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Mathematical background

This chapter reviews some of the basic mathematical ideas and notations that are
used throughout the book. Section 1.1 on set theory and Section 1.2 on functions are
rather concise; readers unfamiliar with this type of material are advised to consult a
more detailed text on mathematical analysis. Measures and mass distributions play
an important part in the theory of fractals and a treatment adequate for our needs is
given in Section 1.3. By asking the reader to take on trust the existence of certain
measures, we can avoid many of the technical difficulties usually associated with
measure theory. Some notes on probability theory are given in Section 1.4; this is
needed in Chapters 15 and 16.

1.1 Basic set theory

In this section, we recall some basic notions from set theory and point set topology.
We generally work in n-dimensional Euclidean space, ℝn, where ℝ1 = ℝ is

just the set of real numbers or the ‘real line’, and ℝ2 is the (Euclidean) plane.
Points in ℝn will generally be denoted by lower case letters x, y, and so on, and
we will occasionally use the coordinate form x = (x1, . . . , xn), y = (y1, . . . , yn).
Addition and scalar multiplication are defined in the usual manner, so that x + y =
(x1 + y1, . . . , xn + yn) and 𝜆x = (𝜆x1, . . . , 𝜆xn), where 𝜆 is a real scalar. We use
the usual Euclidean distance or metric on ℝn so if x and y are points of ℝn, the
distance between them is |x − y| = (∑n

i=1 |xi − yi|2)1∕2. In particular, the triangle
inequality |x + y| ⩽ |x| + |y|, the reverse triangle inequality |||x| − |y||| ⩽ |x − y|
and the metric triangle inequality |x − y| ⩽ |x − z| + |z − y| hold for all x, y, z ∈ ℝn.

Sets, which will generally be subsets of ℝn, are denoted by capital letters E, F,
U, and so on. In the usual way, x ∈ E means that the point x belongs to the set E,
and E ⊂ F means that E is a subset of the set F. We write {x ∶ condition} for the set
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4 MATHEMATICAL BACKGROUND

of x for which ‘condition’ is true. Certain frequently occurring sets have a special
notation. The empty set, which contains no elements, is written as ∅. The integers
are denoted by ℤ, and the rational numbers by ℚ. We use a superscript + to denote
the positive elements of a set; thus, ℝ+ are the positive real numbers, and ℤ+ are the
positive integers. Sometimes we refer to the complex numbers ℂ, which for many
purposes may be identified with the plane ℝ2, with x1 + ix2 corresponding to the
point (x1, x2).

The closed ball of centre x and radius r is defined by B(x, r) = {y ∶ |y − x| ⩽ r}.
Similarly, the open ball is Bo(x, r) = {y ∶ |y − x| < r}. Thus, the closed ball con-
tains its bounding sphere, but the open ball does not. Of course, in ℝ2, a ball
is a disc and in ℝ1 a ball is just an interval. If a < b, we write [a, b] for the
closed interval {x ∶ a ⩽ x ⩽ b} and (a, b) for the open interval {x ∶ a < x < b}.
Similarly, [a, b) denotes the half-open interval {x ∶ a ⩽ x < b}, and so on.

The coordinate cube of side 2r and centre x = (x1, . . . , xn) is the set {y =
(y1, . . . , yn) ∶ |yi − xi| ⩽ r for all i = 1, . . . , n}. (A cube in ℝ2 is just a square
and in ℝ1 is an interval.)

From time to time we refer to the 𝛿-neighbourhood or 𝛿-parallel body, A𝛿 , of
a set A, that is, the set of points within distance 𝛿 of A; thus, A𝛿 = {x ∶ |x − y| ⩽ 𝛿

for some y in A} (see Figure 1.1).
We write A ∪ B for the union of the sets A and B, that is, the set of points belong-

ing to either A or B, or both. Similarly, we write A ∩ B for their intersection, the
points in both A and B. More generally,

⋃
𝛼A𝛼 denotes the union of an arbitrary

collection of sets {A𝛼}, that is, those points in at least one of the sets A𝛼 , and
⋂

𝛼A𝛼

denotes their intersection, consisting of the set of points common to all of the A𝛼 .
A collection of sets is disjoint if the intersection of any pair is the empty set. The
difference A\B of A and B consists of the points in A but not B. The set ℝn\A is
termed the complement of A.

