
CHAPTER 1

INTRODUCTION

1.1 Electromagnetic Problems and Classification

Electromagnetic (EM) problems are classified in terms of the equations describing
them. The equations could be differential or integral or both. Most EM problems
can be stated in terms of an operator equation

Lϕ = g (1.1)

where L is an operator (differential, integral, or integro-differential), g is the known
excitation or source, and ϕ is the unknown function to be determined. A typical
example is an electrostatic problem involving Poisson’s equation

−∇2V =
ρ

ε
(1.2)

where L = −∇2 is Laplacian operator, g = ρ/ε is source term, and ϕ = V . In
integral form, Poisson’s equation is of the form

V =

∫
ρdv

(1.3)
4πεr2
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2 INTRODUCTION

where L =
∫

dv
4πr2 is Laplacian operator, g = V is source term, and ϕ = ρ/ε.

Electromagnetic problems involve linear, second-order differential equations. In
general, a second-order partial differential equation (PDE) is given by

a
∂2ϕ

∂x2
+ b

∂2ϕ

∂x∂y
+ c

∂2ϕ

∂y2
+ d

∂ϕ

∂x
+ e

∂ϕ

∂y
+ fϕ = g (1.4)

where the differential operator is

L = a
∂2

∂x2
+ b

∂2

∂x∂y
+ c

∂2

∂y2
+ d

∂

∂x
+ e

∂

∂y
+ f. (1.5)

The coefficients, a, b, and c, in general are functions of x and y; they may also
depend on ϕ itself, in which case the PDE is said to be nonlinear. A PDE in which
g(x, y) equals zero is termed homogeneous; it is inhomogeneous if g(x, y) is not
equal to zero.

A PDE, in general, can have both boundary values and initial values. PDEs whose
boundary conditions (BCs) are specified are called steady-state equations. If only
initial values are specified, they are called transient equations.

Any linear second-order PDE can be classified as elliptic, hyperbolic, or parabolic
depending on the coefficients a, b, and c. The terms hyperbolic, parabolic, and ellip-
tic are derived from the fact that the quadratic equation

ax2 + bxy + cy2 + dx+ ey + f = 0 (1.6)

represents a hyperbola, parabola, or ellipse if b2 − 4ac is positive, zero, or negative,
respectively.

In each of these categories, there are PDEs that model certain physical phenom-
ena. Such phenomena are not limited to electromagnetics but extend to almost all
areas of science and engineering. Thus the mathematical model specified here arises
in problems involving heat transfer, boundary-layer flow, vibrations, elasticity, elec-
trostatic, wave propagation, and so on.

Elliptic PDEs are associated with steady-state phenomena, that is boundary-value
problems. Typical examples of this type of PDE include Laplace’s equation

∂2ϕ

∂x2
+

∂2ϕ

∂y2
= 0 (1.7)

and Poisson’s equation
∂2ϕ

∂x2
+

∂2ϕ

∂y2
= g(x, y) (1.8)

where in both cases a = c = 1, b = 0. An elliptic PDE usually models an interior
problem, and hence the solution region is usually closed or bounded.

Hyperbolic PDEs arise in propagation problems. The solution region is usually
open so that a solution advances outward indefinitely from initial conditions while
always satisfying specified BCs. A typical example of hyperbolic PDE is the wave
equation in one dimension

∂2ϕ

∂x2
=

1

v2
∂2ϕ

∂t2
(1.9)
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where a = v2, b = 0, c = 1. If the time dependence is suppressed, the equation is
merely the steady-state solution.

Parabolic PDEs are generally associated with problems in which the quantity of
interest varies slowly in comparison with the random motions which produce the
variations. The most common parabolic PDE is the diffusion (or heat) equation in
one dimension

∂2ϕ

∂x2
= k

∂ϕ

∂t
(1.10)

where a = 1, b = c = 0.
In hyperbolic and parabolic PDEs, the solution region is usually open. The initial

conditions and BCs typically associated with parabolic equations resemble those for
hyperbolic problems except that only one initial condition at t = 0 is necessary since
the parabolic equation (PE) is only first-order in time. Also, parabolic and hyperbolic
equations are solved using similar techniques, whereas elliptic equations are usually
more difficult and require different techniques.

