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Kinematics of Particles

Kinematics is the description of the motion of material bodies without referring to their inertia
or the forces that caused their motion. In particular, in kinematics we are interested in defin-
ing the velocity, acceleration, angular velocity, and angular acceleration of a given body. To
achieve this objective, this chapter introduces the important concept of inertial and non-inertial
frames of reference and uses them to illustrate how to fully describe the kinematics of particles.

1.1 Inertial Frames

We embark on this journey of learning dynamics by learning about inertial frames. In describ-
ing the position, velocity, and acceleration of a moving point in space, it is essential to define
a frame of reference. A common example used in undergraduate textbooks of dynamics to
explain the concept of the reference frame is that of two cars moving in the same direction
at the same speed. An observer standing at the side of the road sees both cars moving at a
certain speed relative to him, while an observer riding in one of the cars will see the other car
as stationary. The difference in the observed speed stems from the observer’s point of view,
referred to in dynamics as the observer’s “reference frame”.

In his early work, Newton realized the importance of the frame of reference in deriving his
first and second laws of dynamics. Therefore, he used the fixed stars as his reference frame.
However, it was later shown using the theory of relativity that this choice of reference can yield
discrepancies, especially for systems moving at a very high speed close to the speed of light.

In an attempt to overcome this problem, an inertial frame of reference, also known as a
Galilean frame, was introduced to define the acceleration of points in space. An inertial frame
was defined as a frame that can only undergo pure translation at a constant velocity without
any rotation with respect to an absolute space. However, as our understanding of the universe
evolved, it became apparent that the notion of absolute space does not really exist, because
everything we know is moving and rotating with respect to something else. As such, referring to
an absolute space to define an inertial frame is fundamentally incorrect. Today, most scientists
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2 Dynamics of Particles and Rigid Bodies

working in the field of classical mechanics define an inertial frame of reference as one in
which the motion of a particle not subject to forces is in a straight line at constant speed. In
other words, an inertial frame is a frame in which the motion of particles follows Newton’s
first law of dynamics.

Inertial Frame

An inertial frame of reference is one in which the motion of a particle not subject to
forces is in a straight line at constant speed. In other words, an inertial frame is a frame
in which the motion of particles follows Newton’s first law of dynamics.

The existence of an inertial frame is extremely important because Newton’s first and second
laws hold true only if such a frame exists. In particular, Newton’s first law of dynamics, which
states that any free motion of a particle has a constant magnitude and direction, is true only
when the observer of this particle is not rotating or accelerating. Similarly, his second and
widely celebrated law of dynamics concerning particles, given by

F = ma, (1.1)

which means that the net force, F, acting on a particle is equal to its mass, m, times its accel-
eration, a, is true in this simple widely-used form only when the acceleration is measured with
respect to an observer standing in an inertial frame. Otherwise, one has to account for other
fictitious forces resulting from other types of acceleration, such as the Coriolis, centrifugal,
and tangential forces.

1.2 Rotating Frames

In addition to the inertial frame of reference, rotating frames, which do not obey Newton’s
laws in their simple form, are also used quite frequently in kinematics to describe positions,
velocities, and accelerations. This is usually done to reduce complexities that could arise
when describing the kinematics of bodies involved in complex rotational motions. To show
the importance of rotating frames, we consider the kinematics of a ball attached to a rigid
cable of fixed length, l, forming a simple pendulum, as shown in Figure 1.1. The position,
velocity, and acceleration of the ball, P , with respect to an observer standing in an inertial
Cartesian frame, N -frame, with unit vectors (n̂1, n̂2, n̂3) located at O can be easily obtained
by defining the position vector OP then differentiating it as follows:

Position: OP = l sin θn̂1 − l cos θn̂2,

Velocity: v =
dOP
dt

= l cos θθ̇n̂1 + l sin θθ̇n̂2,

Acceleration: a =
dv
dt

= (lθ̈ cos θ − lθ̇2 sin θ)n̂1 + (lθ̈ sin θ + lθ̇2 cos θ)n̂2.
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Figure 1.1 Schematic of a simple pendulum.

It is evident that the complexity of the kinematic description of motion increases substan-
tially as more and more derivatives are taken, despite the very simple nature of the pendulum
motion. However, it turns out that it is possible to simplify these expressions considerably, if
we describe the motion of the pendulum in a rotating frame. For instance, let us form a new
Cartesian frame and call it the B-frame, with unit vectors (b̂1, b̂2, b̂3). This rotates with the pen-
dulum such that the b̂1 unit vector is always perpendicular to the cable and the b̂2 unit vector is
always parallel to it, as shown in Figure 1.1. As we will learn later in this chapter, we can find
the velocity and acceleration of point P with respect to point O and express it in the rotating
frame as

Position: OP = −lb̂2,

Velocity: v = lθ̇b̂1,

Acceleration: a = lθ̈b̂l + lθ̇2b̂2.

The reader should not be concerned yet about how we obtained the velocity and acceleration
expressions; we use them here only to see how the acceleration expression in the rotating
B-frame is much simpler than the one obtained using the inertial, N -frame. As such, for more
complex motions involving multiple rotations, describing kinematics in an inertial frame is
often the wrong approach to take.

