
 PART I

➤ CHAPTER 1: .NET Applications and Tools

➤ CHAPTER 2: Core C#

➤ CHAPTER 3: Objects and Types

➤ CHAPTER 4: Object-Oriented Programming with C#

➤ CHAPTER 5: Generics

➤➤ CHAPTER 6CHAPTER 6: O t d C t Operators and Casts

➤ CHAPTER 7: Arrays

➤ CHAPTER 8: Delegates, Lambdas, and Events

➤ CHAPTER 9: Strings and Regular Expressions

➤ CHAPTER 10: Collections

➤ CHAPTER 11: Special Collections

➤ CHAPTER 12: Language Integrated Query

➤ CHAPTER 13: Functional Programming with C#

➤ CHAPTER 14: Errors and Exceptions

CO
PYRIG

HTED
 M

ATERIA
L

➤ CHAPTER 15: Asynchronous Programming

➤ CHAPTER 16: Refl ection, Metadata, and Dynamic Programming

➤ CHAPTER 17: Managed and Unmanaged Memory

➤ CHAPTER 18: Visual Studio 2017

WHAT’S IN THIS CHAPTER?

➤ Reviewing the history of .NET
➤ Understanding differences between .NET Framework and .NET Core
➤ NuGet packages
➤ The Common Language Runtime
➤ Features of the Windows Runtime
➤ Programming Hello World!
➤ .NET Core Command-Line Interface
➤ Visual Studio 2017
➤ Universal Windows Platform
➤ Technologies for creating Windows apps
➤ Technologies for creating Web apps

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com on the Download
Code tab. The source code is also available at https://github.com/ProfessionalCSharp/
ProfessionalCSharp7 in the directory HelloWorld.

The code for this chapter is divided into the following major examples:

➤ HelloWorld
➤ WebApp
➤ SelfContained HelloWorld

CHOOSING YOUR TECHNOLOGIES
.NET has been a great technology for creating applications on the Windows platform. Now .NET is a
great technology for creating applications on Windows, Linux, and the Mac.

1

4 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

The creation of .NET Core has been the biggest change for .NET since its invention. Now .NET code is
open-source code, you can create apps for other platforms, and .NET uses modern patterns. .NET Core and
NuGet packages allow Microsoft to provide faster update cycles for delivering new features. It’s not easy to
decide what technology should be used for creating applications. This chapter helps you with that. It gives
you information about the different technologies available for creating Windows and web apps and services,
offers guidance on what to choose for database access, and highlights the differences between the .NET
Framework and .NET Core.

REVIEWING .NET HISTORY
To better understand what is available with .NET and C#, it is best to know something about its history.
The following table shows the version of the .NET Framework in relation to the Common Language
Runtime (CLR), the version of C#, and the Visual Studio edition that gives some idea about the year when
the corresponding versions have been released. Besides knowing what technology to use, it’s also good to
know what technology is not recommended because there’s a replacement.

.NET FRAMEWORK CLR C# VISUAL STUDIO

1.0 1.0 1.0 2002

1.1 1.1 1.2 2003

2.0 2.0 2.0 2005

3.0 2.0 2.0 2005 + Extensions

3.5 2.0 3.0 2008

4.0 4.0 4.0 2010

4.5 4.0 5.0 2012

4.5.1 4.0 5.0 2013

4.6 4.0 6 2015

4.7 4.0 7 2017

When you create applications with .NET Core, it’s important to know the timeframe for the support level.
LTS (Long Time Support) has a longer support length than Current, but Current gets new features faster.
LTS is supported for three years after the release or 12 months after the next LTS version, whichever is
shorter. So, .NET Core 1.0 is supported until June 27, 2019 if the next LTS version is not released before
June 27, 2018. In case the next LTS version is released earlier, .NET Core 1.0 is supported one year after the
release of the next LTS.

.NET Core 1.1 originally was a Current release, but it changed to LTS with the same support length
as .NET Core 1.0.

.NET Core 2.0 is a release with the support level Current. This means it is supported for 3 years, 12 months
after the next LTS, or 3 months after the next Current release—whichever is shorter. It can be assumed
that the last option will be the case, and .NET Core 2.0 will be supported 3 months after .NET Core 2.1 is
available.

Reviewing .NET History ❘ 5

The next table lists .NET Core versions, their release dates, and the support level.

.NET CORE VERSION RELEASE DATE SUPPORT LEVEL

1.0 June 27, 2016 LTS

1.1 Nov 16, 2016 LTS*

2.0 Aug 14, 2017 Current

The following sections cover the details of these tables and the progress of C# and .NET.

C# 1.0—A New Language
C# 1.0 was a completely new programming language designed for the .NET Framework. At the time it was
developed, the .NET Framework consisted of about 3,000 classes and the CLR.

After Microsoft was not allowed by a court order (fi led by Sun, the company that created Java) to make
changes to the Java code, Anders Hejlsberg designed C#. Before working for Microsoft, Hejlsberg had
his roots at Borland where he designed the Delphi programming language (an Object Pascal dialect). At
Microsoft he was responsible for J++ (Microsoft’s version of the Java programming language). Given
Hejlsberg’s background, the C# programming language was mainly infl uenced by C++, Java, and Pascal.

Because C# was created later than Java and C++, Microsoft analyzed typical programming errors that
happened with the other languages and did some things differently to avoid these errors. Some differences
include the following:

➤ With if statements, Boolean expressions are required (C++ allows an integer value here as well).
➤ It’s permissible to create value and reference types using the struct and class keywords (Java only

allows creating custom reference types; with C++ the distinction between struct and class is only
the default for the access modifi er).

➤ Virtual and non-virtual methods are allowed (this is like C++; Java always creates virtual methods).

Of course, there are a lot more changes as you’ll see reading this book.

At this time, C# was not only a pure object-oriented programming language with features for inheritance,
encapsulation, and polymorphism. Instead, C# also offered component-based programming enhancements
such as delegates and events.

Before .NET and the CLR, every programming language had its own runtime. With C++, the C++ Runtime
is linked with every C++ program. Visual Basic 6 had its own runtime with VBRun. The runtime of Java is
the Java Virtual Machine—which can be compared to the CLR. The CLR is a runtime that is used by every
.NET programming language. At the time the CLR appeared on the scene, Microsoft offered JScript.NET,
Visual Basic .NET, and Managed C++ in addition to C#. JScript.NET was Microsoft’s JavaScript compiler
that was to be used with the CLR and .NET classes. Visual Basic.NET was the name for Visual Basic that
offered .NET support. Nowadays it’s just called Visual Basic again. Managed C++ was the name for a lan-
guage that mixed native C++ code with Managed .NET Code. The newer C++ language used today with
.NET is C++/CLR.

A compiler for a .NET programming language generates Intermediate Language (IL) code. The IL code
looks like object-oriented machine code and can be checked by using the tool ildasm.exe to open DLL or
EXE fi les that contain .NET code. The CLR contains a just-in-time (JIT) compiler that generates native code
out of the IL code when the program starts to run.

6 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

NOTE IL code is also known as managed code.

Other parts of the CLR are a garbage collector (GC), which is responsible for cleaning up managed memory
that is no longer referenced; a security mechanism that uses code access security to verify what code is
allowed to do; an extension for the debugger to allow a debug session between different programming
languages (for example, starting a debug session with Visual Basic and continuing to debug within a C#
library); and a threading facility that is responsible for creating threads on the underlying platform.

The .NET Framework was already huge with version 1. The classes are organized within namespaces to help
facilitate navigating the 3,000 available classes. Namespaces are used to group classes and to solve confl icts
by allowing the same class name in different namespaces. Version 1 of the .NET Framework allowed creat-
ing Windows desktop applications using Windows Forms (namespace System.Windows.Forms), creating
web applications with ASP.NET Web Forms (System.Web), communicating with applications and web ser-
vices using ASP.NET Web Services, communicating more quickly between .NET applications using .NET
Remoting, and creating COM+ components for running in an application server using Enterprise Services.

ASP.NET Web Forms was the technology for creating web applications with the goal for the developer to
not need to know something about HTML and JavaScript. Server-side controls that worked similarly to
Windows Forms itself created HTML and JavaScript.

C# 1.2 and .NET 1.1 were mainly a bug fi x release with minor enhancements.

NOTE Inheritance is discussed in Chapter 4, “Object-Oriented Programming with
C#”; delegates and events are covered in Chapter 8, “Delegates, Lambdas, and
Events.”

