕍 (𝜷) − K, (1.77)

where K = 𝜎2BA = 𝜎2AH′(HAH′)−1HA is positive semi-definite for J < k (Problem 1.12), so that �̂�
has a lower variance than 𝜷 , assuming that the same estimate of 𝜎2 is used. Observe, however, that if
the null hypothesis is wrong, then, via the bias evident in (1.76) with h ≠ H𝜷 , the mean squared error
(hereafter m.s.e.) of �̂� could be higher than that of 𝜷 . A good discussion of this and related issues is
provided in Judge et al. (1985, pp. 52–62).

So far, the derivation of �̂� pertained to the linear regression model with i.i.d. normal errors. If the
errors instead are of the form 𝝐 ∼ N(𝟎, 𝜎2𝚺) for known positive definite matrix𝚺, then we can combine
the methods of g.l.s. and r.l.s. In particular, just use (1.69) with𝚺−1∕2Y in place of Y and𝚺−1∕2X in place
of X. We will denote this estimator as �̂�𝚺 and refer to it as the restricted generalized least squares,
or r.g.l.s., estimator.

Example 1.10 We wish to compute by simulation the m.s.e. of 𝜷 based on the four estimators o.l.s.,
g.l.s., r.l.s. and r.g.l.s., using, for convenience, the scalar measure M =

∑k
i=1 (𝛽i − 𝛽)2. Let the model be

Yt = 𝛽1 + 𝛽2Xt,2 + 𝛽3Xt,3 + 𝛽4Xt,4 + 𝜖t , t = 1,… ,T = 20,
for 𝝐 = (𝜖1,… , 𝜖T )′ ∼ N(𝟎, 𝜎2𝚺), where 𝚺 is a known, full rank covariance matrix, and the regression
parameters are constrained as 𝛽2 + 𝛽3 + 𝛽4 = 1, for which we take 𝛽1 = 10, 𝛽2 = 0.4, 𝛽3 = −0.2 and
𝛽4 = 1 − 𝛽2 − 𝛽3 = 0.8. The choice of X matrix will determine the m.s.e., and so, for each of the 50,000
replications, we let Xt,i

i.i.d.∼ N(0, 1), i = 2, 3, 4, t = 1,… ,T . Measure M is then approximated by its
sample average.

Five models are used. The first takes 𝜖 ∼ N(0, 𝜎2𝑤t), 𝑤t =
√

t; the second is with 𝑤t = t. The third
and fourth models assume an AR(1) structure for 𝜖t (recall Example 1.3), with parameters a = 0.25 and

1 function compareRGLS
2 T=20; beta=[10 0.4 -0.2 0.8]'; H=[0 1 1 1]; h=1;
3 Sigma = diag( [(1:T)'].ˆ(0.5)); Sigmainv=inv(Sigma);
4 [V,D]=eig(0.5*(Sigma+Sigma')); W=sqrt(D);
5 Sighalf = V*W*V'; Sighalfinv=inv(Sighalf);
6 sim=500; emat=zeros(sim,4);
7 for s=1:sim
8 X=[ones(T,1),randn(T,3)]; y=X*beta+Sighalf*randn(T,1);
9 OLS = inv(X'*X)*X'*y; GLS = inv(X'*Sigmainv*X)*X'*Sigmainv*y;

10 RLS = OLSrestrict(y,X,H,h);
11 RGLS = OLSrestrict(Sighalfinv*y,Sighalfinv*X,H,h);
12 emat(s,:) = [sum((OLS-beta).ˆ2) sum((GLS-beta).ˆ2) ...
13 sum((RLS-beta).ˆ2) sum((RGLS-beta).ˆ2)];
14 end
15 M=mean(emat)
16
17 function gamma = OLSrestrict(y,X,H,h)
18 [J,k]=size(H); if nargin<4, h=zeros(J,1); end
19 b=regress(y,X); A=inv(X'*X); gamma = b+A*H'*inv(H*A*H')*(h-H*b);

Program Listing 1.4: Compares performance of o.l.s., g.l.s., r.l.s., and r.g.l.s. for a specific model.



�

� �

�

34 Linear Models and Time-Series Analysis

Table 1.1 Empirical mean squared error over the four regression
parameters, based on 50,000 replications.

Model

Method 1 2 3 4 5

o.l.s. 0.80 2.73 0.30 0.44 0.36
g.l.s. 0.72 1.85 0.28 0.36 0.28
r.l.s. 0.56 1.90 0.22 0.35 0.27
r.g.l.s. 0.50 1.23 0.21 0.29 0.22

a = 0.5, respectively. The fifth model assumes an MA(1) structure for 𝜖t with b = 0.5. The program to
compute M is given in Listing 1.4. The results are shown in Table 1.1.

We see that, for all the models, o.l.s. is the worst and r.g.l.s. is the best estimator. Model 2 stands
out because the covariance matrix differs markedly from the identity matrix. As such, the difference
between o.l.s. and g.l.s., and the difference between r.l.s. and r.g.l.s. is quite large. For the other models,
these differences are less pronounced, particularly for model 3 (the AR(1) with a = 0.25). ◾

1.4.4 Testing With h=𝟎

The source of all great mathematics is the special case, the concrete example. It is frequent in
mathematics that every instance of a concept of seemingly great generality is in essence the
same as a small and concrete special case.

(Paul R. Halmos, 1985, p. 324)

The above quote from Halmos is not fully applicable here because the general case of h≠ 𝟎 is impor-
tant. It is straightforward and subsequently detailed, but the derivation for the special case h=𝟎 is
both easier and more intuitive because it turns out that we can explicitly express the projection matrix
corresponding to H .

With  = (X) and H ⊂  as defined in (1.68), consider the hypothesis as given in (1.67), but with
the additional normality assumption:

H0 ∶ Y=X𝜸 + 𝝐, 𝝐 ∼ N(𝟎, 𝜎2I), X𝜸 ∈ H
H1 ∶ Y=X𝜷 + 𝝐, 𝝐 ∼ N(𝟎, 𝜎2I), X𝜷 ∈  .

For notational convenience, denote the projection matrix onto (X) as simply P instead of P , let
M = I−P and let P = PH

. With h=𝟎, X�̂� from (1.69) can be expressed as

X�̂� = X𝜷 − XAH′[HAH′]−1H𝜷

= (XAX′ − XAH′[HAH′]−1HAX′)Y
= (P − XAH′[HAH′]−1HAX′)Y =∶ (P − N)Y, (1.78)

where N is so defined. Straightforward algebra verifies that P − N is symmetric and idempotent, so
that, from Theorem 1.4, it is the unique projection matrix onto the subspace

{z ∶ z=X𝜷, 𝜷 ∈ ℝk , H𝜷 = 𝟎}.
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Thus, for h=𝟎, we can express P explicitly as

P = P−N = I−M−N, where P − P = N (1.79)

is symmetric and idempotent. Then, from Theorem 1.2, rank(N) = tr(N), where

tr(N) = tr(XAH′[HAH′]−1HAX′) = tr([HAH′]−1HAX′ XAH′) = tr(IJ ) = J .

The constrained residual vector is then �̂�H = Y − X�̂�, or

(Y−X𝜷) + (X𝜷 − X�̂�) = Y − X�̂� = (I − P)Y = (M+N)Y,

so that (X𝜷 − X�̂�) = NY. The following result is (in light of previous results) simple, and very impor-
tant:

From Theorem 1.6,

PP = PP = P , and N=P − P = P\ is a projection matrix. (1.80)

In particular, note that X�̂� = PY = PPY = PX𝜷 , so that X�̂� is the projection of X𝜷

onto H .

If H0 is true, then PY and PY should be close, with the discrepancy arising only from sampling
error. A natural measure7 of the magnitude of the difference is the norm, ‖(P − P)Y‖, or its square,
given by

[(P − P)Y]′(P − P)Y = Y′(P − P)Y.
From (A.6),

𝔼[Y′(P − P)Y] = 𝜎2rank(P − P) + 𝜷 ′X′(P − P)X𝜷, (1.81)

where the latter term is, from (1.79), given by

𝜷 ′X′(P − P)X𝜷 = 𝜷 ′X′NX𝜷 = 𝜷 ′H′[HAH′]−1H𝜷. (1.82)

Under H0, X𝜷 = X𝜸 so that

(P − P)X𝜷 = (P − P)X𝜸 = 𝟎, (1.83)

and (1.81) reduces to

𝔼[Y′(P − P)Y] = 𝜎2rank(P − P) = 𝜎2rank(N) = J𝜎2. (1.84)

By using �̂�2 from the unrestricted model as an estimate for 𝜎2, as given in (1.58), and dividing Y′(P −
P)Y by J �̂�2 = rank(P − P)�̂�2, we expect the value

F =
Y′(P − P)Y ∕ rank(P − P)

�̂�2 =
Y′(P − P)Y ∕ rank(P − P)

Y′(I−P)Y ∕ rank(I − P)
(1.85)

7 Other measures, such as the sum or maximum of the vector of absolute values might also seem “natural”. However, the
sampling distribution of the chosen measure is tractable, and also leads to a UMPI test.
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to be “close to” one under H0 and larger than one under H1. The choice of variable name F alludes to
its distribution, which will be shown shortly. Before doing so, we first note that

Y′(P − P)Y=Y′P′PY−Y′P′PY = ‖X𝜷‖2 − ‖X�̂�‖2, (1.86)

or, in terms of sums of squares quantities already defined,

Y′(P − P)Y = Y′(I − P)Y−Y′(I − P)Y
= Y′(I − P)′(I − P)Y−Y′(I − P)′(I − P)Y

= S(�̂�) − S(𝜷). (1.87)

(These also follow from Theorem 1.6.) Thus, from (1.84) and (1.87), F in (1.85) can also be expressed
in the attractively simple form

F =
[S(�̂�) − S(𝜷)]∕J

S(𝜷)∕(T − k)
=

S(�̂�) − S(𝜷)
J �̂�2 . (1.88)

Direct calculation shows (I − P)(P − P) = 𝟎, so that

(Y−X𝜷) = �̂� = (I − P)Y ⟂ (P − P)Y = (X𝜷 − X�̂�),

and computing the squared length of both sides of �̂�H = (Y−X𝜷) + (X𝜷 − X�̂�) yields

S(�̂�) = S(𝜷) + ‖X𝜷 − X�̂�‖2. (1.89)

Thus, �̂�H can be decomposed into two orthogonal parts, �̂� = MY and X𝜷 − X�̂�. In fact, substituting
�̂� from (1.69) into ‖X𝜷 − X�̂�‖2 and simplifying shows that (for any h, not just 𝟎), from (1.89),

S(�̂�) − S(𝜷) = (h − H𝜷)′[HAH′]−1(h − H𝜷), (1.90)

so that �̂� and S(�̂�) need not be explicitly calculated. Also, (1.81), (1.82) and (1.87) imply that

𝔼[S(�̂�) − S(𝜷)] = 𝜎2J + 𝜷 ′H′[HAH′]−1H𝜷. (1.91)

As an aside, from (1.86), (1.87) and (1.89), ‖X𝜷 − X�̂�‖2 = ‖X𝜷‖2 − ‖X�̂�‖2. By direct expansion,‖X𝜷 − X�̂�‖2 = ‖X𝜷‖2 + ‖X�̂�‖2 − 2Y′X�̂�, implying Y′X�̂� = ‖X�̂�‖2, i.e., that �̂�′X′X�̂� = �̂�
′X′Y. It is not

true, however, that X′X�̂� = X′Y, which obviously holds for 𝜷 , i.e., X′X𝜷 = X′Y from (1.6).
To obtain the distribution of F , recall Theorems A.1 and A.2. With 𝚺 = 𝜎2I, we see that the prod-

uct N𝚺 = (P − P)𝜎2I is not idempotent, but it is only a scale factor that gets in the way. So, using
Theorem A.1 and the fact that (Y∕𝜎) ∼ N(X𝜷∕𝜎, I),

(Y∕𝜎)′(P − P)(Y∕𝜎) ∼ 𝜒2(J , 𝜷 ′X′(P − P)X𝜷∕𝜎2), (1.92)

and, as (I−P)X=𝟎,

(Y∕𝜎)′(I−P)(Y∕𝜎) ∼ 𝜒2(T − k, 0). (1.93)

As (P − P)(I−P) = 𝟎, Theorem A.2 implies that the numerator and denominator of F are inde-
pendent. By dividing both the numerator and denominator by 𝜎2, it follows that F follows a (singly)
noncentral F distribution,

F ∼ F(J ,T − k, 𝜃), 𝜃 = 𝜷 ′X′(P − P)X𝜷 ∕ 𝜎2. (1.94)
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Recalling (1.83), the noncentrality parameter 𝜃 is zero under the null H0. Thus, a test with size 𝛼 of
H0 ∶ H𝜷 = 𝟎 against the unrestricted alternative H1 is to reject when F > c, where c is the quantile
for which Pr(F(J ,T − k) ⩾ c) = 𝛼.

The test with H0 ∶ 𝛽i = 0, 1 ⩽ i ⩽ k, is a very important special case in multiple regression, as it
tests whether the contribution of the ith regressor is “significant”. Then J = 1, H is a row vector of
zeros with a one in the ith place, h = 0, and the test F > c is equivalent to a two-sided t-test, recalling
the relation between the F and t distributions (see, e.g., page II.374).

1.4.5 Testing With Nonzero h

If h≠ 𝟎, then H is not a subspace, in which case P should be viewed as an “operator” and not as a
matrix. In particular, it is easy to see that an expression such as (1.78) in which Y can be factored out
onto the right-hand side is no longer possible. However, we discovered that (1.90) (stated here again)

S(�̂�) − S(𝜷) = (h − H𝜷)′[HAH′]−1(h − H𝜷), (*1.90*)

also holds for h≠ 𝟎. As such, we might postulate that a similar expression as in (1.91) holds for
h ≠ 𝟎, i.e.,

𝔼[S(�̂�) − S(𝜷)]
?
= 𝜎2J + (h − H𝜷)′[HAH]−1(h − H𝜷). (1.95)

This is indeed true: Using (1.90), define vector random variable Z such that

𝜎Z = H𝜷 − h = HAX′Y − h = HAX′(X𝜷 + 𝝐) − h = H𝜷 − h + HAX′𝝐,

so that Z ∼ N(𝜎−1(H𝜷 − h), 𝛀), where 𝛀 = 𝜎−2HAX′ 𝜎2I XAH = HAH′ > 0, and

𝜎−2[S(�̂�) − S(𝜷)] = Z′[HAH′]−1Z.

Then, from Theorem A.1, as [HAH′]−1𝛀 = IJ is idempotent,

𝜎−2[S(�̂�) − S(𝜷)] ∼ 𝜒2(J , 𝜂), 𝜂 = 𝜎−2(H𝜷 − h)′[HAH′]−1(H𝜷 − h). (1.96)

Using the fact that 𝔼[𝜒2(J , 𝜂)] = J + 𝜂, (1.95) follows. Also, under the null hypothesis H𝜷 = h,
𝜎−2[S(�̂�) − S(𝜷)] ∼ 𝜒2(J , 0).

From (1.90), the only stochastic element in S(�̂�) − S(𝜷) is 𝜷 , which implies that S(�̂�) − S(𝜷) is inde-
pendent of �̂�2. Thus, the F statistic defined above in (1.88), i.e.,

F =
[S(�̂�) − S(𝜷)]∕J

S(𝜷)∕(T − k)
=

S(�̂�) − S(𝜷)
J �̂�2 , (1.88)

follows the noncentral F distribution, F ∼ F(J , (T − k), 𝜂).

1.4.6 Examples

Example 1.11 A company claims that its new method of coaching for a particular college entrance
exam is superior to the old, standard method. In particular, they say that, initially, the student’s
improvement is slower than that using the old method, but as the student “gets the hang of it”, they
improve faster than they would training with the old method. For both methods, customers have the
choice of how many full-day sessions they wish to take, with one, two, three, or four being typical.
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Figure 1.3 Percentage improvement for the two test groups as a function of number of sessions.

