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Signals and Systems

1.1 Chapter Objectives

On completion of this chapter, the reader should:

1) Be able to apply mathematical principles to waveforms.
2) Be conversant with some important terms and definitions used in telecom-

munications, such as root-mean-square for voltage measurements and
decibels for power.

3) Understand the relationship between the time- and frequency-domain
descriptions of a signal and have a basic understanding of the operation of
frequency-selective filters.

4) Be able to name several common building blocks for creating more complex
systems.

5) Understand the reasons why impedances need to be matched, to maximize
power transfer.

6) Understand the significance of noise in telecommunication system design
and be able to calculate the effect of noise on a system.

1.2 Introduction

A signal is essentially just a time-varying quantity. It is often an electrical
voltage, but it could be some other quantity, which can be changed or modu-
lated easily, such as radio-frequency power or optical (light) power. It is used
to carry information from one end of a communications channel (the sender
or transmitter) to the receiving end. Various operations can be performed
on a signal, and in designing a telecommunications transmitter or receiver,
many basic operations are employed in order to achieve the desired, more
complex operation. For example, modulating a voice signal so that it may be
transmitted through free space or encoding data bits on a wire all entail some
sort of processing of the signal.
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2 1 Signals and Systems

A voltage that changes in some known fashion over time is termed a
waveform, and that waveform carries information as a function of time. In the
following sections, several operations on waveforms are introduced.

1.3 Signals and Phase Shift

In many communication systems, it is necessary to delay a signal by a certain
amount. If this delay is relative to the frequency of the signal, it is a constant
proportion of the total cycle time of the signal. In that case, it is convenient to
write the delay not as time, but as a phase angle relative to 360∘ or 2π rad (radi-
ans). As with delay, it is useful to be able to advance a signal, so that it occurs
earlier with respect to a reference waveform. This may run a little counter to
intuition, since after all, it is not possible to know the value of a signal at some
point in the future. However, considering that a signal repetitive goes on for-
ever (or at least, for as long as we wish to observe it), then an advance of say
one-quarter of a cycle or 90∘ is equivalent to a delay of 90 − 360 = −270∘.

Sine Cosine

Sine delayed 90°

Sine advanced 90°

Cosine delayed 90°

Cosine advanced 90°

Figure 1.1 Sine and cosine, phase advance, and phase retard. Each plot shows amplitude
x(t) versus time t.
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1.4 System Building Blocks 3

To see the effect of phase advance and phase delay, consider Figure 1.1, which
shows these operations on both sine and cosine signals. The left panels show
a sine wave, a delayed signal (moved later in time), and an advanced signal
(moved earlier). The corresponding equations are

x(t) = sin𝜔t
x(t) = sin

(
𝜔t − π

2

)

x(t) = sin
(
𝜔t + π

2

)

Starting with a cosine signal, Figure 1.1 shows on the right the original, delayed
(or retarded), and advanced signals, respectively, with equations

x(t) = cos𝜔t
x(t) = cos

(
𝜔t − π

2

)

x(t) = cos
(
𝜔t + π

2

)

1.4 System Building Blocks

Telecommunication systems can be understood and analyzed in terms of
some basic building blocks. More complicated systems may be “built up” from
simpler blocks. Each of the simpler blocks performs a specific function. This
section looks initially at some simple system blocks and then at some more
complex arrangements.

1.4.1 Basic Building Blocks

There are many types of blocks that can be specified according to need,
but some common ones to start with are shown in Figure 1.2. The generic
input/output block shows an input x(t) and an output y(t), with the input
signal waveform being altered in some way on passing through. The alteration
of the signal may be simple, such as multiplying the waveform by a constant A
to give y(t) = Ax(t). Alternatively, the operation may be more complex, such
as introducing a phase delay. The signal source is used to show the source of
a waveform – in this case, a sinusoidal wave of a certain frequency 𝜔o. The
addition (or subtraction) block acts on two input signals to produce a single
output signal, so that y(t) = x1(t) ± x2(t) for each time instant t. Similarly, a
multiplier block produces at its output the product y(t) = x1(t) × x2(t).

These basic blocks are used to encapsulate common functions and may be
combined to build up more complicated systems. Figure 1.3 shows two system
blocks in cascade. Suppose each block is a simple multiplier – that is, the output
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Generic block

In Out

Out

Signal source

Sin !ot

Multiplier

x

Adder

x(t) y(t)

y(t)

y(t)

h(t)

x1(t)

x2(t)

y(t)x1(t)

x2(t)

Σ

±

Figure 1.2 Basic building
blocks: generic
input/output, signal
source, adder, and
multiplier.

In Out

In

Adder

y(t)
x1(t) x3(t)x2(t)

x2(t) x′
2(t)

x′
1(t)x1(t)

h1(t)

h1(t)

h2(t)

h2(t)
Σ

±

Figure 1.3 Cascading blocks in series (left) and adding them in parallel (right).

is simply the input multiplied by a gain factor. Let the gain of the h1(t) block be
G1 and that of the h2(t) block be G2. Then, the overall gain from input to output
would be just G = G1G2.

To see how it might be possible to build up a more complicated system from
the basic blocks, consider the system shown on the right in Figure 1.3. In this
case, the boxes are simply gain multipliers such that h2(t) = G1 and h2(t) = G2,
and so the overall output is y(t) = G1x1(t) + G2x2(t).

1.4.2 Phase Shifting Blocks

In Section 1.3, the concept of phase shift of a waveform was discussed. It
is possible to develop circuits or design algorithms to alter the phase of a
waveform, and it is very useful in telecommunication systems to be able to
do this. Consequently, the use of a phase-shifting block is very convenient.
Most commonly, a phase shift of ±90∘ is required. Of course, 𝜋∕2 radians in
the phase angle is equivalent to 90∘. As illustrated in the block diagrams of
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Phase advance

+90°
Sine Cosine

t

Phase retard

−90°
Cosine Sine

tA sin !t

A sin !t

A cos !t

A cos !t

Figure 1.4 Phase shifting blocks. Note the input and output equations.

Figure 1.4, we use +90∘ to mean a phase advance of 90∘ and, similarly, −90∘ to
mean a phase delay of 90∘.