NOTE Every new release of .NET has been accompanied by a new version of the
book Professional C#. With .NET 1.0, the book was already in the second edition as
the fi rst edition had been published with Beta 2 of .NET 1.0. You’re holding the 11th
edition of this book in your hands.

C# 2 and .NET 2 with Generics
C# 2 and .NET 2 were a huge update. With this version, a change to both the C# programming language
and the IL code had been made; that’s why a new CLR was needed to support the IL code additions. One
big change was generics. Generics make it possible to create types without needing to know what inner
types are used. The inner types used are defi ned at instantiation time, when an instance is created.

This advance in the C# programming language also resulted in many new types in the Framework—for
example, new generic collection classes found in the namespace System.Collections.Generic. With this,
the older collection classes defi ned with 1.0 are rarely used with newer applications. Of course, the older
classes still work nowadays, even with .NET Core.

NOTE Generics are used all through the book, but they’re explained in detail in
Chapter 5, “Generics.” Chapter 10, “Collections,” covers generic collection classes.

Reviewing .NET History ❘ 7

.NET 3—Windows Presentation Foundation
With the release of .NET 3.0 no new version of C# was needed. 3.0 was only a release offering new libraries,
but it was a huge release with many new types and namespaces. Windows Presentation Foundation (WPF)
was probably the biggest part of the new Framework for creating Windows desktop applications. Windows
Forms wrapped the native Windows controls and was based on pixels, whereas WPF was based on DirectX
to draw every control on its own. The vector graphics in WPF allow seamless resizing of every form. The
templates in WPF also allow for complete custom looks. For example, an application for the Zurich airport
can include a button that looks like a plane. As a result, applications can look very different from the tra-
ditional Windows applications that had been developed up to that time. Everything below the namespace
System.Windows belongs to WPF, except for System.Windows.Forms. With WPF the user interface can be
designed using an XML syntax: XML for Applications Markup Language (XAML).

Before .NET 3, ASP.NET Web Services and .NET Remoting were used for communicating between appli-
cations. Message Queuing was another option for communicating. The various technologies had different
advantages and disadvantages, and all had different APIs for programming. A typical enterprise application
had to use more than one communication API, and thus it was necessary to learn several of them. This was
solved with Windows Communication Foundation (WCF). WCF combined all the options of the other APIs
into the one API. However, to support all the features WCF has to offer, you need to confi gure WCF.

The third big part of the .NET 3.0 release was Windows Workfl ow Foundation (WF) with the namespace
System.Workflow. Instead of creating custom workfl ow engines for several different applications (and
Microsoft itself created several workfl ow engines for different products), a workfl ow engine was available as
part of .NET.

With .NET 3.0, the class count of the Framework increased from 8,000 types in .NET 2.0 to about
12,000 types.

NOTE To read about WPF and WCF, you need the previous edition of the book,
Professional C# 6 and .NET Core 1.0.

C# 3 and .NET 3.5—LINQ
.NET 3.5 came together with a new release of C# 3. The major enhancement was a query syntax defi ned
with C# that allows using the same syntax to fi lter and sort object lists, XML fi les, and the database. The
language enhancements didn’t require any change to the IL code as the C# features used here are just syntax
sugar. All the enhancements could have been done with the older syntax as well; just a lot more code would
be necessary. The C# language makes it easy to do these queries. With LINQ and lambda expressions, it’s
possible to use the same query syntax and access object collections, databases, and XML fi les.

For accessing the database and creating LINQ queries, LINQ to SQL was released as part of .NET 3.5.
With the fi rst update to .NET 3.5, the fi rst version of Entity Framework was released. Both LINQ to SQL
and Entity Framework offered mapping of hierarchies to the relations of a database and a LINQ provider.
Entity Framework was more powerful, but LINQ to SQL was simpler. Over time, features of LINQ to SQL
have been implemented in Entity Framework, and now this one is here to stay. The new version of Entity
Framework, Entity Framework Core (EF Core) looks very different from the fi rst version released.

Another technology introduced as part of .NET 3.5 was the System.AddIn namespace, which offers an
add-in model. This model offers powerful features that run add-ins even out of process, but it is also com-
plex to use.

8 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

NOTE LINQ is covered in detail in Chapter 12, “Language Integrated Query.” The
newest version of the Entity Framework is very different from the .NET 3.5.1 release;
it’s described in Chapter 26, “Entity Framework Core.”

C# 4 and .NET 4—Dynamic and TPL
The theme of C# 4 was dynamic—integrating scripting languages and making it easier to use COM inte-
gration. C# syntax has been extended with the dynamic keyword, named and optional parameters, and
enhancements to co- and contra-variance with generics.

Other enhancements have been made within the .NET Framework. With multi-core CPUs, parallel pro-
gramming had become more and more important. The Task Parallel Library (TPL), with abstractions of
threads using Task and Parallel classes, make it easier to create parallel running code.

Because the workfl ow engine created with .NET 3.0 didn’t fulfi ll its promises, a completely new Windows
Workfl ow Foundation was part of .NET 4.0. To avoid confl icts with the older workfl ow engine, the newer
one is defi ned in the System.Activity namespace.

The enhancements of C# 4 also required a new version of the runtime. The runtime version skipped
from 2 to 4.

With the release of Visual Studio 2010, a new technology shipped for creating web applications: ASP.NET
MVC 2.0. Unlike ASP.NET Web Forms, this technology has a focus on the Model-View-Controller (MVC)
pattern, which is enforced by the project structure. This technology also has a focus on programming
HTML and JavaScript. HTML and JavaScript gained a great push in the developer community with the
release of HTML 5. As this technology was very new as well as being out of band (OOB) to Visual Studio
and .NET, ASP.NET MVC was updated regularly.

NOTE The dynamic keyword of C# 4 is covered in Chapter 16, “Refl ection,
Metadata, and Dynamic Programming.” The Task Parallel Library is covered in
Chapter 21, “Tasks and Parallel Programming.”

The next generation of ASP.NET, ASP.NET Core is covered in Chapter 30, “ASP
.NET Core.” Chapter 31, “ASP.NET Core MVC,” covers the ASP.NET Core version
of ASP.NET Core MVC.

C# 5 and Asynchronous Programming
C# 5 had only two new keywords: async and await. However, they made programming of asynchronous
methods a lot easier. As touch became more signifi cant with Windows 8, it also became a lot more impor-
tant to not block the UI thread. Using the mouse, users are accustomed to scrolling taking some time.
However, using fi ngers on a touch interface that is not responsive is really annoying.

Windows 8 also introduced a new programming interface for Windows Store apps (also known as Modern
apps, Metro apps, Universal Windows apps, and, more recently, Windows apps): the Windows Runtime.
This is a native runtime that looks like .NET by using language projections. Many of the WPF controls have
been redone for the new runtime, and a subset of the .NET Framework can be used with such apps.

As the System.AddIn framework was much too complex and slow, a new composition framework was cre-
ated with .NET 4.5: Managed Extensibility Framework with the namespace System.Composition.

Reviewing .NET History ❘ 9

A new version of platform-independent communication is offered by the ASP.NET Web API. Unlike WCF,
which offers stateful and stateless services as well as many different network protocols, the ASP.NET Web
API is a lot simpler and based on the Representational State Transfer (REST) software architecture style.

NOTE The async and await keywords of C# 5 are discussed in detail in Chapter 15,
“Asynchronous Programming.” This chapter also shows the different asynchronous
patterns that have been used over time with .NET.

Managed Extensibility Framework (MEF) is covered in Bonus Chapter 1,
“Composition.” Windows apps are covered in Chapters 33 to 36, and the Web API
with ASP.NET Core MVC is covered in Chapter 32, “Web API.”

C# 6 and .NET Core 1.0
C# 6 doesn’t involve the huge improvements that were made by generics, LINQ, and async, but there are a
lot of small and practical enhancements in the language that can reduce the code length in several places.
The many improvements have been made possible by a new compiler engine code named Roslyn or the
.NET Compiler Platform.

