
�

� �

�

1
Fundamentals of Ray
Tracing

A ray is defined as the collection of straight-line path seg-
ments followed by an energy bundle from its point of emission
to its point of absorption. The definition includes the pos-
sibility of intermediate reflection, scattering, refraction, and
even diffraction events. Ray tracing involves the application
of basic mathematics to the process of identifying the
intersection of ray segments with surfaces. Most engineering
and science students acquire the required mathematical
tools long before they enter university. The current chapter
provides a review of the mathematical principles governing
ray tracing and the related issues of meshing and indexing.

1.1 Rays and Ray Segments

A ray is defined here as the continuous sequence of straight-line paths
connecting a point on one surface, from which an energy bundle is
emitted, to a point on a second surface – or perhaps even on the same
surface – where it is ultimately absorbed. One or several reflections
from intervening surfaces may occur between emission and absorption
of the energy bundle. The path followed by the energy bundle between
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2 The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics

reflections is referred to as a ray segment. Two situations are normally
considered: either (i) the power of the emitted energy bundle does not
change as it is reflected from one surface to the next until it reaches the
surface where all its power is ultimately absorbed; or (ii) a fraction of
the emitted power is left behind with each reflection until the remaining
power is deemed to have dropped below a threshold value, at which
point the ray trace is terminated. Both approaches have their adherents
and are in common use, and both are developed in detail in this book.

1.2 The Enclosure

The enclosure is an essential concept in all approaches to radiation heat
transfer analysis. We define the enclosure as an ensemble of surfaces,
both real and imaginary, arranged in such a manner that a ray emitted
into the interior of the enclosure cannot escape. Energy is conserved
within the enclosure under this definition. If a ray does leave the enclo-
sure through an opening, represented by an imaginary surface, the energy
it carries is deducted from the overall energy balance.

1.3 Mathematical Preliminaries

Consider two points, P0 and P1, in three-dimensional space, as illus-
trated in Figure 1.1. Let the Cartesian coordinates of points P0 and P1
be (x0, y0, z0) and (x1, y1, z1), respectively. Then the vector directed from
P0 to P1 is

V = (x1 − x0) i + (y1 − y0) j + (z1 − z0) k, (1.1)

x

y

z

i 
j 

k α 
β 

γ 

v 

P0(x0, y0, z0)

P1(x1, y1, z1)

V 

Figure 1.1 Relationships among the quantities introduced in Section 1.3.
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and its magnitude is

t ≡
√|V ⋅V| = √

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2. (1.2)

In Eq. (1.1) i, j, and k are the unit vectors directed along the x-, y-, and
z-axes, respectively. Note that the distance t from P0 to P1 must always
be real and positive.

The unit vector in the direction of V is

v ≡ V∕t = L i + M j + N k, (1.3)

where L, M, and N are the direction cosines illustrated in Figure 1.1. The
direction cosines are defined

L ≡ v ⋅ i = cos 𝛼,M ≡ v ⋅ j = cos 𝛽, and N ≡ v ⋅ k = cos 𝛾, (1.4)

where 𝛼, 𝛽, and 𝛾 are the angles between the unit vector v and the x-, y-,
and z-axes, respectively. Equations (1.1) and (1.3) can be combined to
define the equations for the line segment connecting point P0 to point P1

(x1 − x0)∕L = (y1 − y0)∕M = (z1 − z0)∕N = t. (1.5)

The three equations embodied in Eq. (1.5) are arguably the most impor-
tant relationships in geometrical optics, because they form the basis for
navigation of rays within an enclosure.

The general equation for a surface in Cartesian coordinates is

S(x, y, z) = 0. (1.6)

The simplest, and perhaps most common, surface used in fabricating an
enclosure is the plane, illustrated in Figure 1.2. In order to derive the
equation for a plane, we must know the unit normal vector n at a point

n 

V U 

(x0, y0, z0)

(x1, y1, z1)
(xʹ, yʹ, zʹ )

Figure 1.2 Definition of a plane surface.
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(x′, y′, z′) in the plane and the coordinates of a second point (x1, y1, z1) in
the plane. Then, because n and U are in quadrature, it must be true that

S(x1, y1, z1) = n ⋅ U

= n ⋅ [(x1 − x′) i + (y1 − y′) j + (z1 − z′) k]

= 0, (1.7)

or

S(x1, y1, z1) = nx (x1 − x′) + ny (y1 − y′) + nz (z1 − z′) = 0. (1.8)

To find the intersection of the ray segment V = (x1 − x0) i + (y1 – y0)
j + (z1 – z0) k with the plane, we introduce Eq. (1.5) into Eq. (1.8),
obtaining

nx (x0 + Lt − x′) + ny (y0 + Mt − y′) + nz (z0 + Nt − z′) = 0. (1.9)

Finally, solving Eq. (1.9) for t we obtain

t =
nx(x′ − x0) + ny(y′ − y0) + nz(z′ − z0)

nxL + nyM + nzN
, (1.10)

or
t = n ⋅ (V −U)

n ⋅ v
. (1.11)

Note that if n and v are in quadrature, n ⋅ v = 0, in which case t is
undefined. The interpretation is that the ray passes parallel to the plane
and so can never intersect it. We must anticipate this eventuality when
programming. This is perhaps an appropriate juncture to emphasize the
natural compatibility of Cartesian coordinates with the vector nature of
ray tracing.

A more instructive example is the intersection of a ray segment with a
sphere of radius R whose center is located at (xC, yC, zC); that is,

S(x1, y1, z1) = (x1 − xC)2 + (y1 − yC)2 + (z1 − zC)2–R2 = 0. (1.12)

Suppose a ray is emitted from point (x0, y0, z0) in the direction (L, M, N)
and we want to find its point of intersection (x1, y1, z1) with this sphere.
As in the previous example, this may be accomplished by finding the
point (x1, y1, z1) that simultaneously satisfies the three equations for the
straight line connecting the two points, Eq. (1.5), and the equation for the
sphere, Eq. (1.12); that is,

(x0 + Lt − xC)2 + (y0 + Mt − yC)2 + (z0 + Nt − zC)2 − R2 = 0. (1.13)
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Happily, the solution of Eq. (1.13) for the distance t is just about the most
challenging mathematical operation we encounter in ray tracing.