1.4.3 Linear and Nonlinear Blocks

Let us examine more closely what happens when a signal is passed through a
system. Suppose for the moment that it is just a simple DC voltage. Figure 1.5
shows a transfer characteristic, which maps the input voltage to a correspond-
ing output voltage. Two input values separated by 𝛿x, with corresponding out-
puts separated by 𝛿y, allow determination of the change in output as a function
of the change in input. This is referred to as the gain of the system.

Suppose such a linear transfer characteristic with zero offset (that is, it passes
through x = 0, y = 0) is subjected to a sinusoidal input. The output y(t) is a lin-
ear function of input x(t), which we denote as a constant 𝛼. Then,

y(t) = 𝛼 x(t) (1.1)

With input x(t) = A sin𝜔t, the output will be

y(t) = 𝛼 A sin𝜔t (1.2)

Thus the change in output is simply in proportion to the input, as expected.
This linear case is somewhat idealistic. Usually, toward the maximum and

minimum range of voltages which an electronic system can handle, a char-
acteristic that is not purely linear is found. Typically, the output has a limit-
ing or saturation characteristic – as the input increases, the output does not
increase directly in proportion at higher amplitudes. This simple type of non-
linear behavior is illustrated in Figure 1.6. In this case, the relationship between
the input and output is not a simple constant of proportionality – though note
that if the input is kept within a defined range, the characteristic may well be
approximately linear.
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Figure 1.5 The process of mapping an input (horizontal axis) to an output (vertical), when
the block has a linear characteristic. The constant or DC offset may be zero, or nonzero as
illustrated.

To fix ideas more concretely, suppose the characteristic may be represented
by a quadratic form, with both a linear constant multiplier 𝛼 and a small
amount of signal introduced that is proportional to the square of the input, via
constant 𝛽. If the input x(t) is again a sinusoidal function, the output may then
be written as

y(t) = 𝛼 x(t) + 𝛽x2(t)
= 𝛼 A sin𝜔t + 𝛽 A2sin2𝜔t (1.3)

This is straightforward, but what does the sinusoidal squared term represent?
Using the trigonometric identities

cos(a + b) = cos a cos b − sin a sin b (1.4)

cos(a − b) = cos a cos b + sin a sin b (1.5)
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Figure 1.6 Example of mapping an input (horizontal axis) to an output (vertical), when the
block has a nonlinear characteristic. Other types of nonlinearity are possible, of course.
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8 1 Signals and Systems

we have by subtracting the first from the second, and then putting b = a,

sin a sin b = 1
2
[cos(a − b) − cos(a + b)]

∴ sin2a = 1
2
[cos(a − a) − cos(a + a)]

= 1
2
(1 − cos 2a) (1.6)

After application of this relation, and simplification, the output may be written
as

y(t) = 𝛼 A sin𝜔t + 1
2
𝛽 A2(1 − cos 2𝜔t) (1.7)

This can be broken down into a constant or DC term, a term at the input
frequency, and a term at twice the input frequency:

y(t) =

Linear term
⏞⏞⏞⏞⏞⏞⏞

𝛼 A sin𝜔t +

Constant term
⏞⏞⏞

1
2
𝛽 A2 −

Double-frequency term
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1
2
𝛽 A2 cos 2𝜔t (1.8)

This is an important conclusion: the introduction of nonlinearity to a system
may affect the frequency components present at the output. A linear system
always has frequency components at the output of the exact same frequency
as the input. A nonlinear system, as we have demonstrated, may produce
harmonically related components at other frequencies.

1.4.4 Filtering Blocks

A more complicated building block is the frequency-selective filter, almost
always just called a filter. Typically, a number of filters are used in a telecom-
munication system for various purposes. The common types are shown in
Figure 1.7. The sine waves (with and without cross-outs) shown in the middle
of each box are used to denote the operation of the filter in terms of frequency
selectivity. For example, the lowpass filter shows two sine waves, with the lower
one in the vertical stack indicating the lower frequency. The higher frequency
is crossed out, thus leaving only lower frequency components. Representative
input and output waveforms are shown for each filter type. Consider, for
example, the bandpass filter. Lower frequencies are attenuated (reduced
in amplitude) when going from input to output. Intermediate frequencies
are passed through with the same amplitude, while high frequencies are
attenuated. Thus, the term bandpass filter is used. Filters defining highpass and
bandstop operation may be designated in a similar fashion, and their operation
is also indicated in the figure.

When it comes to more precisely defining the operation of a filter, one or
more cutoff frequencies have to be specified. For a lowpass filter, it is not suf-
ficient to say merely that “lower” frequencies are passed through unaltered. It
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Lowpass filter

In Out

Out

Highpass filter

In Out

Bandpass filter

In

Bandstop filter

In Out

x(t) y(t)

x(t) y(t) x(t) y(t)

x(t) y(t)

Figure 1.7 Some important filter blocks and indicative time responses. The waveforms and
crossed-out waveforms in the boxes, arranged high to low in order, represent high to low
frequencies. Input/ouput waveform pairs represent low, medium, and high frequencies, and
the amplitude of each waveform at the output is shown accordingly.

is necessary to specify a boundary or cutoff frequency 𝜔c. Input waveforms
whose frequency is below 𝜔c are passed through, but (in the ideal case) fre-
quencies above 𝜔c are removed completely. In mathematical terms, the lower
frequencies are passed through with a gain of one, whereas higher frequencies
are multiplied by a gain of zero.

The operation of common filters may be depicted in the frequency domain
as shown in the diagrams of Figure 1.8. First, consider the lowpass filter. This
type of filter would, ideally, pass all frequencies from zero (DC) up to a specified
cutoff frequency. Ideally, the gain in the passband would be unity, and the gain
in the stopband would be zero. In reality, several types of imperfections mean
that this situation is not always realized. The order of the filter determines how
rapidly the response changes from one gain level to another. The order of a
filter determines the number of components required for electronic filters or
the number of computations required for a digitallyprocessed filter.

A low-order filter, as shown on the left, has a slower transition than
a high-order filter (right). In any given design, a tradeoff must be made
between a lower-cost, low-order filter (giving less rapid passband-to-stopband
transitions) and a more expensive high-order filter.

Lowpass filters are often used to remove noise components from a signal. Of
course, if the noise exists across a large frequency band, a filter can only remove
or attenuate those components in its stopband. If the frequency range of the
signal of interest also contains noise, then a simple filter cannot differentiate
the desired signal from the undesired one.

