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Mathematical Foundations

The basic requirements of this book are the fundamental knowledge of func-
tions, basic calculus, and vector algebra. However, we will review here the most
relevant fundamentals of functions, vectors, differentiation, and integration.
Then, we will introduce some useful concepts such as eigenvalues, complexity,
convexity, probability distributions, and optimality conditions.

1.1 Functions and Continuity

1.1.1 Functions

Loosely speaking, a function is a quantity (say y) which varies with another
independent quantity or variable x in a deterministic way. For example, a simple
quadratic function is

y = x2. (1.1)

For any given value of x, there is a unique corresponding value of y. By varying
x smoothly, we can vary y in such a manner that the point (x, y) will trace out a
curve on the x–y plane (see Figure 1.1). Thus, x is called the independent vari-
able, and y is called the dependent variable or function. Sometimes, in order
to emphasize the relationship as a function, we use f (x) to express a generic
function, showing that it is a function of x. This can also be written as y = f (x).

The domain of a function is the set of numbers x for which the function f (x)
is valid (that is, f (x) gives a valid value for a corresponding value of x). If a
function is defined over a range a ≤ x ≤ b, we say its domain is [a, b] that is
called a closed interval. If both a and b are not included, we have a < x < b,
which is denoted by (a, b), and we call this interval an open interval. If b is
included, while a is not, we have a < x ≤ b, and we often write this half-open
and half-closed interval as (a, b]. Thus, the domain of function f (x) = x2 is the
whole set of all real numbers ℝ, so we have

f (x) = x2 (−∞ < x < +∞). (1.2)
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Figure 1.1 A simple quadratic function y = x2.

Here, the notation ∞ means infinity. In this case, the domain of f = x2 is all the
real numbers, which can be simply written as ℝ, that is, x ∈ ℝ.

All the values that a function can take for a given domain form the range of
the function. Thus, the range of y = f (x) = x2 is 0 ≤ y < +∞ or [0,+∞). Here,
the closed bracket “[” means that the value (here 0) is included as part of the
range, while the open round bracket “)” means that the value (here +∞) is not
part of the range.

1.1.2 Continuity

A function is called continuous if an infinitely small change 𝛿 of the indepen-
dent variable x always lead to an infinitely small change in f (x + 𝛿) − f (x). Alter-
natively, we can loosely view that the graph representing the function forms
a single piece, unbroken curve. More formally, we can say that for any small
change 𝛿 > 0 of the independent variable in the domain, there is an 𝜖 > 0 such
that |f (x + 𝛿) − f (x)| < 𝜖. (1.3)

This is the continuity condition. Obviously, functions such as x, |x|, and x2 are
all continuous.

If a function does not satisfy the continuity condition, then the function is
called discontinuous. For example, the Heaviside step function

H(x) =
{

1 if x ≥ 0,
0 if 0 < 0, (1.4)

is discontinuous at x = 0 as shown in Figure 1.2 where the solid dot means that
x = 0 is included in the right branch x ≥ 0, and the hollow dot means that it is
not included. In this case, this function is called a right-continuous function.

1.1.3 Upper and Lower Bounds

For a given non-empty set  ∈ ℝ of real numbers, we now introduce some
important concepts such as the supremum and infimum. A number U is called
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H (x)=1
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Figure 1.2 Discontinuity of the Heaviside step function at x = 0.

an upper bound for  if x ≤ U for all x ∈  . An upper bound 𝛽 is said to be the
least (or smallest) upper bound for  , or the supremum, if 𝛽 ≤ U for any upper
bound U . This is often written as

𝛽 ≡ sup
x∈

x ≡ sup ≡ sup(). (1.5)

All such notations are widely used in the literature of mathematical analysis.
Here, “≡” denotes both equality and definition, which means “is identical to.”

On the other hand, a number L is called a lower bound for  if x ≥ L for all
x in  (that is, for all x, denoted by ∀x ∈ ). A lower bound 𝛼 is referred to as
the greatest (or largest) lower bound if 𝛼 ≥ L for any lower bound L, which is
written as

𝛼 ≡ sup
x∈

x ≡ inf  ≡ inf(). (1.6)

In general, both the supremum 𝛽 and the infimum 𝛼, if they exist, may or may
not belong to  .

Example 1.1 For example, any numbers greater than 5, say, 7.2 and 500 are
an upper bound for the interval −2 ≤ x ≤ 5 or [−2, 5]. However, its smallest
upper bound (or sup) is 5. Similarly, numbers such as −10 and −105 are lower
bound of the interval, but −2 is the greatest lower bound (or inf). In addition,
the interval  = [15,∞) has an infimum of 15 but it has no upper bound. That
is to say, its supremum does not exist, or sup → ∞.

There is an important completeness axiom which says that if a non-empty set
 ∈ ℝ of real numbers is bounded above, then it has a supremum. Similarly, if
a non-empty set of real numbers is bounded below, then it has an infimum.

Furthermore, the maximum for  is the largest value of all elements s ∈  ,
and often written as max() or max , while the minimum, min() or min , is
the smallest value among all s ∈  . For the same interval [−2, 5], the maximum
of this interval is 5 which is equal to its supremum, while its minimum 5 is also
equal to its infimum. Though the supremum and infimum are not necessarily
part of the set  , however, the maximum and minimum (if they exist) always
belong to the set.

However, the concepts of supremum (or infimum) and maximum (or mini-
mum) are not the same, and maximum/minimum may not always exist.
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Example 1.2 For example, the interval  = [−2, 7) or −2 ≤ x < 7 has the
supremum of sup = 7, but  has no maximum.

Similarly, the interval (−10, 15] does not have a minimum, though its infi-
mum is −10. Furthermore, the open interval (−2, 7) has no maximum or min-
imum; however, its supremum is 7, and infimum is −2.

It is worth pointing out that the problems we will discuss in this book will always
have at least a maximum or a minimum.

1.2 Review of Calculus

1.2.1 Differentiation

The gradient or first derivative of a function f (x) at point x is defined by

f ′(x) ≡ df (x)
dx

= lim
𝛿→0

f (x + 𝛿) − f (x)
𝛿

. (1.7)

From the definition and basic function operations, it is straightforward to show
that

(xn)′ = nxn−1 (n = 1, 2, 3,…). (1.8)

In addition, for any two functions f (x) and g(x), we have

[af (x) + bg(x)]′ = af ′(x) + bg′(x), (1.9)

where a, b are two real constants. Therefore, it is easy to show that

(x3 − x + k)′ = (x3)′ − x′ + k′ = 3x2 − 1 + 0 = 3x2 − 1, (1.10)

where k is a constant. This means that a family of functions shifted by a dif-
ferent constant k will have the same gradient at the same point x, as shown in
Figure 1.3.

Some useful differentiation rules are the product rule

[f (x)g(x)]′ = f ′(x)g(x) + f (x)g′(x) (1.11)

and the chair rule
df [g(x)]

dx
=

df (g)
dg

⋅
dg(x)
dx

, (1.12)

where f (g(x)) is a composite function, which means that f is a function of g, and
g is a function of x.

Example 1.3 For example, from [sin(x)]′ = cos(x) and (x3)′ = 3x2, we have
d sin(x3)

dx
= cos(x3) ⋅ (3x2) = 3x2 sin(x3).
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y=x3–x+ 1
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Figure 1.3 The gradients of a family of curves y = x3 − x + k (where k = 0,±1) at any point
x are the same 3x2 − 1.

Similarly, we have
d sinn(x)

dx
= n sinn−1(x) ⋅ cos(x).