The set of all ordered pairs {(a, b) ∶ a ∈ A and b ∈ B} is called the (Cartesian)
product of A and B and is denoted by A × B. If A ⊂ ℝn and B ⊂ ℝm, then A × B ⊂

ℝn+m.

d
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A

Figure 1.1 A set A and its 𝛿-neighbourhood A𝛿 .
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If A and B are subsets of ℝn and 𝜆 is a real number, we define the vector sum
of the sets as A + B = {x + y ∶ x ∈ A and y ∈ B} and we define the scalar multiple
𝜆A = {𝜆x ∶ x ∈ A}.

An infinite set A is countable if its elements can be listed in the form x1, x2, . . .
with every element of A appearing at a specific place in the list; otherwise, the set
is uncountable. The sets ℤ and ℚ are countable but ℝ is uncountable. Note that a
countable union of countable sets is countable.

If A is any non-empty set of real numbers, then its supremum supA is the least
number m such that x ⩽ m for every x in A or is ∞ if no such number exists. Sim-
ilarly, the infimum inf A is the greatest number m such that m ⩽ x for all x in A or
is −∞. Intuitively, the supremum and infimum are thought of as the maximum and
minimum of the set, although it is important to realise that sup A and inf A need not
be members of the set A itself. For example, sup(0, 1) = 1, but 1 ∉ (0, 1). We write
supx∈B( ) for the supremum of the quantity in brackets, which may depend on x, as
x ranges over the set B.

We define the diameter |A| of a non-empty subset of ℝn as the greatest distance
apart of pairs of points in A. Thus, |A| = sup{|x − y| ∶ x, y ∈ A}. In ℝn, a ball of
radius r has diameter 2r, and a cube of side length 𝛿 has diameter 𝛿

√
n. A set

A is bounded if it has finite diameter or, equivalently, if A is contained in some
(sufficiently large) ball.

Convergence of sequences is defined in the usual way. A sequence {xk} in ℝn

converges to a point x of ℝn as k → ∞ if, given 𝜀 > 0, there exists a number K such
that |xk − x| < 𝜀 whenever k > K, that is, if |xk − x| converges to 0. The number x
is called the limit of the sequence, and we write xk → x or limk→∞ xk = x.

The ideas of ‘open’ and ‘closed’ that have been mentioned in connection with
balls apply to much more general sets. Intuitively, a set is closed if it contains its
boundary and open if it contains none of its boundary points. More precisely, a
subset A of ℝn is open if, for all points x in A, there is some ball B(x, r), centred at x
and is of positive radius that is contained in A. A set is closed if whenever {xk} is a
sequence of points of A converging to a point x of ℝn, then x is in A (see Figure 1.2).
The empty set ∅ and ℝn are regarded as both open and closed.

It may be shown that a set is open if and only if its complement is closed. The
union of any collection of open sets is open, as is the intersection of any finite

(a) (b) (c)

Figure 1.2 (a) An open set – there is a ball contained in the set centred at each
point of the set. (b) A closed set – the limit of any convergent sequence of points
from the set lies in the set. (c) The boundary of the set in (a) or (b).
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number of open sets. The intersection of any collection of closed sets is closed, as
is the union of any finite number of closed sets (see Exercise 1.6).

A set A is called a neighbourhood of a point x if there is some (small) ball B(x, r)
centred at x and contained in A.