It is convenient to use the symbolic solver feature of Matlab to
solve quadratic equations (see Problems 1.2–1.7). However, solution of
Eq. (1.13) is relatively straightforward and provides an opportunity to
point out certain useful properties of the quadratic coefficients. Upon
carrying out the indicated operations and rearranging the result, we have

(L2 + M2 + N2) t2 + 2[L(x0 − xC) + M(y0 − yC) + N(z0 − zC)] t

+ (x0 − xC)2 + (y0 − yC)2 + (z0 − zC)2 − R2 = 0, (1.14)

or
A t2 + B t + C = 0, (1.15)

where

A = L2 + M2 + N2, (1.16)

B = 2[L(x0 − xC) + M(y0 − yC) + N(z0 − zC)], (1.17)

and
C = (x0 − xC)2 + (y0 − yC)2 + (z0 − zC)2 − R2. (1.18)

The coefficients A, B, and C are defined in terms of known quantities
and, thus, are themselves known. Equation (1.14) can now be solved for
t, yielding

t1 = (−B +
√

B2 − 4AC)∕2A and t2 = (−B −
√

B2 − 4AC)∕2A. (1.19)

We define a quadratic surface as any surface whose algebraic
equation S(x, y, z) = 0 is second-order. It turns out that, in addition to
plane surfaces, essentially all enclosures of practical engineering interest
include such surfaces or surfaces that can be subdivided into such sur-
faces. Listed in Table 1.1 are some of the quadratic surfaces commonly
encountered in radiation heat transfer and applied optics. Equation (1.19),
with generally different expressions for the coefficients A, B, and C,
yields the candidate values of the distance t for all quadratic surfaces.

Note that Eq. (1.19) has two roots, t1 and t2. The physical interpre-
tation of two roots is that a given ray “intersects” the spherical surface
at two points. However, the intersection may be degenerate (both roots
corresponding to the same point) or imaginary (the ray does not physi-
cally intersect the sphere). Only in the case of plane surfaces are single,
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non-degenerate roots obtained. More than two roots arise in the case of
higher-order surfaces but, as has already been pointed out, most enclo-
sures of practical engineering interest are composed of either planes or
quadratic surfaces.

The physical significance of quadratic roots is illustrated in Figure 1.3.
If both roots are real (B2 > 4AC) in Eq. (1.19), the ray emitted from P0
intersects the surface at two points, P1 and P2, where one corresponds
to the plus (+) sign in Eq. (1.19) and the other corresponds to the minus
(−) sign. If B2 = 4AC, the roots are degenerate and the single solution,
t = −B/2A, is obtained. This signifies that the ray is tangent to the sphere
at a single point P3. Finally, if both roots are complex (B2 < 4AC), the
ray fails to intersect the surface.

At the most, only one real root is physically significant. How do we
choose between the two available real roots? This is a trivial choice for
someone provided with an image such as Figure 1.3; however, a computer
requires an algorithm based on the values of the quadratic coefficients A,
B, and C. In the special case of a sphere we recognize that A =

√
v ⋅ v = 1,

where the vector v is given by Eq. (1.3). While this simplifies the algebra
somewhat, it does not otherwise contribute to the process of identifying
the correct root. The coefficient B in the case of a sphere can be expressed

B∕2 = v ⋅V0, (1.20)

where V0 is the vector directed from the center of the sphere (xC, yC, zC)
to the source point (x0, y0, z0),

V0 = (x0 − xC) i + (y0 − yC) j + (z0 − zC) k. (1.21)

P3

P0 P1
P2

Figure 1.3 Possible disposition of three rays emitted from point P0.
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The value of the coefficient C determines whether the source point is
interior to the sphere (C< 0), exterior to the sphere (C> 0), or lies in
the surface of the sphere (C = 0). It has already been pointed out that
the value of the argument of the square root in Eq. (1.19), B2 − 4AC,
determines whether or not the ray intersects the sphere. In the case of
real roots, including degenerate roots, the interplay between the B and C
coefficients determines the sign choice, as demonstrated in the following
example.

Figure 1.4 depicts candidate rays in the interior of the hollow sphere
defined by Eq. (1.12). The location of the origin of coordinates (0, 0, 0)
is immaterial in the following argument. The ray source point (x0, y0, z0),
the sphere center (xC, yC, zC) and radius R, and the components of the unit
vector v= (L, M, N) are all assumed known. Because the ray source point
is interior to the sphere, we find that C< 0. It follows that B2 − 4AC> 0
regardless of the value of B. Therefore, there exist two real roots, corre-
sponding to the two candidate intersections at (xu, yu, zu) and (xd, yd, zd).

The unit normal vector on the interior surface of the sphere is given by

n = − ∇S
|∇S| = −

(x − xc

R

)
i −

(y − yc

R

)
j −

( z − zc

R

)
k = − 1

R
(V + V0).

(1.22)
Then it can be demonstrated (see Problem 1.10) that

v ⋅n = − 1
R

(
t + B

2

)
. (1.23)

In order for a ray emitted from point (x0, y0, z0) in direction (L, M, N) to
intercept the wall of the spherical shell at point (x, y, z), it must be true
that v ⋅n < 0 (see Problem 1.11). We conclude that the correct sign in
Eq. (1.19) is the one that leads to t+ b/2> 0; i.e., the “+” sign must be

(xu, yu, zu)

(xd, yd, zd)

(xC, yC, zC)

R

Vu

V0

Vd

(x0, y0, z0)

(0, 0, 0)

Figure 1.4 Candidate rays in the interior of the hollow sphere defined by
Eq. (1.12).
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selected in this case. It is emphasized that this is a general result for the
case of a ray emitted from any position interior to a spherical enclosure.