From the product rule (1.11), if we replace g(x) by 1∕g(x), we have
d[g(x)−1]

dx
= −1g−1−1 ⋅

dg(x)
dx

= − 1
[g(x)]2

dg(x)
dx

(1.13)

and
d[f (x)∕g(x)]

dx
=

d[f (x)g(x)−1]
dx

= f ′(x)g(x)−1 + f (x)
{

−1
[g(x)]2

dg(x)
dx

}
=

g(x)f ′(x) − f (x)g′(x)
[g(x)]2 ,

(1.14)

which is the well-known quotient rule. For example, we have
d tan(x)

dx
=

d[sin(x)∕ cos(x)]
dx

= cos(x) sin′(x) − sin(x) cos′(x)
cos2(x)

= cos2(x) + sin2(x)
cos2(x)

= 1
cos2(x)

. (1.15)

It is worth pointing out that a continuous function may not have well-defined
derivatives. For example, the absolute or modulus function

f (x) = |x| = {
x if x ≥ 0,
−x if x < 0, (1.16)

does not have a well-defined gradient at x because the gradient of |x| is +1 if x
approaches 0 from x > 0 (using notation 0+). However, if x approaches 0 from
x < 0 (using notation 0−), the gradient of |x| is −1. That is

d|x|
dx

|||x→0+
= +1, d|x|

dx
|||x→0−

= −1. (1.17)
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In this case, we say that |x| is not differentiable at x = 0. However, for x ≠ 0, we
can write

d|x|
dx

= x|x| (x ≠ 0). (1.18)

Example 1.4 A nature extension of this is that for a function f (x), we have

d| f (x)|
dx

=
f (x)| f (x)| df (x)

dx
, if f (x) ≠ 0. (1.19)

As an example, for f (x) = |x3|, we have

d|x3|
dx

= x3|x3| dx3

dx
= x3|x3| (3x2) = 3x5|x3|

= 3x5|x2| ⋅ |x| = 3x5

x2|x| = 3x3|x| , if x ≠ 0.

Higher derivatives of a univariate real function can be defined as

f ′′(x) ≡ d2f (x)
dx2 ≡ df ′(x)

dx
, f ′′′(x) = [ f ′′(x)]′, … , f (n)(x) =

dnf (x)
dxn , (1.20)

for all positive integers (n = 1, 2,…).

Example 1.5 The first, second, and third derivatives of f (x) = xe−x are

f ′(x) = x′e−x + x(e−x)′ = e−x + x(−1e−x) = e−x − xe−x,

f ′′(x) = [e−x − xe−x]′ = xe−x − 2e−x,

and

f ′′′(x) = [xe−x − 2e−x]′ = −xe−x + 3e−x.

For a continuous function f (x), if its first derivatives are well defined at every
point in the whole domain, the function is called differentiable or a continu-
ously differential function. A continuously differentiable function is said to be
class C1 if its first derivative exists and is continuous. Similarly, a function is
said to be class C2 if its both first and second derivatives exist, and are contin-
uous. This can be extended to class Ck in a similar manner. If the derivatives of
all orders (all positive integers) everywhere in its domain, the function is called
smooth.

It is straightforward to check that f (x) = x, sin(x), exp(x), and xe−x are all
smooth functions, but |x| and |x|e−|x| are not smooth. Some of these functions
are shown in Figure 1.4.
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Figure 1.4 Smooth functions (left) and non-smooth (but continuous) functions (right).

1.2.2 Taylor Expansions

In numerical methods and some mathematical analysis, series expansions make
some calculations easier. For example, we can write the exponential function ex

as a series about x0 = 0 as

ex = 𝛼0 + 𝛼1x + 𝛼2x2 + 𝛼3x3 + · · · + 𝛼nxn. (1.21)

Now let us try to determine these coefficients. At x = 0, we have

e0 = 1 = 𝛼0 + 𝛼1 × 0 + 𝛼2 × 02 + · · · + 𝛼n × 0n = 𝛼0, (1.22)

which gives 𝛼0 = 1. In order to reduce the power or order of the expansion so
that we can determine the next coefficient, we first differentiate both sides of
Eq. (1.21) once; we have

ex = 𝛼1 + 2𝛼2x + 3𝛼3x2 + · · · + n𝛼nxn−1. (1.23)

By setting again x = 0, we have

e0 = 1 = 𝛼1 + 2𝛼2 × 0 + · · · + n𝛼n × 0n−1 = 𝛼1, (1.24)

which gives 𝛼1 = 1. Similarly, differentiating it again, we have

ex = (2 × 1) × 𝛼2 + 3 × 2𝛼3x + · · · + n(n − 1)𝛼nxn−2. (1.25)

At x = 0, we get

e0 = (2 × 1) × 𝛼2 + 3 × 2𝛼3 × 0 + · · · + n(n − 1)𝛼n × 0n−2 = 2𝛼2, (1.26)

or 𝛼2 = 1∕(2 × 1) = 1∕2!. Here, 2! = 2 × 1 is the factorial of 2. In general, the
factorial n! is defined as n! = n × (n − 1) × (n − 2) × · · · × 2 × 1.

Following the same procedure and differentiating it n times, we have

ex = n!𝛼n, (1.27)

and x = 0 leads to 𝛼n = 1∕n!. Therefore, the final series expansion can be writ-
ten as

ex = 1 + x + 1
2!

x2 + 1
3!

x3 + · · · + 1
n!

xn + · · · , (1.28)
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Figure 1.5 Expansion and approximations for f (x) = f (x0 + h), where h = x − x0.

which is an infinite series. Obviously, we can follow a similar process to expand
other functions. We have seen here the importance of differentiation and
derivatives.

If we know the value of f (x) at x0, we can use some approximations in a small
interval h = x − x0 (see Figure 1.5). Following the same idea as Eq. (1.21), we
can first write the approximation in the following general form:

f (x) = a0 + a1(x − x0) + a2(x − x0)2 + · · · + an(x − x0)n, (1.29)

and then try to figure out the unknown coefficients ai(i = 0, 1, 2,…). For the
above approximation to be valid at x = x0, we have

f (x0) = a0 + 0 (all the other terms are zeros), (1.30)

so that a0 = f (x0).
Now let us first take the first derivative of Eq. (1.29),

f ′(x) = 0 + a1 + 2a2(x − x0) + · · · + nan(x − x0)n−1. (1.31)

By setting x = x0, we have

f ′(x0) = 0 + a1 + 0 + · · · + nan × 0, (1.32)

which gives

a1 = f ′(x0). (1.33)

Similarly, we differentiate Eq. (1.29) twice with respect to x and we have

f ′′(x) = 0 + 0 + a2 × 2 × 1 + · · · + n(n − 1)an(x − x0)2. (1.34)

Setting x = x0, we have

f ′′(x0) = 2!a2, or a2 =
f ′′(x0)

2!
. (1.35)

Following the same procedure, we have

a3 =
f ′′′(x0)

3!
, a4 =

f ′′′′(x0)
4!

, … , an =
f (n)(x0)

n!
. (1.36)
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Thus, we finally obtain

f (x) = f (x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)2

+
f ′′′(a)

3!
(x − x0)3 + · · · +

f (n)(x0)
n!

(x − x0)n, (1.37)

which is the well-known Taylor series.
In a special case when x0 = 0 and h = x − x0 = x, the above Taylor series

becomes zero centered, and such expansions are traditionally called Maclaurin
series

f (x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3 + · · · +
f (n)

n!
xn + · · · , (1.38)

named after mathematician Colin Maclaurin.
In theory, we can use as many terms as possible, but in practice, the series

converges very quickly and only a few terms are sufficient. It is straightforward
to verify that the exponential series for ex is identical to the results given earlier.
Now let us look at other examples.

Example 1.6 Let us expand f (x) = sin x about x0 = 0. We know that

f ′(x) = cos x, f ′′(x) = − sin x, f ′′′(x) = − cos x, … ,

or f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1, f ′′′′(0) = 0,… , which means that

sin x = sin 0 + xf ′(0) +
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3 + · · ·

= x − x3

3!
+ x5

5!
+ · · · ,

where the angle x is in radians.
For example, we know that sin 30∘ = sin(𝜋∕6) = 1∕2. We now use the expan-

sion to estimate it for x = 𝜋∕3 = 0.523 598,

sin 𝜋
6
≈ 𝜋

6
−

(𝜋∕6)3

3!
+

(𝜋∕6)5

5!
≈ 0.523 599 − 0.023 92 + 0.000 032 8 ≈ 0.500 002 132 6,

which is very close to the true value 1∕2.