The intersection of all the closed sets containing a set A is called the closure
of A, written A. The union of all the open sets contained in A is the interior intA
of A. The closure of A is thought of as the smallest closed set containing A, and
the interior as the largest open set contained in A. The boundary 𝜕A of A is given
by 𝜕A = A\intA, thus x ∈ 𝜕A if and only if the ball B(x, r) intersects both A and its
complement for all r > 0.

A set B is a dense in A if A ⊂ B, that is, if there are points of B arbitrarily close
to each point of A.

A set A is compact if any collection of open sets that covers A (i.e. with union
containing A) has a finite subcollection which also covers A. Technically, compact-
ness is an extremely useful property that enables infinite sets of conditions to be
reduced to finitely many. However, as far as most of this book is concerned, it is
enough to take the definition of a compact subset of ℝn as one that is both closed
and bounded.

The intersection of any collection of compact sets is compact. It may be shown
that if A1 ⊃ A2 ⊃ · · · is a decreasing sequence of compact sets, then the intersection⋂∞

i=1 Ai is non-empty (see Exercise 1.7). Moreover, if
⋂∞

i=1 Ai is contained in V for
some open set V , then the finite intersection

⋂k
i=1 Ai is contained in V for some k.

A subset A of ℝn is connected if there do not exist open sets U and V such that
U ∪ V contains A with A ∩ U and A ∩ V disjoint and non-empty. Intuitively, we
think of a set A as connected if it consists of just one ‘piece’. The largest connected
subset of A containing a point x is called the connected component of x. The set
A is totally disconnected if the connected component of each point consists of just
that point. This will certainly be so if for every pair of points x and y in A we can
find disjoint open sets U and V such that x ∈ U, y ∈ V and A ⊂ U ∪ V .

There is one further class of set that must be mentioned, although its precise
definition is indirect and should not concern the reader unduly. The class of Borel
sets is the smallest collection of subsets of ℝn with the following properties:

1. Every open set and every closed set is a Borel set.

2. The union of every finite or countable collection of Borel sets is a Borel set,
and the intersection of every finite or countable collection of Borel sets is a
Borel set.

Throughout this book, virtually all of the subsets of ℝn that will be of any inter-
est to us will be Borel sets. Any set that can be constructed using a sequence of
countable unions or intersections starting with the open sets or closed sets will
certainly be Borel. The reader will not go far wrong with the material of the sort
described in this book by assuming that all the sets encountered are Borel sets.
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1.2 Functions and limits

Let X and Y be any sets. A mapping, function or transformation f from X to Y
is a rule or formula that associates a point f (x) of Y with each point x of X. We
write f ∶ X → Y to denote this situation; X is called the domain of f and Y is called
the codomain. If A is any subset of X, we write f (A) for the image of A, given by
{f (x) ∶ x ∈ A}. If B is a subset of Y , we write f −1(B) for the inverse image or pre-
image of B, that is, the set {x ∈ X ∶ f (x) ∈ B}; note that in this context, the inverse
image of a single point can contain many points.

A function f ∶ X → Y is called an injection or a one-to-one function if f (x) ≠
f (y) whenever x ≠ y, that is, different elements of X are mapped to different ele-
ments of Y . The function is called a surjection or an onto function if, for every y
in Y , there is an element x in X with f (x) = y, that is, every element of Y is the
image of some point in X. A function that is both an injection and a surjection is
called a bijection or one-to-one correspondence between X and Y . If f ∶ X → Y is
a bijection, then we may define the inverse function f −1 ∶ Y → X by taking f −1(y)
as the unique element of X such that f (x) = y. In this situation, f −1(f (x)) = x for all
x in X and f (f −1(y)) = y for all y in Y .

The composition of the functions f ∶ X → Y and g ∶ Y → Z is the function
g ⚬ f ∶ X → Z given by (g ⚬ f )(x) = g(f (x)). This definition extends to the com-
position of any finite number of functions in the obvious way.