Another reason for describing motion in a rotating frame stems from the simplicity of mea-
suring angular velocities, angular accelerations, and the mass moment of inertia of rigid bodies
in such frames. The importance of rotating frames in dynamics will become clearer as the
reader delves into the subsequent chapters of this book.
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4 Dynamics of Particles and Rigid Bodies

Rotating Frame

Rotating frames are frames that can rotate with respect to the inertial frame of reference.
Such frames are often used to simplify the kinematic description of particles and rigid
bodies.

1.3 Rotation Matrices

Since both of the inertial and rotating frames are critical in kinematics, it is quiet important to
learn how to switch back and forth between two different frames in a simple way. To this end,
we consider Figure 1.2a, which depicts two different frames: the N -frame and the B-frame.
The B-frame is formed by rotating the N -frame around an unknown axis. Our goal in this
section is to find a set of equations that allows us to easily go back and forth between these
two frames. As will be shown next, this set of equations can be used to construct a matrix
known as the rotation or transformation matrix.

To relate the B-frame to the N -frame, we consider the general rotation shown in Figure 1.2a
and decompose it into three successive rotations around the unit vectors of the Cartesian coor-
dinate system. The first rotation, shown in Figure 1.2b, is a rotation of angle θ about the n̂1 unit
vector. This rotation creates a new intermediate Cartesian coordinate system, which is denoted
as the E-frame, such that ê1 ≡ n̂1.

Next, we take a second rotation, as shown in Figure 1.2c, this time about the ê2 unit vector
through an angle φ forming a second intermediate frame, denoted as the C-frame, such that
ĉ2 ≡ ê2. Finally, as shown in Figure 1.2d, the C-frame is rotated by an angle ψ about the ĉ3
unit vector to form the B-frame such that b̂3 ≡ ĉ3. As such, it is clear now that going from the
original N -frame to the B-frame can be done by performing three successive rotations:1

• a rotation θ around n̂1 to form the E frame;
• a rotation φ around ê2 to form the C frame;
• a rotation ψ around ĉ3 to form the B frame.

It is now possible to relate the orientation of the B-frame to the original N -frame by using
these three successive rotations. First, we refer back to Figure 1.2b to relate the E-frame to
the N -frame. Using simple vector projections, we can write

ê1 = n̂1,

ê2 = cos θn̂2 + sin θn̂3,

ê3 = − sin θn̂2 + cos θn̂3.

Note that ê1 = n̂1 because the first rotation occurs about the n̂1 unit vector, and hence the
ê1 unit vector remains in the same direction as the n̂1 unit vector. The relationship between
ê1, ê2 and n̂1, n̂2 can be clarified by referring to Figure 1.3, which shows a planar projection

1 Note that this is not a unique transformation. One could go from the N -frame to the B-frame by performing many
other different rotations using different angles.
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ĉ3
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Figure 1.2 A 1-2-3 rotation performed to orient the N -frame in the unit coordinates of the B-frame.
(See color plate section for the color representation of this figure.)

of the (n̂2 − n̂3) plane shown in Figure 1.2b. Using Figure 1.3 it can be shown that ê2 =
cos θn̂2 + sin θn̂3. Similarly, using Figure 1.3 one can project the unit vector ê3 in the N -frame
by letting ê3 = − sin θn̂2 + cos θn̂3.

The previous projections can be described in matrix form as
⎡
⎣ ê1

ê2
ê3

⎤
⎦ =

⎛
⎝ 1 0 0

0 cos θ sin θ
0 − sin θ cos θ

⎞
⎠

⎡
⎣ n̂1

n̂2
n̂3

⎤
⎦ .
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Figure 1.3 Relationship between the unit vectors of the E-frame and the unit vectors of the N -frame.
(See color plate section for the color representation of this figure.)

where the matrix relating the E−frame to the N -frame is known as a rotation matrix. Further-
more, since this rotation matrix is formed by a single rotation about the n̂1 axis, it is commonly
referred to as a 1-rotation.

Following similar reasoning, we can relate the C-frame to the E-frame via a 2-rotation of
angle φ; such that ⎡

⎣ ĉ1
ĉ2
ĉ3

⎤
⎦ =

⎛
⎝ cos φ 0 − sin φ

0 1 0
sin φ 0 cos φ

⎞
⎠

⎡
⎣ ê1

ê2
ê3

⎤
⎦ ,

and the B-frame to the C-frame via a 3-rotation of angle ψ
⎡
⎣

b̂1

b̂2

b̂3

⎤
⎦ =

⎛
⎝ cos ψ sinψ 0

− sin ψ cos ψ 0
0 0 1

⎞
⎠

⎡
⎣ ĉ1

ĉ2
ĉ3

⎤
⎦ .

To describe the rotation from the original N -frame to the final B-frame we combine the pre-
vious rotations, letting

⎡
⎣

b̂1

b̂2

b̂3

⎤
⎦ =

⎛
⎝ cos ψ sinψ 0

− sin ψ cos ψ 0
0 0 1

⎞
⎠

⎛
⎝ cos φ 0 − sin φ

0 1 0
sin φ 0 cos φ

⎞
⎠

⎛
⎝ 1 0 0

0 cos θ sin θ
0 − sin θ cos θ

⎞
⎠

⎡
⎣ n̂1

n̂2
n̂3

⎤
⎦ .