If we continue the process to infinity, we then reach the infinite power series
and the error f (n)(0)xn∕n! becomes negligibly small if the series converges. For
example, some common series are

1
1 − x

= 1 + x + x2 + x3 + · · · + xn + · · · , x ∈ (−1, 1), (1.39)

sin x = x − x3

3!
+ x5

5!
− · · · , cos x = 1 − x2

2!
+ x4

4!
− · · · , x ∈ ℝ,

(1.40)
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tan(x) = x + x3

3
+ 2x5

15
+ 17x7

315
+ · · · , x ∈

(
−𝜋

2
,
𝜋

2

)
, (1.41)

and

ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ x5

5
− · · · , x ∈ (−1, 1]. (1.42)

As an exercise, we leave the reader to prove the above series.

1.2.3 Partial Derivatives

For multivariate functions, we can define the partial derivatives with respect
to an independent variable by assuming that other independent variables are
constants. For example, for a function f (x, y) with two independent variables,
we can define

𝜕f (x, y)
𝜕x

≡ 𝜕f
𝜕x

≡ 𝜕f
𝜕x

|||y = lim
𝛿→0,y=constant

f (x + 𝛿, y) − f (x, y)
𝛿

, (1.43)

and
𝜕f (x, y)
𝜕y

≡ 𝜕f
𝜕y

≡ 𝜕f
𝜕y

|||x = lim
𝛿→0,x=constant

f (x, y + 𝛿) − f (x, y)
𝛿

. (1.44)

Similar to the ordinary derivatives, partial derivative operations are also linear.

Example 1.7 For f (x, y) = x2 + y3 + 3xy2, its partial derivatives are
𝜕f
𝜕x

= 𝜕x2

𝜕x
+
𝜕y3

𝜕x
+
𝜕(3xy2)
𝜕x

= 2x + 0 + 3y2 = 2x + 3y2,

where we have treated y as a constant and also used the fact that dy∕dx = 0
because x and y are both independent variables. Similarly, we have

𝜕f
𝜕y

= 𝜕x2

𝜕y
+
𝜕y3

𝜕y
+
𝜕(3xy2)
𝜕y

= 0 + 3y2 + 3x(2y) = 3y2 + 6xy.

We can define higher-order derivatives as
𝜕2f
𝜕x2 = 𝜕

𝜕x

(
𝜕f
𝜕x

)
,

𝜕2f
𝜕y2 = 𝜕

𝜕y

(
𝜕f
𝜕y

)
, (1.45)

and
𝜕2f
𝜕x𝜕y

=
𝜕2f
𝜕y𝜕x

= 𝜕

𝜕x

(
𝜕f
𝜕y

)
= 𝜕

𝜕y

(
𝜕f
𝜕x

)
. (1.46)

Let us revisit the previous example.

Example 1.8 For f (x, y) = x2 + y3 + 3xy2, we have
𝜕2f
𝜕x2 =

𝜕(2x + 3y2)
𝜕x

= 2 + 0 = 2,
𝜕2f
𝜕y2 =

𝜕(3y2 + 6xy)
𝜕y

= 6y + 6x.
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In addition, we have
𝜕2f
𝜕x𝜕y

=
𝜕(3y2 + 6xy)

𝜕x
= 0 + 6y = 6y,

or
𝜕2f
𝜕y𝜕x

=
𝜕(2x + 3y2)

𝜕y
= 0 + 3(2y) = 6y,

which shows that
𝜕2f
𝜕x𝜕y

=
𝜕2f
𝜕y𝜕x

.

Other higher-order partial derivatives can be defined in a similar manner.

1.2.4 Lipschitz Continuity

A very important concept related to optimization and convergence analysis is
the Lipschitz continuity of a function f (x),

|f (x1) − f (x2)| ≤ L|x1 − x2|, (1.47)

for any x1 and x2 in the domain of f (x). Here, L ≥ 0 is called the Lipschitz con-
stant or the modulus of uniform continuity, which is independent of x1 and x2.
This is equivalent to that case that the absolute derivative is finite, that is|f (x1) − f (x2)||x1 − x2| ≤ L <∞, (1.48)

which limits the rate of change of function. This means the small change in the
independent variable (input) can lead to the arbitrarily small change in the func-
tion (output). However, when the Lipschitz constant is sufficiently large, a small
change in x could lead to a much larger change in f (x), but this Lipschitz esti-
mate is an upper bound and the actual change can be much smaller. Therefore,
any function with a finite or bounded first derivative is Lipschitz continuous.
For example, sin(x), cos(x), x and x2 are all Lipschitz, while the binary step func-
tion H(x) = 1 if x ≥ 0 (otherwise H(x) = 0 if x < 0) is not Lipschitz at x = 0.

For example, function f (x) = 3x2 is Lipschitz continuous in the domain
Q = [−5, 5]. For any x1, x2 ∈ Q, we have

|f (x1) − f (x1)| = |3x2
1 − 3x2

2| = 3|(x2
1 − x2

2)| = 3|x1 + x2| ⋅ |x1 − x2|.
(1.49)

Since |x1 + x2| ≤ |x1| + |x2| ≤ 5 + 5 = 10, we have

|f (x1) − f (x2)| ≤ 30|x1 − x2|, (1.50)
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which means that the Lipschitz constant is 30. It is worth pointing out that
L = 30 is the just one lower value. We can also use L = 50 or L = 100 such as

|f (x1) − f (x2) ≤ 100|x1 − x2|. (1.51)

Though Lipschitz constant should not depend on x1 and x2, it may depend on
the size of the domain when we try to derive this constant.

1.2.5 Integration

Integration is a reverse operation of differentiation. For a univariate function
f (x), the meaning of its integral over a finite interval [a, b] is the area enclosed
by the curve f (x) and the x-axis

I = ∫
b

a
f (x)dx, (1.52)

where a and b are the integration limits, and f (x) is called the integrand. It
is worth pointing out that the area above the x-axis is considered as positive,
while the area under the x-axis is negative. If there is a function F(x) whose first
derivative is f (x) (i.e. F ′(x) = f (x)) in the same interval [a, b], we can write

∫
b

a
f (x)dx = F(x)|||ba = F(b) − F(a). (1.53)

The above integral is a definite integral with fixed integral limits. If there are no
specific integration limits involved in the integral, we can, in general, write it as

∫ f (x)dx = F(x) + C, (1.54)

which is an indefinite integral and C is the unknown integration constant. This
integral constant comes from the fact that a function or curve shifted by a con-
stant will have the same gradient.

One of the integration limits (or both) can be infinite.

Example 1.9 For example, we have

∫
∞

0
e−xdx. (1.55)

Since [−e−x]′ = e−x, we have F(x) = −e−x, f (x) = e−x, and F ′(x) = f (x). Thus, we
get

∫
∞

0
e−xdx = [−e−x]|||∞0 = (−e−∞) − (−e−0) = −0 − (−1) = 1. (1.56)
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A very useful formula that can be derived from the product rule of differen-
tiation [u(x)v(x)]′ = u′(x)v(x) + u(x)v(x) is the integration by parts

∫
d[u(x)v(x)]

dx
dx = ∫ [u′(x)v(x) + u(x)v′(x)]dx

= ∫ v(x)u′(x)dx + ∫ u(x)v′(x)dx, (1.57)

which leads to

∫ u′(x)v(x)dx = u(x)v(x) − ∫ u(x)v′(x)dx. (1.58)

Ignoring the integration constants, the above formula can be written in a more
compact form as

∫ vdu = uv − ∫ udv. (1.59)

Similarly, its corresponding definite integral becomes

∫
b

a
vdu = (uv)|||ba − ∫

b

a
udv. (1.60)

Let us look at an example.

Example 1.10 To evaluate the integral

I = ∫
∞

0
xe−xdx,

we have v(x) = x and u′(x) = e−x, which leads to

dv = dx, v′(x) = 1, u(x) = −e−x.

