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Basic Concepts and Quick Review

A standard scientific practice is to formulate an explanation for an observed
phenomenon and then test this formulation by projecting the outcomes of var-
ious experiments under pertinent conditions. Projections are generally com-
pared with experimental data. If there is agreement, the explanation can be
accepted as a valid theory, whereas discrepancies point to a need for refor-
mulation of the explanation. A model that describes the main features of the
phenomenon, often represented mathematically, can be iteratively improved
in the process of reformulation to resolve its discrepancies with observations
or experimental data. This iterative process is known as the modelling cycle
(Figure 1.1).

In simple terms, mathematical modelling is a process by which we derive
a model to describe a phenomenon that may or may not be observable.
For example, the movement of a pendulum is an observable phenomenon,
but the transmission of a disease in the population may not be observ-
able. In the latter case, the outcomes of infection and illness indicate that
the epidemic phenomenon may be taking place and the disease is being
transmitted among individuals. The process of modelling consists of several
important steps. In general, the model represents a framework that includes
simplification, assumptions, and approximation to describe the phenomenon
under investigation. This framework can be expressed by mathematical
equations and analyzed using the theory of dynamical systems and com-
putational tools for model validation and comparison with available data
(Figure 1.1).

Before proceeding further, let us present an example of developing a simple
mathematical model. In this example, we wish to calculate the volume of sand
that falls from the top half to the bottom half of a conical hourglass within a
period of time (Figure 1.2). Suppose that the sand flows at the rate of 4 cm3

per second from the top half to bottom half of the hourglass. We remember
from calculus that the volume of a cone with height h and radius R is given by
V = 𝜋R2h∕3. Here, we will first find the volume of sand in the bottom half of

Mathematical Modelling: A Graduate Textbook, First Edition. Seyed M. Moghadas and Majid Jaberi-Douraki.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Moghadas/Mathematicalmodelling

CO
PYRIG

HTED
 M

ATERIA
L



Trim Size: 152mm x 229mm Single Column Moghadas c01.tex V1 - 06/18/2018 6:50pm Page 2�

� �

�

2 1 Basic Concepts and Quick Review
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Figure 1.1 The process of model development, analysis, and validation.

the conical hourglass. From the dimensions given in Figure 1.2, this volume is
given by:

Vh(t) =
𝜋62 × 12

3
− 𝜋r2(12 − h)

3
= 144𝜋 − 𝜋r2(12 − h)

3
.

Using the property of similar triangles, we can write r in terms of h as
r = 6 − h∕2. Substituting this into Vh and taking the derivative of Vh with
respect to t, we get:

dVh

dt
= 𝜋

(
6 − h

2

)2 dh
dt

,

where we consider h to be a function of time t. Given the flow rate of sand (i.e.,
V ′

h = 4), the change in the height of sand in the bottom-half of the conical
hourglass with respect to time is:

dh
dt

= 4

𝜋

(
6 − h

2

)2 .

Using separation of variables and integrating the height equation gives:

∫
h(t)

h(0)

(
6 − h

2

)2

dh = ∫
t

0

4
𝜋

dt.

Thus,

−(12 − h)3 |||h(t)h(0) =
48t
𝜋

.



Trim Size: 152mm x 229mm Single Column Moghadas c01.tex V1 - 06/18/2018 6:50pm Page 3�

� �

�

1 Basic Concepts and Quick Review 3

Figure 1.2 Representation of a conical
hourglass.
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Since h(0) = 0, we have h(t) = 12 − 3
√

123 − 48t∕𝜋. Substituting h(t) into the
equation for Vh(t), we can calculate the amount of sand that falls from the top
half to the bottom half of the conical hourglass within a certain time period.
For example, between t = 0 and t = 36𝜋, the bottom half of the hourglass will
be filled, that is, V (36𝜋) = 144𝜋. This simple example shows how a model can
be used to describe the outcomes of a process that changes with time.

Mathematical models are often used to explore the dynamics of a system
over time. Let us present another example from classical mechanics. A simple
mechanical oscillating system can be illustrated by a weight attached to a linear
spring subject to only weight and tension, representing a harmonic oscillator. In
mechanics and physics, simple harmonic motion is a type of oscillation where
the restoring force is proportional to the displacement and acts in the direction
opposite to that of displacement. Ignoring the damping behavior, the restor-
ing force (given by the product of mass and acceleration according to Newton’s
second law of motion for a constant mass) in a linear spring can be modelled by:

F = ma = m d2x
dt2 = mx′′ = −kx, (1.1)

where m is the mass attached to the spring, k is the spring constant, and x rep-
resents the displacement of the mass from its equilibrium state (Figure 1.3).
A solution of the equation mx′′ = −kx (with the initial condition x(0) = 0) is
given by:

x(t) = A sin

(√
k
m

t

)
,
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4 1 Basic Concepts and Quick Review
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Figure 1.3 Representation of spring motion in a sinusoidal form.

where A is a constant representing the amplitude of sinusoidal motion of the
spring. The displacement x is represented as a function of t in Figure 1.3.