The type of problem represented by Lϕ = g is said to be deterministic, since the
quantity of interest can be determined directly. Another type of problem where the
quantity is found indirectly is called non-deterministic or eigenvalue. The standard
eigenproblem is of the form Lϕ = λϕ. A more general version is the generalized
eigenproblem having the form Lϕ = Mλϕ, where M , like L, is a linear operator for
EM problems. Here, only some particular values of λ called eigenvalues are permis-
sible; associated with these values are the corresponding solutions called eigenfunc-
tions. Eigenproblems are usually encountered in vibration and waveguide problems
where the eigenvalues λ correspond to physical quantities such as resonance and
cutoff frequencies, respectively.

Our problem consists of finding the unknown function ϕ of a PDE. In addition to
the fact that ϕ satisfies Lϕ = g within a prescribed solution region R, ϕ must satisfy
certain conditions on S, the boundary of R. Usually these BCs are

ϕ (r) = 0, r on S, (Dirichlet type) (1.11)

∂ϕ (r)

∂n
= 0, r on S, (Neumann type). (1.12)

Here the normal derivative ϕ vanishes on S for Neumann type. Where a boundary
has both, a mixed (Cauchy) boundary condition (CBC) is said to exist

∂ϕ (r)

∂n
+ h (r)ϕ (r) = 0, r on S (1.13)

where h (r) is known function, ∂ϕ(r)
∂n = n ∇ϕ (r) is the directional derivative of ϕ

along the outward normal to the boundary S, and n is a unit normal directed out of R.
Note that the Neumann BC is a special case of the mixed condition with h (r) = 0.

1.2 Maxwell Equations

The Maxwell equations are four differential equations which show classical prop-
erties of EM fields by using electric and magnetic fields. The equations are sum-
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marized in Table 1.1. Here, ρv is the electric volume charge density in C/m3, J is
the electric current density vector in A/m2, E and H show the electric and magnetic
field intensity vectors in V/m and A/m, respectively, and, D and B show the electric
and magnetic flux density vectors in C/m2 and Wb/m2, respectively. The first two
equations are related to the divergence of vectors, and the others are related to the
curl operation of vectors. The relations between these vectors in simple medium are
D = εE, B = μH, J = σE, where ε, μ, and σ denote the permittivity (F/m), the
permeability (H/m), and the electric conductivity (S/m) of the medium.

Table 1.1 The Maxwell equations using differential form.

Name Differential Form Name Differential Form

Gauss’s law ∇ · D = ρv Gauss’s law for magnetism ∇ · B = 0

Faraday’s law ∇× E = −∂B

∂t
Maxwell–Ampere’s law ∇×H = J +

∂D

∂t

1.3 Guided Waves and Transverse/Longitudinal Decomposition

Guided wave propagation problems can be solved by using simplified equations ob-
tained from the longitudinal and transverse decomposition of Maxwell equations that
yield the transverse electric (TE), transverse magnetic (TM), and transverse electro-
magnetic (TEM) representations under different polarizations, such as perpendicu-
lar/parallel polarizations or horizontal/vertical polarizations in applications.