From the formula of integration by parts, we have

I = ∫
∞

0
xe−xdx =

[
x(−e−x)

]∞
0 − ∫

∞

0
1 ⋅ (−e−x)dx

= −(∞)e−∞ − [−0e−0] + ∫
∞

0
e−x = 0 + 0 + ∫

∞

0
e−xdx = 1,

where we have used the earlier result in Eq. (1.56) and the fact that

lim
K→∞

Ke−K → 0.

The multiple integral of a multivariate function can be defined in a similar man-
ner. For example, for a function of f (x, y) of two independent variables x and y,
its double integral can be defined as

I = ∫ ∫ f (x, y)dxdy. (1.61)
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In a rectangular domain D = [a, b] × [c, d] (that is a ≤ x ≤ b and c ≤ y ≤ d), the
following integral means the volume enclosed by the surface f (x, y) over the
rectangular domain. We have

I = ∫ ∫D
f (x, y)dxdy = ∫

d

c

[
∫

b

a
f (x, y)dx

]
dy, (1.62)

which is the same as

I = ∫
b

a

[
∫

d

c
f (x, y)dy

]
dx, (1.63)

due to Fubini’s theorem that is valid when

∫ ∫D
|f (x, y)|dxdy < ∞. (1.64)

As integration is not quite relevant to most optimization techniques, we will
not discuss integration any further. We will introduce more whenever needed
in later chapters. In the rest of the chapter, we will review the vector algebra
and eigenvalues of matrices before we move onto the introduction of optimality
conditions.

1.3 Vectors

Loosely speaking, a vector is a quantity with a magnitude and a direction in
practice. However, mathematically speaking, a vector can be represented by a
set of ordered scalars or numbers. For example, a three-dimensional vector in
the Cartesian coordinates can be written as

a =
⎛⎜⎜⎝

a1
a2
a3

⎞⎟⎟⎠ =
⎛⎜⎜⎝

x
y
z

⎞⎟⎟⎠, (1.65)

where a1, a2, a3 (or x, y, z) are its three components, along x-, y-, and z-axes,
respectively. A vector is usually denoted in a lowercase boldface. Here, we write
the component as a column vector. Alternatively, a vector can be equally rep-
resented by a row vector in the form:

a =
(

a1 a2 a3
)
=
(

x y z
)
. (1.66)

A column vector can be converted into a row vector by a simple transpose
(using notation T as a superscript to denote this operation) or vice versa. We
have

(
a1 a2 a3

)T =
⎛⎜⎜⎝

a1
a2
a3

⎞⎟⎟⎠ or
⎛⎜⎜⎝

x
y
z

⎞⎟⎟⎠
T

=
(

x y z
)
. (1.67)
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The magnitude or length of a three-dimensional vector is its Cartesian norm

|a| = √
a2

1 + a2
2 + a2

3 =
√

x2 + y2 + z2. (1.68)

1.3.1 Vector Algebra

In general, a vector in an n-dimensional space (n ≥ 1) can be written as a col-
umn vector

x =
⎛⎜⎜⎜⎝

x1
x2
⋮
xn

⎞⎟⎟⎟⎠ (1.69)

or a row vector

x =
(

x1 x2 … xn
)
. (1.70)

Its length can be written as

||x|| = √
x2

1 + x2
2 + · · · + x2

n, (1.71)

which is the Euclidean norm.
The addition or substraction of two vectors u and v are the addition or sub-

straction of their corresponding components, that is

u ± v =
⎛⎜⎜⎜⎝

u1
u2
⋮
un

⎞⎟⎟⎟⎠ ±
⎛⎜⎜⎜⎝

v1
v2
⋮
vn

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

u1 ± v1
u2 ± v2

⋮
un ± vn

⎞⎟⎟⎟⎠. (1.72)

The dot product, also called the inner product, of two vectors u and v is
defined as

uTv ≡ u ⋅ v =
n∑

i=1
uivi = u1v1 + u2v2 + · · · + unvn. (1.73)

1.3.2 Norms

For an n-dimensional vector x, we can define a p-norm or Lp-norm (also
Lp-norm) as

||x||p ≡ (|x1|p + |x2|p + · · · + |xn|p)1∕p =

( n∑
i=1

|xi|p)1∕p

(p > 0).

(1.74)
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Obviously, the Cartesian norm or length is an L2-norm

||x||2 =
√|x1|2 + |x2|2 + · · · + |xn|2 =

√
x2

1 + x2
2 + · · · + x2

n. (1.75)

Three most widely used norms are p = 1, 2, and ∞. When p = 2, it becomes
the Cartesian L2-norm as discussed above. When p = 1, the L1-norm is given by

||x||1 = |x1| + |x2| + · · · + |xn|. (1.76)

For p = ∞, it becomes

||x||∞ = max{|x1|, |x2|,… , |xn|} = xmax, (1.77)

which is the largest absolute component of x. This is because

||x||∞ = lim
p→∞

( p∑
i=1

|xi|p)1∕p

= lim
p→∞

(|xmax|p n∑
i=1

||| xi

xmax

|||p
)1∕p

= xmax lim
p→∞

( n∑
i=1

|| xi

xmax

||
)1∕p

= xmax, (1.78)

where we have used the fact that |xi∕xmax| < 1 (except for one component,
say, |xk| = xmax). Thus, limp→∞ |xi∕xmax|p → 0 for all i ≠ k. Thus, the sum of all
ratio terms is 1. That is(

lim
p→∞

||| xi

xmax

|||p
)1∕p

= 1. (1.79)

In general, for any two vectors u and v in the same space, we have the following
equality:

||u||p + ||v||p ≥ ||u + v||p (p ≥ 0). (1.80)

Example 1.11 For two vectors u = [1 2 3]T and v = [1 − 2 − 1]T, we
have

uTv = 1 × 1 + 2 × (−2) + 3 × (−1) = −6,||u||1 = |1| + |2| + |3| = 6, ||v||1 = |1| + | − 2| + | − 1| = 4,

||u||2 =
√

12 + 22 + 32 =
√

14, ||v||2 =
√

12 + (−2)2 + (−1)2 =
√

6,||u||∞ = max{|1|, |2|, |3|} = 3, ||v||∞ = max{|1|, | − 2|, | − 1|} = 2,

and

w = u + v =
[

1 + 1 2 + (−2) 3 + (−1)
]T =

[
2 0 2

]T
whose norms are||w||1 = |2| + |0| + |2| = 2, ||w||∞ = max{|2|, |0|, |2|} = 2,
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p=
1

p=∞
p=

2
p= 1
2

p=4

Figure 1.6 Different p-norms for p = 1, 2, and ∞ (left) as well as p = 1∕2 and p = 4 (right).

||w||2 =
√

22 + 02 + 22 =
√

8.

Using the above values, it is straightforward to verify that||u||p + ||v||p ≥ ||u + v||p (p = 1, 2,∞).

1.3.3 2D Norms

To get a clearer picture about the differences between different norms, we now
focus on the vectors in the two-dimensional (2D) Cartesian coordinates (x, y).
For u = (x, y)T, we have

||u||p = (|x|p + |y|p)1∕p (p > 0). (1.81)

Obviously, in special cases of p = 1, 2,∞, we have

||u||1 = |x| + |y|, ||u||2 =
√

x2 + y2, ||u||∞ = max{|x|, |y|}. (1.82)

In order to show the main differences, we can let −1 ≤ x, y ≤ 1 and thus the
2-norm becomes a unit circle x2 + y2 = 1. All the other norms with different
p values can be plotted around this unit circle, as shown in Figure 1.6.

1.4 Matrix Algebra

1.4.1 Matrices

A matrix is a rectangular array of numbers such as

A =
(

1 2 3
4 5 6

)
, B =

(
7 8
−1 3.7

)
. (1.83)

Matrix A has two rows and three columns, thus its size is said to be 2 × 3 or 2
by 3. The element in the first row and first column is a11 = 1, and the element
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in the second row and third column is a23 = 6. Similarly, matrix B has a size of
2 × 2.