In a similar fashion, a highpass filter may be depicted as also shown in
Figure 1.8. As we would expect, this type of filter passes frequencies that are
higher than some desired cutoff. A hybrid characteristic leads to a bandpass
filter or bandstop filter. These types of filters are used in telecommunication
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Figure 1.8 Primary filter types: lowpass, highpass, bandpass, and bandstop, with a
low-order filter shown on the left and higher-order on the right. Ideally, the passband has a
fixed and finite signal gain, whereas the stopband has zero gain.

systems for special purposes. For example, the bandstop filter may be used to
remove interference at a particular frequency, and a bandpass filter may be
used to pass only a particular defined range of frequencies (a channel or set of
channels, for example).

1.5 Integration and Differentiation of a Waveform

This section details two signal operations that are related to fundamental math-
ematical operations. First, there is integration, which in terms of signals means
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Example area and slope computation

Rectangle

Triangle ±f

±t

f(t)

f(
t)

f(t+ ±t)

Figure 1.9 Calculating the area over a small time increment 𝛿t using a rectangle and the
slope of the curve using a triangle.

the cumulative or sum total of a waveform over time. The opposite operation,
differentiation, essentially means the rate of change of the voltage waveform
over time. These are really just the two fundamental operations of calculus:
Integration and differentiation. These are the inverse of each other, as will be
explained. This intuition is useful in understanding the signal processing for
communication systems presented in later chapters. The functions are pre-
sented in terms of time t, as this is the most useful formulation when dealing
with time-varying signals.

Figure 1.9 shows the calculation of the area (integral) and slope (derivative)
for two adjacent points. At a specific time t, the function value is f (t), and at a
small time increment 𝛿t later, the function value is f (t + 𝛿t). The area (or actu-
ally, a small increment of area) may be approximated by the area of the rectangle
of width 𝛿t and height f (t). This small increment of area 𝛿A is

𝛿A ≈ f (t) 𝛿t (1.9)

It could be argued that this approximation would be more accurate if the area
of the small triangle as indicated were taken into account. This additional area
would be the area of the triangle or (1∕2)(𝛿t 𝛿f ), which would diminish rapidly
as the time increment gets smaller (𝛿t → 0). This is because it is not one small
quantity 𝛿t, but the product of two small quantities 𝛿t 𝛿f .
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Figure 1.10 A function f (t), calculating its cumulative area to a and b, and the area between
t = a and t = b. Note the negative portions of the “area” below the f (t) = 0 line.

Similarly, the slope at point (t, f (t)) is 𝛿f ∕𝛿t. This is the instantaneous slope
or derivative, which of course varies with t, since f (t) varies. This slope may be
approximated as the slope of the triangle, which changes from f (t) to f (t + 𝛿t)
over a range 𝛿t. So the slope is

𝛿f
𝛿t

≈
f (t + 𝛿t) − f (t)

𝛿t
(1.10)

The calculation of the derivative or slope of a tangent to a curve is a
point-by-point operation, since the slope will change with f (t) and hence the
t value (the exception being a constant rate of change of value over time, which
has a constant slope). The integral or area, though, depends on the range of
t values over which we calculate the area. Since the integral is a continuous
function, it extends from the left from as far back as we wish to the right as far
as we decide. Figure 1.10 shows a function and its integral from the origin to
some point t = a (note that we have started this curve at t = 0, but that does
not have to be the case). In the lower-left panel, we extend the area to some
point t = b. This is essentially the same concept, except that the area below the
horizontal f (t) = 0 line is in fact negative. While the concept of “negative area”
might not be found in reality, it is a useful concept. In this case, the negative
area simply subtracts from the positive area to form the net area. Finally, the
lower-right panel illustrates the fact that the area from t = a to t = b is simply
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Example area subdivision computation

f(
t)

t0 t1 t2 t3 t4 t5 t6 t7 t8

Figure 1.11 Calculating area using a succession of small strips of width 𝛿t.

the area to t = b, less the area to t = a. Mathematically, this is written as

∫
b

a
f (t) dt = F(b) − F(a) (1.11)

where F(⋅) represents the cumulative area to that point. This is called the def-
inite integral – an integration or area calculation with definite or known start
and end boundaries.1

The area may be approximated by creating successive small strips of width 𝛿t
as before, and joining enough of them together to make the desired area. This
is illustrated in Figure 1.11, for just a few subdivisions. Using the idea of F(t) as
the cumulative area function under the curve f (t), consider the area under the
curve from t to t + 𝛿t, where 𝛿t is some small step of time. The change in area
over that increment is

𝛿A = F(t + 𝛿t) − F(t) (1.12)

Also, the change in area is approximated by the rectangle of height f (t) and
width 𝛿t, so

𝛿A = f (t) 𝛿t (1.13)

Equating this change of area 𝛿A,

f (t) 𝛿t = F(t + 𝛿t) − F(t) (1.14)

f (t) = F(t + 𝛿t) − F(t)
𝛿t

(1.15)

1 The ∫ symbol comes from the “long s” of the 1700s, so you can see the connection with the
idea of “summation.”
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Example area subdivision computation g(t)= f
′(t)
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g(
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=
f

′ (t
)

Figure 1.12 The area under a curve g(t), but the curve happens to be the derivative of f (t).

This is the same form of equation we had earlier for the definition of slope.
Now, it is showing that the slope of some function F(t), which happens to be the
integral or area under f (t), is actually equal to f (t). That is, the derivative of the
integral equals the original function. This is our first important conclusion.

Next, consider how to calculate the cumulative area by subdividing a curve
f (t) into successive small strips. However, instead of the plain function f (t),
suppose we plot its derivative, f ′(t) instead. This is illustrated in Figure 1.12, for
just a few strips of area from t0 at the start to an ending value t8.