The open form of Maxwell curl operations of electric and magnetic fields for
rectangular coordinate system can be written as(

∂Ez

∂y
− ∂Ey

∂z

)
x̂+

(
∂Ex

∂z
− ∂Ez

∂x

)
ŷ +

(
∂Ey

∂x
− ∂Ex

∂y

)
ẑ

= −μ∂Hx

∂t
x̂− μ

∂Hy

∂t
ŷ − μ

∂Hz

∂t
ẑ (1.14)

(
∂Hz

∂y
− ∂Hy

∂z

)
x̂+

(
∂Hx

∂z
− ∂Hz

∂x

)
ŷ +

(
∂Hy

∂x
− ∂Hx

∂y

)
ẑ

=

(
Jx + ε

∂Ex

∂t

)
x̂+

(
Jy + ε

∂Ey

∂t

)
ŷ +

(
Jz + ε

∂Ez

∂t

)
ẑ. (1.15)

A rectangular waveguide is a classical three-dimensional (3D) guiding structure. If
a rectangular waveguide is located longitudinally along z-axis, TE/TM cases are
defined by assuming no electric/magnetic field component in the direction of propa-
gation, therefore the governing equations are given in Table 1.2.

The boundary should also be taken into consideration to determine the polariza-
tion type [1]. First of all, let us define the plane of incidence as the plane containing
the normal to the boundary surface and the direction of propagation of the wave. For



TWO DIMENSIONAL HELMHOLTZ’S EQUATION 5

Table 1.2 The governing equations for rectangular waveguide along z-axis.

TE Polarization TM Polarization
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∂z
= μ

∂Hx

∂t

∂Ey

∂z
− ∂Ez

∂y
= μ

∂Hx

∂t

∂Ex

∂z
= −μ∂Hy

∂t

∂Ez

∂x
− ∂Ex

∂z
= μ

∂Hy

∂t

∂Ex

∂y
− ∂Ey

∂x
= μ

∂Hz

∂t

∂Ey

∂x
=

∂Ex

∂y

∂Hz

∂y
− ∂Hy

∂z
= Jx + ε

∂Ex

∂t

∂Hy

∂z
= −Jx − ε

∂Ex

∂t

∂Hx

∂z
− ∂Hz

∂x
= Jy + ε

∂Ey

∂t

∂Hx

∂z
= Jy + ε

∂Ey

∂t

∂Hy

∂x
=

∂Hx

∂y

∂Hy

∂x
− ∂Hx

∂y
= Jz + ε

∂Ez

∂t

Figure 1.1 Perpendicular and parallel polarization on the zx-plane.

example, the plane of incidence is zx-plane in Fig. 1.1. Here, the electric field is ei-
ther perpendicular to the plane of incidence for perpendicular polarization or parallel
to the plane of incidence for parallel polarization. The governing equations are given
in Table 1.3.

1.4 Two Dimensional Helmholtz’s Equation

The wave equations for the electric and magnetic fields can be obtained by using
Maxwell equations. If the electric and magnetic fields are to be time harmonic
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Table 1.3 The governing equations for the plane of incidence on the zx-plane.

TE Polarization TM Polarization

∂Ey

∂z
= μ

∂Hx

∂t

∂Hy

∂x
= Jz + ε

∂Ez

∂t

∂Ey

∂x
= −μ∂Hz

∂t
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= −Jx − ε

∂Ex

∂t

∂Hx

∂z
− ∂Hz

∂x
= Jy + ε

∂Ey

∂t

∂Ex

∂z
− ∂Ez

∂x
= −μ∂Hy

∂t

with the time dependence exp (−iωt), the wave equations in a linear, homogeneous,
isotropic, source-free medium for each component of fields can be written as

∇2U − με
∂2U

∂t2
= 0 (in time-domain) (1.16)

∇2U + k2U = 0 (in frequency-domain) (1.17)

where k = ω
√
με is the wavenumber, ω is the angular frequency, ∇2 is the Laplace

operator, and U shows the components of time harmonic either electric field or mag-
netic field. This is called homogeneous wave equation or Helmholtz’s equation, that
is the elliptic PDE. Assume an zx-plane as the two-dimensional (2D) environment,
the Helmholtz’s equation can be written as

∂2U

∂z2
+

∂2U

∂x2
+ k2U = 0. (1.18)

1.5 Validation, Verification, and Calibration Procedure

Real-life engineering and EM problems can be handled via measurements or numeri-
cal simulations because only a limited number of problems with idealized geometries
have mathematical exact solutions. The challenge in solving real-life engineering
problems is therefore the reliability of the results. Reliability is achieved after a se-
ries of (model) validation, (data) verification, and (code) calibration (VV&C) tests
[2].

