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Basic Prerequisites
We shall investigate EM radiation, scattering, and reciprocity properties of

antenna systems, an example of which is shown in Figure 1.1. To analyze

such space–time problems, it is necessary to localize the point in the problem

configuration and register the instant at which a given wave field quantity

occurs in its evolution following the source excitation. To this end, we will

employ the Cartesian reference frame that is defined via its basis vectors

{𝒊1, 𝒊2, 𝒊3} and the origin denoted by . Consequently, the (standard) basis

allows specifying the position of an observer via the linear combination:

𝑥1𝒊1 + 𝑥2𝒊2 + 𝑥3𝒊3 (1.1)

where {𝑥1, 𝑥2, 𝑥3} are the scalar and real-valued components of the position

vector (i.e., spatial coordinates, in short). Such linear combinations of theCarte-

sianbasis vectors canbe represented as 1Darraysandwill be further represented

by boldface symbols. In particular, the position vector will be denoted by 𝒙 and

its components are denoted by 𝑥𝑘 for 𝑘 ∈ {1, 2, 3}. A natural extension in this

respect is a Cartesian tensor of rank 2 that can be represented by a 2D array.

Such quantities will be denoted by underlined boldface symbols. An example

from the category is a quantity denoted by 𝜼, for instance, whose components

are 𝜂𝑞,𝑟 for 𝑞, 𝑟 ∈ {1, 2, 3}. Consequently, we shall use the following notation

for the products between arrays:

𝒖 ⋅ 𝒗 ⇔
3∑
𝑘=1

𝑢𝑘𝑣𝑘 (1.2)

(𝜻 ⋅ 𝒗) ⋅ 𝒊𝑗 ⇔
3∑
𝑘=1

𝜁𝑗,𝑘𝑣𝑘 for 𝑗 ∈ {1, 2, 3} (1.3)
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2 1 Basic Prerequisites

Figure 1.1 Two wire antennas.

𝒖 ⋅ 𝜻 ⋅ 𝒗 ⇔
3∑
𝑗=1

3∑
𝑘=1

𝜁𝑗,𝑘𝑢𝑗𝑣𝑘 (1.4)

(𝒖 × 𝒗) ⋅ 𝒊𝑗 ⇔
3∑
𝑘=1

3∑
𝑙=1
𝜀𝑗,𝑘,𝑙𝑢𝑘𝑣𝑙 for 𝑗 ∈ {1, 2, 3} (1.5)

𝜶 ⋅ 𝜻 ⋅ 𝜷 ⇔
3∑
𝑝=1

3∑
𝑞=1

𝛼𝑘,𝑝𝜁𝑝,𝑞𝛽𝑞,𝑛 for 𝑘, 𝑛 ∈ {1, 2, 3} (1.6)

𝒖 × 𝜻 × 𝒗 ⇔
𝑁∑
𝑟=1

𝑁∑
𝑠=1

𝑁∑
𝑞=1

𝑁∑
𝑗=1

𝜀𝑘,𝑟,𝑠𝜀𝑙,𝑞,𝑗𝜁𝑠,𝑞𝑢𝑟𝑣𝑗

for 𝑘, 𝑙 ∈ {1, 2, 3} (1.7)

where 𝜀𝑗,𝑘,𝑙 is the Levi-Civita tensor (= the completely antisymmetrical unit

tensor of rank 3) defined as 𝜀𝑗,𝑘,𝑙 = 1 for {𝑗, 𝑘, 𝑙} = evenpermutation of {1, 2, 3},
𝜀𝑗,𝑘,𝑙 = −1 for {𝑗, 𝑘, 𝑙} = odd permutation of {1, 2, 3}, and 𝜀𝑗,𝑘,𝑙 = 0 in all other

cases ([16], Sec. A.7). Finally, for a tensor of rank 2, say 𝜻 , the tensor transpose

is denoted by 𝜻 and its components are found according to
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Figure 1.2 Complex frequency plane.

𝜁
𝑘,𝑙

= 𝜁𝑙,𝑘 (1.8)

for all 𝑘, 𝑙 ∈ {1, 2, 3}.
The time coordinate is real-valued and will be denoted by 𝑡. Since we assume

that the sources generating the EM wave fields are switched on at the origin

𝑡 = 0, we will analyze the excited EM field quantities in {𝑡 ∈ ℝ; 𝑡 > 0} only,

which is possible in virtue of the universal property of causality.