Multiplying the previous matrices yields the following general transformation matrix that can
be used to go from the N -frame to the B-frame via a 1-2-3 rotation.

L =

⎛
⎝ cos φ cos ψ cos θ sin ψ + sin θ sinφ cos ψ sin θ sin ψ − cos θ cos φ sinψ

− cos φ sin ψ cos θ cos ψ − sin θ sinφ sin ψ sin θ cos ψ + cos θ sin φ sinψ
sin φ − sin θ cos φ cos θ cos φ

⎞
⎠ .
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Example 1.1 Properties of a Rotation Matrix

Prove that any rotation matrix has the following two properties:

• L−1 = LT

• |L|=±1.

1. A rotation matrix is a matrix that preserves the length of the vectors involved in the rotation
and the angle between them. In other words, a Cartesian coordinate system formed by three
normal unit vectors undergoing a rotation remains a Cartesian coordinate system with unit
vectors normal to each other. A matrix that preserves length and direction between vectors is
known as an orthogonal matrix, and satisfies the property LLT = I, where I is the identity
matrix. It follows that L−1 = LT for a rotation matrix (see Property 5 in Section I.2.1.1).

2. Using LLT = I, and taking the determinant of both sides, we obtain:

|LLT | = |I|, |LLT | = 1.

Using |LLT | = |L| |LT | = |L|2 because |LT | = |L|, we obtain:

|L|2 = 1, |L| = ±1.

Properties of a Rotation Matrix

A rotation matrix L is an orthogonal matrix that satisfies the following conditions:

1. L−1 = LT

2. |L|=±1.

When using the right-hand rule to define the successive rotations, it can be shown that
|L|= +1.

Flipped Classroom Exercise 1.1

Find the rotation matrix necessary to take you from a certain frame, N , to another frame
B by performing a successive 2-1-3 rotation using angles (θ, φ, ψ).

To answer this exercise, follow the following steps:

1. Which rotation takes place first? What is the rotation matrix associated with it?
2. Which rotation takes place second? What is the rotation matrix associated with it?
3. Which rotation takes place third? What is the rotation matrix associated with it?
4. Multiply the rotation matrices obtained in steps 1, 2, and 3. Since the 2-rotation occurs

first, the matrix obtained in step 1 must be on the far left. Show that the transformation
matrix from N to B can be written as



�

� �

�

8 Dynamics of Particles and Rigid Bodies

L =

⎛
⎝ cos φ cos ψ + sin θ sinφ sin ψ cos θ sin ψ − cos ψ sin φ + cos φ sin θ sinψ

cos ψ sin θ sinφ − cos φ sin ψ cos θ cos ψ cos φ cos ψ sin θ + sin φ sin ψ
cos θ sin φ − sin θ cos θ cos φ

⎞
⎠

1.4 Velocity of a Particle in a Three-dimensional Space

The kinematics of a point moving in space is fully described using three vectorial quantities:

• its position
• its velocity (being the time rate of change of the position)
• its acceleration (being the time rate of change of the velocity).

When the position vector is defined in an inertial frame, the velocity and acceleration can
be easily obtained by differentiating the position vector with respect to time. On the other
hand, the process is not as simple when the position vector is defined in a rotating frame.
This is because the unit vectors that are used to describe directions in the rotating frame are
continuously changing their orientation with respect to the inertial frame.

In what follows, we explain in detail how to find the velocity and acceleration of a point
whose position is described in a rotating frame when the observer is standing in an inertial
frame of reference. To this end, we consider a hypothetical situation in which a student named
Joe is trying to understand kinematics. Joe is standing at point O and observing point P , as
shown in Figure 1.4. The position vector OP is given by r = r1n̂1 + r2n̂2 + r3n̂3. Here, ri are
the lengths of the vector OP projected in the directions of n̂i, where n̂i are the unit vectors of
the inertial Cartesian frame denoted as the N -frame.

When point P is moving such that the vector OP does not change orientation with respect
to the N -frame, then, from Joe’s perspective, the vector OP only changes length. As such,
the velocity of point P with respect to point O, as measured in the inertial N -frame, is the
derivative of the vector r with respect to time, t; that is,

NvP/O = ṙ1n̂1 + ṙ2n̂2 + ṙ3n̂3, (1.2)

where the dot is a derivative with respect to time. At this point, it is worth decoding the notation
on the left-hand side of Equation (1.2), as similar notation will be used throughout this book.
The right-hand superscript, P/O, on the vector v, means P with respect to O. The left-hand
superscript, N on the vector v refers to the frame of the observer. As such, NvP/O reads as
“the velocity of point P with respect to point O as observed in the N frame”.

Notation

Throughout this book, the following notation will be used to describe kinematic quan-
tities:

• Bold face v and a represent, respectively, the velocity and acceleration vectors. Such
vectors will always appear with superscripts on their right- and left-hand sides. For
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Figure 1.4 Kinematics of a particle in an inertial frame.

instance, you will often see velocities described in the form NvP/O. The right-hand
superscript, P/O, on the vector v, means P with respect to O. The left-hand super-
script, N on the vector v refers to the frame of the observer. As such, NvP/O reads as
“the velocity of point P with respect to point O as observed in the N frame”. Along
similar lines, BaQ/P reads as “the acceleration of point Q with respect to point P as
observed in the B-frame”.

