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The Computational
Engineering Sciences:
an introduction

1.1 Engineering Simulation

The digital computer, coupled with engineering and computer science plus modern
approximation theory, have coalesced to render computational simulation via math
modeling an alternative modality supporting design optimization in engineering. Design
has historically been conducted in the physical laboratory (Figure 1.1). The test device is
a miniature of reality and the laboratory process sequence is:

� model the geometry (similitude)
� determine desired data (cost)
� acquire the data
� interpret the data
� draw conclusions

The computational engineering sciences laboratory has emerged as the complement to, or
replacement of, the legacy modality (Figure 1.2). The computational laboratory process
sequence is:

� model the mathematics (fidelity)
� model the physics (cost)
� compute the data
� interpret the data
� draw conclusions
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The first two components of the computational engineering sciences (CES) labora-
tory place a significant new burden on the engineer/scientist. Aspects of calculus and
vector field theory, the language for expressing conservation principles in the engineer-
ing sciences, must be recalled. Additionally, dexterity with constitutive closure approxi-
mations, that is, the “physics model,” must be understood on a fidelity/mathematics as
well as cost/benefit basis.

The identical calculus and vector field topics underpin modern approximation
theory guidance for generating a conservation principle approximate solution based on a
weak formulation (WF) [1]. The mathematicians, in developing this approach to solution
approximation, have endowed it with an elegant theory on optimal construction and
error estimation. A WF, always completed in the continuum, theoretically transforms the

Figure 1.1 Classic wind tunnel test

Figure 1.2 Cloud-computing visualization
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solution of the partial differential equation (PDE) into a computable large-order
algebraic equation system.

Once the continuum weak form theory is completed, the sole remaining decision is
implementation. Herein this is accomplished by replacing the trial and test spaces with
finite element (FE) trial/test space bases defined for a spatial discretization of the PDE
domain of dependence. This identification directly enables WF integral evaluations
using the calculus. Detailing this process for a diverse spectrum in the engineering sci-
ences is the content of this text.

1.2 A Problem-Solving Environment

Historically, a frustrating aspect of computational simulation was interacting with the
computer code! User interface and computer science issues dominate this facet, and the
engineer/scientist interested in analysis is typically not well founded in the required
skills. This issue is compounded by the tradition in olden times, that is, a decade or so
ago, for the individual to code his/her own computer program.

This incredible dissipation of time and effort has been superceded by the emergence
of component-based software leading to the concept of a problem-solving environment
(PSE). Commercial code systems now exist throughout the engineering sciences pos-
sessing very powerful advances in user interfaces. Maturation of grid computing con-
cepts will lead, in the not too distant future, to Internet-enabled just-in-time capabilities
using remotely accessible high-performance computing and communications (HPCC)
constructs [2].

Figure 1.3 illustrates this emergent scenario. The practicing design engineer pos-
sesses knowledge about his/her problem statement, and after absorbing this text’s
content will be thoroughly comfortable with the associated mathematics/physics
issues with seeking an optimal approximate solution. From that point on only casual

Figure 1.3 The problem-solving environment
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knowledge about the subsequent computer science issues will be required, as the Inter-
net modality exists to complete the loop.

An added historical aspect is that computational codes were irrevocably tailored to
the specific discrete theory, for example, finite difference (FD), finite volume (FV), FE
for a given engineering science problem class. This is now moot as completed research
confirms these apparently very distinct computational constructs can be interpreted as
specific decisions in implementing a weak statement (WS), the extremum of a WF for a
PDE. Invariably the FE discrete implementation generates the optimal construction, the
consequence of WF theory, and the use of calculus rather than difference algebra to
form the algebraic statement.

The computational practice of FE methods is rapidly maturing, as academics in
math, engineering, and computer science collectively resolve key theoretical issues. A
by-product, developed in thoroughness in this text, is the object-oriented FE algorithm
construct that directly communicates “compute desire” to a PSE via a template.