Certain functions from ℝn to ℝn have a particular geometric significance; often,
in this context, they are referred to as transformations and are denoted by capital
letters. Their effects are shown in Figure 1.3. The transformation S ∶ ℝn → ℝn is
called a congruence or isometry if it preserves distances, that is if |S(x) − S(y)| =|x − y| for x, y in ℝn. Congruences also preserve angles and transform sets into
geometrically congruent ones. Special cases include translations, which are of the
form S(x) = x + a and have the effect of shifting points parallel to the vector a, rota-
tions which have a centre a such that |S(x) − a| = |x − a| for all x (for convenience,
we also regard the identity transformation given by I(x) = x as a rotation) and
reflections, which maps points to their mirror images in some (n − 1)-dimensional
plane. A congruence that may be achieved by a combination of a rotation and a
translation, that is, does not involve reflection, is called a rigid motion or direct
congruence. A transformation S ∶ ℝn → ℝn is a similarity of ratio or scale c > 0
if |S(x) − S(y)| = c|x − y| for all x, y in ℝn. A similarity transforms sets into geo-
metrically similar ones with all lengths multiplied by the factor c.

A transformation T ∶ ℝn → ℝn is linear if T(x + y) = T(x) + T(y) and T(𝜆x) =
𝜆T (x) for all x, y ∈ ℝn and 𝜆 ∈ ℝ; linear transformations may be represented by
matrices in the usual way. Such a linear transformation is non-singular if T(x) = 0
if and only if x = 0. If S ∶ ℝn → ℝn is of the form S(x) = T(x) + a, where T is a
non-singular linear transformation and a is a vector in ℝn, then S is called an affine
transformation or an affinity. An affinity may be thought of as a shearing transfor-
mation; its contracting or expanding effect need not be the same in every direction.
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A

Direct congruence
or rigid motion

(Indirect) congruence

Similarities

Affinities

Figure 1.3 The effect of various transformations on a set A.

However, if T is orthonormal, then S is a congruence, and if T is a scalar multiple
of an orthonormal transformation, then T is a similarity.

It is worth pointing out that such classes of transformation form groups under
composition of mappings. For example, the composition of two translations is a
translation, the identity transformation is trivially a translation, and the inverse of
a translation is a translation. Finally, the associative law S ⚬ (T ⚬ U) = (S ⚬ T) ⚬ U
holds for all translations S, T , U. Similar group properties hold for the congruences,
the rigid motions, the similarities and the affinities.

A function f ∶ X → Y is called a Hölder function of exponent 𝛼 if

|f (x) − f (y)| ⩽ c|x − y|𝛼 (x, y ∈ X)

for some constant c ⩾ 0. The function f is called Lipschitz if 𝛼 may be taken to be
equal to 1, that is if

|f (x) − f (y)| ⩽ c|x − y| (x, y ∈ X)

and bi-Lipschitz if

c1|x − y| ⩽ |f (x) − f (y)| ⩽ c2|x − y| (x, y ∈ X)

for 0 < c1 ⩽ c2 < ∞, in which case both f and f −1 ∶ f (X) → X are Lipschitz func-
tions. Lipschitz and Hölder functions play an important role in fractal geometry.
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We next remind readers of the basic ideas of limits and continuity of functions.
Let X and Y be subsets of ℝn and ℝm, respectively, let f ∶ X → Y be a function,
and let a be a point of X. We say that f (x) has limit y (or tends to y, or converges
to y) as x tends to a, if, given 𝜀 > 0, there exists 𝛿 > 0 such that |f (x) − y| < 𝜀

for all x ∈ X with |x − a| < 𝛿. We denote this by writing f (x) → y as x → a or by
limx→a f (x) = y. For a function f ∶ X → ℝ, we say that f (x) tends to infinity (written
f (x) → ∞) as x → a if, given M, there exists 𝛿 > 0 such that f (x) > M whenever|x − a| < 𝛿. The definition of f (x) → −∞ is similar.