1.1 Laplace Transformation

The one-sided Laplace transformation of a wave quantity 𝑓 (𝒙, 𝑡) is defined by

the following integral:

𝑓 (𝒙, 𝑠) = 𝖫{𝑓 (𝒙, 𝑡)} = ∫
∞

𝑡=0
exp(−𝑠𝑡)𝑓 (𝒙, 𝑡)d𝑡 (1.9)

In the definition of Eq. (1.9), we shall limit ourselves to physical wave quantities

that are bounded such that 𝑓 (𝒙, 𝑡) = 𝑂[exp(𝑠0𝑡)]1 with 𝑠0 ∈ ℝ being its expo-

nential order . For such functions, the Laplace integral converges if 𝑠 is either

real-valued and positive with 𝑠 > 𝑠0 or complex-valued with Re(𝑠) > 𝑠0. Ac-
cordingly, the right-half plane Re(𝑠) > 𝑠0 is the domain of regularity of the

causal wave quantity (see Figure 1.2). If Eq. (1.9) is viewed as an integral

equation to be solved for the unknown function 𝑓 (𝒙, 𝑡), a natural question

as to its uniqueness arises. The question has been convincingly settled by

Lerch who proved that the image function known along the Lerch sequence

 = {𝑠 ∈ ℝ; 𝑠 = 𝑠0 + 𝑛ℎ, ℎ > 0, 𝑛 = 1, 2, ...} results in one and the same causal

original function. Since single-point discontinuities are of no practical impor-

tance, the ambiguity brought about by null functions may be ignored for our

1 By𝜙(𝑥) = 𝑂[ℎ(𝑥)], wemean that |𝜙(𝑥)| < 𝐴|ℎ(𝑥)| for {𝐴 ∈ ℝ;𝐴 > 0}. In particular, 𝜙(𝑥) = 𝑂(1)
represents a bounded function.
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purposes (see Appendix A). The solution of Eq. (1.9) can be expressed via the

Bromwich inversion integral:

𝑓 (𝒙, 𝑡) = 1
2𝜋i ∫𝑠∈𝑟 exp(𝑠𝑡)𝑓 (𝒙, 𝑠)d𝑠 (1.10)

where𝑟 = {𝑠 ∈ ℂ; Re(𝑠) = 𝑠0,−∞ < Im(𝑠) < ∞} andwehave tacitly assumed

that Eq. (1.9) converges absolutely at 𝑠 = 𝑠0 (and hence for all Re(𝑠) > 𝑠0). A
special, yet frequently used, case arises for (bounded) functions of exponential

order 𝑠0 = 0 for which the Bromwich integral (1.10) can be rewritten using

the limit 𝑠 = 𝛿 + i𝜔 as 𝛿 ↓ 0, where 𝜔 is the (real-valued) angular frequency.

Under this limit, Eqs. (1.9) and (1.10) express the Fourier transform of a causal

wave quantity. For more details about the Laplace transformation, we refer the

reader to Refs. [16,20,47,52].

1.2 Time Convolution

The time convolution between the causal wave quantities 𝑓 (𝒙, 𝑡) and 𝑔(𝒙, 𝑡) is
defined as

[𝑓 ∗ 𝑔](𝒙, 𝑡) = ∫𝜏∈ℝ 𝑓 (𝒙, 𝜏)𝑔(𝒙, 𝑡 − 𝜏)d𝜏 (1.11)

An important property of the time-convolution operator is its commutativity

allowing to rewrite the latter as

[𝑔 ∗ 𝑓 ](𝒙, 𝑡) = ∫𝜏∈ℝ 𝑓 (𝒙, 𝑡 − 𝜏)𝑔(𝒙, 𝜏)d𝜏
= ∫𝜏∈ℝ 𝑓 (𝒙, 𝜏)𝑔(𝒙, 𝑡 − 𝜏)d𝜏 = [𝑓 ∗ 𝑔](𝒙, 𝑡) (1.12)

Applying the Laplace transformation to Eq. (1.11) yields

𝖫{[𝑓 ∗ 𝑔](𝒙, 𝑡)} = 𝑓 (𝒙, 𝑠)�̂�(𝒙, 𝑠) (1.13)

For Eq. (1.13) to make any sense, there must be at least one value of 𝑠 for

which the Laplace integrals for 𝑓 (𝒙, 𝑠) and �̂�(𝒙, 𝑠) do converge simultaneously.