It is customary to use a boldface uppercase letter to represent a matrix, while
its element is written in a corresponding lowercase letter. Thus, a matrix A of
size m × n can, in general, be written as

A = [aij] =
⎛⎜⎜⎜⎝

a11 a12 … a1n
a21 a22 … a2n
⋮ ⋮ ⋱ ⋮

am1 am2 … amn

⎞⎟⎟⎟⎠, [aij] ∈ ℝm×n, (1.84)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. It is worth pointing out that a vector can be consid-
ered as a special case of matrices, and thus matrices are the natural extension of
vectors. Here, we assume that all the numbers are real numbers, that is aij ∈ ℝ,
which is most relevant to the contents in this book. In general, the entries in a
matrix can be complex numbers. Here, we have used ℝm×n to denote the fact
that all the elements in A span a space with a dimensionality of m × n.

The transpose or transposition of an m × n matrix A = [aij] is obtained by
turning columns into rows and vice versa. This operation is denoted by T or
AT. That is

AT = [aij]T = [aji] =
⎛⎜⎜⎜⎝

a11 a21 … am1
a12 a22 … am2
⋮ ⋮ ⋱ ⋮

a1n a2n … amn

⎞⎟⎟⎟⎠, [aji] ∈ ℝn×m. (1.85)

In a special case when m = n, the matrix becomes a square matrix. If a trans-
pose of a square matrix A is equal to itself, the matrix is said to be symmetric.
That is

AT = A or aij = aji, (1.86)

for all 1 ≤ i, j ≤ n.
For a square matrix A = [aij] ∈ ℝn×n, its diagonal elements are

aii(i = 1, 2,… , n). The trace of the matrix is the sum of all its diagonal elements

tr(A) = a11 + a22 + · · · + ann =
n∑

i=1
aii. (1.87)

A special and useful square matrix [aij] is the identity matrix where the
diagonal elements are one (aii = 1) and all other elements are zero (aij = 0 if
i ≠ j). That is

I =

⎛⎜⎜⎜⎜⎝
1 0 0 … 0
0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ 0
0 0 0 … 1

⎞⎟⎟⎟⎟⎠
. (1.88)
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Addition or subtraction of two matrices is possible only if they are of the same
size. For example, if A = [aij] and B = [bij] where 1 ≤ i ≤ m and 1 ≤ j ≤ n, we
have

A ± B = [aij] ± [bij] = [aij ± bij]

=
⎛⎜⎜⎜⎝

a11 ± b11 a12 ± b12 … a1n ± b1n
a21 ± b21 a22 ± b22 … a2n ± b2n

⋮ ⋮ ⋱ ⋮
am1 ± bm1 am2 ± bm2 … amn ± bmn

⎞⎟⎟⎟⎠. (1.89)

Example 1.12 For matrices A =
(

2 3 −1
1 2 5

)
, B =

(
1 2
2 3

)
, and

D =
(

1 1 1
2 −1 0

)
we have

A + D =
(

2 3 −1
1 2 5

)
+
(

1 1 1
2 −1 0

)
=
(

2 + 1 3 + 1 −1 + 1
1 + 2 2 + (−1) 5 + 0

)
=
(

3 4 0
3 1 5

)
.

The transpose of these matrices are

AT =
⎛⎜⎜⎝

2 1
3 2
−1 5

⎞⎟⎟⎠, DT =
⎛⎜⎜⎝

1 2
1 −1
1 0

⎞⎟⎟⎠, BT =
(

1 2
2 3

)
= B,

which means that the square matrix B is symmetric. In addition, the trace of B
is tr(B) = 1 + 3 = 4.

The multiplication of two matrices requires a special condition that the number
of columns of the first matrix must be equal to the number of rows of the second
matrix. If A has an m × n matrix and B is an n × p matrix, then the production
C = AB is an m × p matrix. The element cij is obtained by the dot product of
the ith row of A and the jth column of B. That is

cij = ai1b1j + ai2b2j + · · · + ainbnj =
n∑

k=1
aikbkj. (1.90)

Let us look at an example.



Trim Size: 152mm x 229mm Single Column Xin-She Yang book.tex V1 - 07/28/2018 7:19pm Page 22�

� �

�

22 Part I Fundamentals

Example 1.13 For A =
⎛⎜⎜⎝

1 2
3 4
5 6

⎞⎟⎟⎠ and B =
(

1 −1
−2 5

)
, we have C = AB so that

c11 =
(

1 2
)( 1

−2

)
= 1 × 1 + 2 × (−2) = −3,

c12 =
(

1 2
)(−1

5

)
= 1 × (−1) + 2 × 5 = 9,

c21 =
(

3 4
)( 1

−2

)
= −5, c22 =

(
3 4

)(−1
5

)
= 17,

c31 =
(

5 6
)( 1

−2

)
= −7, c32 =

(
5 6

)(−1
5

)
= 25.

Thus, we have

C = AB =
⎛⎜⎜⎝
−3 9
−5 17
−7 25

⎞⎟⎟⎠.
However, BA does not exist because it is not possible to carry out the mul-
tiplication. In general, AB ≠ BA even if they exist, which means that matrix
multiplication is not commutative.

It is straightforward to show that

(AB)T = BTAT
. (1.91)

Example 1.14 Let us revisit the previous example. We know that

AT =
(

1 3 5
2 4 6

)
, BT =

(
1 −2
−1 5

)
.

Thus, we have

BTAT =
(

1 −2
−1 5

)(
1 3 5
2 4 6

)
=
(
−3 −5 −7
9 17 25

)
=
⎛⎜⎜⎝
−3 9
−5 17
−7 25

⎞⎟⎟⎠ = (AB)T.

For a square matrix A and an identity matrix I of the same size, it is straight-
forward to check that

AI = IA = A. (1.92)
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For a square matrix of size n × n, if there exists another unique matrix B of the
same size satisfying

AB = BA = I, (1.93)

then B is called the inverse matrix of A. Here, I is an n × n identity matrix. In
this case, we often denote B = A−1, which means

AA−1 = A−1A = I. (1.94)

In general, A−1 may not exist or be unique. One useful test condition is the
determinant to be introduced next.

In addition, in a special case when the inverse of A is the same as its transpose
AT (i.e. A−1 = AT), then A is said to be orthogonal, which means

AAT = AA−1 = I, A−1 = AT. (1.95)

It is easy to check that the rotation matrix

R =
(

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)
(1.96)

is orthogonal because R−1 =
(

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)
= RT.

1.4.2 Determinant

The determinant of a square matrix A is just a number, denoted by det(A). In
the simplest case, for a 2 × 2 matrix, we have

det(A) = det
|||| a b

c d
|||| = ad − bc. (1.97)

For a 3 × 3 matrix, we have

det(A) = det
|||||||

a11 a12 a13
a21 a22 a23
a31 a32 a33

|||||||
= a11 det

||||| a22 a23
a32 a33

||||| − a12 det
||||| a21 a23

a31 a33

||||| + a13 det
||||| a21 a22

a31 a32

|||||
= a11(a22a33 − a32a23) − a12(a21a33 − a31a23) + a13(a21a32 − a31a22).

(1.98)

In general, the determinant of a matrix can be calculated using a recursive
formula such as the Leibniz formula or the Laplace expansion with the adjugate
matrices. Interested readers can refer to more advanced literature on this topic.
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A square matrix A can have a unique inverse matrix if det(A) ≠ 0. Otherwise,
the matrix is called singular and not invertible. For an invertible 2 × 2 matrix

A =
(

a b
c d

)
, (1.99)

its inverse can be conveniently calculated by

A−1 = 1
det(A)

(
d −b
−c a

)
= 1

ad − bc

(
d −b
−c a

)
, ad − bc ≠ 0. (1.100)

As an exercise, we leave the reader to show that this is true.