1.1 Modelling Types

Broadly speaking, mathematical models can be classified based on three major
characteristics that may depend on the nature of the phenomenon: (i) deter-
ministic or stochastic; (ii) dynamic or static; and (iii) discrete or continuous
(Figure 1.4). To better understand this classification, we provide some specific
examples as follows.

• Deterministic of dynamic-continuous type: steam engine.
• Deterministic of static-continuous type: snapshot of pendulum.
• Deterministic of dynamic-discrete type: the percentage of computer process-

ing unit in use upon startup.
• Deterministic of static-discrete type: clock cycles for a computer program to

run on a given input.
• Stochastic of dynamic-continuous type: weather.
• Stochastic of static-continuous type: noise in an electronic circuit.
• Stochastic of dynamic-discrete type: random arrivals.
• Stochastic of static-discrete type: flipping a coin.

In this textbook, we present various examples of mathematical models within
this classification and analyze their behavior. In our analyses of such models, we
use essential analytical tools from the theory of dynamical systems. Here, we
briefly review some techniques from the theory of differential equations and
linear algebra that are useful in understanding the analytical tools and their
applications to mathematical modelling in subsequent chapters.
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Figure 1.4 Types of deterministic
and stochastic models.
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1.2 Quick Review

We begin by reviewing methods for solving first- and second-order linear dif-
ferential equations [7].

1.2.1 First-order Differential Equations

The general form of a first-order linear differential equation is given by:
dy
dx

+ P(x)y = Q(x), (1.2)

where P(x) and Q(x) are continuous real-valued functions. To solve this
equation for a solution in the form of y(x), we use the integration factor:

R(x) = exp
(
∫

x

a
P(t)dt

)
. (1.3)

Multiplying (1.2) by R(x) gives:
d(R(x)y(x))

dx
= R(x)Q(x).

Integrating both sides of this equation with respect to x gives:

R(x)y(x) = ∫ R(t)Q(t)dt + C, (1.4)

where C is a constant. Since R(x) ≠ 0 for all x ∈ ℝ, we can divide each side of
(1.4) by R(x) to obtain the solution of y(x). To illustrate this method, we provide
the following example.
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6 1 Basic Concepts and Quick Review

Example 1.1 Consider the following differential equation:
y′ = 2x(y + 1),

where we represent dy
dx

by y′. Rewriting this equation in general form of (1.2)
gives:

y′ − 2xy = 2x.

From (1.3), we obtain the integration factor:

R(x) = Ae−x2
,

where A is a constant. Multiplying the equation by R(x) gives:

(e−x2 y)′ = 2xe−x2
.

Integrating this equation with respect to x leads to the solution:

y = −1 + Cex2
,

where C is a constant.

Bernoulli equation. The general form of a first-order differential equation
of Bernoulli type is given by [7]:

dy
dx

+ P(x)y = Q(x)yn, (1.5)

where P(x) and Q(x) are continuous real-valued functions, and n = 0, 1, 2,….
If n > 1, then we can use the change of variable u = y1−n. Thus, equation (1.5)
reduces to:

du
dx

= (1 − n)y−n dy
dx

= (1 − n)y−n(−P(x)y + Q(x)yn)
= (1 − n)(−P(x)y1−n + Q(x))
= (1 − n)(−P(x)u + Q(x)).

(1.6)

Equation (1.6) can now be solved using an integration factor.

Example 1.2 Consider the following differential equation:

y′ −
y
x
= y2 ln x. (1.7)

Letting u = y−1, we get:

u′ + u
x
= − ln x.

Using the integration factor R(x) = x, we get (xu)′ = −x ln x, and therefore:

u = −x
2
(ln x − 1

2
) + C

x
,
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where C is a constant. Thus, the solution of (1.7) is:

y = 4x
−x2(2 ln x + 1) + C

.

1.2.2 Second-order Differential Equations

The general form of a second-order linear differential equation is given by:

d2y
dx2 + a(x)

dy
dx

+ b(x)y = F(x), (1.8)

where F(x), a(x) and b(x) are continuous real-valued functions. Here,
we assume that a(x) = a and b(x) = b are constants. We can consider
homogeneous and inhomogeneous cases.