To test the claim, a study was conducted (by an independent researcher) as follows. From a total of
T = 40 people interested in taking lessons (and who have never previously taken the exam or such a
study course), 20 were randomly assigned to the standard method, say A, and the other 20 to the new
method, say B. For each group of 20, 5 received one session, 5 two sessions, 5 three and 5 four sessions.
Each person took a practice exam before, and a practice exam after “treatment” and Yi, the percent
improvement of each person, was recorded. The resulting (fictitious) data are shown in Figure 1.3. The
claim is that, when using a simple linear regression to model the data as a function of s, the number
of sessions, the intercept under teaching method B will be lower than that of A, while the slope (the
coefficient of s) will be higher.

One way of modeling this is to let Y be the stack of observations Yi such that the first 20 belong to
group A, the second 20 to group B, and within a group, the first five correspond to s = 1, the next five
to s = 2, etc. The 40 × 4 design matrix X for the unrestricted model Y = X𝜷 + 𝝐 is then given by

X =
(

𝟏20 𝟎20 v 𝟎20
𝟎20 𝟏20 𝟎20 v

)
,

where v = (1 2 3 4)′ ⊗ 𝟏5 = (1 1 1 1 1 2 2 · · · 5)′. The o.l.s. estimates are
𝛽1 = 0.794(1.73), 𝛽2 = −4.02(1.73), 𝛽3 = 3.06(0.631), 𝛽4 = 5.13(0.631), and �̂� = 3.15, where the
approximate standard errors based on (1.8) are given in parentheses, and S(𝜷) = 358.1. Note that
𝛽1 > 𝛽2 and 𝛽3 < 𝛽4 as claimed. To test this, take

H =
(

1 −1 0 0
0 0 1 −1

)
, h=𝟎, (1.97)

and use (1.69) to get �̂� = (−1.61,−1.61, 4.09, 4.09)′ and S(�̂�) = 412.4, so that F = 2.7310 from (1.88),
with p-value 0.0787. Value S(�̂�) could also be obtained by noting that the reduced column space is

given by Z =
(
𝟏20 v
𝟏20 v

)
.

The data used in the illustration were simulated using 𝜷 = (0,−5, 3, 5)′ and 𝜎 = 3, using the code
in Listing 1.5. With these values, the noncentrality parameter in (1.94) is 𝜃 = 𝜷 ′H′[HAH′]−1H𝜷∕𝜎2 =
50∕9 from (1.82). Thus, with c = F−1

J ,T−k(1 − 𝛼) = 3.26 for J = 2, T − k = 36 and 𝛼 = 0.05, the power of
the F test is 0.513, or not much better than flipping a fair coin. The reader is encouraged to construct
a program to confirm this power via simulation. Observe this is trivially done based on the code in
Listing 1.5, omitting the superfluous graphics commands and calculation ofnum2 andnum3. Based on
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1 randn('state',2); % this is now deprecated in Matlab, but still works in version R2010a
2 cc=5; T=2*4*cc; % cc is cell count. So T is a multiple of 2*4
3 beta=[0 -5 3 5]';
4 dum1=[ones(T/2,1); zeros(T/2,1)]; dum2=1-dum1;
5 time=kron((1:4)',ones(cc,1)); c3=kron([1,0]',time); c4=kron([0,1]',time);
6 X=[dum1 dum2 c3 c4]; y=X*beta+3*randn(T,1);
7
8 figure
9 for i=1:T

10 if X(i,1)==1, h1=plot(X(i,3),y(i),'go','linewidth',2); set(h1,'markersize',8)
11 else h2=plot(X(i,4),y(i),'rx','linewidth',2); set(h2,'markersize',8), end
12 hold on
13 end
14 hold off, set(gca,'XTick',1:4), set(gca,'fontsize',16)
15 ax=axis; axis([0.5 4.5 ax(3) ax(4)]), legend([h1,h2],'old','new',2)
16
17 A=inv(X'*X); betahat=A*X'*y; %#ok<*MINV?
18 yhat=X*betahat; res=y-yhat; Sbeta=sum(res.ˆ2);
19 sig2hat=Sbeta/(T-4); sigma_hat = sqrt(sig2hat); H=[1 -1 0 0; 0 0 1 -1];
20 num1 = (H*betahat)'*inv(H*A*H')*(H*betahat) %#ok<*NOPTS>
21 F = num1 / 2 / sig2hat, pvalue = 1-fcdf(F,2,T-4)
22 gammahat = OLSrestrict(y,X,H); yhat=X*gammahat; res=y-yhat;
23 Sgamma=sum(res.ˆ2); num2 = Sgamma - Sbeta
24 Z = [dum1 + dum2, c3 + c4]; A=inv(Z'*Z); bhat=A*Z'*y; yhat=Z*bhat;
25 res=y-yhat; Sb=sum(res.ˆ2); num3 = Sb - Sbeta

Program Listing 1.5: Computes F statistic (1.88) and the corresponding p-value. Three ways of
obtaining the numerator in (1.88) are computed: num1 uses (1.90), num2 computes �̂� and its asso-
ciated residual sum of squares S(�̂�), and num3 is computed based on the reduced column space given
by matrix Z in the program. Function OLSrestrict is given in Listing 1.6 below.

1 function gamma = OLSrestrict(y,X,H,h)
2 [J,k]=size(H); if nargin<4, h=zeros(J,1); end
3 b=regress(y,X); A=inv(X'*X); gamma = b+A*H'*inv(H*A*H')*(h-H*b);

Program Listing 1.6: Called by the code in Listing 1.5 to compute �̂� from (1.69).

(a total overindulgence of) sim = 10,000, 000 replications, the empirical power is, to three significant
digits, the same, 0.513 (and, for 𝛼 = 0.01, is 0.265).

Problem 1.13 asks the reader to construct a simple program to calculate the minimum necessary
sample size, T , to obtain a specified test size and power. For example, to get a power of 0.90 with
𝛼 = 0.05, T needs to be at least 96. Simulation with T = 96 confirms this, giving an (empirical) power
of 0.906, as the reader should verify, and is 0.752 for 𝛼 = 0.01. ◾

Example 1.12 Example 1.11 cont.
We now wish to see how this regression would be conducted using the SAS system (with details of its
basic use given in Appendix D). The first issue concerns getting the data into SAS. The simple Matlab
code in Listing 1.7 outputs variables y and X, as were generated in Listing 1.5, to a text file, so that
they can be, for example, read in by other programs, as we require here. In general, a bit of trial and
error might be required with the fprintf command to get the desired format.
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1 YX=[y,X]; fileID = fopen('coachingdata.txt','w');
2 fprintf(fileID,'%8.5g %1u %1u %1u %1u \r\n',YX'); fclose(fileID);

Program Listing 1.7: Outputs variables 𝐲 and 𝐗 generated in Listing 1.5 as a text file.

ods pdf file='Coaching Regression Output.pdf';
data coach;

infile 'coachingdata.txt';
input y X1-X4;

run;
proc reg data=coach;

RestrictedModel: model y = X1-X4 / NOINT;
restrict X1=X2, X3=X4;

UnRestricted: model y = X1-X4 / NOINT;
SameInterceptAndSlope: test X1=X2, X3=X4;

run;
ods _all_ close;
ods html;

SAS Program Listing 1.1: SAS statements for (i) reading the text data set produced from the Matlab
output generated by the code in Listing 1.7, and (ii) performing a regression analysis of the restricted
model and the unrestricted model, and, for the latter, conducting the F test for the restrictions in
(1.97). The output is a report, as an Adobe portable document format (pdf), including several useful
graphics.

Next, the code in SAS Listing 1.1 performs two regression analyses. The first is of the restricted
model, where the restrict statement is used to indicate (in terms of the variable names associated
with the X matrix, and not the 𝛽 coefficients). The second is unrestricted, and performs the F test
associated with the restriction we wish to test. Observe how the NOINT option is necessary to tell
SAS not to include an intercept term (a column of ones) in the regression, which it otherwise does
by default. The SAS output (not shown) for the test in (1.97) yields F = 2.73 with a p-value of 0.0787,
agreeing with the values obtained above using manual calculations in Matlab. ◾

A time-series regression is such that Yt and x′
t correspond to time point t. For simplicity, assume

that the time points for which observations are observed are equally spaced, so that t = 1,… ,T . A
simple case is the model Yt = 𝛽1 + 𝛽2t + 𝜖t . Examples of dependent variables that could be modelled
as a time-series regression include:

1) Quarterly sales of a certain product, using regressors such as quarterly “dummy” variables, price,
and amount of advertising, as well as prices and amounts of advertising for similar products offered
from various market competitors.

2) Monthly rate of:
a) fatalities caused by car accidents, using as regressors monthly dummies and/or dummies for

particular days, such as weekend days or holidays
b) alcohol-related car accidents
c) homicides caused by guns.
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3) Blood pressure of a patient, measured at weekly intervals, with regressors such as weight, number
of cigarettes smoked, etc.

There are occasions in which the (linear) relationship describing a variable over time undergoes a
pronounced change, due perhaps to the occurrence of a relevant and major event at some time point
t0, 1 ⩽ t0 ⩽ T .8 In this case, the model is said to undergo a structural break at time t0. Referring to
the above dependent variables, examples of events that might cause a structural break include:

1) Discovery of a significant positive (or negative) side-effect from consuming the product.
2) Introduction of a new law for:

a) the mandatory wearing of seat belts,
b) the legal threshold of blood alcohol levels deemed acceptable to drive,
c) gun control.

3) Change in diet, medication, etc.

If a structural break occurs, then two coefficient vectors need to be estimated: the first, say 𝜷 [1], for
the sample of data corresponding to time points 1,… , t0, and the second, say 𝜷 [2], corresponding to
t0 + 1,… ,T . We assume that 𝜎2 in both segments of time is constant. Such a model is said to be a
piecewise (linear) regression if we constrain the two regression lines to touch at t0, i.e., if x′

t0
𝜷 [1] =

x′
t0
𝜷 [2] is imposed. Point t0 is said to be a knot or join point. The extension to more than one knot

should be clear.9

Example 1.13 Let Yt = a1 + a2t + et , t = 1,… , t0, and Yt = b1 + b2t + et , t = t0 + 1,… ,T , with
et

i.i.d.∼ N(0, 𝜎2), t = 1,… ,T .10 Then, for the regression function to be continuous over the whole range,
it must be the case that a1 + a2t0 = b1 + b2t0, or

a1 − b1 + a2t0 − b2t0 = 0. (1.98)

Another way of stating this model is

Y = a1x1 + b1x2 + a2x3 + b2x4 + e = X𝜷 + e,

where X = [x1 x2 x3 x4], with

x1 = (𝟏′t0
𝟎′T−t0

)′, x2 = (𝟎′t0
𝟏′T−t0

)′,

x3 = (1, 2,… , t0, 0,… , 0)′, x4 = (0,… , 0, t0 + 1,… ,T)′,

and parameter vector 𝜷 = (a1, b1, a2, b2)′ is subject to the constraint H𝜷 = 0 from (1.98), where H =
[1 −1 t0 −t0]. From (1.69), the restricted parameter vector is

�̂� =
(

I4 −
AH′H
HAH′

)
𝜷,

8 In fact, such a phenomenon can occur in any type of data for which the order of the observations is relevant. Another
example would be for spatial data, e.g., weather measurements taken simultaneously at different locations.
9 Less obvious, however, is how to proceed if the locations of the knots are not known. See, for example, Judge et al. (1985,
pp. 800-814) for discussion of this and other related issues.
10 If for t = t0 + 1,… ,T , we take Yt = b1 + b2(t − t0) + et , which is sometimes referred to as a locally disjoint broken trend
model, its first usage being from Perron and Zhu (2005); see also Deng and Perron (2006), Sobreira and Nunes (2016), Chang
and Perron (2016), and the references therein.
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Figure 1.4 True and fitted piecewise regression.

where A = (X′X)−1 and 𝜷 is the unrestricted estimated parameter vector. It is worth emphasizing that
the value of the F test (1.88), and, hence, its p-value, depends only on H𝜷 and is otherwise invariant
to the choice of 𝜷 .

Figure 1.4 shows a simulated sample using T = 30, t0 = 21, 𝜎2 = 1 and parameter values a1 = 6,
a2 = 0.4, b2 = 0 and b1 = a1 + t0a2 − t0b2 = 14.4, so that (1.98) is satisfied.11 The p-value of the F test
for constraint (1.98) is 0.130, so that the null hypothesis of a knot would not be rejected at conventional
testing levels. In addition, the hypothesis that only one regression line is needed, i.e., that a1 = a2 and
b1 = b2, was tested and resulted in a p-value of 0.0318. The data and plot were generated with the code
in Listing 1.8.

Finally, to test whether the slope changes at the knot, let the unrestricted model be Yt = 𝛼1 + 𝛼2t +
𝛼3(t − t0)Bt + 𝜖t , t = 1,… ,T , where 𝜖t

i.i.d.∼ N(0, 𝜎2) and Bt is a boolean (or dummy) variable that is one
if t ⩾ t0 and zero otherwise, i.e., Bt = 𝕀{t0,t0+1,…}(t). The null hypothesis is that 𝛼3 = 0, for which the
reduced column space is easy to express. For the data used, the p-value was 0.0310. As the true model
is piecewise, it comes as no surprise that this p-value is quite close to the p-value given above for
testing a1 = a2 and b1 = b2. ◾

1.4.7 Confidence Intervals

Recall from (1.88) and (1.90) that, under the null hypothesis that H𝜷 = h,

(H𝜷 − h)′V−1(H𝜷 − h)
J �̂�2 ∼ FJ ,T−k ,

where V = H(X′X)−1H′. This implies that

Q =
(H𝜷 − H𝜷)′V−1(H𝜷 − H𝜷)

J �̂�2 ∼ FJ ,T−k (1.99)

11 The parameter values were chosen so that the data somewhat resemble actual data for rates of homicide in the USA,
measured quarterly from 1985 to 1994, as shown in the Morbidity and Mortality Weekly Report from the Centers for Disease
Control and Prevention (CDC), June 7, 1996, Vol. 45, No. 22, pp. 460–464. In their study, a piecewise linear regression was
used to model the data.
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1 function [pvalF1, pvalF2] = piecewise(seed,b2,doplot);
2 if nargin<2, b2=0.1; end, if nargin<3, doplot=1; end
3 t0=21; T=30; n=T-t0+1; x1=[ones(t0-1,1); zeros(n,1)]; x2=1-x1;
4 x3=[(1:t0-1)'; zeros(n,1)]; x4=[zeros(t0-1,1); (t0:T)']; X=[x1 x2 x3 x4];
5 a1=6; a2=0.4; b1=a1+a2*t0-b2*t0, beta=[a1 b1 a2 b2]'; sigma=1;
6 randn('state',seed); y=X*beta+sigma*randn(T,1); betahat=regress(y,X);
7 yfit=X*betahat; SSbeta=sum((y-yfit).ˆ2); sigsqr_hat = SSbeta / (T-4);
8 % test the piecewise regression
9 H=[1 -1 t0 -t0]; J=1; gamma=OLSrestrict(y,X,H); yfitH=X*gamma;

10 SSgam=sum((y-yfitH).ˆ2); F1 = (SSgam-SSbeta) / J / sigsqr_hat;
11 pvalF1 = 1-fcdf(F1,J,T-4);
12 if doplot==1
13 true=X*beta;
14 plot(1:T,true,'k-', 1:T,yfit,'g:', 1:T,yfitH,'r--', 1:T,y,'bo')
15 set(gca,'fontsize',16), legend('True','Uncon','Const',2)
16 ax=axis; h=line([t0 t0],[ax(3) ax(4)]); set(h,'linestyle','--')
17 end
18 % now test if both intercepts are equal and both slopes are equal
19 H=[1 -1 0 0; 0 0 1 -1]; J=2; gamma=OLSrestrict(y,X,H); yfitH=X*gamma;
20 SSgam=sum((y-yfitH).ˆ2); F2 = (SSgam-SSbeta) / J / sigsqr_hat;
21 pvalF2=1-fcdf(F2,J,T-4);

Program Listing 1.8: Simulates and estimates a piecewise simple regression.

is a pivotal quantity for H𝜷 . In particular, letting q = F−1
J ,T−k(1 − 𝛼) be the quantile such that Pr(Q ⩽

q) = 1 − 𝛼, the ellipsoid {H𝜷 ∶ Q ⩽ q} is a 100(1 − 𝛼)% confidence region for H𝜷 . If J = 1, then the
region is just an interval.