Suppose, now, that f ∶ ℝ+ → ℝ. We shall frequently be interested in the values
of such functions for small positive values of x. Note that if f (x) is increasing as
x decreases, then limx→0 f (x) exists either as a finite limit or as ∞, and if f (x) is
decreasing as x decreases, then limx→0 f (x) exists and is finite or −∞. Of course,
f (x) can fluctuate wildly for small x and limx→0 f (x) need not exist at all. We use
lower and upper limits to describe such fluctuations. We define the lower limit as

lim
x→0

f (x) ≡ lim
r→0

(inf{f (x) ∶ 0 < x < r}).

As inf{f (x) ∶ 0 < x < r} is either −∞ for all positive r or else increases as r
decreases, lim x→0 f (x) always exists. Similarly, the upper limit is defined as

lim
x→0

f (x) ≡ lim
r→0

(sup{f (x) ∶ 0 < x < r}).

The lower and upper limits exist (as real numbers or −∞ or ∞) for every func-
tion f and are indicative of the variation of f for x close to 0 (see Figure 1.4).
Clearly, lim x→0 f (x) ⩽ limx→0 f (x); if the lower and upper limits are equal, then
limx→0 f (x) exists and equals this common value. Note that if f (x) ⩽ g(x) for x > 0,

f (x )
f (x )

f (x )

0 x

lim 
x→0

lim
x→0

Figure 1.4 The upper and lower limits of a function.
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then lim x→0 f (x) ⩽ lim x→0g(x) and limx→0 f (x) ⩽ limx→0g(x). In the same way, it is
possible to define lower and upper limits as x → a for functions f ∶ X → ℝ where
X is a subset of ℝn with a in X.

We sometimes need to compare two functions f, g ∶ ℝ+ → ℝ for small values.
We write f (x) ∼ g(x) to mean that f (x)∕g(x) → 1 as x → 0. We will often have that
f (x) ∼ xs; in other words, f obeys an approximate power law of exponent s when x
is small. We use the notation f (x) ≃ g(x)more loosely, to mean that f (x) and g(x) are
approximately equal in some sense, to be specified in the particular circumstances.

Recall that a function f ∶ X → Y is continuous at a point a of X if f (x) → f (a)
as x → a and is continuous on X if it is continuous at all points of X. In particu-
lar, Lipschitz and Hölder mappings are continuous. If f ∶ X → Y is a continuous
bijection with continuous inverse f −1 ∶ Y → X, then f is called a homeomorphism,
and X and Y are termed homeomorphic sets. Congruences, similarities and affine
transformations on ℝn are examples of homeomorphisms.

The function f ∶ ℝ → ℝ is differentiable at x with the number f ′(x) as deriva-
tive if

lim
h→0

f (x + h) − f (x)
h

= f ′(x).

A function f is termed continuously differentiable if f ′(x) is continuous in x. Very
significant is the mean value theorem that states that, given x < y and a real-valued
function f that is differentiable over an interval containing x and y, there exists w
with x < w < y such that

f (y) − f (x)
y − x

= f ′(w)

(intuitively, any chord of the graph of f is parallel to the slope of f at some interme-
diate point). A consequence of the mean value theorem is that if |f ′(x)| is bounded
over an interval, then f is Lipschitz over that interval.

More generally, if f ∶ ℝn → ℝn, we say that f is differentiable at x and has
derivative given by the linear mapping f ′(x) ∶ ℝn → ℝn if

lim
h→0

|f (x + h) − f (x) − f ′(x)h||h| = 0.

Occasionally, we shall be interested in the convergence of a sequence of functions
fk ∶ X → Y where X and Y are subsets of Euclidean spaces. We say that functions
fk converge pointwise to a function f ∶ X → Y if fk(x) → f (x) as k → ∞ for each x
in X. We say that the convergence is uniform if supx∈X|fk(x) − f (x)| → 0 as k → ∞.
Uniform convergence is a rather stronger property than pointwise convergence; the
rate at which the limit is approached is uniform across X. If the functions fk are
continuous and converge uniformly to f , then f is continuous.