Homogeneous case. In this case, F(x) ≡ 0, and (1.8) reduces to:

d2y
dx2 + a

dy
dx

+ by = 0. (1.9)

We look for a solution of the form y(x) = e𝜆x, in which 𝜆 is yet to be determined.
Substituting this solution into (1.9) gives the characteristic equation:

(𝜆2 + a𝜆 + b)e𝜆t = 0.

Solving this equation for 𝜆 will provide different types of solutions for (1.9),
depending on whether the characteristic equation has distinct real roots,
repeated roots, or complex roots. The general form of the solution of (1.9) for
distinct roots is then given by:

y(x) = C1e𝜆1x + C2e𝜆2x,

and for repeated roots by:

y(x) = C1e𝜆x + C2xe𝜆x.

Example 1.3 Consider the following second-order differential equation:

y′′ − y′ − 2y = 0.

Solving the characteristic equation 𝜆2 − 𝜆 − 2 = 0 gives the solutions 𝜆1 = −1,
and 𝜆2 = 2. Therefore, the general solution of (1.9) can be expressed by:

y(x) = C1e−x + C2e2x,

where C1 and C2 are constants.
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8 1 Basic Concepts and Quick Review

Example 1.4 Consider the following second-order differential equation:

y′′ − 2y′ + y = 0.

Solving the characteristic equation 𝜆2 − 2𝜆 + 1 = 0 gives the solutions
𝜆1 = 𝜆2 = 1. Therefore, the general solution of (1.9) can be expressed by:

y(x) = C1ex + C2xex,

where C1 and C2 are constants.

Inhomogeneous case. In this case, F(x) ≠ 0. We first solve the homoge-
neous equation (setting F(x) = 0), and then extend this solution to the inho-
mogeneous case. Suppose yh(x) represents the solution for the homogeneous
equation. We consider a particular solution yp(x) in a similar functional form
to F(x) with unknown constants. The general form of the solution for inhomo-
geneous case is then given by:

y(x) = yh(x) + yp(x).

In the last step, we find the coefficients of the particular solution by substituting
yp(x) into equation (1.8).

Example 1.5 Consider the following second-order differential equation:

y′′ − y′ − 2y = x2. (1.10)

Solving the homogeneous case y′′ − y′ − 2y = 0 as described above gives the
solution:

yh(x) = C1e−x + C2e2x.

We now assume that the particular solution has the form of a polynomial of
degree 2 similar to the functional form of F(x) = x2:

yp(x) = Ax2 + Bx + C.

Substituting this particular solution into equation (1.10), we get:

2A − (2Ax + B) − 2Ax2 − 2Bx − 2C = x2.

Rearranging this equation, we find that the constant term and the coefficient of
x must be zero, and the coefficient of x2 must be 1, so that the equation holds
for all x ∈ ℝ. This implies that:

−2A = 1,
−2B − 2A = 0,

2A − B − 2C = 0.
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Thus, A = − 1
2
, B = 1

2
, and C = − 3

4
. Hence, we obtain the general solution of

(1.10):

y(x) = C1e−x + C2e2x − 1
2

x2 + 1
2

x − 3
4
.

Example 1.6 Consider the following differential equation:

y′′ − y = 2e5x. (1.11)

Solving the characteristic equation for the homogeneous case gives the solu-
tion yh(x) = C1e−x + C2ex. Assuming yp(x) = Ae5x + B, and substituting back
into (1.11), we find A = 1

12
and B = 0. Thus, the general solution of (1.11) is:

y(x) = C1e−x + C2ex + 1
12

e5x.

Example 1.7 Consider the following inhomogeneous differential equation:

y′′ + y′ + y = x + cos x. (1.12)

The characteristic equation for the homogeneous case is 𝜆2 + 𝜆 + 1 = 0, which
has the solutions 𝜆± = (−1 ± i

√
3)∕2. This gives the solutions in the complex

domain as y(x) = e−
x
2

(
C1ei

√
3x
2 + C2e−i

√
3x
2

)
. Therefore, we find the solution:

yh(x) = C1e−
x
2 sin

√
3

2
x + C2e−

x
2 cos

√
3

2
x.

We now consider a particular solution of the form yp(x) = Ax + B + D sin x +
E cos x. Substituting yp(x) into (1.12) gives:

−E sin x + D cos x + Ax + A + B = x + cos x,

which implies:

A = 1, B = −1, E = 0, D = 1.

Thus, the general solution of the equation is:

y(x) = C1e−
x
2 sin

√
3

2
x + C2e−

x
2 cos

√
3

2
x + x − 1 + sin x.