The cumulative area (call it A(t)) under this curve f ′(t) – which we defined
to be the derivative of f (t) – is the summation of all the individual rectangles,
which is

A(t) = 𝛿t f ′(t0) + 𝛿t f ′(t1) + ⋅⋅⋅ + 𝛿t f ′(tn−1) (1.16)

= 𝛿t [f ′(t0) + f ′(t1) + ⋅⋅⋅ + f ′(tn−1)] (1.17)

Now we can use the same concept for slope as developed before, where we had
the approximation to the derivative

f ′(t) =
f (t + 𝛿t) − f (t)

𝛿t
(1.18)

Substituting this for all the derivative terms, we have

A(t) = 𝛿t
{[ f (t0 + 𝛿t) − f (t0)

𝛿t

]
+
[ f (t1 + 𝛿t) − f (t1)

𝛿t

]
+ ⋅⋅⋅

+
[ f (tn−1 + 𝛿t) − f (tn−1)

𝛿t

]}
(1.19)
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Canceling the 𝛿t and using the fact that each tk + 𝛿t is actually the next point
tk+1 (for example, t1 = t0 + 𝛿t, t2 = t1 + 𝛿t), we can simplify things to

A(t) = {[f (t1) − f (t0)] + [f (t2) − f (t1)] + ⋅⋅⋅ + [f (tn) − f (tn−1)]} (1.20)

Looking carefully, we can see terms that will cancel, such as f (t1) in the first
square brackets, minus the same term in the second square brackets. All these
will cancel, except for the very first −f (t0) and the very last f (tn) to leave us with

A(t) = f (tn) − f (t0) (1.21)

So this time, we have found that the area under some curve f ′(t) (which hap-
pens to be the derivative or slope of f (t)) is actually equal to the original f (t).
That is, the area under the slope curve equals the original function evaluated at
the end (right-hand side), less any start area. The subtraction of the start area
seems reasonable, since it is “cumulative area to b less cumulative area to a,” as
we had previously. Thus, our second important result is that the integral of a
derivative equals the original function.

We can see the relationship between differentiation and integration at a
glance in the following figures. Figure 1.13 shows taking a function (top) and
integrating it (lower); if we then take this integrated (area) function as shown

t
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Figure 1.13 The cumulative area under f (t). Each point on F(t) represents the area up to the
right-hand side of the shaded portion at some value of t (here t = 0.2 for the shaded
portion). Note that when f (t) becomes negative, the area reduces.
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Figure 1.14 The derivative of f (t) as a function. It may be approximated by the slopes of the
lines as indicated, though the spacing is exaggerated for the purpose of illustration.

in Figure 1.14 (top) and then take the derivative of that (Figure 1.14, lower),
we end up with the original function that we started with. And the process
is invertible: Take the derivative of the top function in Figure 1.14 to obtain
the lower plot of Figure 1.14. Transferring this to the top of Figure 1.13, and
then integrating it, we again end up where we started: the original function.
So it is reasonable to say that integration and differentiation are the inverse
operations of each other. We just have to be careful with the integration, since
it is cumulative area, and that may or may not have started from zero at the
leftmost starting point.

1.6 Generating Signals

Communication systems invariably need some type of waveform generation in
their operation. There are numerous methods of generating sinusoids, which
have been devised over many years, and each has advantages and disadvan-
tages. The ability to generate not just one, but several possible frequencies (that
is, to tune the frequency), is a desirable attribute. So too is the spectral purity
of the waveform: How close it is to an ideal sine function. One method, which
is relatively simple, has a tunable frequency, and can generate a wide range of
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p

Index
into

table

Figure 1.15 Generating a sinusoid using an index p into a table. The value at each index
specifies the required amplitude at that instant.

N-bit phase
accumulator

Increment
Δacc

N × B-bit
lookup table

B-bit
D/A converter

Analog out

Figure 1.16 Using a lookup table to generate a waveform. Successive digital (binary-valued)
steps are used to index the table. The digital-to-analog (D/A) converter transforms the
sample value into a voltage.

possible frequencies, is the Direct Digital Synthesizer (DDS), whose working
principle was originally introduced in Tierney et al. (1971).

Computing the actual samples of a sine function is often not feasible in real
time for high frequencies. However, precomputing the values and storing in a
table – a Lookup Table or LUT – is possible. Stored-table sampling with index-
ing is illustrated in Figure 1.15. Effectively, the index of each point in the table
is the phase value, and each point’s value represents the amplitude at that par-
ticular phase. All that is then required is to step through the table with a digital
counter as shown in Figure 1.16.

The number of points on the waveform determines the accuracy and also the
resolution of frequency tuning steps. This resolution is the clock frequency fclk
divided by the number of points 2N , where N is the number of bits in the address
counter. However, this also requires a table of size 2N . It follows that for finer
frequency tuning steps, N should be as large as possible.
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Phase
increment
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D/A converter

Analog out

Figure 1.17 A Direct Digital Synthesizer (DDS) using a reduced lookup table. Samples are
produced at a rate of fs and for each new sample produced, a phase step of Δacc is added to
the current index p to locate the next sample value in the Lookup Table (LUT).

In order to reduce the size of the lookup table, a compromise is to employ a
smaller table, which is indexed by only the upper P bits of the phase address
counter. This is shown in Figure 1.17. In order to compute the next point on
the waveform, a phase increment Δacc is added for each point in the generated
waveform. A smaller Δacc means that the table is stepped through more slowly,
hence resulting in a lower frequency waveform. Conversely, a larger Δacc means
the table is stepped through more rapidly, resulting in a higher frequency wave-
form. The tradeoff in using a smaller LUT means that the preciseness of the
waveform is reduced, which is shown in Figure 1.18 for a small table size.

An interesting problem then arises. If the phase accumulator step Δacc is a
power of 2, then at the end of the LUT, the counter will wrap back to the same
relative starting position. The only problem with the output frequency spec-
trum will be the harmonics generated by stepping through at a faster rate, and
these harmonics will not vary over time. However, if the step is such that, upon
reaching the end of the table, the addition of the step takes the pointer back
to a different start position, the next cycle of the waveform will be generated
from a slightly different starting point. This means that there will be some jitter
in the output waveform, and the frequency spectrum will contain additional
phase noise components, as shown in Figure 1.19.

The DDS structure is able to generate multiple waveforms by using multiple
index pointers. For example, sine and cosine may be generated by offsetting
one pointer by the equivalent of a quarter of a cycle in the table. The phase
and frequency are also easily changed by changing the relative position of the
index pointer, and this is useful for generating modulated signals (discussed in
Chapter 3).