Take, for example, the i.i.d. model: Let Yi
i.i.d.∼ N(𝜇, 𝜎2), i = 1,… , n, i.e., X = 𝟏n and 𝜷 = 𝜇, so that

�̂� = Ȳ and Q = n(�̂� − 𝜇)2∕�̂�2 = (�̂� − 𝜇)2∕(S2∕n) ∼ F1,n−1. Then, as
√

F−1
1,n−1(1 − 𝛼) = t−1

n−1(1 − 𝛼∕2),
and from the symmetry of the Student’s t distribution,

{𝜇 ∶ Q ⩽ q} = {𝜇 ∶ |�̂� − 𝜇| ⩽ √
qS∕

√
n} = (�̂� −

√
qS∕

√
n, �̂� +

√
qS∕

√
n)

is the usual confidence interval for 𝜇. Similarly, for the general linear model with J = 1, H𝜷 is a
single linear combination of the elements in 𝜷 , which we denote 𝓵′𝜷 for clarity, i.e., 𝓵 = H′. Then
V = 𝓵′(X′X)−1𝓵 is a scalar and, with A=(X′X)−1,{

𝓵′𝜷 ∶
(𝓵′𝜷 − 𝓵′𝜷)2

�̂�2 𝓵′A𝓵
⩽ q

}
= {𝓵′𝜷 ∶ |𝓵′𝜷 − 𝓵′𝜷| ⩽ q1∕2

√
�̂�2 𝓵′A𝓵} = 𝓵′𝜷 ± c

√
�̂�2 𝓵′A𝓵,

(1.100)

where c = t−1
T−k(1 − 𝛼∕2). For J ⩾ 2, {H𝜷 ∶ Q ⩽ q} cannot be so easily “pivoted” to get intervals for the

rows of H𝜷 , but, if J = 2 or J = 3, the region can be plotted.

Example 1.14 Let Yt = 𝛽1 + 𝛽2t + et , t = 1,… ,T , et
i.i.d.∼ N(0, 𝜎2) and take H = I2, so that the ellip-

soid provides a confidence region for 𝛽1 and 𝛽2. For a simulated vector Y with T = 10, 𝛽1 = 1, 𝛽2 = 2,
and 𝜎2 = 1, the region was computed with the program in Listing 1.9 and is shown in Figure 1.5 for the
three common levels of significance 𝛼 = 0.01, 0.05, and 0.1. The relative size increase in going from
𝛼 = 0.05 to 0.01 is much larger than that from 0.1 to 0.05. ◾
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1 T=10; k=2; J=2; Y=1+2*(1:T)' + randn(T,1);
2 X=[ones(10,1),(1:10)'];
3 if 1==1, O=X; else O=orth(X); end
4 [betahat,BINT,R,RINT,STATS] = regress(Y,O,0.0001);
5 s2= sum(R.ˆ2)/(T-k);
6 q90=finv(0.90,J,T-k); q95=finv(0.95,J,T-k); q99=finv(0.99,J,T-k);
7 Vi=(O'*O); % H is the 2X2 identity matrix
8 figure, h=plot(betahat(1),betahat(2),'k.'), set(h,'MarkerSize',30), hold on
9 inc=0.05;

10 for b1=BINT(1,1):inc:BINT(1,2)
11 for b2=BINT(2,1):inc:BINT(2,2)
12 beta=[b1 b2]'; Q=(betahat-beta)' * Vi * (betahat-beta) / (J*s2);
13 if (Q <= q90), plot(b1,b2,'ro'), elseif (Q <= q95), plot(b1,b2,'gx')
14 elseif (Q <= q99), plot(b1,b2,'b+'), end
15 end
16 end, hold off

Program Listing 1.9: Generates ellipsoid for parameters of time-trend linear model. (Takes a rela-
tively long to run; adjust inc accordingly.)

−2 −1 0 1 2 3 4 5

1.4
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1.6
1.7
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2.4

Figure 1.5 Ellipsoid for intercept 𝛽1 (horizontal axis) and slope 𝛽2 (vertical axis) for the model in Example 1.14, for
𝛼 = 0.01 (plus signs), 𝛼 = 0.05 (crosses) and 𝛼 = 0.10 (circles). The black dot is 𝜷 .

For J = 3, a three-dimensional plot of the region will be of limited use, while for J ⩾ 4, the whole
region cannot be visualized as such, although one could plot it for two (or three) rows of H𝜷 for fixed
values of the remaining rows. This is clearly quite cumbersome and is essentially never done in prac-
tice. Instead, methods are used that yield simultaneous confidence intervals for each row of H𝜷 . One
obvious way is to use Bonferroni’s inequality as follows. Let ℏi denote the ith row of H, i = 1,… , J .
Then the confidence region for ℏi𝜷 is precisely that in (1.100) with ℏi instead of 𝓵′. For simultaneous
confidence intervals on the J values of ℏi𝜷 , the Bonferroni method just takes c = t−1

T−k(1 − 𝛼∕(2J)).
The obvious disadvantage of this method is the inevitable large size of the intervals when J is large. An
approach that makes explicit use of the normality assumption (and results in shorter confidence inter-
vals) is based on the multivariate t distribution and referred to as maximum modulus t intervals;
see Graybill (1976, Sec. 6.6) for further details.
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We now consider another alternative to the Bonferroni intervals known as the S-method or
Scheffé’s method, from Scheffé (1953). We first need the following result: If V > 0 (i.e., positive
definite), and 𝓵 and b are conformable vectors such that 𝓵′b is a scalar, then

max
𝓵≠𝟎

(𝓵′b)2

𝓵′V𝓵
= b′V−1b. (1.101)

Proof : First observe that, as matrix V enters only via a quadratic form, it can be assumed symmetric
without loss of generality, and thus it makes sense to state that V > 0, as all its eigenvalues are real.
Take symmetric V1∕2 > 0 such that V1∕2V1∕2 = V and define u = V1∕2𝓵 and w = V−1∕2b, so that

(𝓵′b)2

𝓵′V𝓵
= (u′V−1∕2V1∕2w)2

u′V−1∕2VV−1∕2u
= (u′w)2

u′u
=

⟨u,w⟩2‖u‖2 .

From the Cauchy–Schwarz inequality (see Problem 1.7), ⟨u,w⟩2 ⩽ ‖u‖2‖w‖2, with equality when
u=w, i.e., V1∕2𝓵 = V−1∕2b or 𝓵 = V−1b. Thus, with 𝓵 = V−1b,⟨u,w⟩2‖u‖2 = ‖w‖2 = ‖V−1∕2b‖2 = b′V−1b,

which is (1.101). See Graybill (1976, pp. 224–225) for an alternative proof. ◾

Now, with V = H(X′X)−1H′, 𝜽 = H𝜷 and b = �̂� − 𝜽, (1.99) and (1.101) imply

1 − 𝛼 = Pr(Q ⩽ q) = Pr((�̂� − 𝜽)′V−1(�̂� − 𝜽) ⩽ Jq�̂�2)

= Pr

(
max
𝓵≠𝟎

(𝓵′(�̂� − 𝜽))2

𝓵′V𝓵
⩽ Jq�̂�2

)
= Pr(|𝓵′(�̂� − 𝜽)| ⩽ √

Jq�̂�2𝓵′V𝓵, ∀𝓵 ≠ 𝟎),

where, as before, q = F−1
J ,T−k(1 − 𝛼). That is, 𝓵′�̂� ±

√
Jq�̂�2𝓵′V𝓵 simultaneously covers 𝓵′𝜽 for an infi-

nite set of vectors 𝓵 ≠ 𝟎 with level of significance 1 − 𝛼. An alternative proof of this result using only
basic calculus is given in Klotz (1969) and Roussas (1997, Sec. 17.4).

As only a finite number of such intervals will ever be constructed for a particular data set, the
actual level exceeds 1 − 𝛼. In particular, with 𝓵i = (0,… , 0, 1, 0… , 0)′ with the one in the ith position,
i = 1,… , J , 𝓵′

i�̂� = 𝓵′
iH𝜷 = ℏi𝜷 , so that the J intervals ℏi𝜷 ±

√
Jq�̂�2𝓵′

iV𝓵i have simultaneous level of
significance at least 1 − 𝛼. As

𝕍 (ℏi𝜷) = �̂�2ℏiAℏ′
i = �̂�2𝓵′

iH(X′X)−1H′𝓵i = �̂�2𝓵′
iV𝓵i,

these intervals are often written as ℏi𝜷 ±
√

Jq𝕍 (ℏi𝜷), i = 1,… , J .

Example 1.15 Consider the same setup as in Example 1.14, with

A = (X′X)−1 = 1
15

[ 7 −1
−1 2∕11

]
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and H= I2. Let 𝓵1 = (1, 0)′, 𝓵2 = (0, 1)′, a1 = 𝓵′
1A𝓵1 = 7∕15 and a2 = 𝓵′

2A𝓵2 = 2∕165. Then, with
J = 2, c = t−1

8 (1 − 0.05∕4) ≈ 2.7515, the simultaneous 95% Bonferroni confidence intervals for 𝛽1
and 𝛽2 are 𝛽i ± c�̂�

√
ai, i = 1, 2, with lengths 3.759�̂� and 0.6059�̂�, respectively. With J = k = 2 and

q = F−1
2,8(0.95) ≈ 4.459, the S-method confidence intervals are 𝛽i ± �̂�

√
2qai, i = 1, 2, with respec-

tive lengths 4.080�̂� and 0.6576�̂�. The latter are about 8.5% longer than Bonferroni confidence
intervals. ◾

Remark In the previous example, the S-method intervals were longer than those from Bonfer-
roni. To compare the lengths for other parameters, the top panel of Figure 1.6 plots the ratio of
t−1

T−k(1 − 𝛼∕2J) to
√

JF−1
J ,T−k(1 − 𝛼) as a function of J , using T − k = 40 and three values of 𝛼. It would

appear that the S-method is virtually useless compared to Bonferroni. This picture is misleading,
however, because k or, more generally, the rank of H was not specified. In particular, with ℏi the
ith row of H, assume ℏ1,… , ℏR are independent, R ⩽ k, and the remaining rows, ℏR+1,… , ℏJ , are
linear combinations of ℏ1,… , ℏR. Let H∗ = (ℏ′

1,… , ℏ′
R)

′ be the upper R × k portion of H, so that
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Figure 1.6 Ratio of lengths of Bonferroni to Scheffé confidence intervals. The top panel does not adjust for rank of H,
while the bottom panel does adjust.
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rank(H) = rank(H∗) = R. Then, with 𝜃∗ = (𝜃∗1 ,… , 𝜃∗R)
′ = H∗𝜷 , the S-method implies that

1 − 𝛼 = Pr(|𝓵′(�̂�∗ − 𝜃∗)| ⩽ √
Rq�̂�2𝓵′V∗𝓵, ∀𝓵 ∈ ℝR \ 𝟎), (1.102)

where q = F−1
R,T−k(1 − 𝛼) and V∗ = H∗(X′X)−1H∗′. But, by construction, each row ℏi can be written

as 𝓵′
iH∗ for some 𝓵i ∈ ℝR \ 𝟎, so that (1.102) also includes the intervals for 𝜃R+1,… 𝜃J .12 To see the

effect this has, the right side of Figure 1.6 plots the ratio t−1
T−k(1 − 𝛼∕2J) to

√
mF−1

m,T−k(1 − 𝛼) versus
J , where m = min(J , k), k = 5 and, as before, T − k = 40. In this case, H∗ = Ik . Indeed, if a relatively
large number of intervals are to be computed, the S-method can be superior. ◾

In most realistic cases, the S-method gives rise to the longest intervals. Their additional length is
the price to pay to be able to simultaneously construct infinitely many of them. In practice, their use
allows a certain extent of “data mining”, i.e., the researcher can keep computing intervals of interest
until something “significant” is found, and still claim validity of the procedure. Preferably, however,
one has a particular set of intervals in mind before the data are collected, to which the Bonferroni
method (or others) can be applied.

Further details on confidence intervals can be found in numerous books on regression, including
Ravishanker and Dey (2002, Sec. 7.3), Seber and Lee (2003, Ch. 5), and Khuri (2010, Ch. 7).

1.5 Alternative Residual Calculation

Recall from (1.60) that �̂� ∼ N(𝟎, 𝜎2M). Not only is M rank deficient, but the fact that the regression
residuals are dependent on the X matrix implies that the distribution of common test statistics based
on �̂�, often ratios of quadratic forms, cannot be tabulated. This has historically been quite an inconve-
nience, though it should not be an issue now with modern computing power and the computational
methods discussed in Section A.3. Perhaps the most popular example of a statistic whose use had
been hampered by this fact (in the 1950s and 1960s) is the Durbin–Watson test D for detecting serial
autocorrelation in the residuals; see Section 5.3.4. This was among the motivations for research on
regression residuals that are independent of the regressor matrix.

Before proceeding, a comment on the relevance of this material is perhaps in order. In addition
to being of historical importance for the reason just mentioned, we will also remark below that the
recursive residuals are a special case of the ubiquitous and highly important Kalman filter. Next, as a
theoretical curiosity, the derivation of the (below defined) BLUS and recursive residuals is instructive
and, while arguably straightforward (especially after one sees the answer), is a great example of statisti-
cal mathematical ingenuity. Their practical relevance in some 21st century applications is admittedly
less, such as in a machine-learning context and/or where large dimensional models are used, with
mean terms being simply “regressed off” as part of a larger paradigm (see Section 11.2.2 for one such

12 Linear combinations of vectors are usually expressed in column form when using matrices. In this case,

⎛⎜⎜⎝
∣
ℏ′

i
∣

⎞⎟⎟⎠ = 𝓁i1

⎛⎜⎜⎝
∣
ℏ′

1
∣

⎞⎟⎟⎠ + · · · + 𝓁iR

⎛⎜⎜⎝
∣
ℏ′

R
∣

⎞⎟⎟⎠ = H∗ ′
⎛⎜⎜⎝
𝓁i1
⋮
𝓁iR

⎞⎟⎟⎠ = H∗ ′𝓵i, i = 1,… , J ,

or, taking transposes, ℏi = 𝓵′
i H∗.
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example). As such, we illustrate the main concepts here, and place further details in Appendices 1.A
and 1.B as optional reading for those interested in the proverbial “full Monty”.

Several estimators of the regression residuals have been proposed, each sharing the three properties
of linearity, unbiasedness, and a scalar covariance matrix; these are typically abbreviated with the
acronym LUS. We denote such residuals by �̂�LUS = CY, where C is a nonstochastic matrix (it can
depend on X, but not on Y) satisfying CX=𝟎 and CC′ = I. Clearly, �̂�LUS = CY is linear in Y, and as

𝔼[�̂�LUS] = 𝔼[CY] = 𝔼[CX𝜷 + C𝝐] = CX𝜷,

we see that the requirement CX=𝟎 is necessary for unbiasedness. If CC′ = I, then

𝔼[�̂�LUS�̂�
′
LUS] = 𝔼[C𝝐𝝐′C′] = 𝜎2CC′ = 𝜎2I,

so that �̂�LUS has a scalar covariance matrix.
Observe that the requirements CX=𝟎 and CC′ = I (which is full rank) together imply that C cannot

be T × T , but rather (T − k) × T , so that CC′ = IT−k and �̂�LUS ∼ N(𝟎, 𝜎2IT−k). In particular, the rows
of C are orthogonal to the columns of X, i.e., they are contained in (X)⟂, which has dimension T − k.
Thus CC′ = I ⇐⇒ the rows of C are orthogonal to one another ⇐⇒ there are at most T − k rows in C.
Thus, only T − k LUS residuals can be identified.