The full .NET Framework is not the only .NET version that was in use in recent years. Some scenarios
required smaller frameworks. In 2007, the fi rst version of Microsoft Silverlight was released (code named
WPF/E, WPF Everywhere). Silverlight was a web browser plug-in that allowed dynamic content. The fi rst
version of Silverlight supported programming only via JavaScript. The second version included a subset
of the .NET Framework. Of course, server-side libraries were not needed because Silverlight was always
running on the client, but the Framework shipped with Silverlight also removed classes and methods from
the core features to make it lightweight and portable to other platforms. The last version of Silverlight for the
desktop (version 5) was released in December 2011. Silverlight had also been used for programming
for the Windows Phone. Silverlight 8.1 made it into Windows Phone 8.1, but this version of Silverlight is
also different from the version on the desktop.

On the Windows desktop, where there is such a huge framework with .NET and the need for faster and
faster development cadences, big changes were also required. In a world of DevOps where developers and
operations work together or are even the same people to bring applications and new features continuously
to the user, there’s a need to have new features available in a fast way. Creating new features or making bug
fi xes is a not-so-easy task with a huge framework and many dependencies.

With several smaller .NET versions available (e.g. Silverlight, Silverlight for the Windows Phone), it became
important to share code between the desktop version of .NET and a smaller version. A technology to share
code between different .NET versions was the portable library. Over time, with many different .NET
Frameworks and versions, the management of the portable library has become a nightmare.

With all these issues, a new version of .NET is a necessity. (Yes, it’s really a requirement to solve these
issues.) The new version of the Framework is invented with the name .NET Core. .NET Core is smaller with
modular NuGet packages, has a runtime that’s distributed with every application, is open source, and is
available not only for the desktop version of Windows but also for many different Windows devices, as well
as for Linux and OS X.

For creating web applications, ASP.NET Core 1.0 was a complete rewrite of ASP.NET. This release is not
completely backward compatible with older versions and requires some changes to existing ASP.NET MVC
code (with ASP.NET Core MVC). However, it also has a lot of advantages when compared with the older
versions, such as a lower overhead with every network request—which results in better performance—and
it can also run on Linux. ASP.NET Web Forms is not part of this release because ASP.NET Web Forms was
not designed for best performance; it was designed for developer friendliness based on patterns known by
Windows Forms application developers.

10 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

Of course, not all applications can be changed easily to make use of .NET Core. That’s why the huge frame-
work received improvements as well—even if those improvements are not completed at as fast a pace as
.NET Core. The new version of the full .NET Framework is 4.6. Small updates for ASP.NET Web Forms are
available on the full .NET stack.

NOTE The changes to the C# language are covered in all the language chapters in
Part I—for example, read-only properties are in Chapter 3, “Objects and Types”; the
nameof operator and null propagation are in Chapter 6, “Operators and Casts”; string
interpolation is in Chapter 9, “Strings and Regular Expressions”; and exception fi lters
are in Chapter 14, “Errors and Exceptions.”

C# 7 and .NET Core 2.0
C# has been updated to have a faster pace. Major version 7.0 was released in March 2017, and the minor
versions 7.1 and 7.2 soon after in August 2017 and December 2017. With a project setting, you can select
the compiler version to use.

C# 7 introduces many new features (these are outlined in the Introduction.) The most signifi cant of these
features come from functional programming: pattern matching and g tuples.

NOTE Pattern matching and tuples are covered in Chapter 13, “Functional
Programming with C#.”

.NET Core 2.0 is focused on making it easier to bring existing applications written with the .NET
Framework to .NET Core. Types that haven’t been available with .NET Core but are still in use with many
.NET Framework applications and libraries are now available with .NET Core. More than 20,000 APIs
have been added to .NET Core 2.0. For example, binary serialization, and the DataSet are back, and you
can use these features also on Linux. Another feature that helps bring legacy applications to .NET Core
is the Windows Compatibility Pack (Microsoft.Windows.Compatibility). This NuGet package defi nes
APIs for WCF, registry access, cryptography, directory services, drawing, and more. See https://github
.com/dotnet/designs/blob/master/accepted/compat-pack/compat-pack.md for a current state.

The .NET Standard is a spec that defi nes which APIs should be available on any platform that supports the stan-
dard. The higher the standard version, the more APIs are available. .NET Standard 2.0 extended the standard by
more than 20,000 APIs and is supported by .NET Framework 4.6.1, .NET Core 2.0, and the Universal Windows
Platform (Windows Apps) starting with build 16299 (the Fall Creators Update of Windows 10).

NOTE The .NET Standard is covered in detail in Chapter 19, “Libraries, Assemblies,
Packages, and NuGet.”

To check whether your application can easily be ported to .NET Core, you can use the .NET Portability
Analyzer. You can install this tool as an extension to Visual Studio. It analyzes your binaries. You can
confi gure the portability information for what versions and frameworks you would like to get, and you
can select portability information for .NET Core, .NET Framework, .NET Standard, Mono, Silverlight,
Windows, Xamarin, and more. The result can be JSON, HTML, and Excel.

Reviewing .NET History ❘ 11

Figure 1-1 shows the summary report after selecting a .NET Framework binary that is 100% compatible
with the .NET Framework, 96.67% with .NET Core, and just 69.7% with Windows Apps. Figure 1-2 shows
detail information about the problematic APIs.

FIGURE 1-1

FIGURE 1-2

Choosing Technologies and Going Forward
When you know the reason for competing technologies within the Framework, it’s easier to select a tech-
nology to use for programming applications. For example, if you’re creating new Windows applications
it’s not a good idea to bet on Windows Forms. Instead, you should use a XAML-based technology, such as
the Universal Windows Platform (UWP). Of course, there are still good reasons to use other technologies.
Do you need to support Windows 7 clients? In that case, UWP is not an option, but WPF is. You still can
create your WPF applications in a way that make it easy to switch to other technologies, such as UWP and
Xamarin.

NOTE Read Chapter 34, “Patterns with XAML Apps,” for information about how to
design your app to share as much code as possible between WPF, UWP, and Xamarin.

12 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

If you’re creating web applications, a safe bet is to use ASP.NET Core with ASP.NET Core MVC. Making
this choice rules out using ASP.NET Web Forms. If you’re accessing a database, you should use Entity
Framework Core, and you should opt for the Managed Extensibility Framework instead of System.AddIn.

Legacy applications still use Windows Forms and ASP.NET Web Forms and some other older technologies.
It doesn’t make sense to change existing applications just to use new technologies. There must be a huge
advantage to making the change—for example, when maintenance of the code is already a nightmare and a
lot of refactoring is needed to change to faster release cycles that are being demanded by customers, or when
using a new technology allows for reducing the coding time for updates. Depending on the type of legacy
application, it might not be worthwhile to switch to a new technology. You can allow the application to still
be based on older technologies because Windows Forms and ASP.NET Web Forms will still be supported
for many years to come.

The content of this book is based on the newer technologies to show what’s best for creating new applica-
tions. In case you still need to maintain legacy applications, you can refer to older editions of this book,
which cover ASP.NET Web Forms, WCF, Windows Forms, System.AddIn, Workfl ow Foundation, and
other legacy technologies that are still part of and available with the .NET Framework.

.NET TERMS
What are the current .NET technologies? Figure 1-3 gives an overall picture of how the .NET Framework,
.NET Core, and Mono relate to each other. All .NET Framework apps, .NET Core apps, and Xamarin apps
can use the same libraries if they are built with the .NET Standard. These technologies share the same com-
piler platform, programming languages, and runtime components. They do not share the same runtime, but
they do share components within their runtime. For example, the just-in-time (JIT) compiler RyuJIT is used
by the .NET Framework and .NET Core.

A
SP

.N
E

T

ASP.NET
Core

.NET
Framework

.NET Core

.NET Standard Libraries

Common Infrastructure

Compiler
Platform

Languages
Runtime

Components

Mono

Windows
Runtime

UWP

Xamarin.Forms

X
am

ar
in

.
Io

S

X
am

ar
in

.
A

nd
ro

idW
P

F

W
in

Fo
rm

s

FIGURE 1-3

With the .NET Framework, you can create Windows Forms, WPF, and legacy ASP.NET applications that
run on Windows.

Using .NET Core, you can create ASP.NET Core and console apps that run on different platforms. .NET
Core is also used by the Universal Windows Platform (UWP), but this doesn’t make UWP available on
Linux. UWP also makes use of the Windows Runtime, which is available only on Windows.