Trim Size: 152mm x 229mm Single Column Leis c01.tex V1 - 06/27/2018 6:02pm Page 19�

� �

�

1.7 Measuring and Transferring Power 19

ΔaccDirect digital synthesis =200

A
m

pl
itu

de

Lookup table

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0 16 32 48 64 80 96 112 128

Sample number

A
m

pl
itu

de

Output waveform

Figure 1.18 A lookup table (top) with 2P = 32 entries, requiring P = 5 bits. One possible
waveform generated by stepping through at increments of Δacc = 200 is shown below,
when the total phase accumulator has N = 14 bits.

1.7 Measuring and Transferring Power

This section discusses the concept of the power transferred by a signal and the
related concept of impedance of a circuit. The notion of power is important in
telecommunications, since how much power is used to send a signal is clearly
important, how far can a signal travel and how much power is enough are rel-
evant questions. The impedance of a circuit appears a great deal in discussions
about power and information transfer. It basically describes how much a cur-
rent flow is “impeded” along its way.

1.7.1 Root Mean Square

Sinusoidal signals have their amplitude determined directly by the factor A in
the equation of a sinusoid, x(t) = A sin(𝜔t + 𝜑). However, not all signals are
pure sinusoids. It is useful to have a definition of power, which is not dependent
on the wave shape of the underlying signal.

One of the most commonly used is the RMS, or Root Mean Square. This
means that first, we square the signal and then take the mean or average of that
result. This is necessary so as to measure power over a normalized time interval.
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Figure 1.19 The frequency spectrum of the waveform, showing the magnitude of each
signal component. Ideally, only one component should be present, but the stepping
approach means that other unwanted components with smaller magnitudes are also
produced. Note that the vertical amplitude scale is logarithmic, not linear.

Finally, to “undo” the squaring operation, we take the square root. Graphically,
Figure 1.20 illustrates this operation for a sine wave. The first step is to square
the waveform, which means that negative values are converted into positive,
since squaring a negative value results in a positive result.

The second step after squaring the waveform is to add up all the squared
values, as illustrated in Figure 1.21. This diagram shows individual bars or sam-
ples of the waveform in order to illustrate the point – in reality, the signal has
no discontinuities. Next, we divide by the time we have averaged over. In the
illustration, this is exactly one cycle of the wave. If need not we do say 2 or 100
cycles, then the summation would be correspondingly larger, and dividing by
the number of samples (in the discrete-bar case) or the total time (for the con-
tinuous wave) would normalize things out. Finally, we take the square root of
this quantity, and we have the RMS value.

We can calculate this mathematically for known signals. A simple and com-
monly used case is the pure sine wave, and to work this out let the period be

𝜏 = 2𝜋
𝜔o

(1.22)

where𝜔o is the radian frequency (rad s−1). To convert from Hertz frequency f to
radian frequency 𝜔, the formula 𝜔 = 2𝜋f is used, where f is in Hertz, or cycles
per second, and 𝜔 is in radians per second. The equation of the sine wave is

x(t) = A sin𝜔t (1.23)
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Figure 1.20 Graphical illustration of the calculation of RMS value. Squaring the waveform at
the top results in the lower waveform.

Squaring gives

x2(t) = A2sin2𝜔t (1.24)

In order to calculate the mean square over one period 𝜏 , we need to integrate
the squared waveform

x2 = 1
𝜏 ∫

𝜏

0
A2sin2𝜔t dt (1.25)

Evaluating this integral, we find that the mean-square value of a sine wave is

x2 = A2

2
(1.26)

The RMS is just the square root of this, or

RMS {x(t)} = A√
2

(1.27)

This is a very common result. It tells us that the RMS value of a sine wave is the
peak divided by

√
2, or approximately 1.4. Equivalently, the peak is multiplied
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Figure 1.21 Imagining RMS calculation as a series of bars, with each bar equal to the height
of the waveform at that point. The period between samples is T , with sample index n. The
substitution required is then t = nT .

by 1∕
√

2 ≈ 0.7 to obtain the RMS value. Alternatively, if we know the RMS
value, we multiply it by

√
2 ≈ 1.4 to find the peak value. The following MAT-

LAB code shows how to generate a sine wave and calculate the RMS value from
the peak.

� �
% waveform p a r a m e t e r s
dt = 0 . 0 1 ;
tmax = 2 ;
t = 0 : dt : tmax ;
f = 2 ;

% g e n e r a t e the s i g n a l
x = 1∗ s i n (2∗ p i ∗ f ∗ t ) ;
p l o t ( t , x ) ;

% c a l c u l a t e the s i g n a l ' s RMS v a l u e
s q r t ( ( sum ( x . ∗ x ) ∗ dt ) / tmax )
ans =
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0 . 7 0 7 1

% i t i s a known f a c t o r
1/ s q r t ( 2 )
ans =

0 . 7 0 7 1
�� �

So, what use is the RMS value? Even though we calculated a mathematical
expression relating the amplitude of a sine wave to its RMS value, the concept
is applicable to any waveform. It gives us a measure of the power that the sig-
nal can deliver. If, for example, we simply averaged the waveform, then a sine
wave would yield a figure of zero (since it is symmetrical about the time axis).
This is not a very useful result. In the next section, it is demonstrated that the
RMS value may be related to another quantity, termed the decibel, which is
commonly used in telecommunication systems.

1.7.2 The Decibel

Another quantity that is frequently encountered in telecommunications is the
decibel (dB). It is used in different contexts. One is to show the power of a signal,
and in that way it might be regarded as similar to the RMS value mentioned
above. Another context in which the decibel is used is to measure the gain or
loss of a communication processing block, such as an amplifier.

The first use is to denote power, or more precisely, power relative to some
reference value. For a power P, the relative power in decibels is calculated as

PdB = 10log10

(
P

Pref

)
(1.28)

where Pref is the reference power. There are several important points to note
about this formula. First, it does not measure absolute power as such, but rather
power relative to a defined reference power level. Secondly, we use the loga-
rithm to base 10 in the computation of the decibel. The relative power is usually
a standard amount, in which case standard symbols are used to denote this. For
example, dBW is used when the reference power Pref is 1W (Watt) and dBm
when the reference power Pref is 1mW (milliwatt), or 1 × 10−3 W.

The concept of power is meaningless in a practical sense unless it is applied
to a load. The load must have a certain impedance. Suppose we had a purely
resistive load of 50Ω. Power is P = IV and Ohm’s law is V = IR, and so power
is V 2∕R. Thus for a power of 1mW, we have

P = V 2

R
∴V =

√
P × R
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=
√

1mW × 50Ω

=
√

0.05
= 0.2236V ≈ 223mV (1.29)

This is the voltage needed across the load resistance to develop the given
amount of power. Note that the voltage is RMS, not peak amplitude.