There are numerous matrices C that satisfy the LUS properties, and a “best” criteria was desired.
This was pursued by Theil (1965, 1968) and Koerts (1967), and detailed in the books from Theil (1971)
and Koerts and Abrahamse (1969). Consider the partition of the model[

Y0
Y1

]
=

[
X0
X1

]
𝜷 +

[
𝝐0
𝝐1

]
=

[
X0
X1

]
𝜷LS +

[
e0
e1

]
, (1.103)

where the quantities indexed with 0 have k rows and the quantities indexed with 1 contain the remain-
ing T − k rows. The vector 𝝐0 contains the k errors not represented in the LUS estimator. Given this
partitioning, the best LUS, or BLUS residuals, denoted by �̂�BLUS, are defined as the vector of residu-
als among the class of LUS residuals that has the minimum expected sum of squared errors, i.e., the
vector that minimizes

𝔼[(�̂�LUS − 𝝐1)′(�̂�LUS − 𝝐1)].

Some work is required to show that the vector of BLUS residuals can be expressed in the computa-
tionally attractive form

�̂�BLUS = e1 − X1X−1
0

[ H∑
h=1

dh

1 + dh
qhq′

h

]
e0, (1.104)

where d2
1,… , d2

H are the eigenvalues of the matrix X0(X′X)−1X′
0 that are less than one, H ⩽ T − k, and

q1,… ,qH are the corresponding eigenvectors. A detailed derivation is given in Appendix 1.A.
Furthermore, the (T − k) × T matrix C in this case is given by the partitioned matrix C = [C0 C1]

where the (T − k) × k matrix C0 and the (T − k) × (T − k) matrix C1 are derived by the following
relationships:

C0 = −C1Z, C1 = PDP′,

where Z=X1X−1
0 , D is the (T − k) × (T − k) diagonal matrix whose first H successive diagonal ele-

ments are d1 ⩽ d2 ⩽ … ⩽ dH < 1 (the ds being the positive square roots of the d2
k defined in (1.104)),
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1 function C = blusmat(X)
2 [T,k]=size(X); X_0 = X(1:k,:); X_1 = X(k+1:end,:);
3 Z = X_1*inv(X_0); D = eig(X_0*inv(X'*X)*X_0');
4 index1 = find(D<1 & D>0); H = size(index1,1);
5 D = [D(index1);ones(T-k-H,1)]; D = sort(D); D = diag(D);
6 [P tempD] = eig(eye(T-k) + Z*Z');
7 tempD = diag(tempD); [tempD index2] = sortrows(tempD);
8 P = P(:,index2(end:-1:1)); C_1 = P*D*P'; C = [-C_1*Z C_1];

Program Listing 1.10: Constructs the BLUS residual matrix 𝐂.

and P is the (T − k) × (T − k) orthogonal matrix with columns given by the eigenvectors of I+ZZ′

corresponding to the eigenvalues 1∕d2
1,… , 1∕d2

H , 1,… , 1; see Appendix 1.A. The code in Listing 1.10
computes matrix C.

One particular LUS residual estimator, the so-called recursive residuals, introduced by Hedayat
and Robson (1970), Harvey and Phillips (1974), and Brown et al. (1975), is noteworthy. (Their use can
be traced back all the way to Gauss; see Plackett, 1950; Stigler, 1981; and Young, 2011.) The procedure
is computationally simple and turns out to be a special case of the Kalman filter; see the remarks in
Section 5.6.

Phillips and Harvey (1974) show that the corresponding C matrix such that V=CY and
V ∼ N(𝟎, 𝜎2IT−k) can be expressed as

C =

⎛⎜⎜⎜⎜⎜⎝

ak+1 d−1∕2
k+1 0 · · · 0

ak+2 d−1∕2
k+2 ⋮

⋮ ⋱
0

aT d−1∕2
T

⎞⎟⎟⎟⎟⎟⎠
, (1.105)

of size (T − k) × T , where, for j = k + 1,… ,T ,

aj = −d−1∕2
j x′

j (X
′
j−1Xj−1)−1 X′

j−1, dj = 1 + x′
j (X

′
j−1Xj−1)−1xj, (1.106)

and x′
j is the jth row of X. Note that aj is a row vector with length j − 1.

Direct multiplication verifies that CX=𝟎 and CC′ = IT−k , and one may show (Theil, 1971, p. 209)
that C′C = M. Thus, in Theorem 1.3 above, one could take G to be C. The program in Listing 1.11
computes (1.105). Appendix 1.B provides details on the derivation of the recursive residuals.

1 function C = recmat(X)
2 [T,k]=size(X); C=zeros(T,T);
3 for j=(k+1):T
4 mid=inv (X(1:(j-1),:)' * X(1:(j-1),:));
5 d=sqrt (1+X(j,:) * mid * X(j,:)');
6 p2=mid * X(1:(j-1),:)'; v=-(X(j,:) * p2)/d;
7 C(j,1:(j-1))=v; C(j,j)=1/d;
8 end
9 C=C((k+1):T,:);

Program Listing 1.11: Constructs the recursive residual matrix 𝐂.
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Figure 1.7 Simulated relative percentage change between the recursive and BLUS residuals for a model with intercept
and time trend, and 20 observations.

Example 1.16 We wish to compare the magnitudes of the sum of squared BLUS and recursive resid-
uals. Take the model to be Yj = 1 + 2j + ej, j = 1,… , 20, with ej

i.i.d.∼ N(0, 1), so that the X matrix consists
of a constant and a time vector. By using the code in Listings 1.10 and 1.11, it is a very simple Matlab
exercise to simulate the model a large number of times and, for each, compute the relative percentage
change between the recursive and BLUS residuals (i.e., 100 ∗ (r − b)∕r, where r and b denote the sum
of squares of the recursive and BLUS residuals, respectively).

Doing this for 10,000 replications and plotting the resulting histogram results in Figure 1.7. Note
that, in every case, the sum of squared BLUS residuals is smaller than that for the recursive, as the
theory dictates. Based on the simulation, there is more than a 35% chance that the relative percentage
change will be more than 10%. ◾

Remarks
a) Statistical tests common with the linear model using the BLUS residuals do not necessarily possess

greater power than those using the “usual” o.l.s. residuals, or some other C. The use of BLUS resid-
uals has faded considerably since the 1970s, although more recently Magnus and Sinha (2005)
conducted studies comparing the power of BLUS against the recursive residuals when testing
against heteroskedasticity (one of the original motivations for BLUS) and structural breaks (for
which the recursive residuals are intuitively appealing). The reported simulation results lend mild
support for the use of BLUS residuals over recursive residuals.

b) We will see later that the recursive residuals (or any LUS estimate) have other desirable properties
that make their use valuable. In particular, in the context of time-series analysis, Chapter 8 will
show that, for any X matrix, the coefficients of the sample autocorrelation function (SACF) based
on the recursive residuals always have zero expectation and are symmetric, a property not shared
by the SACF based on the usual o.l.s. residuals, even when X is only a column of ones. This is
important because, in practice, the SACF coefficients are compared to their limiting distribution,
which is normal (i.e., symmetric) with zero mean. For small samples and X matrices common in
econometric applications, this can be an important factor. ◾
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1.6 Further Topics

As it happens, the econometric modeling was done in the basement of the building and the
econometric theory courses were taught on the top floor (the third). I was perplexed by the fact
that the same language was used in both places. Even more amazing was the transmogrification
of particular individuals who wantonly sinned in the basement and metamorphosed into the
highest of high priests as they ascended to the third floor.

(Edward Leamer, 1978, p. vi)

With increasing interest in the stable distributions and their domains of attraction, the Cauchy
distribution is found to occupy a less isolated position; indeed the normal distribution is
extremal and rather special among stable distributions.

(E. J. Pitman and E. J. Williams, 1967, p. 916)

What the regression curve does is give a grand summary for the averages of the distributions
corresponding to the set of x’s. We could go further and compute several different regression
curves corresponding to the various percentage points of the distributions and thus get a more
complete picture of the set. Ordinarily this is not done, and so regression often gives a rather
incomplete picture. Just as the mean gives an incomplete picture of a single distribution, so the
regression curve gives a corresponding incomplete picture for a set of distributions.

(Frederick Mosteller and John W. Tukey, 1977, p. 266)

An important special case of the linear model is the so-called analysis of variance, or ANOVA,
for fixed and random effects, as introduced in Chapters 2 and 3, respectively. However, as these
chapters are aimed at the underlying distribution theory of the core linear regression model and the
ANOVA setting, numerous important topics associated with regression are regretfully not discussed.
Two obvious ones are its extension to a multivariate framework, such as MANOVA and discriminant
analysis (see, e.g., Huberty and Olejnik, 2006) and the use of Bayesian inferential methods (see, e.g.,
Christensen et al., 2011 and Gelman et al., 2013). Here, we mention several other omitted topics asso-
ciated with regression analysis, albeit without much detail, so that the reader is at least aware of them,
and provide useful references for further reading.

1) Forecasting.
Based on regression model (1.3), interest might center on predicting the random variable YT+1 for
a given xT+1 = (xT+1,1,… , xT+1,k)′, so that YT+1 = x′

T+1𝜷 + 𝜖T+1, where 𝜖T+1 ∼ N(0, 𝜎2). As 𝜷 has
the smallest variance among all linear unbiased estimators for 𝜷 , the minimum variance unbiased
point estimator is ŶT+1 = x′

T+1𝜷 , and, from (1.8),

𝕍 (ŶT+1 − YT+1) = 𝕍 (ŶT+1) + 𝕍 (YT+1) = 𝜎2x′
T+1(X

′X)−1xT+1 + 𝜎2.

Thus, an exact 100(1 − 𝛼)% confidence interval for YT+1 is

ŶT+1 ± c�̂�
√

1 + x′
T+1(X′X)−1xT+1, (1.107)
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where �̂�2 is given in (1.11), and c is the 𝛼∕2 quantile of a Student’s t random variable with T − k
degrees of freedom.

The reader is encouraged to set up the parametric and nonparametric bootstrap to generate
confidence intervals for YT+1 for both the Gaussian and non-Gaussian cases. Under the normal-
ity assumption, simulation can be used to confirm that the bootstrap results are comparable to
the analytic method in (1.107). For a non-Gaussian, leptokurtic, and asymmetric distributional
assumption, confidence intervals (hereafter c.i.s) based on (1.107) (i) will almost surely be such
that the actual and nominal coverage probabilities are not equal, and (ii) restricted to being incor-
rectly symmetric. Bootstrap c.i.s are expected to be be more accurate, particularly as the level of
non-Gaussianity increases.

Further details on multiple prediction intervals making use of the methods in Section 1.4.7 can
be found in, e.g., Seber and Lee (2003, Sec. 5.3) and Rao et al. (2008, Ch. 6).

2) Multicollinearity.
Particularly in the social sciences, some regressors can be highly correlated with one another, and
give rise to what is called multicollinearity. With very high correlation, the resulting standard
errors on the coefficients are large, and thus the point estimates are rather imprecise. Several
ways of dealing with this issue exist, including use of shrinkage (recall Section III.5.4), empirical
Bayes estimators, ridge regression (which is related to the former two methods), and use of
(generalized) cross validation.

Further methods that also relate more generally to model specification and estimation are the
so-called garrote and LASSO estimators. The LASSO and ridge regression are generalized by
the so-called elastic net. These tools are important for dimension reduction, variable selection,
and improved predictive performance when modeling high-dimensional (big) data. Their respec-
tive Wikipedia entries are a good starting point and include original references, while further
information can be found in textbook presentations such as Seber and Lee (2003, Sec. 12.5), Mur-
phy (2012), Fahrmeir et al. (2013, Sec. 4.2), and Efron and Hastie (2016, Ch. 7, 12, 16). See also
Lansangan and Barrios (2017) and the references therein for an introduction, further methods,
and comparisons among them.

3) The choice of regressors, or, more generally, model specification.
Recall the reference to Leamer (1983) in Section 1.1, indicating the potentially severe implications
resulting from the choice of variables to include in a regression. The tidy, impressive analytic
results and distribution theory throughout this chapter are child’s play (and arguably of secondary
relevance) compared to the much thornier issue of model specification with real data, particularly
from the social sciences. The quote by Magnus (2017) at the beginning of Section 1.4 serves to
remind us that inspection of the “t-statistics” is not a viable method for model selection (in general
agreement with the diatribe in Section III.2.8), and Magnus (2017, Sec. 2.14, 2.15) provides a
very readable presentation of the bias/variance tradeoff associated with including a particular
regressor into the model. The amusing quote by Leamer (1978) at the beginning of this section
might be a reflection of the state of affairs during what might now appear to be a primordial
age of econometrics, though it still contains more than just a grain of truth on the discrepancies
between theory and practice.

As mentioned, model selection is related to multicollinearity—it might be preferred to sim-
ply omit regressors that are highly correlated with others. The inherent difficulty in establishing
the “best” model is nicely stated in Seber and Lee (2003, p. 424): “The relative merits of ridge
regression versus least squares and subset selection have been endlessly debated.” Textbooks
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on regression analysis present many of the numerous ways that have been devised to select an
optimal set (in some sense) from an available pool of regressors. See, e.g., the relevant chapters in
Graybill and Iyer (1994), Ravishanker and Dey (2002), Seber and Lee (2003), Christensen (2011),
Montgomery et al. (2012), Chatterjee and Hadi (2012), and Harrell, Jr. (2015).

Those books also cover numerous additional topics associated with applied regression analysis,
and make use of real-data examples.

Particularly in econometrics, an influential body of work and methodology centers around
the influential David F. Hendry, sometimes referred to general-to-specific (GETS) modeling,
or the “LSE (London School of Economics) approach (to econometrics)” (see the same-titled
Wikipedia entry). Good starting points include Hendry (1995, 2009), Castle et al. (2011), Hendry
and Doornik (2014), and Castle et al. (2017).

4) Missing values.
It is not uncommon that one or more entries of the desired regressor matrix X are missing. A
good starting point for methods of dealing with this important issue in the context of regres-
sion is Rao et al. (2008, Ch. 8). In a more general setting, analysis of data with missing values
is addressed by so-called multiple imputation, often using simulation and, when applicable, an
expectation-maximization (hereafter EM) algorithm. An internet search for books along the lines
of “multiple imputation of missing data” will reveal numerous possible resources for addressing
this common and pernicious issue when dealing with real data.

5) Time-varying parameters, such that one or more of the regression coefficients varies
through time.

We deal with some aspects of this in Section 5.6. Consideration of such models leads naturally
to the more general class of so-called state space models; see the references in Section 5.6.

6) One or more of the regression coefficients undergoes a structural break, i.e., a change in its value
at some unknown point in time.

Estimation and testing in this case has been considered by numerous authors; see, e.g., Bai and
Perron (1998, 2003), Qu and Perron (2007), Yamamoto and Perron (2013).13 Another method is
via impulse indicator saturation, as first investigated by Hendry (1999). It provides a general test
for an unknown number of breaks, at unknown times, and is applicable in many model situations
besides the linear regression model, such as vector autoregressions; see, e.g., Ericsson (2012),
Castle et al. (2015), and the references therein for further development and application. It also has
applications to testing for parameter constancy; see, e.g., Johansen and Nielsen (2009), Hendry
and Doornik (2014), and the references therein. A package for R is available from Sucarrat et al.
(2017) for automated GETS modeling of the mean and variance of a regression, and indicator
saturation methods for detecting and testing for structural breaks in the mean.

7) Use of robust estimators.
In the presence of outliers, the least squares estimator is not optimal. Alternative estimation pro-
cedures have been developed to address this, e.g., Seber and Lee (2003, Sec. 3.13), Andersen
(2008), and Huber and Ronchetti (2009, Ch. 7), as well as the note below on quantile regression.

8) Partially adaptive estimation for regression amid non-Gaussian disturbances.
This is related to the previous issue of robustness, but in that setting the assumption is that the
disturbances are Gaussian, but such that one or more observations deviates substantially from

13 The authors conveniently provide Matlab codes for this last test, and others; see Perron’s web page: http://people.bu.edu/
perron/code.html.
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the main group. Here, the assumption is not the presence of outliers per se, but rather that the
underlying error distribution is non-Gaussian (and usually leptokurtic or heavy tailed, and pos-
sibly asymmetric), thus also giving rise to observations more extreme than the main cluster.