If 𝑓 (𝒙, 𝑡) = 𝑂[exp(𝑠0𝑡)] and 𝑔(𝒙, 𝑡) = 𝑂[exp(𝜎0𝑡)], the region of convergence

for Eq. (1.13) is found in the domain extending to the right of max{𝑠0, 𝜎0}
(see Figure 1.3 for 𝜎0 > 𝑠0). Consequently, the right half-plane of the complex

frequency planeRe(𝑠) > max{𝑠0, 𝜎0} is the domain of regularity of the Laplace-

transformed time convolution given in Eq. (1.13).
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Figure 1.3 Region of convergence of 𝑓 (𝒙, 𝑠)�̂�(𝒙, 𝑠) that is found as the intersection of
Re(𝑠) > 𝑠0 and Re(𝑠) > 𝜎0.

1.3 Time Correlation

The time correlation between the causal wave quantities 𝑓 (𝒙, 𝑡) and 𝑔(𝒙, 𝑡) is
defined as

[𝑓 ⋆ 𝑔](𝒙, 𝑡) = ∫𝜏∈ℝ 𝑓 (𝒙, 𝜏)𝑔(𝒙, 𝜏 − 𝑡)d𝜏 (1.14)

In contrast to the time-convolution operator, the time-correlation one is not

commutative. Indeed, Eq. (1.14) can be rewritten as

[𝑓 ⋆ 𝑔](𝒙, 𝑡) = ∫𝜏∈ℝ 𝑓 (𝒙, 𝜏 + 𝑡)𝑔(𝒙, 𝜏)d𝜏 (1.15)

which implies that

[𝑓 ⋆ 𝑔](𝒙, 𝑡) = [𝑔 ⋆ 𝑓 ](𝒙,−𝑡) (1.16)

Also, by inspection of Eqs. (1.11) and (1.14), we may write

[𝑓 ⋆ 𝑔](𝒙, 𝑡) = [𝑓 ∗ 𝑔�](𝒙, 𝑡)d𝜏 (1.17)

where superscript� applied to a space–time field quantity represents the time-

reversal operator, that is,

𝑔�(𝒙, 𝑡) = 𝑔(𝒙,−𝑡) (1.18)

Obviously, the time-reversed causal wave quantity has its support in

{𝑡 ∈ ℝ; 𝑡 < 0}, which in accordance with Eq. (1.9) implies that the domain

of convergence of its image function extends over a left half of the complex

𝑠-plane. Combination of Eqs. (1.17) and (1.18)with (1.13) and (1.9) then implies

that the Laplace transformation of Eq. (1.14) can be, yet formally only, written as

𝖫{[𝑓 ⋆ 𝑔](𝒙, 𝑡)} = 𝑓 (𝒙, 𝑠)�̂��(𝒙, 𝑠) (1.19)
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where superscript � applied to a complex frequency domain field quantity

represents the following operation:

�̂��(𝒙, 𝑠) = �̂�(𝒙,−𝑠) (1.20)

For Eq. (1.19) to make any sense, there must be at least one value of 𝑠 for

which the Laplace integrals for𝑓(𝒙, 𝑠) and �̂�(𝒙,−𝑠)do converge simultaneously.

Again, assuming 𝑓 (𝒙, 𝑡) = 𝑂[exp(𝑠0𝑡)] and 𝑔(𝒙, 𝑡) = 𝑂[exp(𝜎0𝑡)], the region of

convergence for Eq. (1.19) is found as the intersection of the domains of conver-

gence corresponding to 𝑓 (𝒙, 𝑠) and �̂�(𝒙,−𝑠). Hence, this region of convergence

is at most a strip of the complex frequency plane bounded by two verticals

{𝑠0 < Re(𝑠) < 𝜎0} (see Figure 1.4). In this respect it should be emphasized that

the vast majority of wave field quantities we will deal with are bounded func-

tions of exponential order 𝑠0 = 0. For such a class of functions, Eq. (1.19)makes

a sense along the imaginary axis in the complex frequency plane only, that is, in

the limiting real-frequency domain for 𝑠 = 𝛿 + i𝜔 with 𝛿 ↓ 0 and 𝜔 ∈ ℝ. Note

that in such a case, superscript � in Eq. (1.20) has the meaning of complex

conjugate, that is, �̂��(𝒙, i𝜔) = �̂�(𝒙,−i𝜔) since 𝑔(𝒙, 𝑡) is real-valued.

1.4 EM Reciprocity Theorems

In this section, a brief review concerning EM reciprocity theorems is given. In

accordancewith Sec. 28 of Ref. [16], we shall distinguish between the reciprocity

theorems of the time-convolution and time-correlation types. The reciprocity

relations will be given in the complex-frequency domain.