The second common use of the decibel is in measuring the gain of a system.
That is to say, given an input power Pin, and a corresponding output power Pout,
the power gain is defined as

GdB = 10log10

(Pout

Pin

)
(1.30)

The basic formula is similar, taking the logarithm of a power ratio and then mul-
tiplying by 10 (the “deci” part). What was the reference power in the previous
example has now become the input power. This is not unreasonable, since the
“reference” is at the input to the system we are considering.

Suppose a system has a power gain of 2. That is, the output power is twice the
input power. The power gain in dB is

GdB = 10log102
≈ 3 dB (1.31)

Now suppose another system has a power gain of 1∕2. In that case, the power
gain in dB is

GdB = 10log10
1
2

≈ −3 dB (1.32)
Notice how these are the same values, but negated. This gives us a clue as to one
of the useful properties of decibels: increasing the power is a positive dB figure,
whereas decreasing is a negative dB figure. So what about the same power for
input and output, when Pout = Pin? It is not hard to show that this gives a figure
of 0 dB.

A common use of the decibel is to state the voltage gain of a circuit or system
in decibels rather than the power gain. Suppose we have two power flows Pout
and Pin as above and that they each drive a load resistance of R. We can deter-
mine the voltage at the input and output using P = V 2∕R as before, and noting
that log xa = a log x, the decibel ratio becomes

GdB = 10log10

(Pout

Pin

)

= 20log10

(Vout

Vin

)
(1.33)

So, now we have a multiplier factor of 20× rather than 10×.
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It is useful to keep some common decibel figures in mind. The most com-
monly encountered one is a doubling of power, and 3 dB corresponds approxi-
mately to a double ratio

3 dB ≈ 10log102

The exact figure is 3.0103, but 3 is close enough for most practical use. Similarly

2 dB ≈ 10log101.6
4 dB ≈ 10log102.5

From these values, it is possible to derive many other dB figures fairly easily.
For example, 6 dB is

6 dB = 3 dB + 3 dB
∴6 dB → 2 × 2

= 4×

and so the ratio is 4. Since adding logarithms corresponds to multiplication, it
follows that subtracting corresponds to division. So, for example,

1 dB = 4 dB − 3 dB
∴1 dB →

2.5
2

= 1.25×

Finally, note that the dB when used as a difference represents a ratio, and not a
normalized power. So, for example, using two power values referenced to 1 mW,

4 dBm − 3 dBm = 1 dB

We have two power figures (in dBm) but the difference is a ratio and is
expressed in dB. Remember, because of the logarithmic function, a seemingly
small number – such as a power loss of 20 dB – in fact represents a 99% power
loss.

1.7.3 Maximum Power Transfer

When a signal is received by an antenna, that signal is likely to be exceedingly
small. It follows that we do not want to waste any of that signal in the transmis-
sion from the antenna to the receiver. Similarly, if a transmitter is connected
to an antenna, ideally the maximum amount of power would be transferred,
implying no loss along the connecting wires. How can this be achieved?

To motivate the development, consider a simple circuit as shown in
Figure 1.22. The question may be framed for this case as: What value of load
resistance RL will give the maximum amount of power transferred to that load?
The assumption is that the source has a certain resistance RS, and in practice
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Figure 1.22 Transferring power from a source to a load. The source resistance RS is generally
quite small, and is inherent in the power source itself. We can adjust the load resistance RL to
maximize the power transferred.

this may be composed of the voltage source’s own internal resistance or the
equivalent resistance of the driving circuit.

For a simple circuit that has purely resistive impedances, we may write some
basic equations governing the operation. The equivalent series resistance is

Req = RS + RL (1.34)

Ohm’s law applied to the circuit gives

VS = i Req

= i (RS + RL)

∴ i =
VS

RS + RL

and so the load power and current are

VL = i RL

∴ i =
VL

RL
(1.35)

The power dissipated in the load, which is our main interest, is

PL = i VL

= i2RL

=
V 2

S

(RS + RL)2 RL (1.36)

A simulation of this scenario, using only the basic equations for voltage, cur-
rent, and power, helps to confirm the theory. Using the MATLAB code below,
the power as the load resistance varies is calculated, with the result shown in
Figure 1.23.
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Figure 1.23 The power transferred to a load as the load resistance is varied. There is a point
where the maximum amount of power is transferred, and this occurs when the load
resistance exactly matches the source resistance.

� �
% p a r a m e t e r s o f th e s i m u l a t i o n
Vsrc = 1 ;
Rsrc = 0 . 8 ;

% l o a d r e s i s t a n c e range
Rload = l i n s p a c e ( 0 , 4 , 1000) ;

% e q u a t i o n s
Req = Rsrc + Rload ;
i = Vsrc . / Req ;
Pload = ( i . ∗ i ) . ∗ Rload ;

% p l o t t i n g
p l o t ( Rload , Pload ) ;
x l a b e l ( ' Load R e s i s t a n c e R_ { l o a d } ' )
y l a b e l ( ' Power T r a n s f e r r e d P_ { l o a d } ' )

�� �

From the figure, we can see that there is a point where the amount of power
transferred is a maximum. Why does this occur? If the load resistance is very
high, the current flowing through it will be low, and the voltage drop across it
will be high. If the load resistance is low, the current flowing through it will be
higher, but the voltage drop across it will be lower. Since the power dissipated
in the load depends on both voltage and current, there is obviously an interplay
between these factors.
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How can we verify this analytically? We need to find the maximum PL as a
function of RL. The governing equation was derived as

PL =
V 2

S

(RS + RL)2 RL

=
V 2

S

R2
S + 2RSRL + R2

L
RL

=
V 2

S

R2
S∕RL + 2RS + RL

(1.37)

Reasoning that this power is a maximum when the denominator is a minimum,
we define an auxiliary function and try to minimize that

f (RL) = R2
S∕RL + 2RS + RL

df
dRL

= −
R2

S

R2
L
+ 0 + 1 (1.38)

Setting this to zero, we have that RL = RS, and so the conclusion is that the
maximum amount of power is dissipated in the load if the load resistance
equals the source resistance. Equivalently, the maximum power is dissipated
(transferred) when the source resistance equals the load resistance.