Finally, we remark that logarithms will always be to base e. Recall that, for
a, b > 0, we have that log 𝑎𝑏 = log a + log b and that log ac = c log a for real
numbers c. The identity ac = bc log a∕ log b will often be used. The logarithm is the
inverse of the exponential function, so that elog x = x, for x > 0, and log ey = y for
y ∈ ℝ.
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1.3 Measures and mass distributions

Anyone studying the mathematics of fractals will not get far before encountering
measures in some form or other. Many people are put off by the seemingly tech-
nical nature of measure theory – often unnecessarily so, because for most fractal
applications only a few basic ideas are needed. Moreover, these ideas are often
already familiar in the guise of the mass or charge distributions encountered in
basic physics.

We need only be concerned with measures on subsets of ℝn. Basically, a
measure is just a way of ascribing a numerical ‘size’ to sets, such that if a set is
decomposed into a finite or countable number of pieces in a reasonable way, then
the size of the whole is the sum of the sizes of the pieces.

We call 𝜇 a measure on ℝn if 𝜇 assigns a non-negative number, possibly ∞, to
each subset of ℝn such that

(a) 𝜇(∅) = 0; (1.1)

(b) 𝜇(A) ⩽ 𝜇(B) if A ⊂ B; (1.2)

(c) if A1,A2, . . . is a countable (or finite) sequence of sets, then

𝜇

( ∞⋃
i=1

Ai

)
⩽

∞∑
i=1

𝜇(Ai) (1.3)

with equality in (1.3), that is

𝜇

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

𝜇(Ai), (1.4)

if the Ai are disjoint Borel sets.
We call 𝜇(A) the measure of the set A and think of 𝜇(A) as the size of A measured

in some way. Condition (a) says that the empty set has zero measure, condition
(b) says ‘the larger the set, the larger the measure’ and condition (c) says that if a
set is a union of a countable number of pieces (which may overlap), then the sum
of the measure of the pieces is at least equal to the measure of the whole. If a set is
decomposed into a countable number of disjoint Borel sets, then the total measure
of the pieces equals the measure of the whole.

Technical note. For the measures that we shall encounter, (1.4) generally holds for
a much wider class of sets than just the Borel sets, in particular for all images of
Borel sets under continuous functions. However, for reasons that need not concern
us here, we cannot in general require that (1.4) holds for every countable collection
of disjoint sets Ai. The reader who is familiar with measure theory will realise that
our definition of a measure onℝn is the definition of what would normally be termed
‘an outer measure on ℝn for which the Borel sets are measurable’. However, to save
frequent referral to ‘measurable sets’, it is convenient to have 𝜇(A) defined for every
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set A, and because we are usually interested in measures of Borel sets, it is enough
to have (1.4) holding for Borel sets rather than for a larger class. If 𝜇 is defined and
satisfies (1.1)–(1.4) for the Borel sets, the definition of 𝜇 may be extended to an
outer measure on all sets in such a way that (1.1)–(1.3) hold, so our definition is
consistent with the usual one.

If A ⊃ B, then A may be expressed as a disjoint union A = B ∪ (A\B), so it is
immediate from (1.4) that, if A and B are Borel sets with 𝜇(B) finite,

𝜇(A\B) = 𝜇(A) − 𝜇(B). (1.5)

Similarly, if A1 ⊂ A2 ⊂ · · · is an increasing sequence of Borel sets, then

𝜇

( ∞⋃
i=1

Ai

)
= lim

i→∞
𝜇(Ai). (1.6)

To see this, note that
⋃∞

i=1 Ai = A1 ∪ (A2\A1) ∪ (A3\A2)∪ . . . , with this union dis-
joint, so that

𝜇

( ∞⋃
i=1

Ai

)
= 𝜇(A1) +

∞∑
i=1

(𝜇(Ai+1) − 𝜇(Ai))

= 𝜇(A1) + lim
k→∞

k∑
i=1

(𝜇(Ai+1) − 𝜇(Ai))

= lim
k→∞

𝜇(Ak).