.NET Terms ❘ 13

Xamarin offers Xamarin.IoS and Xamarin.Android, libraries that enable you to develop C# apps for the
iPhone and for Android. With Xamarin.Forms, you have a library to share the user interface between the
two mobile platforms. Xamarin is currently still based on the Mono framework, a .NET variant developed
by Xamarin. At some point, this might change to .NET Core. However, what’s important is that all these
technologies can use the same libraries created for the .NET Standard.

In the lower part of Figure 1-3, you can see there’s also some sharing going on between .NET Framework,
.NET Core, and Mono. Runtime components, such as the code for the garbage collector and the RyuJIT
(this is a new JIT compiler to compile IL code to native code) are shared. The garbage collector is used by
CLR, CoreCLR, and .NET Native. The RyuJIT just-in-time compiler is used by CLR and CoreCLR. The
.NET Compiler Platform (also known as Roslyn) and the programming languages are used by all these
platforms.

.NET Framework
NET Framework 4.7 is the .NET Framework that has been continuously enhanced in the past 15 years.
Many of the technologies that have been discussed in the history section are based on this framework. This
framework is used for creating Windows Forms and WPF applications. .NET Framework 4.7 still offers
enhancements for Windows Forms, such as support for High DPI.

If you want to continue working with ASP.NET Web Forms, ASP.NET 4.7 with .NET Framework 4.7 is the
way to go. Otherwise, you need to rewrite some code to move to .NET Core. Depending on the quality of
the source code and the need to add new features, rewriting the code might be worthwhile.

.NET Core
.NET Core is the new .NET that is used by all new technologies and has a big focus in this book. This
framework is open source—you can fi nd it at http://www.github.com/dotnet. The runtime is the
CoreCLR repository; the framework containing collection classes, fi le system access, console, XML, and a
lot more is in the CoreFX repository.X

Unlike the .NET Framework, where the specifi c version you needed for the application had to be installed
on the system, with .NET Core 1.0 the framework, including the runtime, is delivered with the application.
Previously there were times when you might have had problems deploying an ASP.NET web application to a
shared server because the provider had older versions of .NET installed; those times are gone. Now you can
deliver the runtime with the application and are not dependent on the version installed on the server.

.NET Core is designed in a modular approach. The framework splits up into a large list of NuGet packages.
So that you don’t have to deal with all the packages, metapackages are used that reference the smaller pack-
ages that work together. Metapackages even improved with .NET Core 2.0 and ASP.NET Core 2.0. With
ASP.NET Core 2.0, you just need to reference Microsoft.AspNetCore.All to get all the packages you
typically need with ASP.NET Core web applications.

.NET Core can be updated at a fast pace. Even updating the runtime doesn’t infl uence existing applications
because the runtime can be installed with the applications. Now Microsoft can improve .NET Core, includ-
ing the runtime, with faster release cycles.

NOTE For developing apps using .NET Core, Microsoft created new command-line
utilities named .NET Core Command line (CLI). These tools are introduced later in
this chapter through a “Hello World!” application in the section “Using the .NET
Core CLI.”

14 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

.NET Standard
The .NET Standard is not an implementation; it’s a contract. This contract specifi es what APIs need to be
implemented. .NET Framework, .NET Core, and Xamarin implement this standard.

The standard is versioned. With every version additional APIs are added. Depending on the APIs you need,
you can choose the standard version for a library. You need to check whether your platform of choice sup-
ports the standard of the needed version.

You can fi nd a detailed table for the platform support for the .NET Standard at https://docs.microsoft
.com/en-us/dotnet/standard/net-standard. The following are the most important parts you need to
know:

➤ .NET Core 1.1 supports .NET Standard 1.6; .NET Core 2.0 supports .NET Standard 2.0.
➤ .NET Framework 4.6.1 supports .NET Standard 2.0.
➤ UWP build 16299 and later supports .NET Standard 2.0; older versions support only .NET

Standard 1.4.
➤ With Xamarin to use .NET Standard 2.0 you need Xamarin.iOS 10.14 and Xamarin.Android 8.0.

NOTE Read detailed information on the .NET Standard in Chapter 19.

NuGet Packages
In the early days, assemblies were reusable units with applications. That use is still possible (and necessary
with some assemblies) when you’re adding a reference to an assembly for using the public types and methods
from your own code. However, using libraries can mean a lot more than just adding a reference and using it.
Using libraries can also mean some confi guration changes, or scripts that can be used to take advantage of
some features. This is one of the reasons to package assemblies within NuGet packages.

A NuGet package is a zip fi le that contains the assembly (or multiple assemblies) as well as confi guration
information and PowerShell scripts.

Another reason for using NuGet packages is that they can be found easily; they’re available not only from
Microsoft but also from third parties. NuGet packages are easily accessible on the NuGet server at http://
www.nuget.org.

From the references within a Visual Studio project, you can open the NuGet Package Manager (see Figure
1-4). There you can search for packages and add them to the application. This tool enables you to search for
packages that are not yet released (include prerelease option) and defi ne the NuGet server where the pack-
ages should be searched. One place to search for packages is your own shared directory where your internal
used packages are placed.

NOTE When you use third-party packages from the NuGet server, you’re always at
risk if a package is available later. You also need to check about the support availabil-
ity of the package. Always check for project links with information about the package
before using it. With the package source, you can select Microsoft and .NET to only
get packages supported by Microsoft. Third-party packages are also included in the
Microsoft and .NET section, but they are third-party packages that are supported by
Microsoft.

.NET Terms ❘ 15

FIGURE 1-4

NOTE More information about the NuGet Package Manager is covered in Chapter
17, “Visual Studio 2015.”

Namespaces
The classes available with .NET are organized in namespaces whose names start with the System. To give
you an idea about the hierarchy, the following table describes a few of the namespaces.

NAMESPACE DESCRIPTION

System.Collections This is the root namespace for collections. Collections are also found within
subnamespaces, such as System.Collections.Concurrent and System
.Collections.Generic.

System.Data This is the namespace for accessing databases. System.Data.SqlClient
contains classes to access the SQL Server.

System.Diagnostics This is the root namespace for diagnostics information, such as event logging
and tracing (in the namespace System.Diagnostics.Tracing).

System.Globalization This is the namespace that contains classes for globalization and localization
of applications.

continues

16 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

NAMESPACE DESCRIPTION

System.IO This is the namespace for File IO, which are classes to access fi les and direc-
tories. Readers, writers, and streams are here.

System.Net This is the namespace for core networking, such as accessing DNS servers
and creating sockets with System.Net.Sockets.

System.Threading This is the root namespace for threads and tasks. Tasks are defi ned within
System.Threading.Tasks.

NOTE Many of the new .NET classes use namespaces that start with the name
Microsoft instead of System, like m Microsoft.EntityFrameworkCore for the Entity
Framework Core and Microsoft.Extensions.DependencyInjection for the new
dependency injection framework.

Common Language Runtime
The Universal Windows Platform makes use of Native .NET to compile IL to native code with an AOT
Compiler. This is like Xamarin.iOS. With all other scenarios, with both applications using the .NET
Framework and applications using .NET Core 1.0, a Common Language Runtime (CLR) is needed. .NET
Core uses the CoreCLR whereas the .NET Framework uses the CLR. So, what’s done by a CLR?

Before an application can be executed by the CLR, any source code that you develop (in C# or some other
language) needs to be compiled. Compilation occurs in two steps in .NET:

1. Compilation of source code to Microsoft Intermediate Language (IL)

2. Compilation of IL to platform-specifi c native code by the CLR

The IL code is available within a .NET assembly. During runtime, a Just-In-Time (JIT) compiler compiles IL
code and creates the platform-specifi c native code.

The new CLR and the CoreCLR include the JIT compiler named RyuJIT. The new JIT compiler is not only TT
faster than the previous one; it also has better support for the Edit & Continue feature while debugging with
Visual Studio. The Edit & Continue feature enables you to edit the code while debugging, and you can con-
tinue the debug session without the need to stop and restart the process.

The runtime also includes a type system with a type loader that is responsible for loading types from assem-
blies. Security infrastructure with the type system verifi es whether certain type system structures are per-
mitted—for example, with inheritance.

After creating instances of types, the instances also need to be destroyed and memory needs to be recycled.
Another feature of the runtime is the garbage collector. The garbage collector cleans up memory from the
managed heap that isn’t referenced anymore.

The runtime is also responsible for threading. Creating a managed thread from C# is not necessarily a
thread from the underlying operating system. Threads are virtualized and managed by the runtime.