To find the reciprocity theorems in their generic form, we shall interrelate

two states of EMfields, sayA andB, that are governed by the EMfield (Maxwell)

equations ([16], Sec. 24.4):

Figure 1.4 Region of convergence of 𝑓 (𝒙, 𝑠)�̂�(𝒙,−𝑠) that is found as the intersection of
Re(𝑠) > 𝑠0 and Re(𝑠) < 𝜎0.
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𝛁 × �̂�A,B − �̂�A,B ⋅ �̂�A,B = �̂�A,B (1.21)

𝛁 × �̂�A,B + �̂�A,B ⋅ �̂�A,B = − �̂�A,B (1.22)

for 𝒙 ∈ , where

• �̂�A,B = electric field strength (V∕m),
• �̂�A,B =magnetic field strength (A∕m),
• �̂�A,B = electric current volume density (A∕m2),
• �̂�A,B =magnetic current volume density (V∕m2),
• �̂�A,B = transverse admittance per length of the medium (S∕m),
• �̂�A,B = longitudinal impedance per length of the medium (Ω∕m).

Equations (1.21) and (1.22) are in further supplementedwith the constitutive

relations:

�̂�A,B(𝒙, 𝑠) = �̂�A,B(𝒙, 𝑠) + 𝑠�̂�A,B(𝒙, 𝑠) (1.23)

�̂�A,B(𝒙, 𝑠) = 𝑠�̂�A,B(𝒙, 𝑠) (1.24)

where

• �̂�A,B = electric conductivity (S∕m),
• �̂�A,B = electric permittivity (F∕m), and
• �̂�A,B =magnetic permeability (H∕m).

Themediumdescribed by such constitutive relations can be inhomogeneous,

anisotropic, and dispersive in its EM behavior. A special yet useful case of

Eqs. (1.23) and (1.24) describes an instantaneously reacting (dispersion-free)

medium:

�̂�A,B(𝒙, 𝑠) = 𝑠𝝐A,B(𝒙) (1.25)

�̂�A,B(𝒙, 𝑠) = 𝑠𝝁A,B(𝒙) (1.26)

For isotropic materials the latter relations further simplify to

�̂�A,B(𝒙, 𝑠) = 𝑠𝜖A,B(𝒙)𝑰 (1.27)

�̂�A,B(𝒙, 𝑠) = 𝑠𝜇A,B(𝒙)𝑰 (1.28)

where 𝑰 denotes the 3 × 3 identity matrix.
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1.4.1 Reciprocity Theorem of the Time-Convolution Type

The reciprocity theorem of the time-convolution type is constructed from the

following local interaction quantity:

𝛁 ⋅
[
�̂�A(𝒙, 𝑠) × �̂�B(𝒙, 𝑠) − �̂�B(𝒙, 𝑠) × �̂�A(𝒙, 𝑠)

]
(1.29)

for 𝒙 ∈ , that is with the help of Eqs. (1.21) and (1.22) and Gauss’ theorem

rearranged to its global form ([16], Eq. (28.4-7)):

∫𝒙∈𝜕
(
�̂�A × �̂�B − �̂�B × �̂�A

)
⋅ 𝝂 d𝐴

= ∫𝒙∈
{
�̂�A ⋅

[
�̂�B − (�̂�A) ] ⋅ �̂�B

− �̂�A ⋅
[
�̂�B − (�̂�A) ] ⋅ �̂�B

}
d𝑉

+ ∫𝒙∈
(
�̂�A ⋅ �̂�B − �̂�A ⋅ �̂�B

− �̂�B ⋅ �̂�A + �̂�B ⋅ �̂�A
)
d𝑉 (1.30)

The first integral on the right-hand side represents the interaction of the field

and material states. As this interaction is proportional to the contrast in the

EM constitutive properties of the two states, this integral vanishes whenever

�̂�B(𝒙, 𝑠) = (�̂�A) (𝒙, 𝑠) (1.31)

�̂�B(𝒙, 𝑠) = (�̂�A) (𝒙, 𝑠) (1.32)

for all 𝒙 ∈ . In such a case, the media are denoted as each other’s adjoint.

Note in this respect that the latter conditions boil down to 𝝐B(𝒙) = (𝝐A) (𝒙)
and 𝝁B(𝒙) = (𝝁A) (𝒙) throughout  for instantaneously reacting media de-

scribed by Eqs. (1.25)–(1.26) and to 𝜖B(𝒙) = 𝜖A(𝒙) and 𝜇B(𝒙) = 𝜇A(𝒙) through-
out for instantaneously reacting, isotropicmedia described via Eqs. (1.27) and

(1.28). Finally, the key ingredients constituting the time-convolutionfield–field,

material–field, and source–field interactions in domain  are summarized in

Table 1.1. Constitutive relations (1.25) and (1.26) describing the EMbehavior of

an instantaneously reacting, anisotropic, and inhomogeneous medium lead to
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Table 1.1 Application of the reciprocity theorem of the time-convolution type.