A simple extension of this is that if, for 𝛿 > 0,A𝛿 are Borel sets that are increasing
as 𝛿 decreases, that is, A𝛿′ ⊂ A𝛿 for 0 < 𝛿 < 𝛿′, then

𝜇

(⋃
𝛿>0

A𝛿

)
= lim

𝛿→0
𝜇(A𝛿). (1.7)

We think of the support of a measure as the set on which the measure is con-
centrated. Formally, the support of 𝜇, written spt 𝜇, is the smallest closed set X
such that 𝜇(ℝn\X) = 0. Thus, x is in the support if and only if 𝜇(B(x, r)) > 0 for all
positive radii r. We say that 𝜇 is a measure on a set A if A contains the support of 𝜇.

A measure on a bounded subset of ℝn for which 0 < 𝜇(ℝn) < ∞ will be called
a mass distribution, and we think of 𝜇(A) as the mass of the set A. We often think
of this intuitively: we take a finite mass and spread it in some way across a set X to
get a mass distribution on X; the conditions for a measure will then be satisfied.

We give some examples of measures and mass distributions. In general, we
omit the proofs that measures with the stated properties exist. Much of technical
measure theory concerns the existence of such measures, but, as far as applications
go, their existence is intuitively reasonable, and can be taken on trust.
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Example 1.1 The counting measure

For each subset A of ℝn, let 𝜇(A) be the number of points in A if A is finite and ∞
otherwise. Then 𝜇 is a measure on ℝn.

Example 1.2 Point mass

Let a be a point in ℝn and define 𝜇(A) to be 1 if A contains a and 0 otherwise. Then
𝜇 is a mass distribution, thought of as a unit point mass concentrated at a.

Example 1.3 Lebesgue measure on ℝ
Lebesgue measure 1 extends the idea of ‘length’ to a large collection of subsets
of ℝ that includes the Borel sets. For open and closed intervals, we take 1(a, b) =
1[a, b] = b − a. If A =

⋃
i[ai, bi] is a finite or countable union of disjoint intervals,

we let 1(A) =
∑
(bi − ai) be the length of A, thought of as the sum of the length

of the intervals. This leads us to the definition of the Lebesgue measure 1(A) of
an arbitrary set A. We define

1(A) = inf

{ ∞∑
i=1

(bi − ai) ∶ A ⊂

∞⋃
i=1

[ai, bi]

}
,

that is, we look at all coverings of A by countable collections of intervals and take
the smallest total interval length possible. It is not hard to see that (1.1)–(1.3) hold;
it is rather harder to show that (1.4) holds for disjoint Borel sets Ai, and we avoid this
question here. (In fact, (1.4) holds for a much larger class of sets than the Borel sets,
‘the Lebesgue measurable sets’, but not for all subsets of ℝ.) Lebesgue measure on
ℝ is generally thought of as ‘length’, and we often write length(A) for 1(A) when
we wish to emphasise this intuitive meaning.

Example 1.4 Lebesgue measure on ℝn

We call a set of the form A = {(x1, . . . , xn) ∈ ℝn ∶ ai ⩽ xi ⩽ bi} a coordinate par-
allelepiped in ℝn, its n-dimensional volume of A is given by

voln(A) = (b1 − a1)(b2 − a2) · · · (bn − an).

(Of course, if n = 1, a coordinate parallelepiped is just an interval with vol1

as length, as in Example 1.3; if n = 2, it is a rectangle with vol2 as area, and if
n = 3, it is a cuboid with vol3 the usual 3-dimensional volume.) Then n-dimensional
Lebesgue measure n may be thought of as the extension of n-dimensional volume
to a large class of sets. Just as in Example 1.3, we obtain a measure on ℝn

by defining

n(A) = inf

{ ∞∑
i=1

voln(Ai) ∶ A ⊂

∞⋃
i=1

Ai

}

where the infimum is taken over all coverings of A by coordinate parallelepipeds Ai.
We get that n(A) = voln(A) if A is a coordinate parallelepiped or, indeed, any set
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for which the volume can be determined by the usual rules of mensuration. Again,
to aid intuition, we sometimes write area(A) in place of 2(A), vol(A) for 3(A) and
voln(A) for n(A).