While general nonparametric methods are applicable in this setting, the method of partially
adaptive estimation is very straightforward and still within the paradigm of parametric infer-
ence. It involves replacing the normality assumption with a flexible non-Gaussian distribution
that embodies asymmetry and (semi-)heavy tails, and usually such that normality is a special or
limiting case. General optimization routines will be required for computing the m.l.e., and boot-
strap methods can be used for computing confidence intervals and other aspects of inference,
such as forecasting.

The use of the Student’s t distribution and its generalizations in regression analysis has been
considered by McDonald and Newey (1988), Lange et al. (1989), and Butler et al. (1990). A less
popular candidate, due to its historical complication regarding the evaluation of the p.d.f. (and
thus the likelihood) is the (asymmetric) stable Paretian, as discussed in detail in Chapter II.8, and
Sections III.9.4, III.9.5, and III.A.16. It also was the motivation for including the quote above by
Pitman and Williams (1967).

The reason for its appeal, as compared to, say, use of (asymmetric) Student t variations, is the
applicability of the generalized central limit theorem: One presumes that the standardized sum of
all the neglected factors in the model (yielding the error term) converges to a stable distribution,
of which normality is a special case. Note, however, that the non-Gaussian stable distribution does
not possess a variance, and (as with any non-Gaussian distribution), the use of the bootstrap is
recommended for inference on parameter and forecast uncertainty.

9) Use of threshold regression.
This is a type of sample splitting model, leading to far more general structures, such as cluster
analysis and various multivariate methods in machine learning. As in Hansen (1999, 2000), under
the assumption of two groups (referred to as classes, or regimes, in Hansen, 2000),

Yt =
{

x′
t𝜽1 + 𝜖t, if qt ⩽ 𝛾,

x′
t𝜽2 + 𝜖t, if qt > 𝛾,

(1.108)

t = 1,… ,T , where xt is a known k × 1 vector; qt is exogenous (not involving any Yt) and is referred
to as the threshold variable; and 𝜖t

i.i.d.∼ N(0, 𝜎2). It can be an element of xt and, for the asymptotic
theory developed by Hansen (2000), is assumed to be continuous. Finally, 𝛾 is the threshold
parameter. Let, as usual, the regressor matrix be X = [x1,… , xT ]′, let q = [q1,… , qT ]′ and b =
𝕀{q ⩽ 𝛾}, both T × 1. Then, with 𝟏′k = [1, 1,… , 1] and selection matrix S = 𝟏′k ⊗ b, define X𝛾 =
S ⊙ X, so that model (1.108) can be expressed as

Y = X𝜽 + X𝛾𝜹 + 𝝐 = Z𝜷 + 𝝐, (1.109)
where Y and 𝝐 are defined in the usual way, 𝜽 = 𝜽2, Z = [X, X𝛾 ] and 𝜷 = [𝜽′, 𝜹′]′. Sample Mat-
lab code to generate X𝛾 is given in Listing 1.12. For a given threshold 𝛾 , the usual least squares
estimator (1.5) for 𝜷 is used, and is also the m.l.e. under the usual Gaussian assumption on 𝝐.

If 𝛾 were known, then the model reduces to the usual linear regression model, and the “signif-
icance” of 𝜹 is assessed in the usual way, from Section 1.4. Matters are less clear when 𝛾 is to be
elicited from the data. Let the concentrated sum of squares be given by (1.4), but as a function
of 𝛾 , i.e.,

S(𝛾) = S(𝛾;𝜷;Y ,Z) = Y′M𝛾Y, M𝛾 = IT − Z(Z′Z)−1Z′.
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1 T=10; k=2; X=[ones(T,1), (1:T)']; b=rand(T,1)<0.5;
2 S = kron(ones(1,k),b); Xg = S.* X;

Program Listing 1.12: Example code for generating 𝐗𝛾 in (1.109).

(This is similar in concept to the concentrated likelihood, as will be used later in Section 5.6.3.1.)
Assume 𝛾 ∈ [𝛾, �̄�], and let

�̂� = argmin
𝛾 ∈ G

S(𝛾)

be the least squares estimator of 𝛾 , where G = [𝛾, �̄�] ∩ {q1,… , qT}, noting that S(𝛾) takes on less
than T distinct values. Hansen (2000) derives the asymptotic theory associated with estimator �̂� ,
and approximate confidence intervals for 𝛾 based on a likelihood ratio statistic.
The case of model (1.108) with more than two groups is a straightforward generalization of this
two-group setup. Examples of its use in macroeconomics include Rousseau and Wachtel (2002),
Jude (2010), Stolbov (2013), Perri (2014), Pan et al. (2016), and the references therein.

10) Quantile regression.
The above quote by Mosteller and Tukey (1977) serves as a clear reminder of the limits of stan-
dard regression analysis and as one (of several) motivating factors for using quantile regression
(QR). In particular, some contemplation reveals that, perhaps more often than not, it is not the
mean that is of interest, but rather a particular quantile. For example, in income studies, interest
might center on how the various exogenous factors influence not the mean income, but rather
the lower 1, 5, and 10% quantiles, or their right-tail counterparts. Another benefit of QR com-
pared to standard linear regression is that the median could be used instead of the mean as a type
of robustified estimator, and/or its resulting implications (such as forecasts) compared to those
based on the traditional use of the mean. Furthermore, QR allows for heteroskedasticity of the
response function (recall the simple example in Figure 1.1) in a natural way, without requiring an
explicit model for the error term that allows the exogenous variables to influence the estimates of
𝜎t (see, e.g., Fahrmeir et al., 2013, Ch. 10, for such an example and comparison to the use of QR).

A—clearly no longer relevant—disadvantage of QR is that closed-form solutions of the esti-
mator no longer exist, and either linear programming techniques, or just general optimization
algorithms, are required. One of the earliest survey articles on the topic is Koenker and Hallock
(2001), while more detailed accounts can be found in the highly readable initial books of Koenker
(2005) and Hao and Naiman (2007), as well as the newer Davino et al. (2014), which also provides
code in R, SAS, and Stata.

11) Generalized Linear Models.
Above, we mentioned the use of robust estimators, or partially adaptive estimation, when
the Gaussianity assumption is not applicable. However, these techniques are suitable when the
unknown error distribution is “approximately Gaussian” in the sense of being unimodal, roughly
bell-shaped, and having support over the whole real line. If the dependent variable is strictly
positive and thus right-skewed, as occurs, for example, with lifetimes, waiting times, incomes,
dividend payments, insurance claims, etc., then these aforementioned techniques are less
applicable. Instead, one could model the expected value of a positive continuous random vari-
able, such as the gamma, Pareto, (generalized) inverse Gaussian, etc., and the fitted regression
coefficients would somehow need to be constrained such that x′

t𝜷 is positive for all relevant xt .
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Yet more complicated situations arise if the dependent variable is discrete, say, Bernoulli, bino-
mial, multinomial, negative binomial, or Poisson. The above situation, as well as the discrete case,
can all be elegantly handled by the use of what is referred to as the generalized linear model, or
GLIM, whereby a transformation of the dependent variable is applied such that a regression can
be used for modeling its mean. The assumed distribution of the dependent variable is usually
taken to be a member of the exponential family, one example of which is the Gaussian, as studied
in this chapter, in which case no transformation is required.

We briefly illustrate the mechanics assuming a Bernoulli distribution (with support zero and
one) for the dependent variable Y . An example of this could be in so-called credit scoring, or
probability of default models, whereby the credit-worthiness of a bank client (no or yes, i.e., 0 or
1) for receiving a loan is to be assessed, based on several exogenous factors (there are numerous
books on this topic, e.g., Baesens et al. (2016) and Bluhm et al. (2010)). Let 𝜋i = Pr(Yi = 1) =
𝔼[Yi], and denote by 𝜂i the linear predictor 𝜂i = 𝛽1xi,1 + 𝛽2xi,2 + · · · + 𝛽kxi,k = x′

i𝜷 , i = 1, 2,… , n,
as in (1.2). They are related via a response function h such that 𝜋i = h(𝜂i), where h is a strictly
monotone increasing function that maps to the interval (0, 1), such as the standard normal c.d.f.
Φ, and inverse function 𝜂i = g(𝜋i), where function g = h−1 is referred to as the link function. The
so-called logit model takes

𝜋i = h(𝜂i) =
exp{𝜂i}

1 + exp{𝜂i}
, g(𝜋i) = h−1(𝜋i) = log

(
𝜋i

1 − 𝜋i

)
= x′

i𝜷,

while the probit model takes 𝜋i = h(𝜂i) = Φ(𝜂i).
Good introductory accounts of GLIM (with the benefit of having books that cover numerous
other aspects of linear and other models) can be found in Rao et al. (2008, Ch. 10), Khuri (2010,
Ch. 13), Fahrmeir et al. (2013, Ch. 5), and Greene (2017), while several highly detailed books
dedicated to the subject exist, such as Fahrmeir and Tutz (2001), Winkelmann (2008), and Agresti
(2015).

1.7 Problems

Problem 1.1 Consider the simple linear regression model Yt = 𝛽1 + 𝛽2Xt + 𝜖t , t = 1,… ,T .
a) By setting 𝜕S(𝜷)∕𝜕𝛽1 to zero, show that 𝛽1 = Ȳ − 𝛽2X̄. Using this with 0 = 𝜕S(𝜷)∕𝜕𝛽2, show that

𝛽2 = �̂�X,Y∕�̂�2
X , where �̂�X,Y denotes the sample covariance between X and Y ,

�̂�X,Y ∶= 1
T − 1

T∑
t=1

(Xt − X̄)(Yt − Ȳ ),

and �̂�2
X ∶= �̂�X,X .

b) Show that Ŷt − Ȳ = 𝛽2(Xt − X̄).
c) Define the standardized variables xt = (Xt − X̄)∕�̂�X and yt = (Yt − Ȳ )∕�̂�Y , and consider the

regression yt = 𝛼1 + 𝛼2xt + 𝜀t . Show that �̂�1 = 0 and �̂�2 = �̂�, where �̂� = �̂�X,Y is the sample
correlation between X and Y , with |�̂�| ⩽ 1. Thus, we can write

Ŷt = �̂�1 + �̂�2xt = �̂�xt ,

and squaring and summing both sides yields �̂�2 =
∑

Ŷ 2
t ∕

∑
x2

t . Show that the R2 statistics for the
two regression models are the same, namely �̂�2.
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Problem 1.2 Show (1.12) directly (without use of Theorem 1.6) for the simple linear regression
model Yt = 𝛽1 + 𝛽2Xt + 𝜖t .

Problem 1.3 For nonsingular matrix A, its partitioned inverse A−1 is[ A11 A12

A21 A22

]−1

=
[ W−1 −W−1A12A−1

22

−A−1
22 A21W−1 A−1

22 + A−1
22 A21W−1A12A−1

22

]
(1.110)

=
[ A−1

11 + A−1
11 A12Z−1A21A−1

11 −A−1
11 A12Z−1

−Z−1A21A−1
11 Z

]
,

where W = A11 − A12A−1
22 A21 and Z = A22 − A21A−1

11 A12. This is a well-known result that can be
found in numerous books on matrix algebra, and confirmed by computing AA−1. Derive the
Frisch–Waugh–Lovell theorem by applying the partitioned inverse (1.110) expression to (1.5).

Problem 1.4 Prove that the projection matrix P in (1.42) is unique.
Hint: Let H = [h1 h2 … hk] be a different basis for . Justify that we can write H = TA for some A.

Problem 1.5 This is a less direct, but instructive, method for proving Theorem 1.3. Let M = IT − P
with dim() = k, k ∈ {1, 2,… ,T − 1}. Via the spectral decomposition, let H be an orthogonal
matrix whose rows consist of the eigenvectors of M. Partition H as

H =
[

H1
H2

]
,

with “correct” sizes, and use Theorem 1.2 to write HMH′ as a block matrix. Show that MH′
2 = 𝟎

and H′
2 = PH′

2. This implies the rows of H2 are in  . Use this to show H1H′
2 = 𝟎 ⇐⇒ H1M = H1.

Postmultiply H′H = IT by M to show H′
1H1 = M. Finally, show that H1H′

1 = IT−k .

Problem 1.6 Prove that the restricted least squares estimator �̂� given in (1.69) satisfies
1. H�̂� = h and
2. ‖Y−X�̂�‖2 ⩽ ‖Y−Xb‖2 for all b ∈ ℝk such that Hb=h.
Hint: For 2, first show that, for every b ∈ ℝk such that Hb=h,

‖Y−Xb‖2 = ‖Y−X𝜷‖2 + ‖X𝜷 − Xb‖2,

and then argue it suffices to show that ‖X𝜷 − X�̂�‖2 ⩽ ‖X𝜷 − Xb‖2. Add and subtract �̂� to the latter
term, expand, and show the cross term is zero.

Problem 1.7 Let u, v ∈ ℝn. Prove the Cauchy–Schwarz inequality ⟨u, v⟩ ⩽ ‖u‖ ‖v‖ as follows.
1. Show that 0 ⩽ ⟨u − av,u − av⟩ for all a ∈ ℝ.
2. Expand ⟨u − av,u − av⟩ and let a = ⟨u, v⟩∕⟨v, v⟩.

Problem 1.8 Prove Theorem 1.2, i.e., if P is symmetric and idempotent with rank(P) = k, then (i)
k of the eigenvalues of P are unity and the remaining T − k are zero, and (ii) tr(P) = k.
Hint: For (i), continue with the relation 𝜆x=Px=PPx, and for (ii), let P=UDU′ and continue
with the relation k = rank(P) = tr(D).
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The converse of the result in Theorem 1.2 is, however, not true. For example, with A =
[

1 1
0 1

]
,

rank(A) = tr(A) = 2 and a standard computation shows that the eigenvalues of A are both one.
But A is neither symmetric nor idempotent.
Finally, there are related results without requiring symmetry. For example, the matrix

A =
⎡⎢⎢⎣

2 −1∕4 −1∕6
18 −7∕2 −3

−15 15∕4 7∕2

⎤⎥⎥⎦
is not symmetric, but it is idempotent, with rank two, eigenvalues 0, 1 and 1, and tr(A) = 2. In
general, if A is idempotent with k eigenvalues equal to one (and the rest zero), then rank(A) =
tr(A) = k; see, e.g., Magnus and Neudecker (2007, p. 22).

Problem 1.9 Prove Theorem 1.6.

Problem 1.10 Partition the linear regression model (1.3) as

Y =
(

X1 X2
)( 𝜷1

𝜷2

)
+ 𝝐 = X1𝜷1 + X2𝜷2 + 𝝐.

For convenience, let M1 = MX1
= I − PX1

. Part (b) of Theorem 1.6 implies that PX = PX1
+ PM1X2

.
Show this directly by using the projection and perpendicularity conditions (1.48) and (1.49).
Hint: Recall from the definition of column space (1.38) that, for an x ∈ (X), there exists a 𝜸 such
that x = X𝜸 = X1𝜸1 + X2𝜸2, where 𝜸 is appropriately partitioned into 𝜸1 and 𝜸2.

Problem 1.11 Because M in (1.53) is a projection matrix onto (X)⟂, it follows from Theorem 1.2
that rank(M) = T − k. Show this result using (B.67) and (B.68), i.e., if A and B are two matrices of
the same size, then

rank(A+B) ⩽ rank(A) + rank(B),

and if A and B are n × n and n × k matrices, respectively, k ⩾ 1, then

rank(AB) ⩾ rank(A) + rank(B) − n.

Problem 1.12 As in (1.66), let matrix H be of dimension J × k and full rank, with J ⩽ k. Show that
K = 𝜎2AH′(HAH′)−1HA is positive semi-definite for J < k, where A = (X′X)−1.
Hint: If you are not convinced of the following fact, then prove it first: If A is a real symmetric
matrix of size n with full rank n, then so is A−1.
What happens when J = k?

Problem 1.13 Numerically find the minimum number of observations T required in Example 1.11
to achieve a given power, using 𝛼 = 0.05.

