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Introduction

1.1 About This Book

This text is the successor to Finite Element Computational Fluid Mechanics published in
1983. It thoroughly organizes and documents the subsequent three decades of progress in
weak form theory derivation of optimal performance CFD algorithms for the infamous
Navier–Stokes (NS) nonlinear partial differential equation (PDE) systems. The text content
addresses the complete range of NS and filtered NS (for addressing turbulence) PDE sys-
tems in the incompressible fluid-thermal sciences. Appendix B extends subject NS content
to a weak form algorithm addressing hypersonic shock layer aerothermodynamics.

As perspective color and dynamic computer graphics are support imperatives for CFD a
posteriori data assimilation, and hence interpretation, www.wiley.com/go/baker/GalerkinCFD
renders available the full color graphics content absent herein. The website also contains
detailed academic course lecture content at advanced graduate levels in support of outreach
and theory exposure/implementation.

Weak form theory is the mathematically elegant process for generating approximate
solutions to nonlinear NS PDE systems. Theoretical formalities are always conducted in
the continuum, and only after such musings are completed are space and time discretization
decisions made. This final step is a matter of choice, with a finite element (FE) spatial
semi-discretization retaining use of calculus and vector field theory throughout conversion
to terminal computable form. This choice enables implementing weak form theory preci-
sion into an optimal performance compute engine, eliminating any need for heurism.

The text tenor assumes that the reader remembers some calculus and is adequately
versed in fluid mechanics and heat and mass transport at a post-baccalaureate level. It fur-
ther assumes that this individual is neither comfortable with nor adept at formal mathemat-
ical manipulations. Therefore, text fluid mechanics subject exposure sequentially enables
just-in-time exposure to essential mathematical concepts and methodology, in progressively
addressing more detailed NS PDE systems and closure formulations.

Potential flow enables elementary weak form theory exposure, with subsequent theoriza-
tion modifications becoming progressively more involved in addressing NS pathological
nonlinearity. The exposure process is sequentially supported by a posteriori data from
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precisely designed computational experiments, enabling quantitative validation of theory
predictions of accuracy, convergence, stability and error estimation/distribution which, in
concert, lead to confirmation of optimal mesh solution existence.

Text content firmly quantifies the practice preference for an FE semi-discrete spatial
implementation. The apparent simplicity of finite volume (FV) and finite difference (FD)
discretizations engendered the FV/FD commercial CFD code legacy practice. However, as
documented herein, FV/FD spatial discretizations constitute non-Galerkin weak form deci-
sions leading to nonlinear schemes via heuristic arguments. This is totally obviated in con-
verting FE algorithms to computable syntax using calculus and vector field theory. This
aspect hopefully further prompts the reader’s interest in acquiring knowledge of these ele-
gant practice aspects, such that assimilating FE constructs proves to be worth the effort.

The progression within each chapter, hence throughout the text, sequentially addresses
more detailed fluid/thermal NS PDE systems, each chapter building on prior material. The
elegant uniformity of weak form theory facilitates this approach with mathematical formal-
ities never requiring an ad hoc scheme decision. In his reflections on teaching the finite
element method Bruce Irons is quoted, “Most people, mathematicians apart, abhor abstrac-
tion.” Booker T. Washington concurred, “An ounce of application is worth a ton of
abstraction.” These precepts guide the development and exposition strategies in this text,
with abstraction never taking precedence over developing a firm engineering-based theoret-
ical exposure.

Summarizing, modified continuous Galerkin weak formulations for fluid/thermal sciences
CFD generate practical computational algorithms fully validated as optimal in performance
as predicted by a rich theory. Conception and practice goals always lead to the theoretical
exposition, to convince the reader that its comprehension is a worthwhile goal, paying the
requisite dividend.

1.2 The Navier–Stokes Conservation Principles System

Computational fluid-thermal system simulation involves seeking a solution to the nonlinear
PDE systems generated from the basic conservation observations in engineering mechan-
ics. In the lagrangian (point mass) perspective, these principles state

conservation of mass : dM � 0;M � Σmi (1.1)

Newton’s second law : dP � ΣF;P � MV (1.2)

thermodynamics; first law : dE � dQ � dW (1.3)

thermodynamic process : dS³ 0 (1.4)

In (1.1) mi denotes a point mass, M is total mass of a particle system, V is velocity of that
system and F denotes applied (external) forces. Equations (1.3–1.4) are statements of the
first and second law of thermodynamics where E is system total energy, Q is heat added,
W is work done by the system and S is entropy.