Three fundamental building blocks of a simulation are the real-world problem
entity being simulated, the conceptual model representation of that entity, and the
computer implementation model. As illustrated in Fig. 1.2, engineers start with the
definition of the real-life problem at hand. Electromagnetic problems, in general, are
modeled with Maxwell equations and EM theory is well established by these equa-
tions. Maxwell equations are general and represent all linear EM problems. Once
the geometry of the problem at hand (i.e., BCs) is given, they represent a unique
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Figure 1.2 Validation, verification, and calibration procedure.

solution; the solution found by using Maxwell equations plus BC is the solution
we are looking for. Unfortunately, there are only a few real-life problems which
have mathematical exact solutions, therefore many different and approximate con-
ceptual models can be used. It is the process of conceptual validity which shows that
chosen conceptual model fits into the real-life problem the best under the specified
initial and/or operational conditions. The next step is to develop a computer code
for the chosen conceptual model. It is only after code verification via a computer
programming process applied to show that the developed code represents the chosen
conceptual model under given sets of conditions (accuracy, resolution, uncertainty,
etc.). Finally, the solution for the real-life problem is obtained with confidence af-
ter numerical and/or physical experimentation; nothing but the operational validity
process [3].

For the parabolic wave equation (PWE) chosen in this book, the VV&C procedure
necessitates quantitatively and qualitatively answering these questions: (i) How pre-
cise is the PWE model? (ii) To what extent does the PWE correspond to the real-life
problem? (iii) Under what/which conditions do different numerical methods yield
reliable solutions? (iv) What is the accuracy of the numerical calculations?

1.6 Fourier Transform, DFT and FFT

The Fourier transform has been widely used in circuit analysis and synthesis, from
filter design to signal processing, image reconstruction, etc. The reader should keep
in mind that the time-domain and frequency-domain relations in electromagnetics are
very similar to the relations between spatial and wavenumber domains. A simplest
propagating (e.g., along z) plane wave is in the form of Φ (r, t) ∝ e−i(ωt−kz) (where
k and z are the wavenumber and position, respectively) and exp (−iωt) are also
applicable to exp (ikz). Some characteristics are outlined as
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A rectangular time (frequency) window corresponds to a beam type (Sinc(·)
function) variation in frequency (time)-domain.

Similarly, a rectangular aperture (array) in spatial-domain corresponds to a
beam type (Sinc(·) function) variation in wavenumber domain.

The wider the antenna aperture the narrower the antenna beam; or, the narrower
the pulse in time-domain the wider the frequency band.

Therefore, Fourier transform has also been used in electromagnetics from an-
tenna analysis to imaging and non-destructive measurements, even in propagation
problems. For example, the split-step parabolic equation (SSPE) method (which
is nothing but the beam propagation method in optics) has been in use for several
decades and is based on sequential Fourier transform operations between the spatial
and wavenumber domains. Two- and three-dimensional propagation problems with
non-flat realistic terrain profiles and inhomogeneous atmospheric variations above
have been solved with this method successfully [3–5].

The principle of a transform in engineering is to find a different representation of
a signal under investigation. The Fourier transform is the most important transform
that is widely used in electrical engineering. The transformations between the time
and the frequency-domains are based on the Fourier transform and its inverse Fourier
transform. They are defined via

S (f) =

∫ ∞

−∞
s (t) ei2πftdt, and s (t) =

∫ ∞

−∞
S (f) e−i2πftdf. (1.19)

Here, s(t), S(f), and f are the time signal, the frequency signal, and the frequency,
respectively. We, the physicists and engineers, sometimes prefer to write the trans-
form in terms of angular frequency ω = 2πf , as

S (ω) =

∫ ∞

−∞
s (t) eiωtdt, and s (t) =

1

2π

∫ ∞

−∞
S (ω) e−iωtdω (1.20)

which, however, destroys the symmetry. To restore the symmetry of the transforms,
the convention is to divide 1/(2π) term into two and use 1/

√
2π during both Fourier

transform and inverse Fourier transform. The Fourier transform is valid for real or
complex signals, and, in general, is a complex function of ω (or f ).