• Bold face ω and α represent, respectively, the angular velocity and angular acceler-
ation vectors. Such vectors will always appear with superscripts on their right- and
left-hand sides. For instance, you will often see angular velocities described in the
form NωB , which reads as “the angular velocity of the B-frame with respect to the
N -frame”. Similarly, CαA, reads as “the angular velocity of the A-frame with respect
to the C-frame”.

Now, Joe allows the vector r to change direction, but he also decides to sit in a
three-degrees-of-freedom chair, which changes its orientation (pitch, roll, yaw), such that at
any instant his orientation is always in the direction of r. In other words, again Joe can only
observe changes in length. To reflect the fact that Joe’s frame of reference is now rotating in
space, we define a rotating frame called the B-frame at point O, as shown in Figure 1.5. In
this rotating frame, the position and velocity of point P with respect to O can be written as

OP = r1b̂1 + r2b̂2 + r3b̂3,

BvP/O = ṙ1b̂1 + ṙ2b̂2 + ṙ3b̂3. (1.3)

Next, Joe decides to step out of the three degrees-of-freedom chair and observe the velocity of
particle, P , from the inertial frame. In this case, Joe observes that the vector r is simultaneously
changing its length and direction. To describe the velocity of point P from Joe’s perspective,
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Figure 1.5 Kinematics of a particle in a rotating frame.

we differentiate the position vector OP once with respect to time, taking into account that the
unit vectors b̂i are also changing orientation with respect to the inertial frame. This yields

NvP/O = ṙ1b̂1 + ṙ2b̂2 + ṙ3b̂3︸ ︷︷ ︸
Translation

+ r1
ˆ̇
b1 + r2

ˆ̇
b2 + r3

ˆ̇
b3︸ ︷︷ ︸

Rotation

, (1.4)

where the first three terms on the right-hand side represent the translational component of the
velocity, while the last three terms represent the rotational component.

In Equation (1.4), the derivatives of the unit vectors b̂i emerge to reflect the fact that the
B-frame is rotating with respect to the inertial N -frame. The derivative of the unit vectors
depends on the rate at which the rotation occurs; in other words, the angular velocity between
the two frames. To this end, in order to capture the change of orientation of the B-frame
with respect to the N -frame, we define the angular velocity vector NωB , which describes the
angular rate at which the B-frame rotates with respect to the N -frame.

Next, we turn our attention to describing the derivative of the unit vectors in terms of the
angular velocity NωB . For simplicity, consider Figure 1.6, where we have assumed that the
B-frame is rotating around one axis, chosen here to be the third axis b̂3, at an angular velocity
NωB = ω3b̂3. The rotation of the B-frame at this angular velocity causes the tip of the unit
vectors b̂1 and b̂2 to rotate with a velocity equal to their length – unity in this case – times the
angular velocity ω3. The direction of their rotation will be perpendicular to the unit vectors
themselves; that is, in the direction of b̂2 for unit vector b̂1, and in the direction of −b̂1 for unit
vector b̂2. Mathematically, we can write

db̂1

dt
= ω3b̂2,

db̂2

dt
= −ω3b̂1, (1.5)

db̂3

dt
= 0.
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Figure 1.6 Time rate of change of the unit vectors as a result of their rotation.

Substituting Equation (1.15) into Equation (1.4), we obtain

NvP/O = (ṙ1b̂1 + ṙ2b̂2 + ṙ3b̂3) + ω3(r1b̂2 − r2b̂1). (1.6)

Note that the term ω3(r1b̂2 − r2b̂1) is nothing but ω3b̂3 × r, where× refers to the cross product.
Thus, we can write

NvP/O = BvP/O + ω3b̂3 × r, (1.7)

where the first term on the right-hand side represents the change in the velocity of point P
with respect to O as observed in the rotating frame.

By using the concept of successive rotations described earlier, the same conclusion can be
achieved, even when the rotation is not restricted to one axis; that is, when NωB = ω1b̂1 +
ω2b̂1 + ω3b̂3. In other words, one can generalize Equation (1.7), such that

NvP/O = BvP/O + NωB × r (1.8)

In words, Equation (1.8) states that “the velocity of point P with respect to point O as
observed in the N -frame is equal to the velocity of point P with respect to point O as observed
in the rotating B-frame (translation) plus a rotational component resulting from the angular
velocity of the B-frame with respect to the N -frame”.

Equation (1.8) can also be generalized to any kinematic quantity defined in two different
frames (velocity, acceleration, angular velocity, or angular acceleration). In general, the tempo-
ral derivative of the vector described in one frame can be expressed as its derivative in another
frame plus the cross product of the angular velocity vector between the two frames and the
vector itself.

Differentiating in a Rotating Frame

When taking the time derivative of a vector, r, described in a rotating frame – say the
B-frame – with respect to an observer standing in another frame – say the C-frame – do
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not forget to add the term CωB × r:

C d
dt

(r) = B d
dt

(r) + CωB × r

Example 1.2 Velocity of a Particle 1

Consider a particle P whose position with respect to a fixed point O is given by r = 2tn̂1 +
3t3n̂2 m, where n̂i are the unit vectors of a Cartesian inertial frame. Find the velocity of the
particle after 2 s, as measured by an observer standing in the N -frame.