1.4.3 Rank of a Matrix

The rank of a matrix A is a useful concept, and it is the maximum number of
linearly independent columns or rows. For example, the rank of matrix

A =
⎛⎜⎜⎝

1 2 3
1 1 0
2 3 3

⎞⎟⎟⎠ (1.101)

is 2 because there first two rows are independent, and the third row is the sum
of the first two rows. We can write it as

rank(A) = 2. (1.102)

In some specialized literature, the number of linearly independent rows of A
is called row rank, while the number of linearly independent columns if called
column rank. It can be proved that the row rank is always equal to the column
rank for the same matrix. In general, for an m × n matrix A, we have

rank(A) ≤ min{m, n}. (1.103)

When the equality holds (i.e. rank(A) = min{m,m}), the matrix is said to be
full rank. Thus, the following matrices

C =
⎛⎜⎜⎝

1 2 3 4
1 1 2 2
2 3 4 5

⎞⎟⎟⎠, D =
⎛⎜⎜⎝

1 2
3 4
3 7

⎞⎟⎟⎠ (1.104)

are all full rank matrices because their ranks are 3 and 2, respectively.
For an n × n matrix, it becomes a full rank matrix if its rank is n. A useful

full rank test is that the determinant of A is not zero. That is det(A) ≠ 0. For
example, matrix

B =
⎛⎜⎜⎝

1 2 3
1 1 0
2 3 7

⎞⎟⎟⎠ (1.105)

is a full rank matrix because rank(B) = 3 and det(B) = −4.
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There are a few methods such as the Gauss elimination can be used to com-
pute the rank of a matrix. Readers can refer to more advanced literature on this
topic.

1.4.4 Frobenius Norm

Similar to the norms for vectors, there are also various ways to define norms
for a matrix. For a matrix of size m × n, the Frobenius norm is defined by

||A||F =
√√√√ m∑

i=1

n∑
j=1

|aij|2, (1.106)

which is equivalent to

||A||F = √
tr(ATA) =

√
diag(ATA). (1.107)

The maximum absolute column sum norm is defined by

||A||1 = max
1≤j≤n

m∑
i=1

|aij|. (1.108)

Similarly, the maximum absolute row sum norm is defined by

||A||∞ = max
1≤i≤m

n∑
j=1

|aij|. (1.109)

Example 1.15 For A =
(

1 −2 3
−5 0 7

)
, we have

||A||1 = max{|1| + | − 5|, | − 2| + |0|, |3| + |7|} = max{6, 2, 10} = 10,||A||∞ = max{|1| + | − 2| + |3|, | − 5| + |0| + |7|} = max{6, 12} = 12,

and ||A||F = √|1|2 + | − 2|2 + |3|2 + | − 5|2 + |0|2 + |7|2 =
√

88.

Other norms can also be defined for different applications.

1.5 Eigenvalues and Eigenvectors

An eigenvalue 𝜆 of a square matrix A is defined by

Au = 𝜆u, (1.110)

where a nonzero eigenvector u exists for a corresponding 𝜆. An n × n matrix
can have at most n different eigenvalues and thus n corresponding eigenvectors.
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Multiplying the above Eq. (1.110) by an identity n × n matrix I , we have

IAu = I𝜆u = (𝜆I)u, (1.111)

which becomes

IAu − (𝜆I)u = (A − 𝜆I)u = 0, (1.112)

where we have used IA = A. In order to obtain a non-trial solution u ≠ 0, it is
thus required that the matrix A − 𝜆I is not invertible. In other words, its deter-
minant should be zero. That is

det(A − 𝜆I) = 0, (1.113)

which is equivalent to a polynomial of order n. Such a polynomial is called the
characteristic polynomial of A. All the eigenvalues form a set, called the spec-
trum of matrix A.

Example 1.16 The eigenvalue of A =
(

a b
b a

)
can be calculated by

det(A − 𝜆I) = det
|||| a − 𝜆 b

b a − 𝜆
|||| = 0,

which leads to

(a − 𝜆)2 − b2 = 0,

or

a − 𝜆 = ±b.

Thus, we have

𝜆1 = a + b, 𝜆2 = a − b.

For example, if A =
(

2 3
3 2

)
, we have

𝜆1 = 5, 𝜆2 = −1.

The trace of A is tr(A) = 2 + 2 = 4. Here, the sum of both eigenvalues are 𝜆1 +
𝜆2 = 5 + (−1) = 4, which means that tr(A) = 𝜆1 + 𝜆2.

In general, if a square matrix has n different eigenvalues 𝜆i(i = 1, 2,… , n), we
have

tr(A) =
n∑

i=1
aii =

n∑
i=1
𝜆i. (1.114)

Let us look at another example.
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Example 1.17 For A =
(

1 2
−3 8

)
, its eigenvalues can be obtained by

det(A − 𝜆I) = det
|||| 1 − 𝜆 2

−3 8 − 𝜆
|||| = 0,

which gives

(1 − 𝜆)(8 − 𝜆) − 2 × (−3) = 0,

or

𝜆2 − 9𝜆 + 14 = (𝜆 − 2)(𝜆 − 7) = 0.

Thus, the two eigenvalues are

𝜆1 = 2, 𝜆2 = 7.

The eigenvector u = (a b)T corresponding to 𝜆1 = 2 can be obtained by the
original definition

Au = 𝜆1u,

or (
1 2
−3 8

)(
a
b

)
= 2

(
a
b

)
.

This is equivalent to two equations{
a + 2b = 2a,
−3a + 8b = 2b.

Both equations give a = 2b, which means that they are not linear independent
because one can be obtained by the other via some minor algebraic manipula-
tions. This means that we can determine the direction of the eigenvector, not
the magnitude uniquely. In some textbooks, it is assumed that the magnitude of
an eigenvector should be one. That is ||u||2 = 1 =

√
a2 + b2. However, in many

textbooks and many software packages, they usually assume that the first com-
ponent is 1, which makes subsequent calculations much easier. Thus, we can
set a = 1, thus b = 1∕2. The eigenvector for eigenvalue 2 becomes

u1 =
(

1
1
2

)
.

Similarly, the eigenvector u2 = [c d]T for 𝜆2 = 7 can be obtained by(
1 2
−3 8

)(
c
d

)
= 7

(
c
d

)
.
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As both equations lead to d = 3c, we impose c = 1, which means d = 3. Thus,
the eigenvector u2 for 𝜆2 = 7 is

u2 =
(

1
3

)
.

It is worth pointing out that the eigenvectors−u1 and−u2 for 𝜆1 and 𝜆2, respec-
tively, are equally valid.

In addition, in some textbooks and many software packages, the unity of the
eigenvectors is used, instead of setting the first component as 1. In this case,
the above vectors are multiplied by a normalization or scaling constant (usually
the length or magnitude). Therefore, in the above example, the eigenvectors can
also be written equivalently as

u1 = 1√
5

(
2
1

)
, u2 = 1√

10

(
1
3

)
. (1.115)

A useful theorem is that if a square matrix is real and symmetric
AT = A ∈ ℝn×n, all its eigenvalues are real, and eigenvectors correspond-
ing to distinct eigenvalues are orthogonal. That is, if v1 and v2 are two
eigenvectors for 𝜆1 ≠ 𝜆2, respectively, we have vT1 v2 = v1 ⋅ v2 = 0.

However, eigenvalues for real symmetric matrices may not be distinct. For

example, both eigenvalues of I =
(

1 0
0 1

)
are 1, and they are not distinct.

1.5.1 Definiteness

A square symmetric matrix A (i.e. AT = A) is said to be positive definite if all
its eigenvalues are strictly positive (𝜆i > 0, where i = 1, 2,… , n). By multiplying
both sides of Au = 𝜆u by uT, we have

uTAu = uT𝜆u = 𝜆uTu, (1.116)

which leads to

𝜆 = uTAu
uTu

. (1.117)

Since uTu = ||u||22 > 0, this means that

uTAu > 0, if 𝜆 > 0. (1.118)

In fact, for any vector v, the following relationship holds:

vTAv > 0. (1.119)
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For v can be a unit vector, all the diagonal elements of A should be strictly
positive as well. If the equal sign is included in the definition, we have semidef-
initeness. That is, A is called positive semidefinite if uTAu ≥ 0, and negative
semidefinite if uTAu ≤ 0 for all u.