The Fourier transform is valid for both periodic and non-periodic time signals
that satisfy certain conditions. Almost all real-world signals easily satisfy these re-
quirements. It should be noted that the Fourier series is a special case of the Fourier
transform. Mathematically, Fourier transform is defined for continuous time sig-
nals and in order to go to the frequency-domain, the time signal must be observed
from an infinite-extend time window. Under these conditions, the Fourier transform
defined above yields frequency behavior of a time signal at every frequency, with
zero frequency resolution. Some functions and their Fourier transform are listed in
Table 1.4. To compute the Fourier transform numerically on a computer, discretiza-
tion plus numerical integration are required. This is an approximation of the true
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Table 1.4 Some functions and their Fourier transforms.

Time Domain Fourier Domain

Rectangular window Sinc function

Sinc function Rectangular window

Constant function Dirac delta function

Dirac delta function Constant function

Dirac comb (Dirac train) Dirac comb (Dirac train)

Cosine function Two real-even delta function

Sine function Two imaginary-odd delta functions

Exponential function {exp (−iωt)} One positive-real delta functions

Gaussian function Gaussian function

(i.e., mathematical), analytically defined Fourier transform in a synthetic (digital)
environment, and is called the discrete Fourier transform (DFT). There are three dif-
ficulties with the numerical computation of the Fourier transform.

Discretization (introduces periodicity in both time and frequency-domains),

Numerical integration (introduces approximation and numerical round off and
truncation errors),

Finite time duration (introduces maximum frequency and resolution limita-
tions).

The DFT of a continuous time signal sampled over a record period of T , with a
sampling rate of Δt can be given as

S (mΔf) =
T

N

N−1∑
n=0

s (nΔt) ei2πmΔfnΔt (1.21)

where Δf = 1/T , and, is valid at frequencies up to fmax = 1/(2Δt). A simple
MATLAB dft_sin.m file computes (1.21) for a time record s(t) of two sinusoids
whose frequencies are user specified. The record length and sampling time interval
are also supplied by the user and DFT of this record is calculated inside a simple
integration loop.

Let us plot two sinusoids with 10 Hz/1 V and 50 Hz/0.25 V both in time and
frequency-domains. Choose fmax = 200 Hz, Δf = 2 Hz, T = 0.5 s, and Δt =
2.5 ms. Note that these parameters may be chosen arbitrarily in DFT but frequency
resolution and maximum frequency will be Δf = 1/T and fmax = 1/(2Δt), re-
spectively. Results are shown in Fig. 1.3.

The DFT requires an excessive amount of computation time, particularly when
the number of samples N is high. The fast Fourier transform (FFT) is an algorithm
to speed up DFT computations. The FFT forces one further assumption that N is an



10 INTRODUCTION

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3
The DFT of the sum of two sinusoids

Frequency [Hz]

A
m

p
li
tu

d
e
 [

V
]

-200 -100 0 100 200
0

0.05

0.1

0.15

0.2

0.25

0.3
The FFT of the sum of two sinusoids

Frequency [Hz]

A
m

p
li
tu

d
e
 [

V
]

0 0.1 0.2 0.3 0.4
-1.5

-1

-0.5

0

0.5

1

1.5
The sum of two sinusoids

Time [s]

A
m

p
li
tu

d
e
 [

V
]

Figure 1.3 (Top) Time variations of two sinusoids, (bottom) frequency variations of two
sinusoids obtained with (left) DFT and (right) FFT.

integer multiple of 2. This allows certain symmetries to occur reducing the number
of calculations.