The above example illustrates the important point that Eq. (1.5)
describes an infinitely long line. In Figure 1.4 the upward-directed
ray Vu and the downward-directed ray Vd both lie on the same line.
Therefore, the simultaneous solution of the equations for this line with
the equation for the sphere necessarily leads to two roots and, thus,
to two intersections, only one of which is relevant. The true point of
intersection is the forward candidate, i.e., the one lying in the direction
of v with respect to the source point. The incorrect point, which lies in the
opposite direction of v, is referred to as a back candidate. Identification
and elimination of back candidates is a constant concern in ray tracing.

Suppose the situation shown in Figure 1.4 is modified so that the source
point (x0, y0, z0) lies on the same line except that it now lies outside the
sphere. In this case both points of intersection can be forward candidates
or both can be back candidates, depending on the direction of the emitted
ray. How do we sort out these possibilities?

In Figure 1.5a it is obvious to the human observer that both points of
intersection are forward candidates, while in Figure 1.5b both are clearly
back candidates. Furthermore, it seems equally obvious – once again to
the human observer – that in the case of two forward candidates, the one
nearer the source, and thus corresponding to the smaller value of t, is the
correct choice. But, in fact, this would be true only if it is the outer sur-
face of the sphere that is optically active. All surfaces, being the locus
of all points where S(x, y, z) = 0, are vanishingly thin. Therefore, a given

(b)

R

(xC , yC , zC)

(x2, y2, z2)

(x1, y1, z1)

(x0, y0, z0)

(a)

(xC , yC ,zC)

(x2, y2, z2)

(x1, y1, z1)

(x0, y0, z0)

R

Figure 1.5 In (a) both points of intersection are forward candidates while in (b)
both points of intersection are back candidates.
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location (x1, y1, z1) really represents two surfaces, or, more precisely, two
sides of a single surface. Therefore, in Figure 1.5a the point (x1, y1, z1)
can represent either the inside surface or the outside surface of the sphere,
depending on which surface is designated to be optically active. If the
inside surface of the sphere in Figure 1.5a is deemed to be optically
active, then the outside surface is mathematically transparent and point
(x2, y2, z2) rather than point (x1, y1, z1) is the valid forward candidate.

The spherical sector in Figure 1.6 might represent a concave mirror
used as an optical element, for example in a telescope. In this case its
interior surface is considered to be a perfect mirror while its exterior sur-
face, as well as the extended interior and exterior surfaces of the sphere
from which the mirror is formed, indicated by the broken curve, simply
do not exist. Given a ray originating at point (x0, y0, z0), how do we deter-
mine (without looking at the figure) if it is reflected from the concave
mirror?

Suppose simultaneous solution of Eqs. (1.5) and (1.12) yields the pair
of real roots, t1 and t2, so that the corresponding coordinates for the can-
didate points are

x1 = x0 + Lt1, y1 = y0 + Mt1, and z1 = z0 + Nt1 (1.24)

and

x2 = x0 + Lt2, y2 = y0 + Mt2, and z2 = z0 + Nt2. (1.25)

How does the computer “know” which is the correct point? Bear in mind
that these two intersections are actually two candidate points, one on the
interior and one on the exterior of the spherical shell. In this case the point
(x1, y1, z1) (outside), which is the nearest to the source point, would be
incorrect because it lies on the exterior surface while the concave mirror

(x2, y2, z2)

(x1, y1, z1)

(x0, y0, z0)

n1

n2

Figure 1.6 Instructing the computer to designate (x2, y2, z2) rather than
(x1, y1, z1) as the point of intersection of the ray on the concave spherical sector.



�

� �

�

Fundamentals of Ray Tracing 11

is known to be a section of the interior surface. An essential feature of a
successful Monte Carlo ray-trace (MCRT) program is that it must com-
pute all intersections of all rays with all surfaces of the enclosure, and then
sort through all of the resulting candidates to identify the right one. When
the process arrives at the spherical-sector mirror shown in Figure 1.6, it
initially treats it as a complete spherical shell having two exterior sur-
faces and two interior surfaces. Therefore, in the case of this particular
surface, we must first instruct the computer to ignore the exterior surfaces
and consider only the two interior surfaces.

How does the computer distinguish between exterior and interior sur-
faces? Firstly, it computes the local surface unit normal vector

n = ±∇S∕|∇S|. (1.26)

Following convention, the plus (+) sign is used in this calculation when
the exterior surface is to be considered, while the minus (−) sign is used
in the case of the interior surface. (The reader is cautioned that while the
distinction between the exterior and the interior of a sphere is obvious,
this is not always the case for many common quadratic surfaces.) In the
example of Figure 1.6, the minus sign is used since the unit vector is
pointed inward. Next the computer evaluates the sign of the dot product
v ⋅ n. We have already seen that the ray is directed away from any surface
for which v ⋅ n> 0 and is directed toward any surface for which v ⋅ n< 0.
Thus, in the current example, since v ⋅ n2 < 0, it is clear to both the com-
puter and its human operator that the ray is incident to the interior point
(x2, y2, z2) rather than to the exterior point (x1, y1, z1).

The foregoing example makes it clear that the development of
ray-tracing skills requires familiarity with geometry, trigonometry, and
algebra as well as an appreciation for logic and possession of computer
programming skills. Indeed, a modestly gifted high-school senior
could master the basic skill set in a matter of a few days. It is only the
sophistication of the rules governing the interaction of electromagnetic
radiation with materials of practical engineering interest that elevates
the material in this book to the advanced university level.

1.4 Ideal Models for Emission, Reflection,
and Absorption of Rays

To this point we have treated the ray as a strictly mathematical concept
without considering its physical nature. However, as we move on to the
phenomena of emission, absorption, reflection, scattering, and refraction,
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which occur when a ray intersects a surface, it will be convenient to
introduce certain models borrowed from geometrical optics. In later
chapters, we explore the principles of physical optics underlying these
models. However, for the present it is convenient to exploit their relative
simplicity as a tool for developing ray-tracing skills. This is not to say
that the models introduced in this section are of pedagogical interest
only; indeed, they have been the basis for traditional radiation heat trans-
fer practice for the past century, during which time they have consistently
yielded results whose accuracy is at least as good as that afforded by
contemporary conduction and convection heat transfer epistemology.