(continued)

.NET Terms ❘ 17

NOTE How threads can be created and managed from C# is covered in Chapter 21,
“Tasks and Parallel Programming,” and in Chapter 22, “Task Synchronization.”
Chapter 17, “Managed and Unmanaged Memory,” gives information about the gar-
bage collector and how to clean up memory.

Windows Runtime
Starting with Windows 8, the Windows operating system offers another framework: the Windows Runtime.
This runtime is used by the Windows Universal Platform and was version 1 with Windows 8, version 2 with
Windows 8.1, and version 3 with Windows 10.

Unlike the .NET Framework, this framework was created using native code. When it’s used with .NET
apps, the types and methods contained just look like .NET. With the help of language projection, the
Windows Runtime can be used with the JavaScript, C++, and .NET languages, and it looks like it’s native
to the programming environment. Methods are not only behaving differently regarding case sensitivity; the
methods and types can also have different names depending on where they are used.

The Windows Runtime offers an object hierarchy organized in namespaces that start with Windows.
Looking at these classes, there’s not a lot with duplicate functionality to the .NET types; instead, extra
functionality is offered that is available for apps running on the Universal Windows Platform.

NAMESPACE DESCRIPTION

Windows.ApplicationModel This namespace and its subnamespaces, such as Windows
.ApplicationModel.Contracts, defi ne classes to manage the app
lifecycle and communication with other apps.

Windows.Data Windows.Data defi nes subnamespaces to work with Text, JSON, PDF,
and XML data.

Windows.Devices Geolocation, smartcards, point of service devices, printers, scanners,
and other devices can be accessed with subnamespaces of Windows
.Devices.

Windows.Foundation Windows.Foundation defi nes core functionality. Interfaces for
collections are defi ned with the namespace Windows.Foundation
.Collections. You will not fi nd concrete collection classes here.
Instead, interfaces of .NET collection types map to the Windows
Runtime types.

Windows.Media Windows.Media is the root namespace for playing and capturing video
and audio, accessing playlists, and doing speech output.

Windows.Networking This is the root namespace for socket programming, background trans-
fer of data, and push notifi cations.

Windows.Security Classes from Windows.Security.Credentials offer a safe store for
passwords; Windows.Security.Credentials.UI offers a picker to
get credentials from the user.

continues

18 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

NAMESPACE DESCRIPTION

Windows.Services.Maps This namespace contains classes for location services and routing.

Windows.Storage With Windows.Storage and its subnamespaces, it is possible to access
fi les and directories as well as use streams and compression.

Windows.System The Windows.System namespace and its subnamespaces give informa-
tion about the system and the user, but they also offer a Launcher to
launch other apps.

Windows.UI.Xaml In this namespace, you can fi nd a ton of types for the user interface.

USING THE .NET CORE CLI
For many chapters in this book you don’t need Visual Studio; you can use any editor and a command
line. For creating and compiling your applications, you can use the .NET Core Command Line Interface
(CLI). Let’s have a look how to set up your system and how you can use this tool.

Setting Up the Environment
In case you have Visual Studio 2017 with the latest updates installed, you can immediately start with the
CLI tools. As previously mentioned, you can set up a system without Visual Studio 2017. You also can
use most of the samples on Linux and OS X. To download the applications for your environment, just go
to https://dot.net and click the Get Started button. From there, you can download the .NET SDK for
Windows, Linux, and macOS.

For Windows, you can download an executable that installs the SDK. With Linux, you need to select the
Linux distribution to get the corresponding command:

➤ With Red Hat and CentOS, install the .NET SDK using yum.
➤ With Ubuntu and Debian, use apt-get.
➤ With Fedora, use dnf install.
➤ With SLES/openSUSE, use zipper install.
➤ To install the .NET SDK on the Mac, you can download a .pkg fi le.

With Windows, different versions of .NET Core runtimes as well as NuGet packages are installed in the
user profi le. As you work with .NET, this folder increases in size. Over time as you create multiple projects,
NuGet packages are no longer stored in the project itself; they’re stored in this user-specifi c folder. This
has the advantage that you do not need to download NuGet packages for every different project. After you
have this NuGet package downloaded, it’s on your system. Just as different versions of the NuGet packages
as well as the runtime are available, all the different versions are stored in this folder. From time to time it
might be interesting to check this folder and delete old versions you no longer need.

Installing .NET Core CLI tools, you have the dotnet tools as an entry point to start all these tools. Just start

> dotnet --help

to see all the different options of the dotnet tools available. Many of the options have a shorthand notation.
For help, you can type

> dotnet -h

(continued)

Using the .NET Core CLI ❘ 19

Creating the Application
The dotnet tools offer an easy way to create a “Hello World!” application. Just enter this command:

> dotnet new console --output HelloWorld

This command creates a new HelloWorld directory and adds the source code fi le Program.cs and the proj-
ect fi le HelloWorld.csproj. Starting with .NET Core 2.0, this command also includes a dotnet restore
where all NuGet packages are downloaded. To see a list of dependencies and versions of libraries used by
the application, you can check the fi le project.assets.json in the obj subdirectory. Without using the
option --output (or -o as shorthand), the fi les would be generated in the current directory.

The generated source code looks like the following code snippet (code fi le HelloWorld/Program.cs):

using System;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

Since the 1970s, when Brian Kernighan and Dennis Ritchie wrote the book The C Programming Language,
it’s been a tradition to start learning programming languages using a “Hello World!” application. With the
.NET Core CLI, this program is automatically generated.

Let’s get into the syntax of this program. The Main method is the entry point for a .NET application. The
CLR invokes a static Main method on startup. The Main method needs to be put into a class. Here, the class
is named Program, but you could call it by any name.

Console.WriteLine invokes the WriteLine method of the Console class. You can fi nd the Console class
in the System namespace. You don’t need to write System.Console.WriteLine to invoke this method; the
System namespace is opened with the using declaration on top of the source fi le.

After writing the source code, you need to compile the code to run it.

The created project confi guration fi le is named HelloWorld.csproj. Compared to older csproj fi les, the
new project fi le is reduced to a few lines with several defaults:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
</Project>

With the project fi le, the OutputType defi nes the type of the output. With a console application, this is
Exe. The TargetFramework specifi es the framework and the version that is used to build the application.
With the sample project, the application is built using .NET Core 2.0. You can change this element to
TargetFrameworks and specify multiple frameworks, such as netcoreapp2.0;net47 to build applications
both for .NET Framework 4.7 and .NET Core 2.0 (project fi le HelloWorld/HelloWorld.csproj):

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFrameworks>netcoreapp2.0;net47</TargetFrameworks>
 </PropertyGroup>
</Project>

20 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

The Sdk attribute specifi es the SDK that is used by the project. Microsoft ships two main SDKs:
Microsoft.NET.Sdk for console applications, and Microsoft.NET.Sdk.Web for ASP.NET Core web
applications.

You don’t need to add source fi les to the project. Files with the .cs extension in the same directory and
subdirectories are automatically added for compilation. Resource fi les with the .resx extension are auto-
matically added for embedding the resource. You can change the default behavior and exclude/include fi les
explicitly.

You also don’t need to add the .NET Core package. By specifying the target framework netcoreapp2.0, the
metapackage Microsoft.NetCore.App that references many other packages is automatically included.

Building the Application
To build the application, you need to change the current directory to the directory of the application and
start dotnet build. When you compile for .NET Core 2.0 and .NET Framework 4.7, you see output like
the following:

> dotnet build
Microsoft (R) Build Engine version 15.5.179.9764 for .NET Core
Copyright (C) Microsoft Corporation. All rights reserved.

 Restore completed in 19.8 ms for
 C:\procsharp\Intro\HelloWorld\HelloWorld.csproj.
 HelloWorld -> C:\procsharp\Intro\HelloWorld\bin\Debug\net47\HelloWorld.exe
 HelloWorld ->
 C:\procsharp\Intro\HelloWorld\bin\Debug\netcoreapp2.0\HelloWorld.dll

Build succeeded.
 0 Warning(s)
 0 Error(s)

Time Elapsed 00:00:01.58

NOTE The commands dotnet new and dotnet build now include restoring NuGet
packages. You can also explicitly restore NuGet packages with dotnet restore.