To write an FFT routine is not as simple as DFT routine, but there are many
internet addresses where one can supply FFT subroutines (including source codes)
in different programming languages, from Fortran to C++. Therefore, the reader does
not need to go into details, rather include them in their codes by simply using include
statements or call commands. In MATLAB, the calling command is fft(s,N) for the
FFT and ifft(S,N) for the inverse FFT, where s and S are the recorded N -element
time array and its Fourier transform, respectively. In order to do that one needs to
replace the loop for DFT with a line code Sf = fftshift(fft(st)*dt), that is included
in fft_sin.m file. Note that one needs to scale the results in the frequency-domain
(i.e., multiply the result by Δt) since MATLAB fft(s,N) command assumes Δt = 1;
also, swap the first N/2 samples with the second half using the fftshift(s) command).
Figure 1.3 also shows the FFT of the same signal.

As stated above, performing Fourier transform in a discrete environment intro-
duces artificial effects. These are called aliasing effects, spectral leakage, and scal-
loping loss [3]. It should be kept in mind when dealing with DFT that
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Multiplication in the time-domain corresponds to a convolution in the frequency-
domain.

The Fourier transform of an impulse train in the time-domain is also an impulse
train in the frequency-domain with the frequency samples separated by T0 =
1/f0.

The narrower the distance between impulses (T0) in the time-domain the wider
the distance between impulses (f0) in the frequency-domain (and vice versa).

The sampling rate must be greater than twice the highest frequency of the time
record, that is Δt ≥ 1/(2fmax) (Nyquist sampling criterion).

Since time–bandwidth product is constant, narrow transients in the time-domain
possess wide bandwidths in the frequency-domain.

In the limit, the frequency spectrum of an impulse is constant and covers the
whole frequency-domain (that is why an impulse response of a system is enough
to find out the response of any arbitrary input).

If the sampling rate in the time-domain is lower than the Nyquist rate, aliasing
occurs [3]. Two signals are said to alias if the difference of their frequencies falls in
the frequency range of interest, which is always generated in the process of sampling
(aliasing is not always bad; it is called mixing or heterodyning in analog electronics
and is commonly used in tuning radios and TV channels). It should be noted that
although obeying Nyquist sampling criterion is sufficient to avoid aliasing, it does
not give a high quality display in time-domain record. If a time signal sinusoid is
not bin-centered in the frequency-domain then spectral leakage occurs. In addition,
there is a reduction in coherent gain if the frequency of the sinusoid differs in value
from the frequency samples, which is termed scalloping loss.

Fourier transform is used for energy signal which contains finite energy. This
means

∫∞
−∞ |s(t)|2 dt is finite. Periodic functions do not satisfy this property. Power

signals have finite power in one period (i.e., 1
P

∫ P/2

−P/2
|s(t)|2 dt is finite where P is

the period of the signal). Power signals are represented in terms of Fourier series. A
function f(x) is periodic, with period P , if

f (x) =
∞∑

n=1

f (x+ nP ) . (1.22)

A periodic function f(x) can be approximated by using Fourier series expansion as

f (x) ≈ A0

2
+

∞∑
n=1

An cos

(
2πnx

P

)
+Bn sin

(
2πnx

P

)
(1.23)

where

A0 =
2

P

∫ P/2

−P/2

f (x) dx (1.24)
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An =
2

P

∫ P/2

−P/2

f (x) cos

(
2πnx

P

)
dx (1.25)

Bn =
2

P

∫ P/2

−P/2

f (x) sin

(
2πnx

P

)
dx. (1.26)

Non-periodic functions may also be approximated by Fourier series inside a finite
region by assuming the finite region as the period of that function. In this case, it
should be remembered that the Fourier series representation no longer represents the
function outside the region. Equations (1.24)–(1.26) show that, one needs to multiply
the function with sine and cosine functions along the whole period and then integrate
in order to find out Fourier coefficients An and Bn.
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Figure 1.4 Gaussian function and its Fourier series approximation with 5, 10, 30 terms.