Practical CFD applications almost never involve addressing the conservation principles
in lagrangian form. Instead, the transition to the continuum (eulerian) description is made,
wherein one assumes that there exist so many mass points per characteristic volume V that
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a density function ρ can be defined

ρ(x; t) � lim
V!0

1
V

X
i

mi (1.5)

One then identifies a control volume CV, with bounding control surface CS, Figure 1.1,
and transforms the conservation principles from lagrangian to eulerian viewpoint via
Reynolds transport theorem

d() ) D() � @

@t ∫cv( � )dτ � ∮cs
( � )V � n̂ dσ (1.6)

Thus is produced a precise mathematical statement of the conservation principles for
continuum descriptions as a system of integro-differential equations

DM � @

@t ∫cvρdτ � ∮cs
ρV � n̂ dσ � 0 (1.7)

DP ) @

@t ∫cvρVdτ � ∮cs
VρV � n̂ dσ � ∫cvρBdτ � ∫csTdσ (1.8)

DE ) @

@t ∫cvρedτ � ∮cs
(e � p/ρ)ρV � n̂ dσ � ∫cvsdτ � ∫cs(W � q � n̂ )dσ (1.9)

Note the eulerian “filling in” of the right hand sides for DP and DE with
P

F ) body
forces B+ surface tractions T, and dQ� dW ) heat added s, bounding surface heat efflux
q � n̂ and work done W.

From (1.7–1.9), one easily develops the PDE statements of direct use for CFD formula-
tions by assuming that the control volume CV is stationary, followed by invoking the
divergence theorem for the identified surface integrals. For example for (1.7)

∮cs
ρV � n̂ dσ � ∫cvr � ρVdτ (1.10)

where ▿ is the gradient (vector) differential operator.
Via the divergence theorem the integro-differential equation system (1.7–1.9) is uni-

formly re-expressed as integrals vanishing identically on the CV. Such expressions can
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Figure 1.1 Control volume for Reynolds transport theorem
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hold in general if and only if (if f ) the integrand vanishes identically, whereupon DM, DP
and DE morph to the nonlinear PDE system

DM:
@ρ
@t

� r � ρu � 0 (1.11)

DP:
@ρu
@t

� r � ρuu � ρg � rT (1.12)

DE:
@ρe
@t

� r � ρe � p� �u � s � r � q (1.13)

Herein the velocity vector label V in the preceding equations is replaced with the more
conventional symbol u.

It remains to simplify (1.11–1.13) for constant density ρ0 and to identify constitutive
closure for traction vector T and heat flux vector q. For laminar flow T contains pressure
and a fluid viscosity hypothesis involving the Stokes strain rate tensor. For constant den-
sity ρ0 and multiplied through by ▿ the resultant vector statement is

rT � �rp � r � μru (1.14)

where p is pressure and μ is fluid absolute viscosity. The Fourier conduction hypothesis for
heat flux vector q is

r � q � �r � krT (1.15)

where k is fluid thermal conductivity and T is temperature.
Substituting these closure models and enforcing that density and specific heat are

assumed constant converts (1.11–1.13) to the very familiar textbook appearance of Navier–
Stokes. Herein the homogeneous form preference leads to the subject incompressible NS
PDE system

DM: r � u � 0 (1.16)

DP:
@u
@t

� r � uu � ρ0rp � r � νru � (ρ=ρ0)g � 0 (1.17)

DE:
@T

@t
� r � uT � r � κrT � s=ρ0cp � 0 (1.18)

In (1.17), ν= μ/ρ0 is fluid kinematic viscosity with density assumed as the constant ρ0
except for thermally induced impact in the gravity body force term in (1.17). Finally, in
(1.18) κ= k/ρcp is fluid thermal diffusivity.