Problem 1.14 We had derived the restricted least squares estimator �̂� for the model Y = X𝜷 + 𝝐

when the restriction H𝜷 = h holds, where H is J × k of full rank J ⩽ k. There is another way of doing
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this. It begins by expressing H𝜷 = h as 𝜷 = S𝜼 + s, where the parameter vector 𝜼 is of dimension
k − J . That is, Y = X𝜸 + 𝝐, where

X𝜸 ∈ H = {y ∶ y =X𝜷, 𝜷 = S𝜼 + s, 𝜼 ∈ ℝk−J}.

An extensive treatment of the relation between these parameterizations is provided by Hirschberg
and Slottje (1999).
For example, let 𝜷 = (𝛽1,… , 𝛽4)′ and consider the constraint 𝛽2 = 2𝛽3. Then we would take H =
[0 1 −2 0] and h = 0. Alternatively, this can be expressed by

𝜷 =
⎛⎜⎜⎜⎝
𝛽1
𝛽2
𝛽2∕2
𝛽4

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

1 0 0
0 1 0
0 1∕2 0
0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
𝛽1
𝛽2
𝛽4

⎞⎟⎟⎠ + 𝟎, i.e., S =
⎛⎜⎜⎜⎝

1 0 0
0 1 0
0 1∕2 0
0 0 1

⎞⎟⎟⎟⎠ ,
s = 𝟎 and 𝜂 = [𝛽1 𝛽2 𝛽4]′.
a) Let 𝜷 = (𝛽1,… , 𝛽4)′ but with the constraint that

∑4
i=2 𝛽i = 1. Give the appropriate values of H,

h, S, 𝜼 and s.
b) For some given values of S, 𝜼 and s, derive �̂�.

Hint: Plug in 𝜷 = S𝜼 + s into the regression model.
(Ruud, 2000, pp. 79–80)

c) Express X�̂� as PZY + (I−PZ)Xs, where PZ is a projection matrix.
d) Show that the constraint H𝜷 = h, where H is J × k and rank(H) = J ⩽ k, can always be expressed

as 𝜷 = S𝜼 + s.
(Ruud, 2000, p. 94(4.14a))

Problem 1.15 Recall the form of the generalized likelihood ratio statistic. For testing H0 ∶ H𝜷 = h
in the linear model, it is given by

LR = LR(Y,X,H,h) =
max

𝜎2,𝜷∶H𝜷=h
(𝜷, 𝜎2;Y)

max
𝜎2,𝜷

(𝜷, 𝜎2;Y)
=

(�̂�, �̃�2
𝜸 ;Y)

(𝜷, �̃�2;Y)
,

where 𝜷 = (X′X)−1X′Y and �̃�2 = T−1S(𝜷) refer to the unrestricted m.l.e. and �̂� and �̃�2
𝜸 = T−1S(�̂�)

refer to the restricted ones, where �̂� is given in (1.69). Show that a test of H0 involving LR is equiv-
alent to the F test given in (1.88).

Problem 1.16 This exercise will be of value in Section 2.5.2. Recall that, if G ∼ Gam(𝛼, 𝛽), 𝛼 > 0,
𝛽 > 0, its p.d.f. is

fG(x; 𝛼, 𝛽) =
𝛽𝛼

Γ(𝛼)
x𝛼−1 exp(−𝛽x)𝕀(x > 0),

where

Γ(a) = ∫
∞

0
xa−1e−x dx and ∫

∞

0
x𝛼−1 exp(−𝛽x) dx = Γ(𝛼)

𝛽𝛼
. (1.111)

Let Gi
ind∼ Gam(𝛼i, 1) and let R1 = G1∕G3 and R2 = G2∕G3. It is clear that, conditional on G3, R1

and R2 are independent. Show that without conditioning they are not, by confirming (omitting the
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obvious indicator functions)

fR1,R2
(r1, r2) =

Γ(𝛼1 + 𝛼2 + 𝛼3)
Γ(𝛼1)Γ(𝛼2)Γ(𝛼3)

r𝛼1−1
1 r𝛼2−1

2

(1 + r1 + r2)𝛼1+𝛼2+𝛼3
,

which does not factor as fR1
(r1) × fR2

(r2). Further confirm that fR1,R2
(r1, r2) integrates to one by using

the function dblquad in Matlab.

1.A Appendix: Derivation of the BLUS Residual Vector

This appendix derives the BLUS residual vector (1.104). It is a detailed amalgam of the various proofs
given in Theil (1965, 1968, 1971), Chow (1976), and Magnus and Sinha (2005), with the hope that the
development shown here (that becomes visible and straightforward once atop the proverbial shoul-
ders of giants, notably Henri Theil and Jan Magnus) serves as a clear, complete, and perhaps definitive
derivation.14

Recall that we wish a residual estimator of the form �̂�LUS = CY, where C is (T − k) × T , and that the
relevant minimization problem for the BLUS estimator is (writing just �̂� for �̂�LUS)

�̂�BLUS = arg min
�̂�

𝔼[(�̂� − 𝝐1)′(�̂� − 𝝐1)] subject to CX=𝟎, CC′ = I, (1.112)

where 𝝐1 is defined via the partition of the model in (1.103), repeated here as[
Y0
Y1

]
=

[
X0
X1

]
𝜷 +

[
𝝐0
𝝐1

]
=

[
X0
X1

]
𝜷LS +

[
e0
e1

]
, (1.113)

with 𝝐0 and e0 of size k × 1, and 𝝐1 and e1 of size (T − k) × 1.
We divide the derivation into several small parts.

Reduce the Two Constraints to One

The first part of the derivation consists in reducing the number of (matrix) constraints to one. The
partition C =

[
C0 C1

]
with e =

[
e0 e1

]′, where e is of size T × 1, yields

Ce = C0e0 + C1e1, (1.114)

where C0 is (T − k) × k and C1 is (T − k) × (T − k). Observe that the symmetry of C implies that of C1.
Using CX=𝟎 and X′e=𝟎, we have

C0X0 + C1X1 = 𝟎, X′
0e0 + X′

1e1 = 𝟎,

so that with

Z = X1X−1
0 , (1.115)

we can write

e0 = −(X1X−1
0 )′e1 = −Z′e1, C0 = −C1(X1X−1

0 ) = −C1Z. (1.116)

14 The author is grateful to my brilliant master’s student Christian Frey for assembling this meticulous and detailed
derivation from the original papers.
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Further, using CC′ = I, (1.116) yields

CC′ = C0C′
0 + C1C′

1 = C1ZZ′C′
1 + C1C′

1 = C1[I + ZZ′]C′
1 = I, (1.117)

so that both constraints CX=𝟎 and CC′ = I are equivalent to (1.117). Moreover, by assumption
CX=𝟎, it follows that CY = C𝝐 = Ce. As CY = (X𝜷 + 𝝐) = C𝝐 and Ce = C(Y − 𝜷X) = CY,

�̂� = CY = C𝝐 = C0𝝐0 + C1𝝐1 = −C1Z𝝐0 + C1𝝐1,

and therefore

Cov[(�̂� − 𝝐1), (�̂� − 𝝐1)]
= Cov[(−C1Z𝝐0 + (C1 − I)𝝐1), (−C1Z𝝐0 + (C1 − I)𝝐1)]
= 𝜎2[C1(I + ZZ′)C′

1 + I − C1 − C′
1]. (1.118)

The minimization problem for the BLUS estimator is then reduced to

�̂�BLUS = arg min�̂�𝔼[(�̂� − 𝝐1)′(�̂� − 𝝐1)] subject to (1.117).

Solve with a Lagrangean Approach

Note that �̂� = CY = Ce, so that, with (1.118) and (1.117), the constrained minimization problem is
equivalent to the Lagrangean

L(C1,𝝀) = tr([C1(I + ZZ′)C′
1 + I − C1 − C′

1])
− tr(𝝀[C1(I + ZZ′)C′

1 − I]), (1.119)

where 𝝀 denotes the Lagrange multiplier matrix of dimension (T − k) × (T − k).
As 𝜕tr(AB)∕𝜕A = 𝜕tr(BA)∕𝜕A = B′, the first-order condition with respect to C1 is

𝜕L
𝜕C1

= 2C1(I+ZZ′) − 2I − 2𝝀C1(I + ZZ′) = 𝟎. (1.120)

Symmetry of C1 Gives a Spectral Decomposition

To solve (1.120) for the two unknowns C1 and 𝝀, postmultiply (1.120) by C′
1 and use (1.117) to get

𝝀 = I − C′
1 = I − C1, (1.121)

which is obviously symmetric from the symmetry of C1. Substituting (1.121) in (1.120) yields

C′
1C1(I + ZZ′) = I. (1.122)

Thus, (1.122) and a spectral decomposition yield

C2
1 = (I + ZZ′)−1 = PD2P′, (1.123)

where, from the symmetry of C1, D2 is the (T − k) × (T − k) diagonal matrix with entries d2
k and

P is the (T − k) × (T − k) orthogonal matrix (PP′ = I) with columns given by the eigenvectors of
(I + ZZ′)−1 corresponding to the eigenvalues d2

1,… , d2
T−k . It is worth emphasizing that the symmetry

of C1 ensures that the di are real.
Note that the notation D2 stands for the d2

k entries of matrix D2, just to avoid usage of the root sym-
bol, while D is the diagonal matrix with entries dk restricted to the positive square roots. The solution
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for (1.123) is then, say, C∗
1 = (I + ZZ′)−1∕2 = PDP′. To simplify notation, we subsequently take C1 ≡

C∗
1.
It is useful to introduce the partition

M = I − X(X′X)−1X′ =
[

M00 M01
M10 M11

]
,

where M00 = I − X0(X′X)−1X′
0, M01 = −X0(X′X)−1X′

1, M10 = M′
01, and M11 = I − X1(X′X)−1X′

1,
though we will make use only of M11. Direct multiplication shows that M−1

11 = I + X1(X′
0X0)−1X′

1, i.e.,
using this latter claim, M11M−1

11 is
[I − X1(X′X)−1X′

1][I + X1(X′
0X0)−1X′

1]
= I − X1(X′X)−1X′

1 + X1(X′
0X0)−1X′

1 − X1(X′X)−1X′
1X1(X′

0X0)−1X′
1

= I − X1(X′X)−1X′
1 + X1(X′

0X0)−1X′
1 − X1(X′X)−1(X′X − X′

0X0)(X′
0X0)−1X′

1

= I.

Thus, with Z = X1X−1
0 from (1.115),

M−1
11 = I+ZZ′, (1.124)

from which it follows that M11 = (I + ZZ′)−1. From (1.123) and (1.124), M−1
11 = (I + ZZ′) = (C2

1)
−1 =

C−2
1 so that, from (1.116),

�̂�BLUS = CY = Ce = C0e0 + C1e1 = (−C1Z)(−Z′e1) + C1e1

= C1(I+ZZ′)e1 = C1M−1
11 e1 = C−1

1 e1

= e1 + (C−1
1 − I)e1

= e1 +
T−k∑
k=1

(d−1
k − 1)pkp′

ke1, (1.125)

where pk are the eigenvectors and d2
k the eigenvalues of M11. The last equality follows by the existence

of a spectral decomposition of M11 = C2
1 = PD2P′, so that

M11pk = [I − X1(XX′)−1X′
1]pk = d2

kpk , k = 1,… ,T − k. (1.126)
Premultiplying both sides of (1.126) by X′

1 and using X′
1X1 = X′X − X′

0X0,
X′

1pk − (X′X − X′
0X0)(X′X)−1X′

1pk = d2
kX′

1pk

X′
0X0(X′X)−1X′

1pk = d2
kX′

1pk , k = 1,… ,T − k. (1.127)

Now premultiplying both sides of (1.127) by (X′
0)

−1, using Z = X1X−1
0 , and rearranging,

[X0(X′X)−1X′
0 − d2

kI]Z′pk = 𝟎, k = 1,… ,T − k.

Use the Spectral Decomposition to Express the BLUS Estimator in terms of e0 and e1

Observe that d2
k is an eigenvalue of X0(X′X)−1X′

0. As the eigenvectors Z′pk do not have unit length,
we normalize by a scalar to get, for dk < 1,

qk =
dk√

1 − d2
k

Z′pk , k = 1,… ,T − k, (1.128)
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so that q1,… ,qT−k have unit length and are pairwise orthogonal. As P is orthogonal, P−1 = P′, so that

ZZ′ = M−1
11 − I = (PD2P′)−1 − I = (PD−2P′) − I,

and observe that

ZZ′pk =
1 − d2

k

d2
k

pk , k = 1,… ,T − k.

Thus, q′
lqk = 1 if l = k and zero otherwise for k, l = 1,… ,T − k. From

1 − d2
k

d2
k

pk = Z(Z′pk) =

√
1 − d2

k

dk
Zqk ,

it follows that, if dk < 1, pk = dk√
1−d2

k

Zqk , k = 1,…T − k, so that, with e0 = −Z′e1 and Z = X1X−1
0 , the

last line of (1.125) can be written as

�̂�BLUS = e1 +
T−k∑
k=1

(
1
dk

− 1
)

pkp′
ke1 (1.129)

= e1 + Z
T−k∑
k=1

(
1
dk

− 1
) d2

k

1 − d2
k

qkq′
kZ′e1 (1.130)

= e1 + X1X−1
0

T−k∑
k=1

dk

1 + dk
qkq′

ke0, (1.131)

where in (1.129), the kth term in the sum is zero if dk = 1. Thus, we can restrict the summation in
(1.130) and (1.131) to k = 1,… ,H , where dk < 1, for all k = 1,… ,H , with H ⩽ T − k. The result is
sometimes expressed as a permutation of the elements dh, h = 1,… ,H , say d1 ⩽ d2 ⩽ … ⩽ dH < 1,
such that the dh are nondecreasing. This yields (1.104), i.e.,

�̂�BLUS = e1 + X1X−1
0

H∑
h=1

dh

1 + dh
qhq′

he0.

Observe that the BLUS estimator is represented as a deviation from the corresponding least squares
errors.

Verification of Second-order Condition

As in Theil (1965), to verify that C∗ or, equivalently, C∗
1 is indeed a minimum of (1.123), consider

an alternative estimator C̄Y = (C+R)Y =
[
C′

0 + R′
0 C′

1 + R′
1
]

Y, where C1 = PDP′ is the optimal
symmetric matrix C1 from the first-order condition (1.123) and, hence, C0 = −C1Z = −PDP′Z from
(1.116). Note that, as before, C1 ≡ C∗

1 and similarly C ≡ C∗. Recall that D is restricted to contain only
positive diagonal entries (eigenvalues). We wish to show that C∗ ⩽ C̄ for all C̄.

From the assumption C̄X=𝟎, it follows that R′
0X0 + R′

1X1 = 𝟎, so that R′
0 = −R′

1Z, with Z = X1X−1
0 .

Thus, the assumption C̄ C̄′ = I, such that C̄ has a scalar covariance matrix, implies

(C+R)′(C+R) = (C0 + R0)′(C0 + R0) + (C1 + R1)′(C1 + R1)
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= (C1 + R1)′(I+ZZ′)(C1 + R1)
= (C1 + R1)′M−1

11 (C1 + R1) = I,

where the last equality follows from (1.124). From (1.124) and (1.123), M−1
11 = C−2

1 , and

(I + C−1
1 R1)′(I + C−1

1 R1) = I, (1.132)

implying that C−1
1 R1 + (C−1

1 R1)′ is negative semi-definite. Indeed, with N ∶= C−1
1 R1 and v′ ∈ ℝT−k an

arbitrary (real) nonzero row vector, premultiplying both sides of (1.132) with v′ and postmultiplying
by v gives

v′(I+N)′(I+N)v = v′v, (1.133)

implying

v′(N+N′)v = −v′N′Nv ⩽ 0, (1.134)

so that N+N′ is negative semi-definite.
Recall that the (unconstrained) objective function in (1.119) can be rewritten with C1C′

1 = I. Also
recall the properties of the trace operator, tr(C1) = tr(C′

1), tr(C1C′
1) = tr(C′

1C1) and tr(C1(ZZ′)C′
1) =

tr(C1C′
1(ZZ′)). Then the expectation in (1.112) is

𝔼[(�̂� − 𝝐1)′(�̂� − 𝝐1)] = tr([C1(I + ZZ′)C′
1 + I − C1 − C′

1])
= tr(C1C′

1) + tr(C1(ZZ′)C′
1) + tr(I) − 2tr(C1)

= 2tr(I) + tr(I(ZZ′)) − 2tr(C1).