Fseries.m lists a simple MATLAB code for the Fourier series representation of
a given function. A few examples plotted with this MATLAB code are given in
Fig. 1.4.

The Gaussian function used in this example is

f (t) =
exp

(−12.5(t− 2.5)2
)

√
2π

(1.27)
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Figure 1.5 Rectangular pulse and its Fourier series approximation with 5, 30, 200 terms.

and the interval (i.e., the period) is 0 ≤ t ≤ 10. First, only the first five terms
are used and the result is plotted in Fig. 1.4. The solid and dashed lines in the
figures correspond to the function and its Fourier series approximation, respectively.
Second figure corresponds to the same scenario but with the first ten terms in the
series summation. Finally, the last figure belongs to the same comparisons with the
first thirty terms. The agreement in curves in Fig. 1.4 shows that, thirty terms are
adequate for this function in this interval (period).

As shown above, any piecewise continuous function may be approximated by a
series summation of sine and cosine functions. The number of terms required in
the Fourier series representation depends on the smoothness of the function and the
specified accuracy. The degree of smoothness of the function determines the number
of terms in its Fourier representation. In addition, only sine or cosine terms contribute
the function if it is odd or even symmetric. Understanding digital communication
concepts, the frequency content of the rectangular pulse should be well analyzed. A
symmetric rectangular pulse is defined as

Rect
(

t

T

)
=

{
1 −T

2 ≤ t ≤ T
2

0 t >
∣∣T
2

∣∣ (1.28)
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Figure 1.6 Comparison of DFT and DST/DCT analysis for the given Gaussian antenna
profile: (left) DBC, (right) NBC.

and an infinite number of terms is required to fully represent this function with the
Fourier series summation. The terms are called harmonics. It is interesting to visual-
ize term by term contributions in the Fourier series representation. This is illustrated
in Fig. 1.5 for a 4 s.-rectangular pulse between 3 s. and 7 s.

Fourier transform and Fourier series expansion are important procedures in en-
gineering [6]. The DFT and FFT are discrete tools to analyze time-domain signals.
One needs to know the problems caused because of the discretization and specify the
parameters accordingly to avoid non-physical and non-mathematical results. More-
over, extra attention should be paid when using built-in commands in different com-
puter languages (e.g., MATLAB). As pointed out above in the text, one needs to
multiply the results of the FFT taken using MATLAB’s fft(s,N) command with Δt in
order to obtain correct amplitude values.

Since the DFT cannot handle the BCs automatically in propagation problems, the
discrete sine transform (DST) and discrete cosine transform (DCT) can be used for
various BCs on Earth. Using DFT, to satisfy the BC over perfect electric conductor
(PEC) ground, the boundary is extended from [0, hmax] to [-hmax, hmax], and then,
in accordance with the image theory, the odd and even symmetric field profiles are
constructed for Dirichlet boundary condition (DBC) and Neumann boundary condi-
tion (NBC), respectively, to be able to apply the DFT. Another option, to avoid the
height extension, is to reduce DFT to one-sided DST or DCT, for DBC and NBC,
respectively. A MATLAB code fft_dst_dct.m compares DFT and DST/DCT of a
Gaussian field profile. A 30 m height antenna with 0.1◦ beamwidth at 3 GHz is used
in Fig. 1.6.

In addition, MATLAB functions for Fourier transforms are given below. Note that
the initial and end values of s are zero for DST.

DFT of field fftshift(fft(ifftshift(s))) Inverse DFT of field fftshift(ifft(ifftshift(S)))

DST of field dst(s(2:end-1)) Inverse DST of field [0;idst(S);0]

DCT of field dct(s) Inverse DCT of field idct(S)