Thermo-fluid system performance is thus characterized by a balance between unsteadiness
and convective and diffusive processes. This identification is precisely established by non-
dimensionalizing (1.16–1.18). The reference time, length and velocity scales are τ, L, and
U, respectively, with the (potential) temperature scale definition Θ= (T�Tmin)/
(Tmax�Tmin). Then implementing the Boussinesq buoyancy model for the gravity body
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force, the non-D incompressible NS PDE system for thermal-laminar flow with mass trans-
port is

DM: r � u � 0 (1.19)

DP: St
@u
@t

� r � uu � rP � 1
Re

r � ru � Gr

Re2
Θ g

^� 0 (1.20)

DE: St
@Θ
@t

� r � uΘ � 1
RePr

r � rΘ � sΘ � 0 (1.21)

DY: St
@Y

@t
� r � uY � 1

ReSc
r � rY � sY � 0 (1.22)

The unknowns in PDE system (1.19–1.22) are the non-D velocity vector u, kinematic
pressure P, temperature Θ and mass fraction Y. No special notation emphasizes that these are
non-D, which will always be the case. These variables as a group are hereinafter referenced as
the NS PDE system state variable symbolized as the column matrix {q(x,t)} = {u, P, Θ, Y}T.

The definitions for Stanton, Reynolds, Grashoff, Prandtl and Schmidt numbers are conven-
tional as St� τU/L, Re�UL/ν, Gr� gβΔTL3/ν2, Pr� ρ0νcp/k and Sc�D/ν, where D is the
binary diffusion coefficient. Additionally ΔT� (Tmax�Tmin), β� 1/Tabs and P� p/ρ0. St is
defined unity, τ�L/U, except when addressing flowfields exhibiting harmonic oscillation,
and the Peclet number Pe�RePr is the common replacement in DE.

1.3 Navier–Stokes PDE System Manipulations

The NS PDE system (1.19–1.22) is universally accepted as an accurate descriptor of fluid-
thermal phenomena for all Reynolds numbers Re. However, it is also universally recog-
nized that for Re � O(∼E+04), where O(•) signifies order, the resultant NS flowfields
will be characterized as turbulent.

The CFD simulation procedure that addresses the expressed NS PDE system for all Re
is called direct numerical simulation (DNS). Even with massive computer resources the
DNS approach to solution of practical NS problem statements is contraindicated, cf.
Dubois et al. (1999). The DNS approach is not addressed herein, although these algorithms
do enjoy an identical weak form theoretical basis.

Instead, generating computational simulation algorithms for NS PDE statements for
practical Re requires manipulations of (1.19–1.22). In the CFD community, the operation
of time averaging generates the Reynolds-averaged NS (RaNS) PDE system. The alterna-
tive is spatial filtering via convolution with a filter function that produces the large eddy
simulation (LES) NS PDE system. A union of the two has been termed very large eddy
simulation (VLES), or a RaNS-LES hybrid termed detached eddy simulation (DES).

In each instance the mathematical manipulations introduce a priori unknown variables
into the resultant PDE system state variable due to the nonlinear convection terms in
(1.20–1.22). Time averaging resolves {q(x,t)}={u, p, Θ, Y}T into the time-independent
steady component and the fluctuation (in time) thereabout. In tensor index notation the
resolution statement for velocity vector u is

u(x; t) ) ui(xk; t) � ui(xk) � u0i(xk; t) (1.23)
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Time averaging the convection term in (1.20) produces

ujui � ujui � u0ju0i (1.24)

that is, the tensor product of time averaged velocity plus the time average of the tensor
product of velocity fluctuations about the steady average.

The second term in (1.24) is called the RaNS Reynolds stress tensor, a model for which
must be constructed to close the RaNS PDE system state variable. Similar operations on
DE and DY produce mean convection term products plus the fluctuating product Reynolds
vectors

ujΘ � ujΘ � u0jΘ0 and ujY � ujY � u0jY 0 (1.25)

which must also be modeled to achieve closure.
The specifics of RaNS closure model development are derived in Chapter 4, then further

detailed in Chapters 8 and Appendix B. It is sufficient here to note RaNS closure models
emulate the force-flux form of the Stokes and Fourier fluid-dependent constitutive closures
(1.14–1.15). The correlation coefficient becomes a turbulent eddy viscosity, υt, extended to
turbulent heat/mass flux vector closure via turbulent Pr and Sc number assumptions.