Since the components of the vector r are all described in the N -frame and the observer is
also in the N−frame, the velocity is just a direct derivative of r:

NvP/O = 2n̂1 + 9t2n̂2 = 2n̂1 + 36n̂2 m/s.

Example 1.3 Velocity of a Particle 2

Consider a particle P whose position with respect to a fixed point O is given by r = 2tb̂1 +
3t3b̂2 m, where the b̂i are the unit vectors of a Cartesian rotating frame, B, which rotates with
respect to a stationary frame N at a constant angular velocity NωB = 2b̂1 + 3b̂2 rad/s. Find
the velocity of the particle after 2 s as measured by:

(a)an observer standing in the N -frame;
(b)an observer standing in the B-frame.

(a) Observer standing in the N -frame Note that the position vector is defined in the rotating
frame. Hence, when taking a derivative with respect to the inertial frame, we need to take into
account the rotation of the unit vectors. As such, for each component of the vector r, we have
to take a direct derivative as well as account for the rotation resulting from the angular velocity;
that is,

NvP/O = 2b̂1 + 9t2b̂2 + NωB × (2tb̂1 + 3t3b̂2),

= 2b̂1 + 9t2b̂2 + (6t3 − 6t)b̂3,

= 2b̂1 + 36b̂2 + 36b̂3 m/s.

(b) Observer standing in the B-frame Note that the position vector and the observer are in
the same frame. As such, we can just directly differentiate the position vector to obtain

NvP/O = 2b̂1 + 9t2b̂2,

= 2b̂1 + 36b̂2 m/s.

Example 1.4 Velocity of a Particle 3

Consider a particle P whose position with respect to a fixed point O is given by r = 2tn̂1 +
3t3b̂2 m, where the n̂i are the unit vectors of a Cartesian inertial frame, N , and the b̂i are the unit
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vectors of a Cartesian rotating reference, B, which rotates with respect to a stationary frame
N at a constant angular velocity NωB = 2b̂1 + 3b̂2 rad/s. Find the velocity of the particle after
2 s as measured by an observer standing in the N -frame.

Notice that, in this case, only a part of the position vector is described in the B-frame,
hence when finding the velocity of the particle as measured by a stationary observer, we need
to account only for the rotation associated with that component, namely, 3t3b̂2. In other words,
we can write

NvP/O = 2n̂1 + 9t2b̂2 + (2b̂1 + 3b̂2) × 3t3b̂2

= 2n̂1 + 9t2b̂2 + 6t3b̂3 = 2n̂1 + 36b̂2 + 48b̂3 m/s.

Flipped Classroom Exercise 1.2

In this exercise, we will walk through the process of finding the derivative of the unit vec-
tors db̂i

dt for a general three-dimensional rotation. The rotation is carried out through three
successive angles (θ, φ, ψ). To this end, following Figure 1.2, we will assume that the
rotation is a 1-2-3 (θ, φ, ψ) rotation. The first rotation goes from the N - to the E-frame.
The second rotation goes from the E- to the C-frame while the third rotation goes from
the C- to the B-frame.

Using the assumed definition of the successive rotations, you can write

NωE = θ̇ê1 = ω1ê1,

EωC = φ̇ĉ1 = ω2ĉ2,

CωB = ψ̇b̂3 = ω3b̂2,

Thus, NωB =NωE + EωC + CωB = θ̇ê1 + φ̇ĉ2 + ψ̇b̂3 = ω1ê1 + ω2ĉ2 + ω3b̂3.
Next, you need to do the following:

1. Express the unit vector n in terms of the unit vector b using the 1-2-3 rotation derived
previously.

2. Assume small angles (dθ,dφ,dψ) and linearize the rotation matrix as well as the
angular velocity vector. Note that this assumption is not restrictive, since any general
rotation can be described in terms of series of tiny successive rotations. Show that
upon linearizing you obtain

⎡
⎣ n̂1

n̂2
n̂3

⎤
⎦ = I

⎡
⎣

b̂1

b̂2

b̂3

⎤
⎦ +

⎛
⎝ 0 −dψ dφ

dψ 0 −dθ
−dφ dθ 0

⎞
⎠

⎡
⎣

b̂1

b̂2

b̂3

⎤
⎦

and that for small angles NωB = θ̇b̂1 + φ̇b̂2 + ψ̇b̂3.
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3. Using the previous equations, show that we can write
⎡
⎣

db̂1

db̂2

db̂3

⎤
⎦ =

⎛
⎝ 0 −dψ dφ

dψ 0 −dθ
−dφ dθ 0

⎞
⎠

⎡
⎣

b̂1

b̂2

b̂3

⎤
⎦ .

4. Divide the previous equation by dt and show that
⎡
⎢⎢⎣

˙̂
b1
˙̂
b2
˙̂
b3

⎤
⎥⎥⎦ =

⎛
⎝ 0 −ω3 ω2

ω2 0 −ω1
−ω2 ω1 0

⎞
⎠

⎡
⎣

b̂1

b̂2

b̂3

⎤
⎦ .

5. Show that the previous equation can be written as

ḃ = NωB × b.