∫𝒙∈𝜕
(
�̂�A × �̂�B − �̂�B × �̂�A

)
⋅ 𝝂 d𝐴

= 𝑠∫𝒙∈
{
�̂�A ⋅

[
𝝁B − (𝝁A) ] ⋅ �̂�B

− �̂�A ⋅
[
𝝐B − (𝝐A) ] ⋅ �̂�B

}
d𝑉

+ ∫𝒙∈
(
�̂�A ⋅ �̂�B − �̂�A ⋅ �̂�B

− �̂�B ⋅ �̂�A + �̂�B ⋅ �̂�A
)
d𝑉 (1.33)

which can be further simplified for an isotropic medium to

∫𝒙∈𝜕
(
�̂�A × �̂�B − �̂�B × �̂�A

)
⋅ 𝝂 d𝐴

= 𝑠∫𝒙∈
[(
𝜇B − 𝜇A

)
�̂�A ⋅ �̂�B −

(
𝜖B − 𝜖A

)
�̂�A ⋅ �̂�B

]
d𝑉

+ ∫𝒙∈
(
�̂�A ⋅ �̂�B − �̂�A ⋅ �̂�B − �̂�B ⋅ �̂�A + �̂�B ⋅ �̂�A

)
d𝑉 (1.34)

in accordance with Eqs. (1.27) and (1.28). The literature on the subject is

frequently limited to the simplest form of the reciprocity theorem of the

time-convolution type (e.g., Refs. [27], Sec. 3.8; [29], Sec. 2.11; and [30],

Sec. 5.5).

1.4.2 Reciprocity Theorem of the Time-Correlation Type

The reciprocity theorem of the time-correlation type is constructed from the

following local interaction quantity:

𝛁 ⋅
[
�̂�A(𝒙, 𝑠) × �̂�B�(𝒙, 𝑠) + �̂�B�(𝒙, 𝑠) × �̂�A(𝒙, 𝑠)

]
= 𝛁 ⋅

[
�̂�A(𝒙, 𝑠) × �̂�B(𝒙,−𝑠) + �̂�B(𝒙,−𝑠) × �̂�A(𝒙, 𝑠)

]
(1.35)
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for 𝒙 ∈ , that is with the help of Eqs. (1.21) and (1.22) and Gauss’ theorem

rearranged to its global form ([16], Eq. (28.5-7)):

∫𝒙∈𝜕
(
�̂�A × �̂�B� + �̂�B� × �̂�A

)
⋅ 𝝂 d𝐴

= − ∫𝒙∈
{
�̂�A ⋅

[
�̂�B� + (�̂�A) ] ⋅ �̂�B�

+ �̂�A ⋅
[
�̂�B� + (�̂�A) ] ⋅ �̂�B�

}
d𝑉

− ∫𝒙∈
(
�̂�A ⋅ �̂�B� + �̂�A ⋅ �̂�B�

+ �̂�B� ⋅ �̂�A + �̂�B� ⋅ �̂�A
)
d𝑉 (1.36)

The first integral on the right hand-side represents the interaction of the field

and material states. As this interaction is proportional to the contrast in the

EM constitutive properties of the two states, this integral vanishes whenever

�̂�B(𝒙,−𝑠) = −(�̂�A) (𝒙, 𝑠) (1.37)

�̂�B(𝒙,−𝑠) = −(�̂�A) (𝒙, 𝑠) (1.38)

for all 𝒙 ∈ . In such a case, the media are denoted as each other’s time-

reverse adjoint. Note in this respect that for instantaneously-reacting media

described by Eqs. (1.25)–(1.28), the latter conditions have the same form as

the one applying to adjoint media (see Eqs. (1.39) and (1.40)). Finally, the

key ingredients constituting the time-correlationfield-field,material–field, and

source–field interactions in domain are summarized in Table 1.2.