The non-D turbulent eddy viscosity defines the turbulent Reynolds number

Ret � νt=ν (1.26)

and the non-D RaNS PDE system alternative to laminar NS PDEs (1.19–1.22), assuming
unit Stanton number is

DM : r � u � 0 (1.27)

DP:
@u
@t

� r � uu � rP � 1
Re

r � 1 � Ret� �ru� � � Gr

Re2
Θ � 0 (1.28)

DE:
@Θ
@t

� r � uΘ � 1
Re

r � 1
Pr

� Ret

Prt

� �
rΘ

� �
� sΘ � 0 (1.29)

DY:
@Y

@t
� r � uY � 1

Re
r � 1

Sc
� Ret

Sct

� �
rY

� �
� sY � 0 (1.30)

The time averaging alternative of spatial filtering employs the mathematical operation of
convolution. In one dimension for velocity scalar component u the space filtered velocity
definition is

u x; t� � � ∫
∞

�∞
g y� � u x � y; t� �dy (1.31)

where g(y) denotes the filter function. The filtered velocity remains time dependent, and in
n dimensions the CFD literature notation for spatial filtering

ui xj; t
� 	 � gδ*ui xj; t

� 	
(1.32)

is symbolized by * with δ denoting the measure (diameter) of the filter function g.
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Spatial filtering the NS PDE system (1.19–1.22) produces the LES PDE system
addressed in Chapter 9. Following convolution, Fourier transformation and deconvolution
spatial filtering of the convection term in (1.20) generates the a priori unknown stress
tensor quadruple

ujui � ujui � u0jui � uju0i � u0ju0i (1.33)

Generating closure models for the LES PDE system typically involves consequential
approximations in (1.33). For example, adding and subtracting the filtered velocity tensor
product in (1.33) produces the triple decomposition approximation

ujui � ujui � ujui � ujui
� 	
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Lij

� uju0i � u0jui
� 	
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Cij

� u0ju0i|ffl{zffl}
Rij

(1.34)

for Lij termed the Leonard stress, Cij the cross stress and Rij the Reynolds subfilter scale
tensors.

LES theory states that the latter accounts for energetic dissipation at the unresolved scale
threshold, the spatial scale defined by filter measure δ. This is the LES theory equivalent of
viscous dissipation in the unfiltered NS system at molecular scale. The legacy published sub-
grid scale (SGS) tensor models again are of force-flux mathematical form, (1.27–1.30), with
many variations, Piomelli (1999). As with time averaging, spatial filtering the NS DE and DY
PDEs generates the companion unknown filtered thermal and mass vector quadruples.

An NS PDE system manipulation particularly pertinent to aerodynamics CFD applications
alters the steady form of (1.19–1.22) assuming the velocity vector field is unidirectional. The
end results are the famous boundary layer (BL) PDE system, and the n-dimensional general-
ization parabolic Navier–Stokes (PNS) PDE system. Both systems possess initial-value char-
acter in the direction of dominant flow. Importantly, both have largely supported
development and validation of Reynolds stress tensor/vector closure models for the RaNS
PDE system. The compressible turbulent PNS (PRaNS) PDE system is applicable to hyper-
sonic external shock layer aerothermodynamics, detailed in Appendix B.

1.4 Weak Form Overview

The incompressible NS PDEs, also the model closed BL, PNS, RaNS and LES PDE sys-
tems, are elliptic boundary value (EBV) with selective initial-value character. Weak form
theory is a thoroughly formal process for constructing approximate solutions to I-EBV/
EBV PDE systems. The mathematical hooker in these PDEs is that each contains the dif-
ferential constraint of DM, (1.19), which requires that the velocity field be divergence-free.
This is the fundamental theoretical issue in identifying PDE systems with boundary condi-
tions (BCs) that are well-posed, fully detailed in subsequent chapters.

The fundamental axiom of weak form theory is that one indeed seeks to construct an
approximate solution. By very definition, a PDE solution is a function of space (and time
perhaps) distributed continuously and smoothly, or possessing a finite number of finite dis-
continuities, over the PDE domain and on its boundaries. Thereby, the prime requirement
for a weak form CFD algorithm is to clearly identify the candidate approximate solution.
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This is completely distinct from historical FD/FV CFD approaches which generate a union
of stencils via Taylor series approximations to PDE derivatives rather than stating the
sought-for solution.