In a communication system, we might have an antenna (load) fed by a
source and transmission line. Thus, the line resistance (actually, impedance,
which is resistance at certain frequency) must match the source and load
resistance.

Note that maximum power transfer does not equal maximum efficiency.
Defining efficiency 𝜂 as the power delivered to the load over the total power
dissipated,

𝜂 =
iRL

iRS + iRL

=
RL

RS + RL

= 1
1 + RS

RL

(1.39)

If the source resistance were zero (RS = 0), which is not really a practical sce-
nario, the efficiency would be 100%. However, for some other resistance, if we
arranged that RS = RL, then the efficiency would be 50%.
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1.8 System Noise

Any real system is subject to the effects of extraneous noise. This may
come from devices that deliberately radiate energy, such as radio or wireless
transmissions, or nearby electronics such as computers and switch-mode
power supplies, which radiate interference as an unintended but inevitable
consequence of their operation. There is also noise present naturally – as
a result of cosmic background radiation and from the thermal agitation of
electrons in conductors. In this section, we briefly summarize some important
concepts encountered when dealing with noise in a system.

A key result found in the early development of radio and electronics was
that noise is present in any resistance that is at a temperature above absolute
zero. Johnson (1928) is generally deemed to be the first to have experimentally
assessed this phenomenon, which was further explained by Nyquist (1928). As a
result, thermal noise is often termed Johnson Noise or Johnson–Nyquist Noise.
The key result was that current was proportional to the square root of the tem-
perature, and as a result the noise power  dissipated in a load is

 = kTB (1.40)

where T is the absolute temperature (in Kelvin), B is the bandwidth of
the system being measured, and k is a constant due to Planck, but usu-
ally termed Boltzmann’s constant, which has an approximate value of
k ≈ 1.38 × 10−23 J K−1. Importantly, this result shows that noise power is
dependent on temperature, but not on resistance. Furthermore, since the
bandwidth employed in a particular application may not be known in advance,
the noise power is often expressed as a power per unit bandwidth, or dBm/Hz.
Following on from this, the noise voltage is then V/

√
Hz.

The amount of noise present in a system is not usually considered in isolation,
but rather with respect to the size of the desired signal that carries information.
Thus, the signal-to-noise ratio (SNR) is defined as the signal power divided by
noise power and is usually expressed in decibels:

S
N

=
Psignal

Pnoise
(1.41)

It is usually expressed as a dB figure:

SNRdB = 10log10

(Psignal

Pnoise

)
dB (1.42)

Telecommunication systems are composed of numerous building blocks,
such as amplifiers, filters, and modulators. An excessive amount of noise
results in audible distortion for analog audio systems, and an increase in the
bit error rate (BER) for digital systems. In extreme cases, digital systems may
not function if the BER is over a maximum tolerable threshold. It is therefore
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Σ G1

S1 + N1

E1 = (F1 − 1)N
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Sin out

out

Figure 1.24 Modeling the noise transfer of a system. The noise at the input of the first block
is  = N1, and this is used as a “noise reference” when subsequent blocks are added after
the first. The quantity E is the excess noise added by the stage.

useful to know the effect of thermal noise on one particular block in isolation,
and also the net result of cascading several blocks. This is done with the noise
factor or noise ratio. The noise factor (or ratio) is defined as the SNR at the
input terminals of a device, divided by the SNR at the output terminals. On the
assumption that the block incorporates amplification, and the bandwidth of
the block is not a limiting factor, then a noise ratio of unity would mean that
no noise is added by the block, whereas a noise ratio of greater than one would
imply that there is more noise at the output than the input (or, equivalently,
the particular element reduces the SNR).

Often, the noise figure is expressed in dB, which is derived from the noise
ratio as

FdB = 10log10F (1.43)

Using the noise figure concept, an important step in analyzing block-level
design is Friis’s noise equation, first devised in Friis (1944) and covered in
many textbooks in detail (for example, Haykin and Moher, 2009). To illustrate
the basic idea, consider a block within a system as shown in Figure 1.24, which
performs amplification of a signal by a factor of G1. The input on the left may
be an antenna, or some other receiver such as an optical sensor. Since any
system block will add some noise to the overall system design, it is good to be
able to quantify just how much noise is added.

Referring to Figure 1.24, we have an input signal Sin and thermal noise  .
These are assumed to be additive, with a resulting signal input S1 + N1 seen by
the input of the block. It is assumed that the gain is greater than one and that
the bandwidth is sufficient to pass the signal.

In the present context, we would like to know how much a given system
degrades the SNR overall. To that end, we define a noise factor F , which per-
tains to how much noise is added when a signal passes through a system block.
It is the SNR at the input, divided by the SNR at the output:
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F =
Sin∕Nin

Sout∕Nout
(1.44)

Referring to Figure 1.24, the signal output is simply the signal input multiplied
by the gain of the block, so mathematically Sout = G1S1. Assuming that noise is
added to the signal, the input noise is also multiplied by the gain of the block.
However, the block may also add its own noise, so we may write

N2 = F1G1N1 (1.45)

where F1 is a multiplicative factor greater than one. If F1 = 1, it would imply a
perfect block, which adds no additional noise. So, we could calculate the noise
ratio as

R =
Sin∕Nin

Sout∕Nout

=
( S1

N1

)(F1G1N1

G1S1

)

= F1 (1.46)

So, the noise figure F is actually the noise ratio, defined as SNR at the input
divided by SNR at the output.

It is useful in a practical sense to refer the output noise of cascaded blocks
back to the noise appearing at the input. To follow the path of this noise, we
write it as  , where  = N1 is the noise at the input. Referring to Figure 1.24,
we may rewrite noise at the output as

N2 = G1[

“excess noise”
⏞⏞⏞⏞⏞⏞⏞⏞⏞

(F1 − 1) + ] (1.47)

This turns out to be useful in analyzing a cascade of two systems, as shown in
Figure 1.25. The noise at the output of the second stage will be the input noise,
multiplied by the gain factor, plus any additional noise from the system itself.
This gives

N3 = F1G1G2 + G2(F2 − 1)
= G2[F1G1 + (F2 − 1) ] (1.48)

As a result, the overall noise figure (or noise ratio) is

F12 =
( S1

N1

)(N3

S3

)

=
( S1


){G2[F1G1 + (F2 − 1) ]

G1G2S1

}

= F1 +
F2 − 1

G1
(1.49)
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Σ G1

S1 + N1

E1 = (F1 − 1)N

Stage 1
in out

out

S2 + N2
Σ G2

S3 + N3

E2 = (F2 − 1)N

Stage 2

Figure 1.25 Analysis of two systems in cascade. The E values refer to the hypothetical noise
added if referred back to the input of the first stage, whose noise is  .