We have been using the generally well understood term “surface” with-
out formal definition. It is now appropriate to formally define a surface
as the interface separating two regions of space having different optical
properties. In fact, true surfaces do not exist, although approximations
of surface behavior can be approached to an arbitrarily high degree of
precision.

The optical behavior of a material substance is characterized by its
index of refraction and its extinction coefficient. As a ray encounters
the interface between two materials having different values of these opti-
cal properties, a portion of its power is redirected away from the interface.
This portion of the incident power is said to be “reflected.” Of the power
that crosses into the second medium, a portion is said to be “absorbed”
while the remainder is said to be either “scattered” or “refracted.” The
scattered and refracted power continues to propagate through the second
medium while the absorbed power is locally converted into sensible heat.
The two most prevalent models for describing reflection at a surface are
the specular reflection model and the diffuse reflection model. These
two models are important because they represent opposite extremes, both
of which are often the desired behavior in engineering applications.

The specular reflection model, used to describe the ideal optical behav-
ior of mirrors and certain other highly polished surfaces, is illustrated in
Figure 1.7. In the figure, v and n are the unit vectors defined by Eqs. (1.3)
and (1.26), respectively. The rule for specular reflection may be deduced
by inspection of the figure; that is,

vR = vI − 2(vI ⋅n) n = vI + 2 cos(𝜗) n, (1.27)

where 𝜗 = 𝜗I = 𝜗R. Note that the specular reflection model says nothing
about the power of the reflected ray compared to that of the incident ray,
although in the case of an ideal mirror they are assumed to be the same.

The diffuse reflection model, commonly used to describe the optical
behavior of all non-specular surfaces, is illustrated in Figure 1.8. In the
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R 

vI 

vI 

vR 

n

– (vI ∙ n) n

– (vI ∙ n) n

Specular surface

Figure 1.7 The specular reflection model.

vI

Diffuse surface 

n

Envelope of
reflected rays

Figure 1.8 The diffuse reflection model.

MCRT interpretation of diffuse reflection, the reflected portion of the
power contained in the incident ray vI is redistributed into the hemispheri-
cal space above the point of incidence by a large but finite number of rays,
where each ray carries the same power. In this case the directional dis-
tribution of the rays is governed by the values of a sequence of random
numbers, as described later in this chapter. In principle, the number of
directional components involved in such a reflection is infinite. However,
in a practical ray trace, the number N of reflected components is neces-
sarily finite, with each reflected component considered to carry a fraction
1/N of the total reflected power.

The diffuse reflection model may be extended to describe the direc-
tionality of emission and absorption. Theoretical considerations lead
to the conclusion that if a surface is a diffuse reflector it must also be a
diffuse absorber; that is the fraction of power absorbed from an incident
ray is independent of the ray’s direction. Furthermore, a diffuse absorber
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n nn
vI vI vI vR

Bidirectional           ≈  Diffuse  +         Specular

Figure 1.9 The diffuse–specular approximation of a bidirectional reflecting
surface.

must also be a diffuse emitter, meaning that the directional distribution
of emitted equal-power rays is governed by the same statistical rules
that describe diffuse reflection. Finally, in the limiting case of a perfect
absorber, all the incident radiation is absorbed. The opposite of a perfect
absorber is the perfect reflector for which all the incident power is
reflected.

In many cases of practical engineering interest, reflection from a sur-
face can be modeled with acceptable accuracy as the sum of a diffuse
component and a specular component, as illustrated in Figure 1.9. When
using this model, emission and absorption could still be assumed dif-
fuse, especially if the diffuse component of reflection is predominant. In
any case, the analysis of an enclosure made up of directionally reflecting
surfaces could always be improved by assuming diffuse–specular reflec-
tions, even if diffuse emission and absorption are retained.

More sophisticated models for emission, reflection, and absorption,
which recognize that they are generally functions of both wavelength
and direction, are considered in Chapter 4. The coefficients correspond-
ing to these models provide sufficient information for rays to navigate
from point to point along straight-line paths. The formal definition of
the bidirectional spectral reflectivity, 𝜌(𝜆, 𝜗I, 𝜑I, 𝜗R, 𝜑R), is given in
Chapter 2. Its equivalent form in the MCRT environment addresses the
question, “If a ray carrying one unit of power in wavelength interval Δ𝜆
about wavelength 𝜆 is incident to a point on a surface from direction 𝜗I,
𝜑I, what fraction of the incident power is carried by a ray reflected from
that point in direction 𝜗R, 𝜑R?” Its value for a specified combination of
directions at a given wavelength is obtained by reference to a look-up
table or to an empirical model. The bidirectional spectral reflectivity is
mutually reciprocal in the sense that its incident and reflected directions
can be interchanged without changing its value; i.e.,

𝜌(𝜆, 𝜗I , 𝜑I , 𝜗R, 𝜑R) = 𝜌(𝜆, 𝜗R, 𝜑R, 𝜗I , 𝜑I). (1.28)
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Figure 1.10 Nomenclature for incident and reflected rays.

We learn in Chapter 2 that all models for emission, reflection, and absorp-
tion follow from knowledge of the bidirectional spectral reflectivity.

Figure 1.10 illustrates the conventions for defining the incident and
reflected directions. In the figure, the unit vector t1 is tangential to the
surface element ΔS and is normal to the local unit normal vector n.

It is often convenient to define the direction of the unit tangent vector
such that

t1 = n× vI∕|n× vI|, (1.29)

since both vI and n are known. However, the convention fails on those
rare occasions when, to within the precision of the processor being used,
vI =−n. In this case, the denominator in Eq. (1.29) vanishes and the
offending ray must either be discarded or slightly redirected. An alterna-
tive approach that avoids this weakness is presented in Chapter 3.