So, the starting point for a weak form construction is to identify a set of functions,
called the trial space, endowed with properties appropriate for supporting an approximate
solution. With certified existence of a trial space, the following questions come to mind:

� How good (accurate) an approximate solution can be supported by the selected trial
space?� How does the trial space supporting a finite element (FE) approximation differ from that
for a finite difference (FD) scheme or a finite volume (FV) integral construction?� Can these trial spaces be identical, and, if not, what are the distinguishing issues?� Bottom line: is the error in the approximation related to a specific trial space selection?

Weak form theory possesses an elegant formalism for defining approximate solution
error, developed in thoroughness in the next few chapters. The premier realization is that
approximation error is a function(!) distributed over the PDE domain and its boundaries,
as are the approximate and the exact NS solutions, with the latter of course never known.
The key precept of weak form theory is to establish an integral constraint on error which
requires definition of another set of functions termed the test space, against which the
approximation error can be “tested.” In English:

weak form theory formalizes the ingredients of
approximate solution construction in terms
of a trial space, a test space and the rendering
of the resultant approximation error an extremum
in an appropriate integral measure called a norm

Weak form theory practice is no more complicated than implementing this statement.
Thereby, one must immediately enquire whether there exists an optimal test space, such
that the approximation error is the smallest possible for any trial space selection. Again
weak form theory provides the answer:

Weak form theory predicts the approximation
error is extremized, in practice minimized, when
the trial and test spaces contain the identical
members, which is termed the Galerkin criterion

Weak form theoretical musings always occur in the continuum and fully utilize calculus
and vector field theory for generality with precision. Of pertinence, the weak form contin-
uum construction holds for the PDE+BCs analytical solution as well as any approxima-
tion! Once the theory statement is formed, the remaining decision is trial space selection,
hence identical test space, for error extremization. The key trial space requirement is for
members to possess differentiability sufficient to enable integrals of their PDE derivatives
to exist. This is really no problem, so the completion issue is forming the integrals that the
weak form generates.
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The continuum trial space contains functions spanning the global extent of the PDE
domain. Finding suitable functions that one can integrate is nigh impossible (the challenge
in DNS), hence the solution is to discretize the PDE domain and its boundaries, and hence
identify much smaller subsets of the global trial (and test) space. Underlying is interpola-
tion theory with net result a discrete approximation trial space basis. Trial space bases
possess support only in the generic discretization cell, the union (non-overlapping sum) of
which constitutes the computational mesh. This process admits full geometric generality,
accurate evaluation of weak form integrals and a rigorous path to progressively more accu-
rate formulations. Of ultimate importance is that it supports analytical formation of non-
linear algebraic matrix statements amenable to computing.

Summarizing, weak form theory involves clear organization of the sequence of deci-
sions required for approximate solution error extremization, prior to definition of any spe-
cific discrete trial space basis. Thus, any given discrete solution methodology, specifically
FE, FD or FV, becomes clearly identifiable among its peers by the sequence of decisions
exposed in the weak formulation process. This text develops the subject in thoroughness,
across a broad spectrum of fluid-thermal NS and manipulated NS PDE systems for which
an optimal performance CFD algorithm is sought.

1.5 A Brief History of Finite Element CFD

Finite difference methods in CFD were first reported in the late 1920s, Courant et al.
(1928), with fundamental theoretical developments emerging from the Courant Institute
following World War II, Lax (1954), Lax and Wendroff (1960). Thereafter, many contribu-
tions to CFD emerged from the Los Alamos Scientific Laboratory (LASL), Amsden and
Harlow (1970), Harlow (1971), coincident with the Imperial College team’s development
of the “SIMPLE” algorithm, Gosman et al. (1969). The NASA Ames Research Center
(ARC) picked up the lead on compressible aerodynamics CFD, MacCormack (1969),
Beam and Warming (1976), with timing coincident with CFD maturing to an international
research topic with hundreds of contributors.

The progenitor of weak form theory is the finite element method developed in practice in
the late 1950s by aeronautical engineers to analyze aircraft structural components. Explor-
atory musings preceded this; for example Hrenikoff (1941) developed an elasticity solution
for torsion problems based on triangles, Courant (1943) developed a variational formula-
tion for problems in vibrations. Turner et al. (1956) first derived the stiffness matrix for
truss and beam analysis, and Clough (1960) coined the term finite element. Argyris (1963)
published the first monograph detailing a precise mathematical foundation for the engi-
neer’s newly emerging finite element analysis capability.