It follows that the unconstrained optimization problem as a function only of C1 is equal to

−min
C1

tr(C1) = max
C1

tr(C1) = max
C1

tr

(T−k∑
k=1

1
dk

pkp′
k

)
, (1.135)

where the last equality follows from the spectral decomposition C1 = PDP′; see (1.123). The objective
function of the maximization problem (1.135) applied to R1 is then given as

tr(R1) = tr(C1N) = tr

(T−k∑
k=1

1
dk

pkp′
kN

)
= tr

(T−k∑
k=1

1
dk

p′
kNpk

)

= 1
2

tr

(T−k∑
k=1

1
dk

p′
k(N + N′)pk

)
⩽ 0,

so that, by the negative semi-definiteness of (N + N′), N=𝟎, or, equivalently, R=𝟎, are corresponding
maxima of the objective function (1.135) given that the eigenvalues dk , k = 1,… ,T − k, are positive.
Therefore, C∗

1 is a minimum of (1.119) and hence C∗ is a minimum of (1.112).

1.B Appendix: The Recursive Residuals

Here we provide more detail on the recursive residuals in (1.105). Let 𝜷 j = (X′
j Xj)−1X′

j Yj be the o.l.s.
estimator obtained by using only the first j, j ⩾ k, observations, where Yj is the j × 1 vector of the first j
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elements of Y, and Xj is the j × k matrix of the first j rows of X. As shown in Brown et al. (1975, p. 152),
the 𝜷 j, j = k + 1,… ,T , can be obtained recursively.

In particular, writing X′
j Xj = X′

j−1Xj−1 + xjx′
j , where x′

j is the jth row of X, we can apply (1.70) with
A = X′

j−1Xj−1, B = xj and scalar D = 1, to get

(X′
j Xj)−1 = (X′

j−1Xj−1)−1 −
(X′

j−1Xj−1)−1xjx′
j (X

′
j−1Xj−1)−1

1 + x′
j (X

′
j−1Xj−1)−1xj

. (1.136)

Postmultiplying (1.136) by xj and simplifying easily yields

(X′
j Xj)−1xj =

(X′
j−1Xj−1)−1xj

1 + x′
j (X

′
j−1Xj−1)−1xj

. (1.137)

Next, from (1.6) and that 𝜷 j−1 = (X′
j−1Xj−1)−1X′

j−1Yj−1, write

X′
j Xj𝜷 j = X′

j Yj = X′
j−1Yj−1 + xjYj = X′

j−1Xj−1𝜷 j−1 + xjYj

= (X′
j−1Xj−1 + xjx′

j )𝜷 j−1 + xjYj − xjx′
j𝜷 j−1

= X′
j Xj𝜷 j−1 + xj(Yj − x′

j𝜷 j−1),

premultiply with (X′
j Xj)−1 and finally use (1.137) to get

𝜷 j = 𝜷 j−1 +
(X′

j−1Xj−1)−1xj(Yj − x′
j𝜷 j−1)

1 + x′
j (X

′
j−1Xj−1)−1xj

, j = k + 1,… ,T . (1.138)

The standardized quantities

Vj =
Yj − x′

j𝜷 j−1√
1 + x′

j (X
′
j−1Xj−1)−1xj

, j = k + 1,… ,T , (1.139)

are defined to be the recursive residuals.
Let V = (Vk+1,… ,VT )′. We wish to derive the distribution of V. Clearly, 𝔼[Vj] = 0. For the variance,

as Yj and 𝜷 j−1 are independent for j = k + 1,… ,T , and recalling (1.8),

𝕍 (Vj) =
1

1 + x′
j (X

′
j−1Xj−1)−1xj

(𝕍 (Yj) + x′
j𝕍 (𝜷 j−1)xj)

= 1
1 + x′

j (X
′
j−1Xj−1)−1xj

(𝜎2 + 𝜎2x′
j (X

′
j−1Xj−1)−1xj) = 𝜎2.

Vector V has a normal distribution, because 𝝐 ∼ N(0, 𝜎2I), and each Vj can be expressed as

Vj =
𝜖j − x′

j (X
′
j−1Xj−1)−1 ∑j−1

k=1 xk𝜖k√
1 + x′

j (X
′
j−1Xj−1)−1xj

. (1.140)

To see this, note that X′
j−1(Yj−1 − Xj−1 𝜷) =

∑j−1
k=1 xk𝜖k and hence for the numerator of Vj

Yj − x′
j𝜷 j−1 = 𝜖j − x′

j𝜷 j−1 + x′
j𝜷
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= 𝜖j − x′
j (X

′
j−1Xj−1)−1X′

j−1(Yj−1 − Xj−1 𝜷)

= 𝜖j − x′
j (X

′
j−1Xj−1)−1

j−1∑
k=1

xk𝜖k .

For the covariances of V, let Nj be the numerator in (1.140). For j < i, 𝔼[NjNi] is

𝔼(𝜖j𝜖i) − 𝔼

[
𝜖jx′

i(X
′
i−1Xi−1)−1

i−1∑
k=1

xk𝜖k

]
− 𝔼

[
𝜖ix′

j (X
′
j−1Xj−1)−1

j−1∑
k=1

xk𝜖k

]

+ 𝔼

[
x′

j (X
′
j−1Xj−1)−1

( j−1∑
k=1

xk𝜖k

)
x′

i(X
′
i−1Xi−1)−1

( i−1∑
k=1

xk𝜖k

)]
.

This, in turn, is

−𝜎2x′
i(X

′
i−1Xi−1)−1xj + 𝜎2

j−1∑
k=1

[x′
j (X

′
j−1Xj−1)−1xkx′

i(X
′
i−1Xi−1)−1xk] (1.141)

= −𝜎2x′
i(X

′
i−1Xi−1)−1xj + 𝜎2

j−1∑
k=1

[x′
j (X

′
j−1Xj−1)−1xkx′

k(X
′
i−1Xi−1)−1xi] (1.142)

= −𝜎2x′
i(X

′
i−1Xi−1)−1xj + 𝜎2[x′

j (X
′
j−1Xj−1)−1(X′

j−1Xj−1)(X′
i−1Xi−1)−1xi] = 0,

so that V ∼ N(𝟎, 𝜎2IT−k).

1.C Appendix: Solutions

1) For the model Yt = 𝛽1 + 𝛽2Xt + 𝜖t , t = 1,… ,T , with 𝜖t = Yt − 𝛽1 − 𝛽2Xt , setting 𝜕S(𝜷)∕𝜕𝛽1 to zero
gives 0 = −2

∑T
t=1 𝜖t or

𝛽1 = Ȳ − 𝛽2X̄. (1.143)

Using this in the equation 0 = 𝜕S(𝜷)∕𝜕𝛽2 = −2
∑T

t=1 Xt𝜖t and simplifying yields

𝛽2 =
∑T

t=1 XtYt − TX̄Ȳ∑T
t=1 X2

t − TX̄2
=

∑T
t=1(Xt − X̄)(Yt − Ȳ )∑T

t=1 (Xt − X̄)2
=
�̂�X,Y

�̂�2
X
, (1.144)

where �̂�X,Y denotes the sample covariance between X and Y ,

�̂�X,Y = 1
T − 1

T∑
t=1

(Xt − X̄)(Yt − Ȳ ),

and �̂�2
X = �̂�X,X . From the first derivative equations, it follows that

∑
𝜖t =

∑
Xt𝜖t = 0. Also, as Ŷt =

𝛽1 + 𝛽2Xt , it is easy to verify using (1.143) that

Ŷt − Ȳ = 𝛽2(Xt − X̄). (1.145)



�

� �

�

The Linear Model 67

Define the standardized variables xt = (Xt − X̄)∕�̂�X and yt = (Yt − Ȳ )∕�̂�Y (so that x̄ = ȳ = 0, �̂�2
x =

�̂�2
y = 1 and

∑
x2

t =
∑

y2
t = T − 1) and consider the regression yt = 𝛼1 + 𝛼2xt + 𝜀t . Then (1.143)

implies �̂�1 = 0 and (1.144) implies

�̂�2 =
�̂�x,y

�̂�x�̂�y
= �̂�x,y =

1
T − 1

T∑
t=1

xtyt =
(T − 1)−1

�̂�X �̂�Y

T∑
t=1

(Xt − X̄)(Yt − Ȳ ) =
�̂�X,Y

�̂�X �̂�Y
= �̂�,

where �̂� = �̂�X,Y is the sample correlation between X and Y , with |�̂�| ⩽ 1. Thus, we can write

ŷt = �̂�1 + �̂�2xt = �̂�xt,

and squaring and summing both sides yields �̂�2 =
∑

ŷ2
t ∕

∑
x2

t . The R2 statistic is then

R2 = ESS
TSS

=
∑

(ŷt − ȳ)2∑
(yt − ȳ)2

=
�̂�2 ∑ x2

t∑
y2

t
= �̂�2.

Using (1.145) and (1.144), R2 for the original model is

R2 = ESS
TSS

=
𝛽2

2
∑

(Xt − X̄)2∑
(Yt − Ȳ )2

= 𝛽2
2
�̂�2

X

�̂�2
Y
=

�̂�2
X,Y

�̂�2
X �̂�

2
Y
= �̂�2,

i.e., the same as for the regression with standardized components.
2) We need to show

T∑
t=1

(Yt − Ȳ )2 =
T∑

t=1
(Yt − Ŷt)2 +

T∑
t=1

(Ŷt − Ȳ )2.

From (1.143) and (1.145), we get

Ŷt = Ȳ +
�̂�X,Y

�̂�2
X
(Xt − X̄),

and using

�̂�X,Y = 1
T

T∑
t=1

(Xt − X̄)(Yt − Ȳ ) = 1
T

T∑
t=1

XtYt − X̄Ȳ ,

simple algebra shows that
T∑

t=1
(Yt − Ȳ )2 =

T∑
t=1

Y 2
t − TȲ 2,

T∑
t=1

(Yt − Ŷt)2 =
T∑

t=1
Y 2

t − TȲ 2 − T
�̂�2

X,Y

�̂�2
X
,

T∑
t=1

(Ŷt − Ȳ )2 = T
�̂�2

X,Y

�̂�2
X
,

proving the result.
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3) From the appropriate partition

(X′X) =
(

X′
1

X′
2

)(
X1 X2

)
=

(
X′

1X1 X′
1X2

X′
2X1 X′

2X2

)
,

(1.110) implies that, with U = (X′
1X1)−1 and V = (X′

2X2)−1,

(X′X)−1 =
(

W−1 −W−1X′
1X2V

−VX′
2X1W−1 V + VX′

2X1W−1X′
1X2V

)
with W = X′

1X1 − X′
1X2VX′

2X1 = X′
1M2X1, where M2 = I − X2(X′

2X2)−1X′
2. Then

𝜷 = (X′X)−1
(

X′
1

X′
2

)
Y

gives

𝜷1 = (W−1X′
1 − W−1X′

1X2VX′
2)Y = (X′

1M2X1)−1X′
1M2Y,

as in (1.22), and

𝜷2 = (−VX′
2X1W−1X′

1 + (V + VX′
2X1W−1X′

1X2V)X′
2)Y

= (VX′
2 + VX′

2X1W−1X′
1(X2VX′

2 − I))Y
= VX′

2(Y − X1(X′
1M2X1)−1X′

1M2Y)
= (X′

2X2)−1X′
2(Y − X1𝜷1).

4) Observe that, as T = [w1, w2,… ,wk] in (1.42) is an orthonormal basis for  , all vectors in 
can be represented by linear combinations of these wi. In particular, if [h1, h2,… ,hk] is a (differ-
ent) basis for  , then we can write H = TA, where H = [h1 h2 … hk] and A is a full rank k × k
matrix. As T′T = I and H′H = I, we have I = H′H=A′T′TA=A′A, so that A is orthogonal with
A′ = A−1. Then HH′ =TAA′T′ =TT′, showing that P is unique. Matrix A can be computed as
(T′T)−1T′H. In Matlab, we can see this with the code in Listing 1.13.

5) Let M = IT − P with dim() = k, k ∈ {1, 2,… ,T − 1}. Via the spectral decomposition, let H be
an orthogonal matrix whose rows consist of the eigenvectors of M. From Theorem 1.2, H can be
partitioned as

H =
[

H1
H2

]
,

where H1 and H2 are of sizes (T − k) × T and k × T , respectively, and such that

HMH′ =
(

H1
H2

)
M ( H′

1 H′
2 ) =

(
H1MH′

1 H1MH′
2

H2MH′
1 H2MH′

2

)
=

(
IT−k 𝟎(T−k)×k
𝟎k×(T−k) 𝟎k×k

)
.

Then 𝟎=H2MH′
2 = H2M′MH′

2 = (MH′
2)′MH′

2 implies that H2M = MH′
2 = 𝟎 or

𝟎 = (I − P )H′
2 ⇐⇒ H′

2 = PH′
2.

1 T=rand(4,2); T=orth(T); Q=[1,2;3,4]; H=T*Q; H=orth(H);
2 A=inv(T'*T)*T'*H; H-T*A, A'*A

Program Listing 1.13: Computes 𝐀 = (𝐓′𝐓)−1𝐓′𝐇.
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As H′
2 is unchanged by projecting it onto  , the rows of H2 are in  . From this, and the fact that

the rows of H are orthogonal,

H1H′
2 = 𝟎⇐⇒ H1Py = 𝟎 ∀ y ∈ ℝT

⇐⇒ H1(Iy − Py) = H1y ∀ y ∈ ℝT

⇐⇒ H1My = H1y ∀ y ∈ ℝT

⇐⇒ H1M = H1.

Postmultiplying H′H = IT by M gives H′
1H1M+H′

2H2M=M or, as H1M = H1 and H2M = 𝟎,

H′
1H1 = M. (1.146)

Recall that the rows of H are orthonormal, so that

HH′ =
(

H1
H2

)
( H′

1 H′
2 ) =

(
H1H′

1 H1H′
2

H2H′
1 H2H′

2

)
= IT =

(
IT−k 𝟎(T−k)×k
𝟎k×(T−k) Ik×k

)
and, in particular,

H1H′
1 = IT−k . (1.147)

The result follows from (1.146) and (1.147).
6) Let A = (X′X)−1. Direct substitution gives

H�̂� = H[𝜷 + AH′[HAH′]−1(h−H𝜷)] = H𝜷 + h−H𝜷,

so that the first condition is satisfied. To see the second, note that, for every b ∈ ℝk such that
Hb=h, we can write‖Y−Xb‖2 = ‖Y−X𝜷 + X𝜷 − Xb‖2 = ‖Y−X𝜷‖2 + ‖X𝜷 − Xb‖2, (1.148)

because the cross term (Y−X𝜷)′(X𝜷 − Xb) = �̂�
′X(𝜷 − b) = 0 from (1.61). Because the first term

in (1.148) does not depend on b or �̂�, it suffices to show that‖X𝜷 − X�̂�‖2 ⩽ ‖X𝜷 − Xb‖2. (1.149)

First note that the cross term (X𝜷 − X�̂�)′(X�̂� − Xb) vanishes because, from (1.69),

(𝜷 − �̂�)′X′X(�̂� − b) = −(h−H𝜷)′[H(X′X)−1H′]−1H(X′X)−1X′X(�̂� − b)
= −(h−H𝜷)′[H(X′X)−1H′]−1(H�̂� − Hb) = 𝟎,

as H�̂� = h=Hb. Thus, the right-hand side of (1.149) is‖X(𝜷 − b)‖2 = ‖X(𝜷 − �̂� + �̂� − b)‖2 = ‖X𝜷 − X�̂�‖2 + ‖X�̂� − Xb‖2,

and, as ‖X�̂� − Xb‖2 is non-negative, (1.149) is true. Strict equality holds when X�̂� equals Xb, but
as X is of full rank, this holds if and only if �̂� = b.