Because of the compilation process, you fi nd the assembly containing the IL code of the Program class
within the bin/debug/[netcoreapp2.0|net47] folders. If you compare the build of .NET Core with
.NET 4.7, you will fi nd a DLL containing the IL code with .NET Core, and an EXE containing the IL code
with .NET 4.7. The assembly generated for .NET Core has a dependency to the System.Console assembly,
whereas the .NET 4.6 assembly fi nds the Console class in the mscorlib assembly.

To build release code, you need to specify the option --Configuration Release (shorthand -c Release):

> dotnet build --configuration Release

Some of the code samples in the following chapters make use of features offered by C# 7.1 or C# 7.2. By
default, the latest major version of the compiler is used, which is C# 7.0. To enable newer versions of C#,
you need to specify this in the project fi le as shown with the following project fi le section. Here, the latest
version of the C# compiler is confi gured.

<PropertyGroup>
 <LangVersion>latest</LangVersion>
</PropertyGroup>

Running the Application
To run the application, you can use the dotnet run command

> dotnet run

Using the .NET Core CLI ❘ 21

In case the project fi le targets multiple frameworks, you need to tell the dotnet run command which frame-
work to use to run the app by using the option --framework. This framework must be confi gured with the
csproj fi le. With the sample application, you can see output like the following after the restore information:

> dotnet run ––framework netcooreapp2.0
Microsoft (R) Build Engine version 15.5.179.9764 for .NET Core
Copyright (C) Microsoft Corporation. All rights reserved.

 Restore completed in 20.65 ms for
 C:\procsharp\Intro\HelloWorld\HelloWorld.csproj.
Hello World!

On a production system, you don’t use dotnet run to run the application. Instead, you use dotnet with the
name of the library:

> dotnet bin/debug/netcoreapp2.0/HelloWorld.dll

You can also create an executable, but executables are platform specifi c. How this is done is shown later in
this chapter in the section “Packaging and Publishing the Application.”

NOTE As you’ve seen building and running the “Hello World!” app on Windows, the
dotnet tools work the same on Linux and OS X. You can use the same dotnet com-
mands on either platform.

The focus of this book is on Windows, as Visual Studio 2017 offers a more power-
ful development platform than is available on the other platforms, but many code
samples from this book are based on .NET Core, and you will be able to run them
on other platforms as well. You can also use Visual Studio Code, a free development
environment, to develop applications directly on Linux and OS X. See the section
“Developer Tools” later in this chapter for more information about different editions
of Visual Studio.

Creating a Web Application
You also can use the .NET Core CLI to create a web application. When you start dotnet new, you can see a
list of templates available (see Figure 1-5).

FIGURE 1-5

22 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

The command

> dotnet new mvc -o WebApp

creates a new ASP.NET Core web application using ASP.NET Core MVC. After changing to the WebApp
folder, build and run the program using

> dotnet build
> dotnet run

starts the Kestrel server of ASP.NET Core to listen on port 5000. You can open a browser to access the
pages returned from this server, as shown in Figure 1-6.

FIGURE 1-6

Publishing the Application
With the dotnet tool you can create a NuGet package and publish the application for deployment. Let’s fi rst
create a framework-dependent deployment of the application. This reduces the fi les needed with publishing.

Using the previously created console application, you just need the following command to create the fi les
needed for publishing. The framework is selected by using -f, and the release confi guration is selected by
using -c:

> dotnet publish -f netcoreapp2.0 -c Release

The fi les needed for publishing are put into the bin/Release/netcoreapp2.0/publish directory.

Using the .NET Core CLI ❘ 23

Using these fi les for publishing on the target system, the runtime is needed as well. You can fi nd the runtime
downloads and installation instructions at https://www.microsoft.com/net/download/.

Contrary to the .NET Framework where the same installed runtime can be used by different
.NET Framework versions (for example, the .NET Framework 4.0 runtime with updates can be used
from .NET Framework 4.7, 4.6, 4.5, 4.0… applications), with .NET Core, to run the application, you
need the same runtime version.

NOTE In case your application uses additional NuGet packages, these need to be ref-
erenced in the csproj fi le, and the libraries need to be delivered with the application.
Read Chapter 19 for more information.

Self-Contained Deployments
Instead of needing to have the runtime installed on the target system, the application can deliver the runtime
with it. This is known as self-contained deployment.

Depending on the platform, the runtime differs. Thus, with self-contained deployment you need to specify
the platforms supported by specifying RuntimeIdentifiers in the project fi le, as shown in the following
project fi le. Here, the runtime identifi ers for Windows 10, MacOS, and Ubuntu Linux are specifi ed (project
fi le SelfContainedHelloWorld/SelfContainedHelloWorld.csproj):

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <PropertyGroup>
 <RuntimeIdentifiers>
 win10-x64;ubuntu-x64;osx.10.11-x64;
 </RuntimeIdentifiers>
 </PropertyGroup>
</Project>

NOTE Get all the runtime identifi ers for different platforms and versions from the
.NET Core Runtime Identifi er (RID) catalog at https://docs.microsoft.com/
en-us/dotnet/core/rid-catalog.

Now you can create publish fi les for all the different platforms:

> dotnet publish -c Release -r win10-x64
> dotnet publish -c Release -r osx.10.11-x64
> dotnet publish -c Release -r ubuntu-x64

After running these commands, you can fi nd the fi les needed for publishing in the Release/[win10-
x64|osx.10.11-x64|ubuntu-x64]/publish directories. As .NET Core 2.0 is a lot larger, the size needed for
publishing was growing. In these directories, you can fi nd platform-specifi c executables that you can start
directly without using the dotnet command.

NOTE Chapter 19 gives more details on working with the .NET Core CLI and adding
NuGet packages, adding projects, creating libraries, working with solution fi les, and
more.

24 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

USING VISUAL STUDIO 2017
Next, let’s get into using Visual Studio 2017 instead of the command line. In this section, the most impor-
tant parts of Visual Studio are covered to get you started. More features of Visual Studio are covered in
Chapter 18, “Visual Studio 2017.”

Installing Visual Studio 2017
Visual Studio 2017 offers a new installer that should make it easier to install the products you need. With
the installer, you can select the Workloads you need for developing applications (see Figure 1-7). To cover
all the chapters of the book, install these workloads:

➤ Universal Windows Platform development
➤ .NET Desktop development
➤ ASP.NET and web development
➤ Azure development
➤ Mobile development with .NET
➤ .NET Core cross-platform development

FIGURE 1-7

Creating a Project
You might be overwhelmed by the huge number of menu items and the many options in Visual Studio.
To create simple apps in the fi rst chapters of this book, you need only a small subset of the features of
Visual Studio. Also, this complete book covers only a part of all the things you can do with Visual Studio.
Many features within Visual Studio are offered for legacy applications, as well as for other programming
languages.

Using Visual Studio 2017 ❘ 25

The fi rst thing you do after starting Visual Studio is create a new project. Select the menu File ➪ New ➪
Project. The dialog shown in Figure 1-8 opens. You see a list of project items that you can use to create new
projects.

FIGURE 1-8

For this book, you’re interested in a subset of the Visual C# project items. With the fi rst chapters of this
book, you select the .NET Core category and the project template Console App (.NET Core). On top of the
dialog shown in Figure 1-8 you can see where .NET Framework version is selected. Don’t be confused, this
selection does not apply to .NET Core projects.

In the lower part of this dialog, you can enter the name of the appli-
cation, chose the folder where to store the project, and enter a name
for the solution. Solutions can contain multiple projects.

Clicking the OK button creates a “Hello World!” application.

Working with Solution Explorer
In the Solution Explorer (see Figure 1-9), you can see the solution,
the projects belonging to the solution, and the fi les in the project.
You can select a source code fi le you can get into the classes and
class members.

FIGURE 1-9

26 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

When you select an item in the Solution Explorer and click the right mouse key or press the application key
on the keyboard, you open the context menu for the item, as shown in Figure 1-10. The available menus
depend on the item you selected and on the features installed with Visual Studio.

FIGURE 1-10

When you open the context menu for the project, one menu item is to edit the project fi le. This option opens
the project fi le VSHelloWorld.csproj with the same content you’ve already seen earlier when using the
.NET Core CLI.