The finite element method’s first application to the non-structural problem of unsteady heat
conduction required convolution, Zienkiewicz and Cheung (1965). A formal addressing of
the wider problem class in nonlinear mechanics followed, Oden (1972). As finite element
structural theory and methodology matured, the mechanistic engineering precepts became
replaced by a rich mathematical basis founded in the variational calculus and Rayleigh–Ritz
methods, Rayleigh (1877), Ritz (1909). This classic theory base for finite element structural
analyses grew rapidly, including many fundamental contributions, Babuska and Aziz (1972),
Ciarlet and Raviart (1972), Aubin (1972), Lions and Magenes (1972), Strang and Fix (1973)
and Oden and Reddy (1976).
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The direct extension of classic variational mechanics to CFD algorithm construction for
fluid/thermal descriptions is not possible. The impediment is the conservation principle
eulerian reference frame, which renders momentum conservation DP explicitly nonlinear.
For this reason, at least, pioneering CFD procedures employed replacement of derivatives
by divided differences, that is, finite differences, Richtmyer and Morton (1967), Roache
(1972).

The FD successor finite volume CFD developments involved direct integration of each
PDE over cells of a domain discretization, followed by the divergence theorem which
exposed cell face fluxes. These were evaluated via finite difference quotients coupled with
an approximate enforcement for DM, Patankar (1980). The particle-in-cell method, Evans
and Harlow (1957), also employed a cell flux concept and used pseudo-lagrangian particle
distributions for approximate satisfaction of the DM constraint.

Most FD/FV quotient-based CFD algorithms were discovered recoverable as specific crite-
ria selections within the discrete weighted residuals (WR) framework, with Finlayson (1972)
the pioneering exposition. In WR theory, approximation error was constrained by requiring
local integrals containing “weights” to vanish. Within the class, the collocation method
weights were the Dirac delta, which exactly reproduced classic FD quotients. A finite volume
algorithm was retrieved for a constant weight. Generalizing the weights to functions, and
defining them identical to the discrete trial space basis reproduced the Galerkin method,
named after the (non-discrete, non-CFD) procedure of B.G. Galerkin (1915). Finally, defin-
ing the weights to be the PDE operator itself reproduced the least squares method.

Pioneering FE CFD algorithms employed various WR criteria. Oden (1969, 1972) was
among the first to derive the basic theoretical analog for the NS PDE system. Using a
Galerkin WR FE formulation, Baker (1971, 1973, 1974) reported two-dimensional com-
pressible and incompressible flow simulations with recirculation regions. Olson (1972)
detailed a pseudo-variational (hence Galerkin) FE algorithm for the streamfunction bihar-
monic PDE equivalent of the two-dimensional NS PDE system.

Lynn (1974) used the least squares criterion for an FE laminar boundary layer flow algo-
rithm that retained a symmetric matrix structure. Popinski and Baker (1974) published an FE
Galerkin WR algorithm for laminar boundary layer flow and reported accuracy and conver-
gence in an appropriate norm, including direct comparisons with the Crank–Nicolson (1947)
FD algorithm. Chung and Chiou (1976) published an FE Galerkin WR algorithm for com-
pressible laminar boundary layer development behind an impinging shock. Connor and Breb-
bia (1974) authored Finite Element Techniques for Fluid Flow, the first monograph for a
restricted problem class. Then followed The Finite Element Method for Engineers, Huebner
(1975), with limited FE Galerkin WR content, and Finite Element Simulation in Surface and
Subsurface Hydrology, Pinder and Gray (1977), with content restricted to the title category.