This approach recognizes a code is but a data-handling system, and the FE imple-
mentation of a WS generates only six data types for each and every (!) FE domain Ve

specifically including nonlinearity. The objects for all element-level matrix contribu-
tions {WS}e to a WS algebraic statement are thus organized as:

fWSge �
global
constant

� �
element
average

� �
e

element
variable

� �
e

metric
data

� �
e

master
matrix

� �
unknown
or data

� �
e

:

Coding of a FE WS discrete implementation is thus reduced to data identification in
these six object categories.

Herein, the progression of a WS algorithm for an engineering science topic, FE dis-
crete-implemented, leads to the object-oriented template transparently converting the-
ory to executable code. Template generation occurs in a word-processing
environment, and the result precisely encompasses all complexities, specifically
including nonlinearity, in coupled PDE systems. The template-enabled computing PSE
herein employs MATLAB1 [3], via the specifically written FEmPSE toolbox for exposi-
tory computing labs. Design-based computing experiments employ COMSOL [4], an
FE-implemented multiphysics commercial PSE.

1.3 Weak Formulation Essence

An engineering design problem statement is invariably cast as a PDE written on the
state variable (the dependent variable), herein labeled q¼ q(x) for the steady definition.
The compact notation used in this text to denote a PDE is

LðqÞ ¼ 0; onV � <n: ð1:1Þ

In equation (1.1), L is the PDE placeholder and its domain of influence is symbolized
as V, a region lying on an n-dimensional euclidean space <n.
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To “connect” the PDE to the specific problem statement requires boundary condi-
tions (BCs) communicating this given information, that is, the data. The text-utilized
BC compact notation is

‘ðqÞ ¼ 0; onV � <n�1; ð1:2Þ

where @V is the (n–1)-dimensional bounding enclosure of V. Figure 1.4 illustrates these
formalisms.

The exact solution q(x) satisfying a genuine problem equations (1.1) and (1.2) can
never (!) be found analytically. Consequently, the key WF theory requirement is to for-
mally define an (any!) approximation to q(x). Herein this requirement is expressed as

qðxÞ � qNðxÞ �
XN
a¼1

CaðxÞQa: ð1:3Þ

The assumption in equation (1.3) is that one can identify a suitable trial space Ca(x), a
set of functions on <n, to support any approximate solution. The summation therein
couples each trial space member to an unknown expansion coefficient Qa, called a
degree-of-freedom (DOF) of the approximation, the set of which is to become determined
in the algebraic computing process.

Unless equations (1.1) and (1.2) define a trivial problem, qN cannot be identical with
q. The difference between q and qN is the approximation error, herein denoted eN. Since
everything is a function, obviously

eNðxÞ � qðxÞ � qNðxÞ: ð1:4Þ

Figure 1.4 Engineering problem statement notation
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The singular goal is to seek the best approximation qN, hence to constrain in some
sense the “size” of eN(x). This is elegantly accomplished via the mathematicians’ WF
that requires the available measure of error

LðqNÞ 6¼ 0 !

be made orthogonal (mathematically “perpendicular”) to an arbitrarily chosen test
function w(x). The weak form (WFN) expression of this constraint on the approximation
(1.3) is

WFN �
Z
V

wðxÞLðqNÞdt � 0: ð1:5Þ

The requirement of any function w(x) is cleanly handled via an interpolation, ([5],
Chapter 2.2), followed by forming the extremum of rearranged equation (1.5) which
identifies the test space Fb(x) companion to the trial space Ca(x). The scalar equa-
tion (1.5) thus becomes a set of equations of the orderN defined in equation (1.3), which
is termed the weak statement (WSN). All x-dependence vanishes in evaluating the
defined integrals, hence WSN generates the algebraic equation system

WSN ) ½Matrix�fQg ¼ fbg: ð1:6Þ

As the final caveat, inserting equation (1.2) into equation (1.5) moves the BC-con-
strained DOF in the set Qa, into the data matrix {b} in equation (1.6). The remaining
equation (1.2)-defined DOF populate the column matrix {Q} in equation (1.6), the
exactly correct order algebraic equation system for determination of the unknown DOF
defined in equation (1.3).