We define the directional spectral emissivity 𝜀(𝜆, 𝜗E, 𝜑E) as the effi-
ciency, compared to an ideal surface, with which a real surface emits
thermal radiation, in wavelength interval Δ𝜆 about wavelength 𝜆, and in
direction (𝜗E, 𝜑E). The nature of the ideal surface referred to here is con-
sidered in Chapter 2. The directional spectral absorptivity 𝛼(𝜆, 𝜗I, 𝜑I)
is the fraction of incident thermal radiation in that wavelength interval,
incident from direction (𝜗I, 𝜑I), that is absorbed. It can be demonstrated
that the directional spectral absorptivity is equal to the directional spectral
emissivity at the same wavelength when (𝜗I, 𝜑I) = (𝜗E, 𝜑E) [1].

Finally, the directional-hemispherical spectral reflectivity
𝜌(𝜆, 𝜗I, 𝜑I) is defined as the fraction of the power incident from direction
(𝜗I, 𝜑I) that is reflected into the hemispherical space above the point of
incidence. The formal relationship between the directional-hemispherical
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spectral reflectivity and the bidirectional spectral reflectivity is devel-
oped in Chapter 2. In the MCRT environment this relationship can be
expressed

𝜌(𝜆, 𝜗I , 𝜑I) = 2𝜋
∑

𝜌(𝜆, 𝜗I , 𝜑I , 𝜗R, 𝜑R)∕N, (1.30)

where N is the total number of reflected rays. Conservation of energy
requires that, in the absence of forward scattering and refraction (i.e., for
an opaque surface),

𝛼(𝜆, 𝜗I , 𝜑I) = 1 − 𝜌(𝜆, 𝜗I , 𝜑I). (1.31)

Implementation of the definitions for these coefficients in terms of
models of varying degrees of sophistication is the topic of Chapter 4. For
now, the relatively simple specular and diffuse reflection models illus-
trated in Figures 1.7 and 1.8 are well suited to the pedagogical purposes
of the current chapter. According to these models, 𝜌(𝜆, 𝜗I, 𝜑I,) = 𝜌(𝜆
only), with 𝜗R = 𝜗I and 𝜑R =𝜑I +𝜋 for specular surfaces and, for diffuse
surfaces,

𝜗R = sin−1[
√

R𝜗] and 𝜑R = 2𝜋R𝜑, (1.32)

where in both cases the angles 𝜗 and 𝜑 are measured with respect to nor-
mal and tangent unit vectors, as indicated in Figure 1.10. In Eq. (1.32),
R𝜗 and R𝜑 are random numbers uniformly distributed between zero and
unity. Random number generation is treated more fully in the Appendix
but the random-number generators available in most computing environ-
ments, for example rand in Matlab, are adequate for most applications.

Models for the remaining coefficients follow from their definitions.
Thus, for opaque surfaces the directional spectral absorptivity 𝛼(𝜆, 𝜗I,𝜑I)
becomes 𝛼(𝜆) = 1 − 𝜌(𝜆), and the directional spectral emissivity 𝜀(𝜆, 𝜗E,
𝜑E) becomes 𝜀(𝜆) = 𝛼(𝜆). In the case of a diffuse source the direction of
emission is determined using Eq. (1.32) while, in the case of a directional
source, rays are emitted with some specified directional distribution. For
example, in the special case of a collimated source, all rays are emitted
in a specified direction (𝜗E, 𝜑E).

Bearing in mind that rays navigate using direction cosines, it would be
useful if Eq. (1.32), with the “R” subscripts replaced with “E” subscripts,
could be used to compute L, M, and N for the case of diffuse emission.
For this purpose a second unit tangent vector t2 that is normal to both n
and t1, is defined

t2 = n × t1. (1.33)
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It can then be demonstrated (see Problem 1.12) that

L = nx cos 𝜗E + t1,x sin𝜗E cos𝜑E + t2,x sin𝜗E sin𝜑E,

M = ny cos 𝜗E + t1,y sin𝜗E cos𝜑E + t2,y sin𝜗E sin𝜑E,

and N = nz cos 𝜗E + t1,z sin𝜗E cos𝜑E + t2,z sin𝜗E sin𝜑E. (1.34)

Finally, in some situations it is justified to assume that the surface
model coefficients 𝜀, 𝛼, and 𝜌 are independent of wavelength. This
so-called graybody approximation has dominated radiation heat
transfer practice for the past century. Its enduring popularity stems
from the fact that it significantly simplifies the analysis while remaining
relevant in a wide range of practical applications. Therefore, in this
introductory chapter to ray tracing we temporarily set aside the analytical
complications imposed by wavelength-dependent surface models with
the idea of adding them later as needed.

1.5 Scattering and Refraction

The power incident to a surface that is neither absorbed locally nor
reflected is then either scattered in a process analogous to reflection, or it
is refracted. In the MCRT description of radiation heat transfer, scatter-
ing is modeled by subdividing the incident ray into many equal-power
rays, with each scattered ray continuing in a direction determined by an
appropriate scattering model. The complex phenomenon of scattering
is treated in detail in Chapter 5, which deals with radiation propagating
through a participating medium. The simplest and most basic model
for scattering, which is used in the early chapters of this book, is the
assumption that scattering can be neglected, as is often the case in
radiation heat transfer.

In the ray-trace description of geometrical optics, refraction refers to
the abrupt change in direction of the transmitted ray as it passes through
an interface. The Snell–Descartes law, illustrated in Figure 1.11, repre-
sents reality very well, especially for interfaces between air and common
materials used in the fabrication of lenses, filters, retarder plates, and win-
dows. According to the Snell–Descartes law

sin(𝜗1)∕ sin(𝜗2) = n2∕n1, (1.35)

where n1 and n2 are the refractive indices of the two materials whose
interface provokes refraction. Problem 1.14 is an important application
of this principle in applied optics.
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Figure 1.11 Illustration of the Snell–Descartes law of refraction.