If all the eigenvalues are nonnegative or 𝜆i ≥ 0, then the matrix is positive
semi-definite. If all the eigenvalues are nonpositive or 𝜆i ≤ 0, then the matrix
is negative semidefinite. In general, an indefinite matrix can have both positive
and negative eigenvalues. Furthermore, the inverse of a positive definite matrix
is also positive definite. For a linear system Au = f , if A is positive definite, the
system can be solved more efficiently by matrix decomposition methods.

Let us look at an example.

Example 1.18 For matrices

A =
(

3 −2
−2 3

)
, B =

(
7 3
3 7

)
, C =

(
2 3
3 2

)
,

the eigenvalues of A are 1 and 5, which are both positive. Thus, A is positive
definite. Similarly, B is also positive definite because its two eigenvalues are 4
and 10. However, C is indefinite because one of its eigenvalues is negative (−1)
and the other eigenvalue is positive (5).

The definiteness of matrices can be useful to determine if a multivariate func-
tion has a local maximum or minimum. It is also useful to see if an expression
can be written as a quadratic form.

1.5.2 Quadratic Form

Quadratic forms are widely used in optimization, especially in convex opti-
mization and quadratic programming. Loosely speaking, a quadratic form is a
homogenous polynomial of degree 2 of n variables. For example, 3x2 + 10xy +
7y2 is a binary quadratic form, while x2 + 2xy + y2 − y is not.

For a real n × n symmetric matrix A and a vector u of n elements, their com-
bination

Q = uTAu (1.120)

is called a quadratic form. Since A = [aij], we have

Q = uTAu =
n∑

i=1

n∑
j=1

uiaijuj =
n∑

i=1

n∑
j=1

aijuiuj

=
n∑

i=1
aiiu2

i + 2
n∑

i=2

i−1∑
j=1

aijuiuj. (1.121)
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Example 1.19 For the symmetric matrix A =
(

1 2
2 5

)
and u =

(
u1 u2

)T, we

have

uTAu =
(

u1 u2
)(1 2

2 5

)(
u1
u2

)
=
(

u1 u2
)⎛⎜⎜⎝

u1 + 2u2

2u1 + 5u2

⎞⎟⎟⎠ = 3u2
1 + 10u1u2 + 7u2

2.

In fact, for a binary quadratic form Q(x, y) = ax2 + bxy + cy2, we have(
x y

)(𝛼 𝛽

𝛽 𝛾

)(
x
y

)
= (𝛼 + 𝛽)x2 + (𝛼 + 2𝛽 + 𝛾)xy + (𝛽 + 𝛾)y2.

If this is equivalent to Q(x, y), it requires that

𝛼 + 𝛽 = a, 𝛼 + 2𝛽 + 𝛾 = b, 𝛽 + 𝛾 = c,

which leads to a + c = b. This means that not all arbitrary quadratic functions
Q(x, y) are quadratic form.

If A is real symmetric, its eigenvalues 𝜆i are real, and the eigenvectors vi of
distinct eigenvalues 𝜆i are orthogonal to each other. Therefore, we can write u
using the eigenvector basis and we have

u =
n∑

i=1
𝛼ivi. (1.122)

In addition, A becomes diagonal in this basis. That is

A =
⎛⎜⎜⎝
𝜆1

⋱
𝜆n

⎞⎟⎟⎠. (1.123)

Subsequently, we have

Au =
n∑

i=1
𝛼iAvi =

n∑
i=1
𝜆i𝛼ivi, (1.124)

which means that

uTAu =
n∑

j=1

n∑
i=1
𝜆i𝛼j𝛼ivTi vi =

n∑
i=1
𝜆i𝛼

2
i , (1.125)

where we have used the fact that vTi vi = 1 (by normalizing the eigenvectors so
as to have a magnitude of unity).
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1.6 Optimization and Optimality

Optimization is everywhere, from engineering design and business planning to
artificial intelligence and industries. After all, time and resources are limited,
and optimal use of such valuable resources is crucial. In addition, designs of
products have to maximize the performance, sustainability, energy efficiency,
and to minimize the costs and wastage. Therefore, optimization is specially
important for engineering applications, business planning, and industries.

1.6.1 Minimum and Maximum

One of the simplest optimization problems is to find the minimum of a function
such as f (x) = x2 in the real domain. As x2 is always nonnegative, it is easy to
guess that the minimum occurs at x = 0.

From basic calculus, we know that, for a given curve described by f (x), its
gradient f ′(x) describes the rate of change. When f ′(x) = 0, the curve has a hor-
izontal tangent at that particular point. This means that it becomes a point of
special interest. In fact, the maximum or minimum of a curve can only occur at

f ′(x∗) = 0, (1.126)

which is a critical condition or stationary condition. The solution x∗ to this
equation corresponds to a stationary point and there may be multiple stationary
points for a given curve.

In order to see if it is a maximum or minimum at x = x∗, we have to use the
information of its second derivative f ′′(x). In fact, f ′′(x∗) > 0 corresponds to a
minimum, while f ′′(x∗) < 0 corresponds to a maximum. Let us see a concrete
example.

Example 1.20 To find the minimum of f (x) = x2e−x2 , we have the stationary
condition f ′(x) = 0 or

f ′(x) = 2x × e−x2 + x2 × (−2x)e−x2 = 2(x − x3)e−x2 = 0.

As e−x2
> 0, we have

x(1 − x2) = 0, or x = 0, and x = ±1.

The second derivative is given by

f ′′(x) = 2e−x2(1 − 5x2 + 2x4),

which is an even function with respect to x.
So at x = ±1, f ′′(±1) = 2[1 − 5(±1)2 + 2(±1)4]e−(±1)2 = −4e−1 < 0. Thus,

there are two maxima that occur at x∗ = ±1 with fmax = e−1. At x = 0, we have
f ′′(0) = 2 > 0, thus the minimum of f (x) occurs at x∗ = 0 with fmin(0) = 0.
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Figure 1.7 Feasible domain with nonlinear inequality constraints 𝜓1(x) and 𝜓2(x) (left) as
well as a linear inequality constraint 𝜓3(x). An example with an objective of f (x) = x2 subject
x ≥ 2 (right).

In mathematical programming, there are many important concepts, and we
will first introduce the concepts of feasible solutions, optimality criteria, strong
local optima, and weak local optima.

1.6.2 Feasible Solution

A point x which satisfies all the constraints is called a feasible point and thus it
is a feasible solution to the problem. The set of all feasible points is called the
feasible region (see Figure 1.7).

For example, we know that the domain f (x) = x2 consists of all the real num-
bers. If we want to minimize f (x) without any constraint, all solutions such as
x = −1, x = 1, and x = 0 are feasible. In fact, the feasible region is the whole
real axis. Obviously, x = 0 corresponds to f (0) = 0 as the true minimum.

However, if we want to find the minimum of f (x) = x2 subject to x ≥ 2, it
becomes a constrained optimization problem. The points such as x = 1 and
x = 0 are no longer feasible because they do not satisfy x ≥ 2. In this case,
the feasible solutions are all the points that satisfy x ≥ 2. So x = 2, x = 100,
and x = 108 are all feasible. It is obvious that the minimum occurs at x = 2
with f (2) = 22 = 4. That is, the optimal solution for this problem occurs at the
boundary point x = 2 (see Figure 1.7).