Table 1.2 Application of the reciprocity theorem of the time-correlation type.
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Constitutive relations (1.25) and (1.26) describing the EM behavior of an in-

stantaneously reacting, anisotropic, and inhomogeneous medium leads to

∫𝒙∈𝜕
(
�̂�A × �̂�B� + �̂�B� × �̂�A

)
⋅ 𝝂 d𝐴

= 𝑠∫𝒙∈
{
�̂�A ⋅

[
𝝁B − (𝝁A) ] ⋅ �̂�B�

+ �̂�A ⋅
[
𝝐B − (𝝐A) ] ⋅ �̂�B�

}
d𝑉

− ∫𝒙∈
(
�̂�A ⋅ �̂�B� + �̂�A ⋅ �̂�B�

+ �̂�B� ⋅ �̂�A + �̂�B� ⋅ �̂�A
)
d𝑉 (1.39)

which can be further simplified for an isotropic medium to

∫𝒙∈𝜕
(
�̂�A × �̂�B� + �̂�B� × �̂�A

)
⋅ 𝝂 d𝐴

= 𝑠∫𝒙∈
{(
𝜇B − 𝜇A

)
�̂�A ⋅ �̂�B� +

(
𝜖B − 𝜖A

)
�̂�A ⋅ �̂�B�

}
d𝑉

− ∫𝒙∈
(
�̂�A ⋅ �̂�B� + �̂�A ⋅ �̂�B� + �̂�B� ⋅ �̂�A + �̂�B� ⋅ �̂�A

)
d𝑉

(1.40)

in accordance with Eqs. (1.27) and (1.28). The importance of the nature of the

temporal behavior of the interacting wave field quantities has been stressed by

Bojarski [3] who has introduced the time-convolution-and time-correlation-

type reciprocity theorems applying to homogeneous, isotropic, and lossless

media. This has been later clearly unified by de Hoop [14] who has further

generalized the reciprocity theorems by including general inhomogeneous,

anisotropic, and dispersive media.

1.4.3 Application of the Reciprocity Theorems to an UnboundedDomain

Whenever a reciprocity theoremis applied to an unbounded domain exterior to

an antenna system, the surface integrals that appear in Eqs. (1.30) and (1.36)will

be carried out over the outer bounding surface 𝜕Δ under the limitΔ → ∞ (see

Figure 1.5). To evaluate this contribution for causal EM field states, we observe

that the EM wave field radiated into the homogeneous, isotropic embedding

∞, whose EM properties are described by (real-valued and positive) electric

permittivity 𝜖0 and magnetic permeability 𝜇0, has the form of a spherical wave
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Figure 1.5 Unbounded domain to which the reciprocity theorems are applied.

expanding away from the origin ([16], Sec. 26.11):

{�̂�, �̂�}(𝒙, 𝑠) = {�̂�∞, �̂�∞}(𝝃, 𝑠) exp(−𝑠|𝒙|∕𝑐0)(4𝜋|𝒙|)−1
×
[
1 +𝑂(|𝒙|−1)] (1.41)

as |𝒙| → ∞, where {�̂�∞, �̂�∞} are the electric- and magnetic-type amplitude

radiation characteristics, 𝝃 = 𝒙∕|𝒙| is the unit vector in the direction of obser-

vation, and 𝑐0 = (𝜖0𝜇0)−1∕2 > 0 is the EM wave speed. Now, making use of the

far-field behavior (1.41) in the surface integral of the time-convolution type, we

get

∫𝒙∈𝜕Δ

(
�̂�A × �̂�B − �̂�B × �̂�A

)
⋅ 𝝂 d𝐴 = 𝑂(Δ−1) (1.42)

asΔ → ∞, since the leading terms in the integrand that are of orderΔ−2 cancel
each other. Hence, owing to causality of the interrelated EM wave fields, the

time-convolution-type surface integral over 𝜕Δ vanishes as Δ → ∞. On the

other hand, the time-correlation type of the surface interaction integral leads

to a non-vanishing contribution:

∫𝒙∈𝜕Δ

(
�̂�A × �̂�B� + �̂�B� × �̂�A

)
⋅ 𝝂 d𝐴

=
(
𝜂0∕8𝜋2

)
∫𝝃∈Ω �̂�A;∞(𝝃, 𝑠) ⋅ �̂�B;∞(𝝃,−𝑠)dΩ

×
[
1 +𝑂(Δ−1)

]
(1.43)



CH01 Date: October 27, 2017 Time: 9:23 am

1.5 Description of the Antenna Configuration 13

as Δ → ∞, where the integration on the right-hand side is carried out over

Ω = {𝝃 ⋅ 𝝃 = 1} defining a unit sphere. Consequently, if the medium exterior

to 0 is source-free, we may, in view of its self-adjointness, write

∫𝒙∈0

(
�̂�A × �̂�B − �̂�B × �̂�A

)
⋅ 𝝂 d𝐴 = 0 (1.44)