1.6 Meshing and Indexing

The MCRT method used throughout this book requires that the model-
ing space be subdivided into surface and volume elements, i.e., that it
be appropriately meshed. While entire books have been written on this
topic alone, the limited treatment offered here is adequate for the needs
of most MCRT analyses. The meshes used in the MCRT method must be
amenable to indexing. Indexing refers to the process of systematically
numbering the surface and volume elements in such a way that the num-
bers, called indices, can be determined algorithmically from the coordi-
nates of a point lying on a surface element or within a volume element.

Pedagogical considerations favor limitation of the discussion pre-
sented here to rectilinear spaces, i.e., to spaces that can be represented
by rectangular solid blocks. As used here, the word “solid” implies only
that the spaces are three-dimensional. Many, if not most, enclosures of
practical engineering interest can be accurately represented using a recti-
linear mesh if care is taken to ensure that the surface element unit normal
vectors represent the actual local curvature. The methods presented
in this section can be extended to spaces consisting of trapezoidal,
cylindrical (both circular and noncircular), and spheroidal solids.

Consider the hollow, three-dimensional rectilinear space illustrated
in Figure 1.12. Use of the MCRT method often requires that the space
be divided into N surface elements and n−N volume elements, with a
unique number, or “index”, algorithmically assigned to each element.
Furthermore, square surface elements and cubic volume elements are
highly desirable. Finally, the resulting mesh must be sufficiently dense to
assure adequate spatial resolution of the results obtained using an MCRT
analysis. How do we go about satisfying all of these requirements?
Consider the following numerical examples.



�

� �

�

Fundamentals of Ray Tracing 19

y 

x 

z

Δy

ΔxΔz

1 53 

553 

Figure 1.12 A hollow, three-dimensional rectilinear space.

Example 1.1
Suppose in Figure 1.12 that Δx = 5.00, Δy = 50.00, and Δz = 10.00,
where the length units are arbitrary. The corresponding meshing
solution, referred to as the natural solution, has five divisions in
the x-direction (nx = 5), 50 divisions in the y-direction (ny = 50),
and 10 divisions in the z-direction (nz = 10). This meshing produces
2(nxny + nxnz + nynz) = N = 1600 perfectly square surface elements and
nxnynz = n – N = 2500 perfectly cubic volume elements. If it is found that
the natural solution is too coarse to provide adequate spatial resolution in
an eventual MCRT analysis, we simply multiply the number of divisions
in each direction by the same integer to produce an acceptably dense
mesh. On the other hand, if the mesh density is greater than needed – and
therefore inefficient— we can always reduce it by dividing the number
of divisions in each direction by nx, ny, or nz, depending on which of the
three values is smallest. This produces the minimal mesh that preserves
the desirable property of square surface elements aligned with cubic
volume elements. Such minimal meshes are referred to as primitives.

The general requirements for indexing are:

(i) element indices should be assigned algorithmically based on the
coordinates of one of the element corners and, once assigned,

(ii) they should be algorithmically recoverable from the coordinates of
any point on or within the element. The algorithm used for meshing is
usually identical to the one used for indexing, but is used differently.

How do we index the space illustrated in Figure 1.12? All of the volume
elements have six bounding surfaces, any one of which may be either
real (i.e., a surface element) or imaginary (i.e., an interface between
two adjoining volume elements). We have for any point (x, y, z) lying
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within a given volume element; xmin ≤ x≤ xmax, ymin ≤ y≤ ymax, and
zmin ≤ z≤ zmax. We adopt the convention that the index number of a
surface element lying in the y, z-plane at x = 0 is

i = ymax + ny zmin, (x = 0); (1.36)

while the index number of a surface element lying in the y,z-plane at
x = Δx is

i = ymax + ny zmin + nynz, (x = Δx). (1.37)

All of the surface elements are assumed to face the interior of the rect-
angular solid. Note that the corner values of x, y, and z are all integers,
thus assuring that the indices themselves are integers. Then, in the current
example (ny = 50 and nz = 10),

i = 1 when ymax = 1.00, zmin = 0.00, and x = 0.00;
i = 53 when ymax = 3.00, zmin = 1.00, and x = 0.00;

and i = 553 when ymax = 3.00, zmin = 1.00, and x = 5.00.

Surface elements 1, 53, and 553 are indicated in Figure 1.12. It is left to
the reader to puzzle out the expressions for the remaining surface element
index numbers (Problem 1.20).

The corresponding expression for indexing the volume elements is

i = N + xmax + nx (ymax − 1) + nx ny (zmax − 1)

= 1600 + xmax + 5 (ymax − 1) + 250 (zmax − 1). (1.38)

Derivation and validation of this result are left as an exercise
(Problem 1.21). The process is further exemplified in Step 7, Section 5.3.

The MCRT method also requires that, given the x,y,z-coordinates
somewhere on the walls of an enclosure, we be able to algorithmically
recover the index number of the corresponding surface element. The
logic that accomplishes this in the current example for surfaces in the
y,z-plane at x = 0 is (see Problem 1.22):

for x = 0; if y ≠ 0 then i = 1 + floor(y) + ny floor(z),

else if y = 0 then i = 1 + ny floor(z), (1.39)

where the floor operator in Matlab returns an integer equal to the real
value of the argument truncated at the decimal point. For example,
floor(5.57) = 5 and floor(0.57) = 0. Derivation and validation of the
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expressions for indexing the remaining five walls and for indexing
the volume element containing the point (x, y, z) are left as exercises
(Problem 1.23).