7) From the definition of ⟨⋅, ⋅⟩, for any v ∈ ℝn, ⟨v, v⟩ = ∑n
i=1 𝑣

2
i ⩾ 0. For the second part,

⟨u − av,u − av⟩ = n∑
i=1

(ui − a𝑣i)2 =
n∑

i=1
u2

i − 2a
n∑

i=1
ui𝑣i + a2

n∑
i=1

𝑣2
i

= ⟨u,u⟩ − 2a⟨u, v⟩ + a2⟨v, v⟩,
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so that, with a = ⟨u, v⟩∕⟨v, v⟩,
0 ⩽ ⟨u,u⟩ − 2a⟨u, v⟩ + a2⟨v, v⟩ = ⟨u,u⟩ − 2

⟨u, v⟩2⟨v, v⟩ +
⟨u, v⟩2⟨v, v⟩ = ⟨u,u⟩ − ⟨u, v⟩2⟨v, v⟩ ,

or ⟨u, v⟩2 ⩽ ⟨u,u⟩⟨v, v⟩.
As both sides are positive, taking square roots gives the inequality ⟨u, v⟩ ⩽ ‖u‖ ‖v‖, where ‖u‖2 =⟨u,u⟩.

8) (Theorem 1.2)
From idempotency, for any eigenvalue 𝜆 and corresponding eigenvector x,

𝜆x=Px=PPx=P𝜆x= 𝜆Px= 𝜆2x,

which implies that𝜆 = 𝜆2, so that the only solutions are𝜆 = 0 or 1 (there are no complex solutions,
though note that, from the assumption of symmetry, all eigenvalues are real anyway). Also from
symmetry, the number of nonzero eigenvalues of P equals rank(P) = k, proving (i).
For (ii), form the spectral decomposition of P as UDU′, where U is an orthogonal matrix and D
is a diagonal matrix with k ones and T − k zeros. Using the fact that (for conformable matrices)
tr(AB) = tr(BA),

k = rank(P) = tr(D) = tr(UDU′) = tr(P).

9) (Theorem 1.6)
a) For convenience, we restate (1.50) from the proof in the text: Take as a basis for ℝT the vectors

0 basis
⏞⏞⏞⏞⏞
r1,… , rr,

\0 basis
⏞⏞⏞⏞⏞⏞⏞⏞⏞
sr+1,… , ss

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
 basis

, zs+1,… , zT
⏟⏞⏞⏞⏟⏞⏞⏞⏟

⊥ basis

(1.150)

and let y = r+ s+ z, where r ∈ 0, s ∈ \0 and z ∈ ⟂ are orthogonal.
b) Let Q = P − P0

. From Theorem 1.4, if Q is symmetric and idempotent, then it is the projec-
tion matrix onto (Q), but it is clearly symmetric and, from the first part of the theorem,

QQ = PP − PP0
− P0

P + P0
P0

= P − P0
.

For (Q) = \0, it must be that, for s ∈ \0 and w ∈ (\0)⟂, Qs = s and Qw = 𝟎. As
\0 ⊂  , Ps = s and, as s ⟂ 0, P0

s = 𝟎, showing that Qs = s. Next, from (1.150), w can be
expressed as

w = c1r1 + · · · + crrr + cs+1zs+1 + · · · + cT zT

for some constants ci ∈ ℝ. As zi ⟂  (which implies zi ⟂ 0 ⊂ ), P0
w = Pw = c1r1 + · · · +

crrr so that Qw = 𝟎. Thus, (Q) = \0 and P\0
= Q = P − P0

. Note that this is a special
case of the earlier result

P⟂ = PℝT \ = PℝT − P = IT − P .
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c) As P\0
= P − P0

,‖P\0
y‖2 = ‖Py − P0

y‖2 = (Py − P0
y)′(Py − P0

y)
= y′PPy − y′P0

Py − y′PP0
y + y′P0

P0
y

= ‖Py‖2 − ‖P0
y‖2

using the results from part (a).
d) By expressing (1.150) as

0

⏞⏞⏞⏞⏞
r1,… , rr,

⊥
0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
sr+1,… ss
⏟⏞⏞⏟⏞⏞⏟

⊥
0 \⊥

, zs+1,… zT
⏟⏞⏞⏟⏞⏞⏟
⊥

0 ∩⊥=⊥

,

it is clear that \0 = ⟂
0 \⟂. To verify the last equality,

P⟂
0
− P⟂ = (I − P0

) − (I − P ) = P − P0
= P\0

.

e) This follows easily from (1.150) because P\0
y ∈ (\0) ⊂  , so that P (P\0

y) remains
P\0

y. Transposing gives the other equality.
10) For the projection condition, let x ∈ (X). We need to show that (PX1

+ PM1X2
)x = x. From the

hint,

(PX1
+ PM1X2

)x = (PX1
+ PM1X2

)(X1𝜸1 + X2𝜸2)
= PX1

(X1𝜸1 + X2𝜸2) + PM1X2
(X1𝜸1 + X2𝜸2).

Clearly, PX1
X1𝜸1 = X1𝜸1, and as PM1X2

= M1X2(X′
2M1X2)−1X′

2M1, we have PM1X2
X1 = 𝟎 (as

M1X1 = 𝟎) and PM1X2
X2 = M1X2. Thus,

(PX1
+ PM1X2

)x = PX1
(X1𝜸1 + X2𝜸2) + PM1X2

(X1𝜸1 + X2𝜸2)
= X1𝜸1 + PX1

X2𝜸2 + M1X2𝜸2

= X1𝜸1 + (PX1
+ M1)X2𝜸2

= X1𝜸1 + X2𝜸2

= X𝜸 = x,

as M1 = MX1
= I − PX1

.
For the perpendicularity condition, recall that the orthogonal complement of (X) is

(X)⟂ = {z ∈ ℝT ∶ X′z=𝟎}. (1.151)

Let u ∈ (X)⟂. We need to show that (PX1
+ PM1X2

)u = 𝟎. For the first term, note that, directly
from (1.151),(X)⟂ ⊂ (X1)⟂, i.e., if u ∈ (X)⟂, then u ∈ (X1)⟂, so that PX1

u = 𝟎. For the second
term, first note that, as (X)⟂ ⊂ (X2)⟂, X′

2u = 𝟎. As

PM1X2
= M1X2(X′

2M1X2)−1X′
2M1 = M1X2(X′

2M1X2)−1X′
2(I − PX1

),



�

� �

�

72 Linear Models and Time-Series Analysis

the condition PM1X2
u = 𝟎 holds if both X′

2u = 𝟎 and PX1
u = 𝟎 hold, and we have just seen that

these are both true, and we are done.
11) Write I= I−P+P, and use Theorem B.67 to get T − rank(P) ⩽ rank(I−P). But, as P is idem-

potent, we have 𝟎 = (I−P)P, so from Theorem B.68, T − rank(P) ⩾ rank(I−P). Together, they
imply that rank(I−P) = T − rank(P) = k.

12) For the statement in the hint, to see that A−1 is symmetric,

I=AA−1 ⇐⇒ I′= I=A−1′A ⇐⇒ IA−1 = A−1′AA−1 ⇐⇒ A−1 = A−1′
.

As A is symmetric, all its eigenvalues are real, so that A has spectral decomposition A=UDU′

with U orthonormal and D = diag(d1,… , dn) with each di real and positive. Then A−1 = UD−1U′

(confirmed by calculating AA−1) with D−1 = diag(d−1
1 ,… , d−1

n ) with each d−1
i > 0, implying that

A−1 is also full rank.
To show that K is positive semi-definite: Let x be a k × 1 real vector. We have to show

that x′Kx ⩾ 0 for all x or, with z = HAx and the fact that A = (X′X)−1 is symmetric, that
z′(HAH′)−1z ⩾ 0. But this is true because HAH′ (and, thus, (HAH′)−1) is symmetric and full
rank, i.e., q′HAH′q > 0 for all nonzero q.

Observe that K is not necessarily positive definite when J < k because z=HAx could be zero
even for nonzero x. This is the case, for example, with

H =
[

1 0 0
0 1 −1

]
, x = null(H) =

⎡⎢⎢⎣
0√
2∕2√
2∕2

⎤⎥⎥⎦ .
If J = k and, as always assumed, H is full rank, then H is a square matrix with unique inverse, and
𝜷 is fully specified from the restrictions and the data have no influence on its estimate, i.e., the
restriction H𝜷 = h implies that 𝜷 = H−1h and �̂� = H−1h, which is not stochastic and, thus, has a
zero covariance matrix. This agrees with the expression (1.77), because, with J = k,

K = 𝜎2AH′(HAH′)−1HA
= 𝜎2AH′ H′−1A−1H−1 HA = 𝜎2A = 𝜎2(X′X)−1 = Var(𝜷).

13) Using program ncf.m to compute the noncentral F c.d.f., the code in Listing 1.14 will do the job.

14) .
a) We take H = [0 1 1 1] and h = 1. The constraint implies, for example, that 𝛽2 = 1 − 𝛽3 −

𝛽4, so that S, 𝜼 and s are given via

𝜷 =
⎛⎜⎜⎜⎝
𝛽1
1 − 𝛽3 − 𝛽4
𝛽3
𝛽4

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

1 0 0
0 −1 −1
0 1 0
0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
𝛽1
𝛽3
𝛽4

⎞⎟⎟⎠ +
⎛⎜⎜⎜⎝

0
1
0
0

⎞⎟⎟⎟⎠ .
b) The model is Y = X𝜷 + 𝝐 = XS𝜼 + Xs + 𝝐 or Y − Xs = XS𝜼 + 𝝐, so that, with Y∗ = Y − Xs and

Z = XS,

�̂� = (Z′Z)−1Z′Y∗ = (S′X′XS)−1S′X′(Y − Xs).
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1 powneed=0.90; beta=[0 -5 3 5]'; H=[1 -1 0 0; 0 0 1 -1]; sig2=9;
2 notenough=1; a=5;
3 while notenough
4 a=a+1; n=4*a;
5 dum1=[ones(n,1); zeros(n,1)]; dum2=1-dum1;
6 time=kron((1:4)',ones(floor(n/4),1));
7 c3=kron([1,0]',time); c4=kron([0,1]',time);
8 X=[dum1 dum2 c3 c4]; A=inv(X'*X);
9 theta=beta'*H'*inv(H*A*H')*H*beta/sig2;

10 cutoff = finv(0.95,2,2*n-4); pow=1-ncf(cutoff,2,36,theta,0)
11 if pow>=powneed, notenough=0; end
12 end
13 T=2*n

Program Listing 1.14: Finds minimum T for a given powerpowneed based on the setup in Example
1.11. Here, T = 2n, and n is incremented in steps of 4.

From the constraint 𝜷 = S𝜼 + s,

�̂� = S�̂� + s = S(S′X′XS)−1S′X′(Y − Xs) + s.

c) We have

X�̂� = XS(S′X′XS)−1S′X′(Y − Xs) + Xs = PZY + (I−PZ)Xs,

where PZ = Z(Z′Z)−1Z′ = XS(S′X′XS)−1S′X′ is clearly a projection matrix.
d) Choose H and 𝜷 in such a way that the partition

H𝜷 =
(

H1 H2
)( 𝜷 [1]

𝜷 [2]

)
= H1𝜷 [1] + H2𝜷 [2] = h

can be formed for which H1 is J × J and nonsingular. (This is always possible because H is full
rank J .) Premultiplying by H−1

1 implies that 𝜷 [1] = H−1
1 h − H−1

1 H2𝜷 [2] and

𝜷 =
(
𝜷 [1]
𝜷 [2]

)
=

(
−H−1

1 H2
Ik−J

)
𝜷 [2] +

(
H−1

1 h
𝟎k−J

)
= S𝜼 + s.

15) From (1.9),

(𝜷, �̃�2;Y) = 1
(2𝜋)T∕2�̃�T exp

{
− 1

2�̃�2 (Y − X𝜷)′(Y − X𝜷)
}

= 1
(2𝜋)T∕2�̃�T exp

{
− 1

2T−1S(𝜷)
S(𝜷)

}
= e−T∕2

(2𝜋)T∕2�̃�T ,

and, similarly,

(�̂�, �̃�2
𝜸 ;Y) = e−T∕2

(2𝜋)T∕2�̃�T
𝜸

,

so that

R =
(
�̃�𝜸
�̃�

)−T

=

(
�̃�2
𝜸

�̃�2

)−T∕2

.
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The GLRT rejects for small R, i.e., when �̃�2
𝜸∕�̃�2 is large. In terms of sums of squares, R rejects when

S(�̂�)∕S(𝜷) is large, or, equivalently, when

T − k
J

(
S(�̂�)
S(𝜷)

− 1

)
=

[S(�̂�) − S(𝜷)]∕J
S(𝜷)∕(T − k)

=
S(�̂�) − S(𝜷)

J �̂�2 = F

is large. Thus, the F test and the GLRT are the same.
16) With G = (G1,G2,G3), R3 ≡ G3, and R = (R1,R2,R3), the one-to-one transformation of

r = (r1, r2, r3) to g = (g1, g2, g3) is g1 = r1r3, g2 = r2r3, and g3 = r3. The Jacobian is

J =
⎡⎢⎢⎣
𝜕g1∕𝜕r1 𝜕g2∕𝜕r1 𝜕g3∕𝜕r1
𝜕g1∕𝜕r2 𝜕g2∕𝜕r2 𝜕g3∕𝜕r2
𝜕g1∕𝜕r3 𝜕g2∕𝜕r3 𝜕g3∕𝜕r3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

r3 0 0
0 r3 0
r1 r2 1

⎤⎥⎥⎦ , det(J) = r2
3 ,

and, as

fG(g) =
1

Γ(𝛼1)
1

Γ(𝛼2)
1

Γ(𝛼3)
𝕀(g1 > 0)𝕀(g2 > 0)𝕀(g3 > 0)

× g𝛼1−1
1 g𝛼2−1

2 g𝛼3−1
3 exp(−g1 − g2 − g3),

the joint density of R is

fR(r) = fG(g)|det(J)|
= 1

Γ(𝛼1)
1

Γ(𝛼2)
1

Γ(𝛼3)
r𝛼1+𝛼2+𝛼3−1

3 r𝛼1−1
1 r𝛼2−1

2 exp(−r3(1 + r1 + r2)).

As g3 = r3, the margin R3 ∼ Gam(𝛼3, 1), and

f(R1,R2)∣R3
(r1, r2 ∣ r3) =

fR(r)
fR3
(r3)

∝ r𝛼1−1
1 exp(−r3r1) × r𝛼2−1

2 exp(−r3r2) × r𝛼1+𝛼2
3 ,

so that, conditional on R3 = r3, the density of R1 and R2 factors, and R1 and R2 are conditionally
independent.

1 function I = gam3(a1,a2,a3)
2 up=20; I = dblquad(@RR,0,up,0,up);
3
4 function A=RR(r1,r2)
5 c = gamma(a1+a2+a3) / (gamma(a1)*gamma(a2)*gamma(a3));
6 num = r1.ˆ(a1-1).* r2.ˆ(a2-1);
7 den = (1+r1+r2).ˆ(a1+a2+a3);
8 A = c * num./den;
9 end

10
11 end

Program Listing 1.15: Computes the integral in (1.152), confirming it is 1.000. The integral upper
limit up would have to be chosen in a more intelligent manner to work for all values of input param-
eters a1, a2, and a3.
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For the joint density of R1 and R2, using (1.111), fR1,R2
(r1, r2) is

∫
∞

0
fR(r) dr3

= 1
Γ(𝛼1)

1
Γ(𝛼2)

1
Γ(𝛼3)

r𝛼1−1
1 r𝛼2−1

2 ∫
∞

0
r𝛼1+𝛼2+𝛼3−1

3 exp(−r3(1 + r1 + r2)) dr3

=
Γ(𝛼1 + 𝛼2 + 𝛼3)
Γ(𝛼1)Γ(𝛼2)Γ(𝛼3)

r𝛼1−1
1 r𝛼2−1

2

(1 + r1 + r2)𝛼1+𝛼2+𝛼3
. (1.152)

The program in Listing 1.15 shows how to use function dblquad within Matlab with what they
call nested functions to perform the integration.
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