1.2.3 Linear Algebra

A number of analytical tools that we introduce in the subsequent chapters apply
fundamental concepts from matrix theory and linear algebra [49]. Here, we pro-
vide an overview of these concepts.
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A square matrix An×n (with equal number of rows and columns) is invertible,
if there exists a square matrix Bn×n such that AB = BA = In×n, where

In×n =
⎡⎢⎢⎢⎣
1 0 0 … 0
0 1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1

⎤⎥⎥⎥⎦n×n

.

The matrix B is often denoted by A−1 (referred to as the inverse of A), and it is
unique. It is important to note that the concept of inverse applies only to square
matrices, while it is possible to find matrices A and B that satisfy the condition
of AB = I but are not square. For example, let:

A =
[

1 0 2
0 0 2

]
, B =

⎡⎢⎢⎣
1 −1
0 0
0 1

2

⎤⎥⎥⎦ .
Then multiplication of A and B gives:

AB =
[

1 0
0 1

]
= I2×2.

However, neither A nor B is invertible because:

BA =
⎡⎢⎢⎣
1 0 0
0 0 0
0 0 1

⎤⎥⎥⎦ ≠ AB.

For a square matrix An×n, there is a number called the determinant, denoted
by det(A). According to the matrix theory, a square matrix is invertible (i.e., A−1

exists) if and only if det(A) ≠ 0. Using the inverse of a matrix, when it exists, it
is possible to solve systems of linear equations. To illustrate this, let us consider
the general form of a system of n linear equations:

a11x1 + a12x2 + · · · + a1nxn = b1,

⋮ ⋮ (1.13)
an1x1 + an2x2 + · · · + annxn = bn.

We can rewrite (1.13) in matrix form as AX = B, where

A =
⎡⎢⎢⎣
a11 · · · a1n
⋮ ⋱ ⋮

an1 · · · ann

⎤⎥⎥⎦ , X =
⎡⎢⎢⎣
x1
⋮
xn

⎤⎥⎥⎦ , B =
⎡⎢⎢⎣
b1
⋮
bn

⎤⎥⎥⎦ .
If det(A) ≠ 0, then A−1 exists, and we can multiply each side of the equation by
A−1 to get:

A−1(AX) = A−1B.
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Using the associative property of matrix multiplication, and AA−1 = I, we
obtain the solution of the system as X = A−1B.

For a square matrix An×n, a scalar 𝜆 is called an eigenvalue if there is a nonzero
solution X of AX = 𝜆X. Such an X is called an eigenvector corresponding to the
eigenvalue 𝜆. The eigenvalues and the corresponding eigenvectors are obtained
by solving the characteristic equation:

det(A − 𝜆I) = 0,

where 𝜆 is an eigenvalue of matrix A. For each 𝜆, a vector V ≠ 0 is an
eigenvector if:

(A − 𝜆I)V = 0.

Example 1.8 Find the eigenvalues and the corresponding eigenvectors of the
matrix:

A =
[

1 4
2 −1

]
.

For this purpose, we solve the characteristic equation:

det
([

1 4
2 −1

]
− 𝜆

[
1 0
0 1

])
= det

[
1 − 𝜆 4

2 −1 − 𝜆

]
= 0,

which is −(1 + 𝜆)(1 − 𝜆) − 8 = 0. Thus, there are two eigenvalues 𝜆1 = 3 and
𝜆2 = −3. To find an eigenvector V1 corresponding to 𝜆1, we consider the
equation (A − 3I)V1 = 0, which gives the linear system:[

−2 4
2 −4

] [
x1
x2

]
=
[

0
0

]
.

This system provides only one equation with two unknowns given by −2x1 +
4x2 = 0. Since we are looking for a nonzero vector, assuming x1 = 1, we find
x2 = 1∕2, and therefore:

V1 =
[

1
1
2

]
.

In a similar way, we can find an eigenvector corresponding to the eigenvalue
𝜆2 = −3. In this case, we need to solve the linear system (A + 3I)V2 = 0. This
system provides only one equation, given by 2x1 + 2x2 = 0. Assuming x1 = 1,
we obtain x2 = −1, and therefore a nonzero eigenvector is obtained as:

V2 =
[

1
−1

]
.
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1.2.4 Scaling

Scaling is a useful technique in mathematical modelling to simplify the model
for analysis, without changing the theoretical structure of the system or its
behavior. Scaling is often used to make independent and dependent variables
dimensionless, normalize the size associated with the system variables, and
reduce the number of independent parameters in the model [25]. Here, we
explain this technique using the following examples.