1.5 Acceleration of a Particle in a Three-dimensional Space

To find a general expression for the acceleration of a particle in a three-dimensional space
with respect to an inertial frame, we differentiate Equation (1.8) once with respect to time,
noting that the term on the left-hand side is defined in the stationary N -frame while all terms
on the right-hand side are described in the rotating B frame. In other words, we need to find
N d

dt (
NvP/O), where the superscript on the left-hand side of the derivative is used to denote

that the change of the quantity included within the derivative is observed from the inertial
frame. Differentiating each term in Equation (1.8) yields

N d
dt

(NvP/O) = NaP/O,

N d
dt

(BvP/O) = B d
dt

(BvP/O) + NωB × BvP/O = BaP/O + NωB × BvP/O,

N d
dt

(NωB × r) = B d
dt

(NωB × r) + NωB × (NωB × r),

= NαB × r + NωB × BvP/O + NωB × (NωB × r),

where NαB = B d
dt (

NωB) is the angular acceleration vector. Using the previous equation, we
can write

NaP/O = BaP/O + 2NωB × BvP/O + NαB × r + NωB × (NωB × r) (1.9)

Equation (1.9) represents the general formula for the acceleration of a particle in space. The
first term on the right-hand side represents the acceleration of the particle in the rotating frame.
The second term represents the Coriolis acceleration, which, as evident, is perpendicular to
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the velocity of the particle as measured in the rotating frame and the direction of the frame’s
rotation. The third term is the tangential acceleration, and finally the fourth term is the normal
acceleration.

While it is possible to use the acceleration formula as described in the form shown in
Equation (1.9), it is absolutely unnecessary to memorize it since one can use the basic under-
standing utilized throughout its derivation to calculate the acceleration of any particle in space.
To demonstrate this, consider the following series of examples:

Example 1.5 Acceleration of a Particle

Consider a particle P whose position with respect to a fixed point O is given by r = 2tb̂1 +
3t3b̂2 m, where the n̂i are the unit vectors of a Cartesian inertial frame, N , and the b̂i are the
unit vectors of a Cartesian rotating reference, B, which rotates with respect to the stationary
frame N at a constant angular velocity NωB = 2b̂1 + 3b̂2 rad/s. Find the acceleration of the
particle after 2 s as measured by an observer standing in the N -frame.

In Example 1.3, the velocity of the particle with respect to the inertial observer was found
to be

NvP/O = 2b̂1 + 9t2b̂2 + (6t3 − 6t)b̂3 m/s.

To calculate the acceleration in the reference frame, we differentiate the previous expression,
taking into account the rotational component of any term described in a rotating frame. Note
also that the angular acceleration NαB vanishes because the angular velocity is constant. As
such, we can write

NaP/O = 18tb̂2 + (18t2 − 6)b̂3 + (2b̂1 + 3b̂2) × (2b̂1 + 9t2b̂2 + (6t3 − 6t)b̂3),

= 18(t3 − t)b̂1 + (30t − 12t3)b̂2 + (36t2 − 12)b̂3,

= 108b̂1 − 36b̂2 + 132b̂3 m/s2.

Example 1.6 Simple Pendulum Kinematics

For the simple pendulum of rigid cable length l shown in Figure 1.7, find the velocity and
acceleration of particle P with respect to point O. Choose your rotating B-frame such that
NωB = θ̇b̂3 and express all your answers in the B-frame.

We start by defining the position vector from O to P as

OP = −lb̂2.

It follows that the velocity of point P as observed by an inertial observer at point O is

NvP/O =
dOP
dt

= −l̇b̂2 + NωB × OP.

Since the pendulum does not change length, l̇ = 0. Therefore we can write

NvP/O = θ̇b̂3 × OP = lθ̇b̂1.
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l

Figure 1.7 Kinematics of a simple pendulum.
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Figure 1.8 Two-dimensional motion of a particle.

The acceleration of point P with respect to point O can be written as

NaP/O =
dNvP/O

dt
= lθ̈b̂1 + NωB × NvP/O = lθ̈b̂1 + lθ̇2b̂2.

Example 1.7 Single-rotation Kinematics

Consider the system shown in Figure 1.8, which consists of a plate sliding on a track. A disk
is mounted on top of the moving plate and is free to rotate through an angle θ about point O.
A particle, P , is free to move in a groove drilled across the disk as shown. Define two frames:
an inertial frame located at point Q and a rotating frame such that b̂3 = n̂3 and NωB = θ̇b̂3 to
obtain



�

� �

�

Kinematics of Particles 17

• the velocity of the particle P with respect to O as measured by an observer standing in the
B-frame, BvP/O;

• the velocity of the particle P with respect to O as measured by an observer standing in the
N -frame, NvP/O;

• the acceleration of the particle P with respect to Q as measured by an observer standing in
the N -frame, NaP/Q.

Describe your answers in the B-coordinate system.

To find BvP/O, we define the position vector OP and differentiate it once with respect to time;
that is,

OP = rb̂1,
BvP/O = ṙb̂1.

To find NvP/O, we carry out the same procedure but account for the relative rotation
between the B- and N -frame; that is,

OP = rb̂1,

NvP/O = ṙb̂1 + θ̇b̂3 × rb̂1,

NvP/O = ṙb̂1 + rθ̇b̂2.