1.4 Decisions on Forming WSN

The key to weak form utility is the assumption that the integrals in WSN, equation (1.6),
can be evaluated. This obviously centers on the functional form selected for the test
and trial function spaces. These decisions in turn identify a specific algorithm from the
wide range of WSN methods that can be derived. The following table provides a WSN

summary essence categorized on these function sets.

Fb(x),Ca(x) Examples WSN Label

Global Sine, cosine, Bessel,

spherical harmonics

Analytical methodology (separation of variables)

Chebyshev polynomials Spectral methods

Global–local Chebyshev by blocks Pseudospectral methods

Local Lagrange polynomials Spatially discrete methods (FE, FV, FD)
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ForFb(x) andCa(x) spanning the entirety of V generates formulations closely associ-
ated with analytical PDE-solution methodology. However, this choice precludes geo-
metric flexibility, as closures @V of the domain V must be coordinate surfaces. The
singular key attribute is that these spaces contain functions that are indeed orthogonal
on V. Hence, [Matrix] in equation (1.6) is typically diagonal, which renders the
algebraic solution process trivial (recall separation of variables in your sophomore calcu-
lus class?).

Spectral methodology retains the definition and use of global span function spaces.
Pseudospectral methods lie halfway between spectral and spatially discrete algo-
rithms, and both typically inherit the liability that closure segments be coincident with
global coordinate surfaces.

For domains with absolutely arbitrarily geometric closure, that is, essentially all
practical problems, the FE discrete implementation of WSN, hereon denoted WSh,
guarantees the extremum of WFN, equation (1.5), generates integrals that can be
evaluated. This is accomplished by subdividing V into the union (nonoverlapping
sum, symbol [) of small subdomains, see Figure 1.5. Each subdomain is called a
FE, denoted Ve, and their union can be manipulated to fit any geometrical shape
of the domain closure @V.

A WSN can be manipulated to interpret FD and FV methodology as will be illus-
trated. The formulation distinctions include integrals not being generated via calculus
and the resultant algorithms are not predictable optimal, the key attribute of a specific
FE implementation WSN, detailed shortly.

This process of subdividing V into the union of small subdomains is called spatial
discretization, symbolized in the literature by superscript h. Unambiguously then

V � Vh � [eVe ð1:7Þ

Figure 1.5 Domain discretization
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and the region Ve is called a FE. The resultant FE solution approximation form (1.3)
transitions to

qNðxÞ � qhðxÞ ¼ [eqeðxÞg: ð1:8Þ
Constructing the required discrete equivalents of Ca(x) and FbðxÞ, equations (1.3)

and (1.5), generates the trial and test space basis functions. The theoretical foundation is
typically Lagrange or Hermite interpolation polynomials, and FE basis functions are
herein symbolized as the column matrix {N(x)}. Hence, for equation (1.8)

qeðxÞ ¼ fNðxÞgTfQge: ð1:9Þ

With equations (1.7)–(1.9) the WSh-generated [Matrix] in equation (1.6) is never diag-
onal. Hence, one must find an algebraic solution replacement for Cramer’s rule, which
introduces iterative matrix linear algebramethodology.

A fundamentally significant solution facet results upon making the discrete approxi-
mation decision. In the FE implementation, the DOF fQge in the element-level approxi-
mation equation (1.9), that is, select DOF Qa in equation (1.3), are usually generated
only at mesh intersections on Vh. Illustrated in Figure 1.5 as dots (�) they are called the
nodes of the mesh.

The union of the local solutions qe(x) forms qh(x), equation (1.8), with the resultant
spectral resolution controlled by node-separation distance. Specifically, for a mesh of
measure Dx any 2Dx wavelength information cannot be resolved. This is clearly illus-
trated in Figure 1.6; on the left the DOF {Q} for the 2Dx sine waves are all zero (!) while
those on the right are nonzero. Hence mesh resolution is central to accuracy; a too coarse
mesh can produce totally wrong solutions, as will be illustrated.