The significance of this is that the first stage in a multistage system domi-
nates the noise figure overall. Subsequent stages contribute an amount less-
ened by the gain; in this case, the contribution of stage 2, which is (F2 − 1), is
reduced by a factor equal to the gain of the previous stage G1.

This could be extrapolated to any number of stages, for which the Friis
equation for overall noise figure becomes

F = F1 +
F2 − 1

G1
+

F3 − 1
G1G2

+ ⋅⋅⋅ +
Fn − 1

G1G2 …Gn
(1.50)

Thus, it makes sense to maximize efforts to reduce the noise in the very first
stage. Additionally, a high gain is helpful in the first stage, to reduce the effects
of subsequent stages.

1.9 Chapter Summary

The following are the key elements covered in this chapter:

• The description of a waveform as a time-evolving quantity.
• The description of signal as comprising various frequency components, and

how these components may be affected by filtering.
• Operations such as averaging, multiplication, and phase shifting, which may

be applied to a waveform.
• One method of variable-frequency waveform generation: the DDS.
• The significance of power transfer, impedance matching, and noise in

telecommunication system design.
• Thermal noise, and how noise may be characterized in a cascade of system

blocks.

Problems

1.1 The decibel requires the calculation 10log10(Pout∕Pin). Using P = V 2∕R
and assuming Vout is the voltage at the output, Vin the voltage at the
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Figure 1.26 Waveform parameter problem.

input, and that the impedances of both are R Ω, show that an equivalent
calculation is 20log10(Vout∕Vin).

1.2 The input to a Radio Frequency (RF) spectrum analyzer states that the
input impedance is 50Ω, and that the maximum input power is+10dBm.
What would be the maximum safe voltage in that case?

1.3 A copper communications line has a noise level of 1 mV RMS when a
signal of 1 V RMS is observed. What is the SNR?

1.4 Determine the parameters (amplitude, phase, and frequency) of the
waveform shown in Figure 1.26.

1.5 Given the mathematical description of a signal x(t) = A sin𝜔t, show
that over one period 𝜏 = 2π∕𝜔 the mean-square value is x2(t) = A2∕2.
Hence show that the RMS value is A∕

√
2. Hint: Remember that the
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arithmetic mean is really an average, so you integrate the square
value over one period. You may need the trigonometric identity
sin2𝜃 = (1∕2)(1 − cos 2𝜃).

1.6 Given a signal equation and the system transfer function, we can work
out the output for both linear and nonlinear systems.
a) Given the system transfer function y(t) = 𝛼 x(t), show that for an

input x(t) = A sin𝜔t, the output is y(t) = 𝛼 A sin𝜔t. Is this system
linear?

b) Given the system described by y(t) = 𝛼 x(t) + 𝛽x2(t), show that for
an input x(t) = A sin𝜔t, the output can be simplified to the summa-
tion of a constant (or DC) term, a term at the same frequency as the
input, and a term at twice the frequency of the input. Is this system lin-
ear? Hint: You may need the trigonometric identity sin2𝜃 = (1∕2)(1 −
cos 2𝜃).

c) From the above results, can you infer what might happen if you had
cubic-form transfer function, such as y(t) = 𝛾x3(t)?

1.7 Systems may be defined in terms of basic building blocks.
a) Given two series blocks as depicted on the left of Figure 1.3, what is

the overall gain if each block’s gain is given in decibels?
b) Would the same rule apply if the blocks were added in parallel?

Why not?

1.8 The correspondence between dB and ratio is approximately
2 dB ≈ 1.6 ×
3 dB ≈ 2 ×
4 dB ≈ 2.5×

a) Explain why the dB figure goes up in equal increments of one, but the
ratio figure goes up in differing increments (0.4 then 0.5).

b) Plot a graph of ratio r versus 10log10r for r = 0.1 to r = 10 in steps of
0.1, and explain the shape.

c) Plot a graph of ratio r versus 10log10r for r = 10 to r = 100 in steps of
1, and explain the shape. Compare the two graphs and explain their
shapes as well as the values on the vertical axis.

1.9 Many concepts in telecommunications deal with very large or very small
signals or cover a very wide range of values. In these cases, a logarith-
mic scale is useful rather than the usual linear scale. A good example is
the decibel for measuring power. Suppose the frequency response of a
certain system is defined by a function g(f ) = 1∕(f + 1).
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a) Explain what is deficient in the following approach, and suggest a bet-
ter way.

� �
f = 0 . 0 1 : 1 : 1 0 0 ;
g = 1 . / ( f + 1 ) ;
p l o t ( f , g , ' s− ' ) ;
s e t ( gca , ' x s c a l e ' , ' l o g ' ) ;
g r i d ( ' on ' ) ;

�� �

b) Noting that the exponents of 10 on the frequency axis go from −2 to
+2, change the code to

� �
r = − 2 : 0 . 0 4 : 2 ;
f = 1 0 . ^ r ;
g = 1 . / ( f + 1 ) ;
p l o t ( f , g , ' s− ' ) ;
s e t ( gca , ' x s c a l e ' , ' l o g ' ) ;
g r i d ( ' on ' ) ;

�� �

Why does this give a proportional spacing of the data points, and
hence a better plot?

c) Investigate the difference between the MATLAB functions
linspace() and logspace() and briefly comment on why
they are useful.

1.10 An amplifier has an SNR of 50 dB and Noise Figure of 3 dB. Determine
the output SNR.

1.11 This question investigates the extension to two-stage systems as shown
in Figure 1.25, in order to find an expression for the cascaded noise
figure.
a) Draw a block diagram for this system, labeling all the “useful” signals

and the unwanted noise signals.
b) Show mathematically that the noise factor for a three-stage system is

F = F1 +
F2 − 1

G1
+

F3 − 1
G1G2
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