To find NaP/Q, we define the position vector QP and differentiate it twice with respect to
time, accounting for the relative rotation between the B- and N -frame. This yields

QP = xn̂1 + rb̂1,

NvP/Q = ẋn̂1 + ṙb̂1 + θ̇b̂3 × rb̂1,

NvP/Q = ẋn̂1 + ṙb̂1 + rθ̇b̂2,

NaP/Q = ẍn̂1 + (r̈ − rθ̇2)b̂1 + (rθ̈ + 2ṙθ̇)b̂2.

To express the previous answer in the B-frame, we still need to express n̂1 in terms of
the B-coordinates. Note that the B-frame was formed by carrying out a counter-clockwise
rotation around the n̂3 axis. Hence, using the definition of the 3-rotation, we can write n̂1 =
cos θb̂1 − sin θb̂2. This yields

NaP/Q = (ẍ cos θ + r̈ − rθ̇2)b̂1 + (rθ̈ + 2ṙθ̇ − ẍ sin θ)b̂2.

Example 1.8 Radar-tracking Kinematics

A radar station is tracking a rocket that has just lifted off vertically with a velocity vr and
acceleration ar. The station is located such that the distance between the radar station and the
rocket is R (Figure 1.9). Calculate Ṙ, R̈, θ̇, θ̈ in terms of vr, ar, R, and θ only.
We begin by calculating NvP/O. To this end, we let

OP = Rb̂1,
NvP/O = Ṙb̂1 + Rθ̇b̂2.

Using vrn̂1 = vr sin θb̂1 + vr cos θb̂2, we conclude that Ṙ = vr sin θ and θ̇ = vr cos θ/R.
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R

θ
n̂1

n̂2

b̂1b̂2

Figure 1.9 A rocket detected by a radar station.

Next, we calculate the acceleration vector

NaP/O = (R̈ − Rθ̇2)b̂1 + (2Ṙθ̇ + Rθ̈)b̂2.

Using arn̂1 = ar sin θb̂1 + ar cos θb̂2, we obtain

R̈ = ar sin θ +
v2

r

R
cos2θ,

θ̈ =
ar

R
cos θ − v2

r

R2 sin 2θ.

Example 1.9 Cylindrical Coordinates

Obtain the general velocity and acceleration expressions for the motion of a particle as
described in a cylindrical coordinate system.
We start by defining a stationary frame, the N -frame, as shown in Figure 1.10. Subsequently,
we define a rotating frame, the B-frame, which is formed through a rotation angle φ, such that
b̂2 ≡ n̂2 is always aligned with the direction of z, and b̂3 is always aligned with the direction
of r. Using this understanding, we can write NωB = φ̇n̂2 = φ̇b̂2, NαB = φ̈n̂2 = φ̈b̂2. In the
B-frame, the position vector from O to P can be written as

OP = zb̂2 + rb̂3.

The velocity of the particle as measured by a stationary observer at O can be written as

NvP/O = żb̂2 + ṙb̂3 + NωB × (zb̂2 + rb̂3),
NvP/O = rφ̇b̂1 + żb̂2 + ṙb̂3.

The acceleration of the particle as measured by a stationary observer at O can be obtained by
differentiating the previous equation once with respect to time, taking into account the relative
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Figure 1.10 Description of the motion of a particle in a cylindrical coordinate system.
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Figure 1.11 Motion on a helix.

rotations between the two frames. This yields

NaP/O = (rφ̈ + ṙφ̇)b̂1 + z̈b̂2 + r̈b̂3 + NωB × (rφ̇b̂1 + żb̂2 + ṙb̂3)
NaP/O = (rφ̈ + 2ṙφ̇)b̂1 + z̈b̂2 + (r̈ − rφ̇2)b̂3.

Example 1.10 Helix

Consider the motion of a particle along the helical path shown in Figure 1.11a, where R and
β are respectively its radius and angle. Find the velocity and acceleration of the particle with
respect to point O.
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To describe the kinematics of the problem, we use cylindrical coordinates and define the rotat-
ing frame as shown in Figure 1.11b, where NωB = θ̇b̂2. We define the position vector OP as

OP = rb̂3 + zb̂2 = Rb̂3 + Rθ tan βb̂2.

The velocity can then be written as

NvP/O = (Rθ̇ tan β)b̂2 + θ̇b̂2 × (Rb̂3 + Rθ tan βb̂2) = Rθ̇b̂1 + Rθ̇ tan βb̂2,

and the acceleration is

NaP/O = Rθ̈b̂1 + Rθ̈ tan βb̂2 − Rθ̇2b̂3.

Flipped Classroom Exercise 1.3

Point P on a thin disk of radius r rotates about its own axis at point B through an
angle θ. The yoke where it is mounted also rotates about the line OB through an angle
β. The entire assembly rotates about the n̂2-axis shown in the figure through angle φ.
To fully describe the kinematics of the problem, define three rotating frames such that
NωA = φ̇n̂2, AωC = −β̇â1, and CωD = θ̇ĉ3, then find the following:

• CaP/B

• AaP/B

!"+ + 
O B

P

φ

β θ
n̂1

n̂2

r

h

â1

â2
ˆ2c

ĉ1

d̂1
d̂2
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To find CaP/B , you need to do the following:

1. Define the position vector from B to P in the easiest possible way. Note that regard-
less of how this complex system rotates, r will always be in the direction of d̂1.