1.5 Discrete WSh Implementations

Legacy FD and FV methods also employ a domain discretization Vh¼[cVc, where Vc is
a computational cell. Further, mathematicians and chemical engineers (in particular)
have developed many node-based numerical methods, for example, collocation, least
squares, weighted residuals. Do fundamental theory underpinnings exist for these appar-
ently very diverse discrete procedures for PDEs?

The answer is a resounding YES!! Under the weak form umbrella, the distinctions
reside strictly in the test and trial space basis functions chosen to form WSh. The follow-
ing table summarizes algorithm decisions in the context of WSh.

Name Trial space,Ca(x) Test space, Fb(x)

Galerkin (FE) Basis {N} Basis {N}

Collocation Basis {N} Kronecker d

Finite difference (FD) ? None

Finite volume (FV) ? Unity

Least squares Basis {N} L ({N})

Boundary element (BEM) Basis {N} Green’s function
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The fact that myriad choices exist, and have been computer implemented, immedi-
ately raises the fundamental question:

Does an optimal choice for the WSN trial and test space function sets Ca(x) and
Fb(x) exist?

One must first define optimal to answer this. Mathematicians will work this to the
point of distraction but engineers are not so burdened. Their obvious choice is the selec-
tion that produces the absolute minimum approximation error eN(x), equation (1.4).

Importantly, this answer must be and is absolutely independent of the particular
choice for discrete implementation! For a wide range of PDEs describing problem
statements in the engineering sciences, in the continuum the answer to the fundamental
question is:

The WSN approximation error eN(x) is minimized, in a suitable norm, when the
trial and test spaces are identical.

Now moving to the WSN spatially discrete implementation WSh, on a mesh Vh, the
approximation error becomes eh(x) � q(x)� qh(x). Thereby, the WS discrete implementa-
tion corollary for optimal performance is:

The WSh approximation error eh(x) is minimized, in a suitable norm, when the trial
and test space replacements contain the identical FE trial space basis functions.

The name historically attached to identical trial and test space functions is Galerkin;
herein this form of WSN is denoted GWSN. The Galerkin criterion is optimal in theory
and in the FE discrete implementation.

The vector “cartoon” in Figure 1.7 serves to illustrate that the exact solution q cannot
lie in the “plane” containing the trial function set Ca(x) supporting qN unless they are
identical (not likely!). The “distance” between q and qN is the error eN and its
“magnitude” is the smallest when eN is orthogonal (mathematically perpendicular) to
the plane, as induced by the Galerkin criterion qN(GWSN). The solution qN(WSN) gener-
ated by any other trial/test function criterion produces the error �eN which is not

Figure 1.6 Resolution illustrations on a mesh of measure Dx
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orthogonal to the trial/test function plane, hence the (dashed) error vector �eN possesses
a larger “magnitude.”

1.6 Chapter Summary

The FE discrete implementation of GWSN, that is, GWSh, is the optimal decision for a
wide class of problem statements in the CES. FE trial space basis availability guaran-
tees accurate evaluation of the integrals defined in equation (1.5) for domains V

enclosed by an arbitrarily nonregular shaped boundary @V. With this theory in place,
the key topic becomes identification of the trial space basis functions spanning FE
domains Ve on n-dimensions. Their identification and performance quantification
across the CES is the subject of this text.

In summary, the GWSN ) GWSh process essence for designing optimally performing
algorithms is:

approximation: q xð Þ ffi qN xð Þ � PN
a

Ca xð ÞQa

error extremization: GWSN � R
V

CbðxÞLðqNÞdt � 0

discretization: V ) Vh ¼ [eVe

FE construction: qN ) qh � [e NðxÞf gT Qf ge
FE implementation: GWSh ) P

e
fWSge ¼ 0f g

linear algebra: ½Matrix� Qf g ¼ bf g
error estimation: solution-adapted Vh refinement

qN(WSN) 

Ψα(x)

eN

q

qN(GWSN) 

e
N

Figure 1.7 Vector cartoon illustrating GWSN optimality
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