∫𝒙∈0

(
�̂�A × �̂�B� + �̂�B� × �̂�A

)
⋅ 𝝂 d𝐴

=
(
𝜂0∕8𝜋2

)
∫𝝃∈Ω �̂�A;∞(𝝃, 𝑠) ⋅ �̂�B;∞(𝝃,−𝑠)dΩ

=
(
8𝜋2𝜂0

)−1
∫𝝃∈Ω �̂�A;∞(𝝃, 𝑠) ⋅ �̂�B;∞(𝝃,−𝑠)dΩ (1.45)

wherewe have tacitly taken the limitΔ → ∞ (see Figure 1.5). In conclusion, the

surface integral contribution from the outer bounding surface 𝜕Δ is vanishing

only for the time-convolution interaction of two causal wave fields. The time-

correlation interaction results in the nonzero contribution (1.43) that for the

lossless embedding described by two positive scalar constants {𝜖0, 𝜇0} should

be approached via the real-frequency domain (see Section 1.3).

1.5 Description of the Antenna Configuration

Wewill not limit our further analysis to a particular antenna geometry; instead,

we will take the advantage of the generic antenna model introduced in Ref.

[12], which encompasses all EM antennas used in practice (see Figure 1.6).

The antenna system occupies a bounded domain ⊂ ℝ3 that is terminated by

surfaces 0 and 1. Surface 0 separates the antenna system from the exterior

domain denoted by∞, while surface1 represents the terminal surface where

the antenna system is accessible via its𝑁-ports. Themaximumdiameter of the

domain enclosed by 1 is supposed to be small with respect to the pulse time

width of the excited EM wave fields. The bounding surfaces 0 and 1 may

partially overlap.

The antenna system consists of a linear and passive media, whose EM prop-

erties can be described by the (tensorial) transverse admittance and the lon-

gitudinal impedance, �̂� = �̂�(𝒙, 𝑠) and �̂� = �̂�(𝒙, 𝑠), respectively (see Eqs. (1.23)

and (1.24)). These constitutive functions are piecewise continuous functions

with respect to the position vector 𝒙, that is, they may show finite-jump dis-

continuities across bounded interfaces, and, in view of the uniqueness theorem

given in Chapter 2, they are positive definite tensors of rank 2 for all real and
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Figure 1.6 Generic antenna configuration.

positive values of 𝑠. The antenna systemmay also contain perfectly conducting

surfaces. The antenna structure itself is placed in the linear, homogeneous, and

isotropic embedding∞, whose EM properties are defined via its (real-valued

and positive) electric permittivity 𝜖0 and magnetic permeability 𝜇0.

1.5.1 Antenna Power Conservation

The power-reciprocity theorem in antenna theory [18] calls for the application

of the reciprocity theorem of the time-correlation type to the domain occupied

by the antenna system according to Table 1.3. Taking into account the orien-

tation of the outer normal vector along the bounding surfaces, one may arrive

at

Table 1.3 Application of the reciprocity theorem of the time-correlation type
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∫𝒙∈0

(
�̂�A × �̂�A� + �̂�A� × �̂�A

)
⋅ 𝝂 d𝐴

= ∫𝒙∈1

(
�̂�A × �̂�A� + �̂�A� × �̂�A

)
⋅ 𝝂 d𝐴

−∫𝒙∈
{
�̂�A ⋅

[
�̂�� + �̂� ] ⋅ �̂�A�

+ �̂�A ⋅
[
�̂�� + �̂� ] ⋅ �̂�A�

}
d𝑉 (1.46)

In case that antenna’s losses can be entirely included in the electric-conduction

relaxation function,while its (𝑠-independent) electric permittivity andmagnetic

permeability relaxation functions are symmetrical tensors of rank 2, Eq. (1.46)

has the following form:

∫𝒙∈0

(
�̂�A × �̂�A� + �̂�A� × �̂�A

)
⋅ 𝝂 d𝐴

= ∫𝒙∈1

(
�̂�A × �̂�A� + �̂�A� × �̂�A

)
⋅ 𝝂 d𝐴

−∫𝒙∈
{
�̂�A ⋅

[
�̂�� + �̂� ] ⋅ �̂�A�

}
d𝑉 (1.47)