Example 1.2
While the foregoing is an excellent “textbook” example, it is not very
realistic. It is unlikely that the natural meshing solution will be exact. A
more general and far more realistic case might be Δx = 5.50, Δy = 51.25,
and Δz = 9.75. Note that, as in the foregoing example, the dimensions
are given to one-hundredth of a unit. We begin by scaling the dimen-
sions with respect to the smallest dimension, Δx = 5.50 in this case.
Thus Δx′ = Δx/Δx = 1.00, Δy′ = Δy/Δx = 51.25/5.50 = 9.32, and Δz′

= Δz/Δx = 9.75/5.50 = 1.77, where each result has been rounded to the
nearest one-hundredth of a unit. Then the “natural” meshing in this case
is nx = 100, ny = 932, and nz = 177. As in the previous example, this
meshing produces square surface elements and cubic volume elements.
Furthermore, the elements are one unit on a side to within the precision
of the given dimensions. Note that the natural meshing turns out to be
the same as the primitive meshing in this example. However, if nz had
turned out to be 178 rather than 177, the primitive mesh would have been
nx = 50, ny = 466, and nz = 89. Finally, indexing proceeds in this gen-
eral case just as in the special case considered in Example 1.1, since xmin,
ymin, zmin, xmax, ymax, and zmax are all integers.

We are now mathematically prepared to formulate and solve real-
istic radiation heat transfer and optics problems using the MCRT
method. However, before moving directly into the main thrust of the
book, we need to first establish fundamental knowledge of thermal
radiation.

Problems

1.1 A plane whose unit normal vector n= k intersects a sphere of radius
R whose center is at (0, 0, 0). The radius of the disk formed by this
intersection is R/2.

(a) In terms of R, what is the z-coordinate of the center of the disk?
(b) Determine if a ray emitted from P0 = (−R/2, 0, 0) in direction

(L, M, N) = (
√

2∕2, 0,
√

2∕2) intersects the disk. If so, where?
(c) In terms of R, where does the ray intersect the “cap” of the

sphere lying above the disk?
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1.2 A prolate spheroid (see Table 1.1) has a minor semi-axis of a,
a major semi-axis of c (with c> a), and its center at (0, yC, 0).
An x,z-plane intersects the spheroid at 0< y1 < a, and a second
x,z-plane intersects the spheroid at y1 < y2 < a. The intersections
between the planes and the spheroid are ellipses with respective
minor semi-axes of x1 and x2, and major semi-axes of z1 and z2.
The values of x1, y1, z1, x2, y2, and z2 are considered to be known,
and the values of a, b, and yC are considered unknown. Derive
explicit expressions for each of the three unknown quantities. Hint:
You may want to make use of the Matlab symbolic solver feature.

1.3 Use the Matlab symbolic solver feature to solve Eq. (1.13) for t in
terms of x0, y0, z0, L, M, N, and R. Isolate and identify the coeffi-
cients A, B, and C in the solution.

1.4 Repeat Problem 1.3 for the case of a tri-axial ellipsoid whose center
is located at (xC, yC, zC). Use the symbols given in Table 1.1.

1.5 Repeat Problem 1.3 for the case of a two-sheet hyperboloid whose
center is located at (xC, yC, zC). The distance between the two ver-
tices is 2c. Use the symbols given in Table 1.1.

1.6 Repeat Problem 1.3 for the case of a right-circular cone whose cen-
ter is located at (xV, yV, zV). Use the symbols given in Table 1.1.

1.7 Repeat Problem 1.3 for the case of a right-circular cylinder whose
center is located at (xC, yC, zC). Use the symbols given in Table 1.1.

1.8 Demonstrate that if the quadratic coefficient C = 0 in Eq. (1.18),
the line segment from point (x0, y0, z0) to point (x1, y1, z1) is a chord
of the sphere.

1.9 The equation of a right-circular cone whose axis is parallel to
the z-axis is given in Table 1.1. Consider the special case where
(xv, yv) = (0, 0), zv = 10, and 𝛼 = 𝜋/4. A ray is emitted from (x0,
y0, z0) = (−4, 2.5, 0) with direction cosines (L, M, N) = (

√
0.19,

0, 0.9).

(a) Derive the equations for the quadratic coefficients A, B, and C.
(b) Solve the resulting quadratic equation for t1 and t2.
(c) Does the ray intersect the cone? If so, determine the coordinates

of the candidate point or points of intersection.
(d) If two real points of intersection are found and only the inside

surface of the cone is optically active, what are the direction
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cosines of the reflected ray if the inside surface is an ideal mir-
ror?

(e) If two real points of intersection are found and only the outside
surface of the cone is optically active, what are the direction
cosines of the reflected ray if the outside surface is an ideal
mirror?

(f) For Parts (d) and (e), sketch the relevant cone surfaces and the
incident and reflected rays.

1.10 Use Eqs. (1.20) and (1.22) to derive Eq. (1.23).

1.11 Verify that in order for a ray emitted from point (x0, y0, z0) in direc-
tion (L, M, N) to intercept the wall of the spherical shell at point
(x, y, z) it must be true that v ⋅n < 0.

1.12 Derive the three expressions in Eq. (1.34).

1.13 A hemispherical interior surface of radius 10 units is entirely
located in the upper half-space (z≥ 0) with its center located at the
origin of coordinates, (0, 0, 0), as shown in Figure 1.13. Write a
computer program using Matlab (or equivalent) that traces 10 000
diffusely distributed rays from the origin into the hemisphere.

(a) Plot the points of intersection on the hemispherical surface.
(b) Show that the hemispherical surface can be subdivided into

10 equal-area bands by slicing it with nine parallel x,y-cutting
planes at z = 1, 2, 3, … , 9 units.

(c) Count the number of ray intersections in each band and then
create a bar graph of these numbers as a function of the angle
𝜗 of the center of each band.

1.14 A condensing lens can be formed from the intersection of two
spherical sectors of optical glass, as illustrated in Figure 1.14.

x

z

10 equally
spaced
slices

Figure 1.13 Geometry for Problem 1.13.
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Focal length

x

y

z

φ

Figure 1.14 A condensing lens formed from two intersecting spherical sectors
of optical glass.