From the mid 1970s through the 1980s burgeoning interest in weak form FE CFD
algorithm research and applications sparked annual international conferences. This
resulted in the Wiley conference monograph series Finite Elements in Fluids, with
Gallagher, Oden and Zienkiewicz principal editors, Gallagher et al. (1975–1988). Publi-
cation of FE discrete CFD algorithms for NS systems moved to textbooks. Finite Ele-
ment Computational Fluid Mechanics, Baker (1983), was the first topical treatise to
specifically include asymptotic convergence theory validation for RaNS systems.
(Therein weak form never appeared, owing to the author’s opinion that engineers didn’t
do weak things!)
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Fletcher (1984) authored Computational Galerkin Methods containing a handful of NS
solutions. With a sharp mathematical focus, but containing applications restricted to very
small Reynolds number, Gunzburger (1989) published Finite Element Methods for Viscous
Incompressible Flows. Similarly, Pironneau (1989) published Finite Element Methods for
Fluids, an exceptionally formal mathematical treatise which included laminar flow bench-
mark problem validation data. Coincident with PC capability maturation, Baker and Pepper
(1991) authored Finite Elements 1–2–3 which included a 5¼ inch floppy disc containing
Fortran code.

It’s quite alarming looking into these early texts and viewing solution graphics com-
puted on incredibly coarse meshes! Much larger scale PC computing emerged in the
1990s, as the FE CFD textbook litany moved forward. First prize for size (over 1000
pages!) goes to Gresho and Sani (1998) for Incompressible Flow and the Finite Element
Method, which contained incredible mathematical detail for laminar isothermal
incompressible flows only! Reddy and Gartling (2001) published The Finite Element
Method in Heat Transfer and Fluid Dynamics, with applications to low-Re non-Newtonian
fluids.

Chung (2002) followed with Computational Fluid Dynamics, also scaling in at over
1000 pages, covering a broad spectrum in FD/FV CFD theory and practice but with a very
limited FE content. Donea and Huerta (2003) followed with Finite Element Methods for
Flow Problems, with validations restricted to two-dimensional laminar NS benchmarks.
Recently, Finite Elements , Computational Engineering Sciences, Baker (2012), details
introductory coverage of weak form theory broadly applied to heat transfer, structural
mechanics, vibrations, fluid mechanics and heat/mass transport. Text content assimilation
includes still/dynamic color graphics and academic course organization support at www
.wiley.com/go/baker/finite. Hands-on PC computing is Matlab- and COMSOL-enabled
with focus generation of a posteriori data validating asymptotic convergence theory, error
estimation, the impact of non-smooth data and design optimization.

1.6 A Brief Summary

So, does the CFD community need another textbook on weak form FE-implemented algo-
rithms? I believe the answer is yes, as the broad duplication of historical, small Re con-
structions reported can now be replaced by a single comprehensive weak form theory text
with precise attention to performance estimation and validation. This current knowledge
base is applicable across the complete spectrum of NS, BL, PNS, RaNS, LES and PRaNS
PDE systems.

Weak form theory, of necessity linear, predicts that the solution associated with the sta-
tionary coordinate of the Galerkin criterion is optimal. Its failure to address dispersive error
instability and phase accuracy compromising issues associated with pioneering Galerkin
NS constructions is now fully resolved. Via weak form manipulations based on limiting
independent coordinate-derived Taylor series, differential term additions to the classic text
NS PDE statements generate modified (mPDE) systems. The analysis framework ultimately
leads to a precise theory recovering essentially all prior FD/FV/FE constructions, but most
importantly theoretical prediction of an optimal construction.

Hence, CFD algorithms for all NS, BL, PNS, RaNS, LES and PRaNS mPDE systems
herein are based on this theoretically sound optimal modified continuous Galerkin weak
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form CFD theory. The key required confirmation of this assertion, as detailed herein, is
that linear weak form theory is the accurate predictor of nonlinear NS PDE/mPDE CFD
algorithm performance. Had this not occurred, this text would not have been written!

To summarize, weak form theory enables removal of essentially all elements of mystery
surrounding algorithm constructions in NS fluid-thermal CFD. Comparison to legacy and/or
current discrete CFD formulations is direct, simply by selecting the non-Galerkin, non-
augmented PDE weak form criteria appropriate to reproducing that algorithm. This text is the
culmination of the author’s decades-held premise that the (multiple) hundreds of published
CFD algorithms do not produce a corresponding number of linearly independent constructions!
That the cogent approach to the subject can shed light uniformly across the spectrum was my
academic research objective. This text is the result, hopefully written in a manner making the
exposé enjoyable and rewarding. Bon voyage!
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