No matter whether the antenna system operates in the transmitting or

receiving state, the volume integrals in Eqs. (1.46) and (1.47) are for

{𝑠 = 𝛿 + i𝜔, 𝛿 ↓ 0, 𝜔 ∈ ℝ} proportional to the (time-averaged) power dissi-

pated in between the exterior bounding surface 0 and the interface surface

1. In line with Eqs. (1.37) and (1.38), this contribution vanishes whenever the

medium in  is time-reverse self-adjoint in its EM behavior. This includes,

in particular, the instantaneously reacting media whose electrical permittivity

and magnetic permeability are symmetrical tensors of rank 2, specifically

𝝐(𝒙) = 𝝐 (𝒙) (1.48)

𝝁(𝒙) = 𝝁 (𝒙) (1.49)

for all 𝒙 ∈ , as well as (idealized) perfectly electrically conducting (PEC)

antennamodels. An important class of antennas in this category is represented

by a wire antenna. For this antenna system, the external surface 0 is formed

by a closed cylindrical surface closely surrounding the PEC arms of the wire

antenna including the (vanishing) volume of the excitation gap. The latter

is enclosed by the cylindrical surface 1 that is at its ends crossed by the

antenna ports. Obviously, in this antenna configuration, the terminal surface

1 partially overlaps with 0 (see Figure 1.7).
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Figure 1.7 Wire antenna and its bounding surfaces.

1.5.2 Antenna Interface Relations

The EM wave quantities on the terminal surface 1 of the antenna system can

be expressed in terms of its Kirchhoff-type quantities (see Ref. [16], Sec. 30.1).

To illustrate the procedure that leads to such a relation, we shall associate state

(A) from the previous section with the receiving situation (R) in which the

antenna system is externally irradiated by the incident EM wave fields. Since

the maximum diameter of the domain enclosed by 1 is small with respect

to the pulse time width of the excited fields, the electric field strength �̂�R

can be expressed as (the opposite of) the gradient of the scalar potential �̂�R.
Consequently, the surface integral over 1 from Eq. (1.46) can be written as

∫𝒙∈1

(
�̂�R × �̂�R� + �̂�R� × �̂�R

)
⋅ 𝝂 d𝐴

≃ −∫𝒙∈1

(
𝛁�̂�R × �̂�R� + 𝛁�̂�R� × �̂�R

)
⋅ 𝝂 d𝐴

= −∫𝒙∈1

[
𝛁 ×

(
�̂�R�̂�R�) + 𝛁 ×

(
�̂�R��̂�R)] ⋅ 𝝂 d𝐴

+∫𝒙∈1

[
�̂�R(𝛁 × �̂�R�) + �̂�R�(𝛁 × �̂�R)] ⋅ 𝝂 d𝐴 (1.50)

wherewe have used integration by parts and≃ indicates here the low-frequency

approximation. Since thefirst integral on the right-hand side is in viewof Stokes’

theorem zero, we may, upon using the first Maxwell’s equation (see Eq. (1.21))

in the second one, write

∫𝒙∈1

(
�̂�R × �̂�R�+�̂�R� × �̂�R

)
⋅ 𝝂 d𝐴

≃ ∫𝒙∈1

(
�̂�R 𝝂 ⋅ �̂�R� + �̂�R� 𝝂 ⋅ �̂�R

)
d𝐴

≃ −
𝑁∑
𝑛=1

[
𝑉 R
𝑛
(𝑠)𝐼R

𝑛
(−𝑠) + 𝑉 R

𝑛
(−𝑠)𝐼R

𝑛
(𝑠)

]
(1.51)
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where we have used the fact that the electric current volume density on 1 is
dominated by the conduction current flowing in the perfect conductors of the

𝑁-port termination and that these electric currents are in the receiving state

oriented into the load. Furthermore, in the interior of the terminal surface 1,
we have chosen a reference point where the scalar potential �̂�R has the value

zero.Consequently, the scalar potential at the𝑛thPECport, that is related to this

reference point, is denoted as 𝑉 R
𝑛
. Employing these results, the time-averaged

power absorbed by the antenna load can be written as

𝑃 L(𝑠) = 1
4

𝑁∑
𝑛=1

[
𝑉 R
𝑛
(𝑠)𝐼R

𝑛
(−𝑠) + 𝑉 R

𝑛
(−𝑠)𝐼R

𝑛
(𝑠)

]

≃ −1
4 ∫𝒙∈1

(
�̂�R × �̂�R� + �̂�R� × �̂�R

)
⋅ 𝝂 d𝐴 (1.52)

for {𝑠 = 𝛿 + i𝜔, 𝛿 ↓ 0, 𝜔 ∈ ℝ}. Equation (1.52) thus makes possible to clearly

interpret the integral over1 in the antenna power conservation relations (1.46)
and (1.47) in the receiving (R) state.
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