Confi guring Project Properties
You can confi gure the project properties by selecting the context menu of the project in the Solution
Explorer and clicking Properties, or by selecting Project ➪ VSHelloWorld Properties. This opens the view
shown in Figure 1-11. Here, you can confi gure different settings of the project, such as the .NET Core ver-
sion to use (if you have multiple frameworks installed), build settings, commands that should be invoked
during the build process, package confi guration, and arguments and environmental variables used while
debugging the application. As previously mentioned, with some code samples, C# 7.0 is not enough. You
can confi gure a different version of the C# compiler with the Build category. Clicking the Advanced button
opens the Advanced Build Settings dialog (see Figure 1-12). Here, you can confi gure the version of the C#
compiler. This selection goes into the csproj project confi guration fi le.

Using Visual Studio 2017 ❘ 27

FIGURE 1-11

FIGURE 1-12

NOTE When making a change with the project properties, you need to make sure to
select the correct Confi guration at the top of the dialog. If you change the version of
the C# compiler only with the Debug confi guration, building release code will fail
when you use newer C# language features. For settings you would like to have with all
confi gurations, select the confi guration All Confi gurations.

28 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

Getting to Know the Editor
The Visual Studio editor is extremely powerful. It offers IntelliSense to offer you available options to invoke
methods and properties and completes your typing as you press the Tab button. Compilation takes place
while you type, so you can immediately see syntax errors with underlined code. Hovering the mouse pointer
over the underlined text brings up a small box that contains the description of the error.

One great productivity feature from the code editor is code snippets. They reduce how much
you need to type. Just by typing cw and pressing Tab twice in the editor, the editor creates Console
.WriteLine();. Visual Studio comes with many code snippets that you can see when you select Tools
➪ Code Snippets Manager to open the Code Snippets Manager (see Figure 1-13), where you can select
CSharp in the Language fi eld for the code snippets defi ned with the C# language; select the group
Visual C# to see all predefi ned code snippets for C#.

FIGURE 1-13

Building a Project
You compile the project from the menu Build ➪ Build Solution. In case of errors, the Error List window
shows errors and warnings. However, the Output window (see Figure 1-14) is more reliable than the Error
List. Sometimes the Error List contains older cached information, or it is not that easy to fi nd the error when
the list is large. The Output window usually gives great information for many different tools. You open the
Output window by selecting View ➪ Output.

FIGURE 1-14

Application Types and Technologies ❘ 29

Running an Application
To run the application, select Debug ➪ Start Without Debugging. This starts the application and keeps the
console window opened until you close it.

Remember, you can confi gure application arguments in the Project Properties selecting the Debug category.

Debugging
To debug an application, you can click the left gray area in the editor to create breakpoints (see Figure 1-15).
With breakpoints in place, you can start the debugger by selecting Debug ➪ Start Debugging. When you hit
a breakpoint, you can use the Debug toolbar (see Figure 1-16) to step into, over, or out of methods, or you
can show the next statement. Hover over variables to see the current values. You also can check the Locals
and Watch windows for variables set, and you can change values while the application runs.

FIGURE 1-15

Now you’ve seen the parts of Visual Studio that are most impor-
tant for helping you to survive the fi rst chapters in this book.
Chapter 18 takes a deeper look at Visual Studio 2017.

APPLICATION TYPES AND TECHNOLOGIES
You can use C# to create console applications; with most samples in the fi rst chapters of this book you’ll do
that exact thing. For many programs, console applications are not used that often. You can use C# to create
applications that use many of the technologies associated with .NET. This section gives you an overview of
the different types of applications that you can write in C#.

FIGURE 1-16

30 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

Data Access
Before having a look at the application types, let’s look at technologies that are used by all application types:
access to data.

Files and directories can be accessed by using simple API calls; however, the simple API calls are not fl exible
enough for some scenarios. With the stream API you have a lot of fl exibility, and the streams offer many
more features such as encryption or compression. Readers and writers make using streams easier. All the
different options available here are covered in Chapter 22, “Files and Streams.” It’s also possible to serial-
ize complete objects in XML or JSON format. Bonus Chapter 2, “XML and JSON,” (which you can fi nd
online) discusses these options.

To read and write to databases, you can use ADO.NET directly (see Chapter 25, “ADO.NET and
Transactions”), or you can use an abstraction layer, Entity Framework Core (Chapter 26, “Entity
Framework Core”). Entity Framework Core offers a mapping of object hierarchies to the relations of a
database.

Entity Framework Core 1.0 is a complete redesign of Entity Framework, as is refl ected with the new name.
Code needs to be changed to migrate applications from older versions of Entity Framework to the new ver-
sion. Older mapping variants, such as Database First and Model First, have been dropped, as Code First is
a better alternative. The complete redesign was also done to support not only relational databases but also
NoSQL. Entity Framework Core 2.0 has a long list of new features, which are covered in this book.

Windows Apps
For creating Windows apps, the technology of choice should be the Universal Windows Platform. Of course,
there are restrictions when this option is not available—for example, if you still need to support older O/S
versions like Windows 7. In this case you can use Windows Presentation Foundation (WPF). WPF is not cov-
ered in this book, but you can read the previous edition, Professional C# 6 and .NET Core 1.0, which has
fi ve chapters dedicated to WPF, plus some additional WPF coverage in other chapters.

This book has one focus: developing apps with the Universal Windows Platform (UWP). Compared to WPF,
UWP offers a more modern XAML to create the user interface. For example, data binding offers a compiled
binding variant where you get errors at compile time instead of not showing the bound data. The application
is compiled to native code before it’s run on the client systems. And it offers a modern design, which is now
called Fluent Design from Microsoft.

NOTE Creating UWP apps is covered in Chapter 33, “Windows Apps,” along with
an introduction to XAML, the different XAML controls, and the lifetime of apps.
You can create apps with WPF, UWP, and Xamarin by using as much common code
as possible by supporting the MVVM pattern. This pattern is covered in Chapter 34,
“Patterns with XAML Apps.” To create cool looks and style the app, be sure to read
Chapter 35, “Styling Windows Apps.” Chapter 36, “Advanced Windows Apps,” dives
into some advanced features of UWP.

Xamarin
It would have been great if Windows had been a bigger player in the mobile phone market. Then Universal
Windows Apps would run on the mobile phones as well. Reality turned out differently, and Windows on the
phone is (currently) a thing of the past. However, with Xamarin you can use C# and XAML to create apps
on the iPhone and Android. Xamarin offers APIs to create apps on Android and libraries to create apps on
iPhone—using the C# code you are used to.

Application Types and Technologies ❘ 31

With Android, a mapping layer using Android Callable Wrappers (ACW) and Managed Callable Wrappers
(MCW) are used to interop between .NET code and Android’s Java runtime. With iOS, an Ahead of Time
(AOT) compiler compiles the managed code to native code.

Xamarin.Forms offers XAML code to create the user interface and share as much of the user interface as
possible between Android, iOS, Windows, and Linux. XAML only offers UI controls that can be mapped to
all platforms. For using specifi c controls from a platform, you can create platform-specifi c renderers.

NOTE Developing with Xamarin and Xamarin.Forms is covered in Chapter 37,
“Xamarin.Forms.”

Web Applications
The original introduction of ASP.NET fundamentally changed the web programming model. ASP.NET Core
changed it again. ASP.NET Core allows the use of .NET Core for high performance and scalability, and it
not only runs on Windows but also on Linux systems.

With ASP.NET Core, ASP.NET Web Forms is no longer covered (ASP.NET Web Forms can still be used and
is updated with .NET 4.7).

ASP.NET Core MVC is based on the well-known Model-View-Controller (MVC) pattern for easier unit test-
ing. It also allows a clear separation for writing user interface code with HTML, CSS, and JavaScript, and it
uses C# on the backend.

NOTE Chapter 30 covers the foundation of ASP.NET Core. Chapter 31 continues
building on the foundation and adds using the ASP.NET Core MVC framework.

Web API
SOAP and WCF fulfi lled their duty in the past, and they’re not needed anymore. Modern apps make use of
REST (Representational State Transfer) and the Web API. Using ASP.NET Core to create a Web API is an
option that is a lot easier for communication and fulfi lls more than 90 percent of requirements by distrib-
uted applications. This technology is based on REST, which defi nes guidelines and best practices for state-
less and scalable web services.

The client can receive JSON or XML data. JSON and XML can also be formatted in a way to make use of
the Open Data specifi cation (OData).

The features of this new API make it easy to consume from web clients using JavaScript, the Universal
Windows Platform, and Xamarin.