The refractive index of air is 1.002772 and the refractive index
of the optical glass used to construct the lens is 1.51681. The radius
of curvature of both spherical sectors is 76.6 mm and the lens thick-
ness at its center is 4.10 mm. A 5.0-mm diameter collimated beam
is incident to the lens. A spatially uniform beam may be well simu-
lated by emitting 1000 rays parallel to the optical axis of the lens at
random x,y-locations in the source plane. If the center of the circu-
lar source of diameter D is located at (x, y, z) = (0, 0, 0), the radial
distance from the center is

r = (D∕2)
√

Rr, (1.40)

where Rr is a random number uniformly distributed between 0
and 1. A random angle 𝜑, measured with respect to the x-axis,
may be defined by a second random number, R𝜑,

𝜑 = 2𝜋R𝜑. (1.41)

Then the x,y-coordinates of a random emission site are

x = r cos𝜑, y = r sin𝜑, and z = 0. (1.42)

(a) Plot the randomly distributed emission in the plane of the
source.

(b) Plot the paths of the rays from the source through the lens to
their focal point. [Hint: You will need the vector form of the
Snell-Descartes law,

vR = (n1∕n2) n × (−n × vI)

− n [1 − (n1∕n2)2 (n × vI) ⋅ (n × vI)]1∕2, (1.43)
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where n is the local surface unit normal vector, vI is the incident
vector, and vR is the refracted vector.]
(c) What is the focal length of this lens?

1.15 Derive the vector form of the Snell–Descartes law, Eq. (1.43).

1.16 The equation of a certain right-circular cone is

S(x, y, z) = x2 + y2 − (z − zv)2 tan2𝛼 = 0, (1.44)

where zv is the z-location of its vertex and 𝛼 is its half-angle.
(a) Use the Microsoft Word “draw” feature (Insert→Shapes) to

sketch the full cone, showing both branches, or “sheets.” Label
the x-, y-, and z-axes and the angle 𝛼.

(b) Derive the expression for the inward-directed unit normal vec-
tor n for the upper sheet. By convention, the inward-directed
unit normal vector for the upper sheet has a positive
z-component.

(c) Derive the expression for the unit tangent vector t1 for the upper
sheet that lies entirely in the surface and points toward the ver-
tex.

(d) Derive the expression for the second unit tangent vector t2 that
is mutually orthogonal to both the unit normal vector and the
first unit tangent vector. Assure that the three vectors define a
right-hand system.

(e) Add the three unit vectors to your sketch.

1.17 The equation of a right circular cylindrical surface is

S(x, y) = x2 + y2 − R2 = 0, (1.45)

where R is the radius.
(a) Use the Microsoft Word “draw” feature (Insert→Shapes) to

sketch a right circular surface between –L≤ z≤ L. Label the
x-, y-, and z-axes and the radius R.

(b) Derive the expression for the inward-directed unit normal vec-
tor n.

(c) Derive the expression for the unit tangent vector t1 that lies
entirely in the surface and points in the positive-z direction.

(d) Derive the expression for the second unit tangent vector t2 that
is mutually orthogonal to both the unit normal vector and the
first unit tangent vector. Assure that the three vectors define a
right-hand system.

(e) Add the three unit vectors to your sketch.
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1.18 The equation for an elliptic paraboloid is

S(x, y, z) = x2 + y2 − a(z − zv) = 0, (1.46)

where a(z − zv) is the radius of its “rim” at a distance z from its
vertex at zv.

(a) Use the Microsoft Word “draw” feature (Insert→Shapes) to
sketch an elliptic paraboloid. Label the x-, y-, and z-axes.

(b) Derive the expression for the inward-directed unit normal vec-
tor n.

(c) Derive the expression for the unit tangent vector t1 that lies
entirely in the x,y-plane and points in the counter-clockwise
direction looking down on the x,y-plane.

(d) Derive the expression for the second unit tangent vector t2 that
is mutually orthogonal to both the unit normal vector and the
first unit tangent vector. Assure that the three vectors define a
right-hand system.

(e) Add the three unit vectors to your sketch.

1.19 Consider the wedge-shaped cavity depicted in Figure 1.15.

(a) Show that the equation for the sloped surface is

S(y, x) = z − (ymax − y)∕ tan 𝛼 = 0. (1.47)

(b) Derive the expression for the inward-directed unit normal vec-
tor n on the sloped surface.

(c) Derive the expression for the first unit tangent vector t1 on the
sloped surface.

(d) Suppose 𝛼 = 40∘ and that, during a Monte Carlo ray-trace,
angles of 𝜗 = 34.6∘ and 𝜑 = 102.4∘ are obtained for the reflec-
tion of a given ray from the sloped surface. What are the direc-
tion cosines L, M, N of the path of the reflected energy bundle?

(e) Suppose the point of reflection corresponding to Part (d) lies
at the center of the sloped surface and that ymax = 180.5 μm.
Which surface does the reflected energy bundle strike and what
are the coordinates of the point of intersection of the ray with
the surface? Show the ray on a reasonably scaled drawing.

1.20 Consider the hollow, three-dimensional rectilinear space of
Figure 1.12. Derive the expressions for the remaining surface
element index numbers i following Eqs. (1.36) and (1.37).
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Figure 1.15 The wedge-shaped cavity of Problem 1.19.

1.21 Derive Eq. (1.38).

1.22 Derive Eq. (1.39).

1.23 Derive and validate the expressions for indexing the remaining five
walls, as mentioned below Eq. (1.39).

1.24 Derive the expression for computing the index of the volume ele-
ment containing the point (x, y, z) following Eq. (1.37).

1.25 Figure 1.16 shows a hollow box whose walls have been subdi-
vided into four square surface elements. Compose and test an
algorithm-based Matlab (or equivalent) function to index the
surface elements of the box based on knowledge of the appropriate
corner coordinates when Δx = Δy = Δz = 2.00. Use the MS Word
drawing tool to sketch and fully label the box for both the natural
and the primitive meshing schemes.

x 

y 

z 

Δz

Δx

Δy

Figure 1.16 Geometry for Problems 1.25 and 1.26.
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1.26 For the hollow box shown in Figure 1.16, compose an
algorithm-based Matlab (or equivalent) function for finding
the surface element number based on the x,y,z-coordinates of a
wall point. (The algorithm composed for meshing in Problem 1.25
should work here as well.) Test the algorithm using (x, y, z) = (1.45,
0.27, 2,00).
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