1.6.3 Gradient and Hessian Matrix

We can extend the optimization procedure for univariate functions to multi-
variate functions using partial derivatives and relevant conditions. Let us start
with an example

Minimize f (x, y) = x2 + y2 (x, y ∈ ℝ). (1.127)

It is obvious that x = 0 and y = 0 is the minimum solution because f (0, 0) = 0.
The question is how to solve this problem formally. We can extend the station-
ary condition to partial derivatives, and we have 𝜕f ∕𝜕x = 0 and 𝜕f ∕𝜕y = 0. In
this case, we have
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𝜕f
𝜕x

= 2x + 0 = 0,
𝜕f
𝜕y

= 0 + 2y = 0. (1.128)

The solution is obviously x∗ = 0 and y∗ = 0.
Now how do we know that it corresponds to a maximum or minimum? If we

try to use the second derivatives, we have four different partial derivatives such
as fxx and fyy and which one should we use? In fact, we need to define a Hessian
matrix from these second partial derivatives and we have

H =
(

fxx fxy
fyx fyy

)
=
⎛⎜⎜⎝
𝜕2f
𝜕x2

𝜕2f
𝜕x𝜕y

𝜕2f
𝜕y𝜕x

𝜕2f
𝜕y2

⎞⎟⎟⎠. (1.129)

Since 𝜕x𝜕y = 𝜕y𝜕x or
𝜕2f
𝜕x𝜕y

=
𝜕2f
𝜕y𝜕x

, (1.130)

we can conclude that the Hessian matrix is always symmetric. In the case of
f = x2 + y2, it is easy to check that the Hessian matrix is

H =
(

2 0
0 2

)
. (1.131)

Mathematically speaking, if H is positive definite, then the stationary point
(x∗, y∗) corresponds to a local minimum. Similarly, if H is negative definite,
the stationary point corresponds to a maximum. Since the Hessian matrix here
does not involve any x or y, it is always positive definite in the whole search
domain (x, y) ∈ ℝ2, so we can conclude that the solution at point (0, 0) is the
global minimum.

Obviously, this is a special case. In general, the Hessian matrix will depend on
the independent variables, but the definiteness test conditions still apply. That
is, positive definiteness of a stationary point means a local minimum. Alter-
natively, for bivariate functions, we can define the determinant of the Hessian
matrix in Eq. (1.129) as

Δ = det(H) = fxxfyy − (fxy)2. (1.132)

At the stationary point (x∗, y∗), if Δ > 0 and fxx > 0, then (x∗, y∗) is a local min-
imum. If Δ > 0 but fxx < 0, it is a local maximum. If Δ = 0, it is inconclusive
and we have to use other information such as higher-order derivatives. How-
ever, if Δ < 0, it is a saddle point. A saddle point is a special point where a local
minimum occurs along one direction while the maximum occurs along another
(orthogonal) direction.

In fact, for a multivariate function f (x1, x2,… , xn) in an n-dimensional space,
the stationary condition can be extended to

G = ∇f =
(
𝜕f
𝜕x1

,
𝜕f
𝜕x2

,… ,
𝜕f
𝜕xn

)T

= 0, (1.133)
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where G is called the gradient vector. The second derivative test becomes the
definiteness of the Hessian matrix

H =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜕2f
𝜕x1

2

𝜕2f
𝜕x1𝜕x2

… 𝜕2f
𝜕x1𝜕xn

𝜕2f
𝜕x2𝜕x1

𝜕2f
𝜕x2

2 … 𝜕2f
𝜕x2𝜕xn

⋮ ⋮ ⋱ ⋮

𝜕2f
𝜕xn𝜕x1

𝜕2f
𝜕xn𝜕x2

… 𝜕2f
𝜕xn

2

⎞⎟⎟⎟⎟⎟⎟⎠
. (1.134)

At the stationary point defined by G = ∇f = 0, the positive definiteness of H
gives a local minimum, while the negative definiteness corresponds to a local
maximum. In essence, the eigenvalues of the Hessian matrix H determine
the local behavior of the function. As we mentioned before, if H is positive
semidefinite, it corresponds to a local minimum.

1.6.4 Optimality Conditions

A point x∗ is called a strong local maximum of the nonlinearly constrained
optimization problem if f (x) is defined in a 𝛿-neigborhood N(x∗, 𝛿) and satis-
fies f (x∗) > f (u) for ∀u ∈ N(x∗, 𝛿), where 𝛿 > 0 and u ≠ x∗. If x∗ is not a strong
local maximum, the inclusion of equality in the condition f (x∗) ≥ f (u) for ∀u ∈
N(x∗, 𝛿) defines the point x∗ as a weak local maximum (see Figure 1.8). The local
minima can be defined in a similar manner when> and≥ are replaced by< and
≤, respectively.

Figure 1.8 shows various local maxima and minima. Point A is a strong local
maximum, while point B is a weak local maximum because there are many (in
fact infinite) different values of x which will lead to the same value of f (x∗). Point
D is the global maximum, and point E is the global minimum. In addition, point
F is a strong local minimum.

However, point C is a strong local minimum, but it has a discontinuity in
f ′(x∗); the stationary condition for this point f ′(x∗) = 0 is not valid. We will
not deal with this type of minima or maxima in detail, though the subgradient
method should work well if the function is convex.

A

D

C

B

E (global minimum)

F

Multimodal landscape

Figure 1.8 Local optima, weak optima, and global optimality.



Trim Size: 152mm x 229mm Single Column Xin-She Yang book.tex V1 - 07/28/2018 7:19pm Page 35�

� �

�

1 Mathematical Foundations 35

As we briefly mentioned before, for a smooth curve f (x), optimal solutions
usually occur at stationary points where f ′(x) = 0. This is not always the case
because optimal solutions can also occur at the boundary, as we have seen in the
previous example of minimizing f (x) = x2 subject to x ≥ 2. In our present dis-
cussion, we will assume that both f (x) and f ′(x) are always continuous, or f (x)
is everywhere twice-continuously differentiable. Obviously, the information of
f ′(x) is not sufficient to determine whether a stationary point is a local max-
imum or minimum. Thus, higher-order derivatives such as f ′′(x) are needed,
but we do not make any assumption at this stage. We will discuss this further
in detail in later chapters.

1.7 General Formulation of Optimization Problems

Whatever the real-world applications may be, it is usually possible to formu-
late an optimization problem in a general mathematical form. All optimization
problems with an explicit objective f (x) can, in general, be expressed as a non-
linearly constrained optimization problem

Maximize/minimize f (x), x = (x1, x2,… , xn)T ∈ ℝn,

Subject to 𝜙j(x) = 0 (j = 1, 2,… ,M),

𝜓k(x) ≤ 0 (k = 1,… ,N), (1.135)

where f (x), 𝜙j(x) and 𝜓k(x), are scalar functions of the design vector x.
Here, the components xi of x = (x1,… , xn)T are called design or decision
variables, and they can be either continuous, discrete, or a mixture of these
two. The vector x is often called the decision vector, which varies in an
n-dimensional space ℝn. It is worth pointing out that we use a column
vector here for x (thus with a transpose T). We can also use a row vector
x = (x1,… , xn) and the results will be the same, though some formulations
may be slightly different. Different textbooks may use slightly different formu-
lations. Once we are aware of such minor variations, this causes no difficulty or
confusion.

It is worth pointing out that the objectives are explicitly known in all the opti-
mization problems to be discussed in this book. However, in reality, it is often
difficult to quantify what we want to achieve, but we still try to optimize cer-
tain things such as the degree of enjoyment or the quality of service on holiday.
In other cases, it might be impossible to write the objective function in any
explicit form mathematically. In any case, we always assume that the values of
an objective function are always computable.
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Exercises

1.1 Find the first and second derivatives of f (x) = sin(x)∕x.

1.2 Find the gradient and Hessian matrix of f (x, y, z) = x2 + y2 + 2xy + 3yz +
z3. Is the Hessian matrix symmetric?

1.3 Show that ∫ ∞
0 x3e−xdx = 6.

1.4 Find the eigenvalues and eigenvectors of A =
(

2 3
3 4

)
.

1.5 In the second exercise, the Hessian matrix at z = 1 becomes

H =
⎛⎜⎜⎝

2 2 0
2 2 3
0 3 6

⎞⎟⎟⎠,
what are its eigenvalues? Is this matrix positive definite?

1.6 Show that f (x, y) = (x − 1)2 + x2y2 has a minimum at (1, 0).
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