Example 1.9 Consider the following differential equation:

dN
dt

= r N
(

1 − N
K

)
,

where r and K are positive numbers, and N ≥ 0. This equation is known as the
logistic model, and we will detail its properties in the next chapter. The variable
N represents the size of a population which changes with time, and depends on
the growth rate r and the carrying capacity K . We may simplify this equation
by scaling through a new variable and a new parameter, defined by:

n = N
K
, 𝜏 = rt.

Taking the derivative of n with respect to 𝜏 and using the chain rule, we get:

dn
d𝜏

= dn
dt

⋅
dt
d𝜏

= d
dt

(N
K

)
⋅
(1

r

)
= 1

rK
dN
dt

= 1
rK

(rN)
(

1 − N
K

)
= N

K

(
1 − N

K

)
= n(1 − n).

Thus, the logistic equation can be simplified to the equation n′ = n(1 − n),
where n ≥ 0.

Example 1.10 Consider the following system of nonlinear differential
equations:

dS
dt

= −𝛽S(t)I(t),

dI
dt

= 𝛽S(t)I − 𝛾I(t).

This system may represent the spread of a disease in a population of suscepti-
ble individuals (S), with a transmission rate of 𝛽 through contacts with infected
individuals (I). Infected individuals recover at a rate of 𝛾 . We will delineate
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epidemic models in the following chapters. For this SI epidemic model, we set
S0 = S(0), and define:

u = S(t)
S0

, v = I(t)
S0

, 𝜏 = 𝛾t.

Differentiating u with respect to 𝜏 gives:
du
d𝜏

= du
dt

.
dt
d𝜏

= d
dt

(
S
S0

)
.
1
𝛾
= 1

S0𝛾
(−𝛽SI)

= −𝛽
S0𝛾

(uS0)(vS0)

=
−𝛽S0

𝛾
uv.

Similarly, we have:
dv
d𝜏

= dv
dt

.
dt
d𝜏

= d
dt

(
I

S0

)
.
1
𝛾

= 1
S0𝛾

[𝛽SI − 𝛾I]

= 1
S0𝛾

[𝛽(uS0)(vS0) − 𝛾vS0]

=
𝛽S0

𝛾
uv − v =

(
𝛽S0u
𝛾

− 1
)

v.

If we define R0 = 𝛽S0

𝛾
, then the SI epidemic model reduces to:

du
d𝜏

= −R0uv,

dv
d𝜏

= (R0u − 1)v.

This simplified model, which depends on a single parameter R0, could help
us understand the behavior of the epidemic dynamics at the early stages of
disease onset (i.e., for t > 0 and sufficiently small). We note that at the early
stage of an epidemic, the number of infected individuals is small compared to
the size of the susceptible population. Thus, it is reasonable to assume that for
small t, S(t) ≈ S0 or u ≈ 1. This assumption can be used to solve the equation
v′ = (R0 − 1)v, representing the dynamics of the infected population at the
early stages of the epidemic. Solving this equation, with an initial value of
v0 = I(0)∕S(0) gives:

ln v(𝜏) − ln v0 = (R0 − 1)𝜏.
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Thus,
v(𝜏) = v0e(R0−1)𝜏 .

This solution suggests that v(𝜏) decreases if R0 < 1, and increases exponentially
if R0 > 1.

Exercises

1 Solve the following differential equations:
a) y′ = 𝜇y + x5, where 𝜇 ∈ ℝ is a constant.
b) y′′ − y = 2x + ex.
c) y′′ − y = x + sin x.

2 Solve the following differential equation for distinct roots if 𝛼 < 1, repeated
roots if 𝛼 = 1, and complex roots if 𝛼 > 1:

2y′′ − 2
√

2y′ + 𝛼y = − 1
𝛼x2 −

√
2

𝛼x
+ 1

2
ln x + 5,

for x > 0. Hint: define yp(x) = A ln x + B.

3 Find the values of a for which the following matrix is invertible:

A =
⎡⎢⎢⎣
0 1 a
1 3 0
0 2 2

⎤⎥⎥⎦ .
4 Find the eigenvalues and the corresponding eigenvectors of the matrix:

A =
⎡⎢⎢⎣
0 1 1
0 3 1
1 0 2

⎤⎥⎥⎦ .
5 Solve the linear system:⎡⎢⎢⎣

0 1 1
0 3 1
1 1 2

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0
1
2
3

⎤⎥⎥⎦ .
6 Consider the following differential equation:

mx′′(t) + kx(t) = 0, x(0) = a, x′(0) = b,

where m, k, a, and b are constant numbers. Use an appropriate change of
variables to scale this equation into an equation with dimensionless inde-
pendent and dependent variables.