2. Find the velocity as seen by an observer in the C frame. Note that ṙ = 0 because the
radius of the circle does not change length

3. Show that the acceleration is given by

CaP/B = rθ̈d̂2 + CωD × rθ̇d̂2,

= rθ̈d̂2 − rθ̇d̂1.

To find AaP/B , you need to do the following:

1. Define the position vector from B to P .
2. Show that the velocity of point P with respect to point B as observed in the A-frame

is given by

AvP/B = AωD × rd̂1 = (−β̇ĉ1 + θ̇d̂3) × rd̂1.

Note that, to carry the cross product between vectors described in two different
frames, it is much more convenient to rotate one of them such that they are both
described in the same frame.

3. Show that the acceleration of point P with respect to point B as observed in the A
frame is given by

AaP/B = rθ̈d̂2 − (rβ̈ sin θ + rβ̇θ̇ cos θ)d̂3 + CωD × (rθ̇d̂2 − rβ̇ sin θd̂3),

= −(rθ̇2 + rβ̇2sin2θ)d̂1 + (rθ̈ − rβ̇2 cos θ sin θ)d̂2,

− (rβ̈ sin θ + 2rθ̇β̇ cos θ)d̂3.

Exercises

1.1 Find the rotation matrix necessary to transform a frame N to another frame B by per-
forming a 1-2-1 rotation using angles (θ, φ, ψ).

1.2 A position vector from point O to point P is defined as OP = 2tn̂1 + 3 sin tĉ2 + t3b̂1 m,
where NωC = 2ĉ2 + 3tĉ1 rad/s and CωB = 2 sin tb̂2 + 3b̂3 rad/s. Here, N is an inertial
frame, while B and C are rotating frames. Find the velocity and acceleration of point P
with respect to point O as observed in the inertial frame at t = π s.
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1.3 A position vector from point O to point P is defined as OP = 2tâ1 + 3 sin tâ2 + t3b̂1 m,
where NωA = 2â2 + 3tâ1 rad/s and AωB = 3b̂3 rad/s. Here, N is an inertial frame,
while B and A are rotating frames. Find the velocity and acceleration of point P with
respect to point O as observed in the inertial frame at t = π

2 s.

1.4 Derive the velocity and acceleration of a particle in a spherical coordinate system. Use
Figure 1.12 for the definition of the rotation angles.

n̂3

n̂1

n̂2

θ

φ r

O

P

Figure 1.12 Exercise 1.4.

1.5 In kinematics, the derivative of the acceleration is defined as the Jerk, J. Imagine we live
in a world in which the Jerk replaces the acceleration in Newton’s second law. Using the
general acceleration formula we derived in the chapter, derive a general formula for the
Jerk, NJP/O of a particle P with respect to an inertial point, O.

1.6 In the two-dimensional problem shown in Figure 1.13, a particle P of mass m slides in
a pipe which rotates with an angle φ relative to a rod of length l as shown in the figure.
The rod, in turn, rotates with an angle θ relative to the vertical. Define r as the distance
from point Q to point P and your rotating coordinates systems such that NωA = θ̇n̂3
and AωB = φ̇â3, then find:

(a) AvP/O

(b) NvQ/O

(c) AaP/Q

(d) BaP/Q
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θ

φ

O

Q

P
r

l
n1

n2

Figure 1.13 Exercise 1.6.

1.7 For the system shown in Figure 1.14, find NvP/Q, NaP/Q, NαB , and DaP/O. Express
all your answers in the B-frame and define your frames such that NωD = φ̇n̂2, DωB =
θ̇d̂3.

n̂1

φ

P

O

θ

x

r

n̂2

QQQ

Figure 1.14 Exercise 1.7.

1.8 For the system shown in Figure 1.15, the column is forced to rotate with constant angular
velocity φ̇. A rod of length d is welded onto one end to the column (point O) and is
pinned at the other end to a rod of length l (point G). The rod, of length l, is welded to a
frictionless pipe at point S. A particle P of mass m is free to slide inside the pipe. Define
your coordinate system such that NωA = φ̇ â2 and AωB = θ̇ b̂3, then find the following:

(a) AvP/S

(b) AaP/S

(c) AaP/O

Express all your answers in the B coordinate system.
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Figure 1.15 Exercise 1.8.

1.9 The bead shown in Figure 1.16 is constrained to move along the path shown, the radius
of which changes with θ according to r = a

1+θ . Obtain the velocity and acceleration of
the particle with respect to point O as observed in the inertial frame. Assuming θ̇ = 2
rad/s, what are the velocity and acceleration at θ = π/2?

n̂1

n̂2

θ
r

a

P

O

Figure 1.16 Exercise 1.9.

1.10 Two particles P1 and P2 are rotating with constant angular velocities on the circular paths
shown. The angular velocities of P1 and P2 with respect to an inertial frame are θ̇ and φ̇,
respectively. Find the velocity and acceleration of P1 with respect to an observer moving
with P2.
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P1
P2

R1

R2
x0 θφ

Figure 1.17 Exercise 1.10.

1.11 A particle moves on the inside surface of a cone of half angle α. The axis of the cone
is vertical with the vertex pointing downwards. Find the velocity and acceleration of the
particle with respect to an inertial point.

α

Figure 1.18 Exercise 1.11.
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