Creating a Web API is a good approach for creating microservices. The approach to build microservices
defi nes smaller services that can run and be deployed independently, having their own control of a data
store.

To describe the services, a new standard was defi ned: the OpenAPI (https://www.openapis.org). This
standard has its roots with Swagger (https://swagger.io/).

NOTE The ASP.NET Core Web API, Swagger, and more information on microser-
vices are covered in Chapter 32.

32 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

WebHooks and SignalR
For real-time web functionality and bidirectional communication between the client and the server,
WebHooks and SignalR are ASP.NET Core technologies available with .NET Core 2.1.

SignalR allows pushing information to connected clients as soon as information is available. SignalR makes
use of the WebSocket technology to push information.

WebHooks allows you to integrate with public services, and these services can call into your public ASP
.NET Core created Web API service. WebHooks is a technology to receive push notifi cation from services
such as GitHub or Dropbox and many other services.

NOTE The foundation of SignalR connection management, grouping of connections,
and authorization and integration of WebHooks are discussed in Bonus Chapter 3,
“WebHooks and SignalR,” which you can fi nd online.

Microsoft Azure
Nowadays you can’t ignore the cloud when considering the development picture. Although there’s not a
dedicated chapter on cloud technologies, Microsoft Azure is referenced in several chapters in this book.

Microsoft Azure offers Software as a Service (SaaS), Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Functions as a Service (FaaS), and sometimes offerings are in between these categories. Let’s
have a look at some Microsoft Azure offerings.

Software as a Service
SaaS offers complete software; you don’t have to deal with management of servers, updates, and so on.
Offi ce 365 is one of the SaaS offerings for using e-mail and other services via a cloud offering. A SaaS offer-
ing that’s relevant for developers is Visual Studio Team Services. Visual Studio Team Services is the Team
Foundation Server in the cloud that can be used as a private code repository, for tracking bugs and work
items, and for build and testing services. Chapter 18 explains DevOps features that can be used from Visual
Studio.

Infrastructure as a Service
Another service offering is IaaS. Virtual machines are offered by this service offering. You are responsible
for managing the operating system and maintaining updates. When you create virtual machines, you can
decide between different hardware offerings starting with shared Cores up to 128 cores (at the time of this
writing, but things change quickly). 128 cores, 2 TB RAM, and 4 TB local SSD belong to the “M-Series” of
machines.

With preinstalled operating systems you can decide between Windows, Windows Server, Linux, and operat-
ing systems that come preinstalled with SQL Server, BizTalk Server, SharePoint, and Oracle, and many other
products.

I use virtual machines often for environments that I need only for several hours a week, as the virtual
machines are paid on an hourly basis. In case you want to try compiling and running .NET Core programs
on Linux but don’t have a Linux machine, installing such an environment on Microsoft Azure is an easy
task.

Developer Tools ❘ 33

Platform as a Service
For developers, the most relevant part of Microsoft Azure is PaaS. You can access services for storing and
reading data, use computing and networking capabilities of app services, and integrate developer services
within the application.

For storing data in the cloud, you can use a relational data store SQL Database. SQL Database is nearly the
same as the on-premise version of SQL Server. There are also some NoSQL solutions such as Cosmos DB
with different store options like JSON data, relationships, or table storage, and Azure Storage that stores
blobs (for example, for images or videos).

App Services can be used to host your web apps and API apps that you are creating with ASP.NET Core.

Microsoft also offers Developer Services in Microsoft Azure. Part of the Developer Services is Visual Studio
Team Services. Visual Studio Team Services allows you to manage the source code, automatic builds, tests,
and deployments—continuous integration (CI).

Part of the Developer Services is Application Insights. With faster release cycles, it’s becoming more and
more important to get information about how the user uses the app. What menus are never used because
the users probably don’t fi nd them? What paths in the app is the user taking to fulfi ll his or her tasks? With
Application Insights, you can get good anonymous user information to fi nd out the issues users have with
the application, and with DevOps in place you can do quick fi xes.

You also can use Cognitive Services that offer functionality to process images, use Bing Search APIs, under-
stand what users say with language services, and more.

Functions as a Service
FaaS is a new concept for cloud service, also known as a serverless computing technology. Of course, behind g
the scenes there’s always a server. You just don’t pay for reserved CPU and memory as you do with App
Services that are used from web apps. Instead the amount you pay is based on consumption—on the number
of calls done with some limitations on the memory and time needed for the activity. Azure Functions is one
technology that can be deployed using FaaS.

NOTE In Chapter 29, “Tracing, Logging, and Analytics,” you can read about tracing
features and learn how to use the Application Insights offering of Microsoft Azure.
Chapter 32, “Web API,” not only covers creating Web APIs with ASP.NET Core
MVC but also shows how the same service functionality can be used from an Azure
Function. The Microsoft Bot service as well as Cognitive Services are explained in
Bonus Chapter 4, “Bot Framework and Cognitive Services,” which you can fi nd
online.

DEVELOPER TOOLS
This fi nal part of the chapter, before we switch to a lot of C# code in the next chapter, covers developer tools
and editions of Visual Studio 2017.

Visual Studio Community
This edition of Visual Studio is a free edition with features that the Professional edition previously had.
There’s a license restriction for when it can be used. It’s free for open-source projects and training and to
academic and small professional teams. Unlike the Express editions of Visual Studio that previously have
been the free editions, this product allows using extensions with Visual Studio.

34 ❘ CHAPTER 1 .NET APPLICATIONS AND TOOLS

Visual Studio Professional
This edition includes more features than the Community edition, such as the CodeLens and Team
Foundation Server for source code management and team collaboration. With this edition, you also get an
MSDN subscription that includes several server products from Microsoft for development and testing.

Visual Studio Enterprise
Unlike the Professional edition, this edition contains a lot of tools for testing, such as Web Load &
Performance Testing, Unit Test Isolation with Microsoft Fakes, and Coded UI Testing. (Unit testing is part
of all Visual Studio editions.) With Code Clone you can fi nd code clones in your solution. Visual Studio
Enterprise also contains architecture and modeling tools to analyze and validate the solution architecture.

NOTE Be aware that with a Visual Studio subscription you’re entitled to free use of
Microsoft Azure up to a specifi c monthly amount that is contingent on the type of
Visual Studio subscription you have.

NOTE Chapter 18 includes details on using several features of Visual Studio 2017.
Chapter 28, “Testing,” gets into details of unit testing, web testing, and creating
Coded UI tests.

NOTE For some of the features in the book—for example, the Coded UI Tests —you
need Visual Studio Enterprise. You can work through most parts of the book with the
Visual Studio Community edition.

Visual Studio for Mac
Visual Studio for Mac originates in the Xamarin Studio, but now it offers a lot more than the earlier prod-
uct. For example, the editor shares code with Visual Studio, so you’re soon familiar with it. With Visual
Studio for Mac you can not only create Xamarin apps, but you also can create ASP.NET Core apps that run
on Windows, Linux, and the Mac. With many chapters of this book, you can use Visual Studio for Mac.
Exceptions are the chapters covering the Universal Windows Platform, which requires Windows to run the
app and also to develop the app.

Visual Studio Code
Visual Studio Code is a completely different development tool compared to the other Visual Studio editions.
While Visual Studio 2017 offers project-based features with a rich set of templates and tools, Visual Studio
is a code editor with little project management support. However, Visual Studio Code runs not only on
Windows, but also on Linux and OS X.

With many chapters of this book, you can use Visual Studio Code as your development editor. What you
can’t do is create UWP and Xamarin applications, and you also don’t have access to the features covered in
Chapter 18, “Visual Studio 2017.” You can use Visual Studio Code for .NET Core console applications, and
ASP.NET Core 1.0 web applications using .NET Core.

You can download Visual Studio Code from http://code.visualstudio.com.

Summary ❘ 35

SUMMARY
This chapter covered a lot of ground to review important technologies and changes with technologies.
Knowing about the history of some technologies helps you decide which technology should be used with
new applications and what you should do with existing applications.

You read about the differences between .NET Framework and .NET Core, and you saw how to create and
run a Hello World application with all these environments with and without using Visual Studio.

You’ve seen the functions of the Common Language Runtime (CLR) and looked at technologies for access-
ing the database and creating Windows apps. You also reviewed the advantages of ASP.NET Core.

Chapter 2 dives fast into the syntax of C#. You learn variables, implement program fl ows, organize your
code into namespaces, and more.