Sometimes, we need to define ‘k-dimensional’ volume on a k-dimensional plane
X in ℝn; this may be done by identifying X with ℝk and using k on subsets of X
in the obvious way.

Example 1.5 Uniform mass distribution on a line segment

Let L be a line segment of unit length in the plane. For A ⊂ ℝ2 define𝜇(A) = 1(L ∩
A), that is, the ‘length’ of intersection of A with L. Then 𝜇 is a mass distribution
with support L, because 𝜇(A) = 0 if A ∩ L = ∅. We may think of 𝜇 as unit mass
spread evenly along the line segment L.

Example 1.6 Restriction of a measure

Let 𝜇 be a measure on ℝn and E a Borel subset of ℝn. We may define a measure 𝜈

on ℝn, called the restriction of 𝜇 to E, by 𝜈(A) = 𝜇(E ∩ A) for every set A. Then 𝜈

is a measure on ℝn with support contained in E.

As far as this book is concerned, the most important measures we shall meet are
the s-dimensional Hausdorff measuress on subsets ofℝn, where 0 ⩽ s ⩽ n. These
measures, which are introduced in Section 3.1, are a generalisation of Lebesgue
measures to dimensions that are not necessarily integral.

The following method is often used to construct a mass distribution on a subset
of ℝn. It involves repeated subdivision of a mass between parts of a bounded Borel
set E. Let 0 consist of the single set E. For k = 1, 2, . . . , we let k be a collection of
disjoint Borel subsets of E such that each set U in k is contained in one of the sets of
k−1 and contains a finite number of the sets in k+1. We assume that the maximum
diameter of the sets in k tends to 0 as k → ∞. We define a mass distribution on
E by repeated subdivision (see Figure 1.5). We let 𝜇(E) satisfy 0 < 𝜇(E) < ∞, and
we split this mass between the sets U1, . . . ,Um in 1 by defining 𝜇(Ui) in such a
way that

∑m
i=1 𝜇(Ui) = 𝜇(E). Similarly, we assign masses to the sets of 2 so that if

U1, . . . ,Um are the sets of 2 contained in a set U of 1, then
∑m

i=1 𝜇(Ui) = 𝜇(U).
In general, we assign masses so that∑

i

𝜇(Ui) = 𝜇(U) (1.8)

for each set U of k, where the {Ui} are the disjoint sets in k+1 contained in U.
For each k, we let Ek be the union of the sets in k, and we define 𝜇(A) = 0 for all
A with A ∩ Ek = ∅.

Let  denote the collection of sets that belong to k for some k together with
the subsets of the ℝn\Ek. The above procedure defines the mass 𝜇(A) of every set
A in  , and it should seem reasonable that, by building up sets from the sets in  ,
it specifies enough about the distribution of the mass 𝜇 across  to determine 𝜇(A)
for any (Borel) set A. This is indeed the case, as the following proposition states.
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U

0

1

2U1 U2

Figure 1.5 Steps in the construction of a mass distribution 𝜇 by repeated subdivi-
sion. The mass on the sets of k is divided between the sets of k+1, so for example,
𝜇(U) = 𝜇(U1) + 𝜇(U2).

Proposition 1.7

Let 𝜇 be defined on a collection of sets  as above. Then the definition of 𝜇

may be extended to all subsets of ℝn so that 𝜇 becomes a measure. The value of
𝜇(A) is uniquely determined if A is a Borel set. The support of 𝜇 is contained in
E∞ =

⋂∞
k=1 Ek.

Note on Proof. If A is any subset of ℝn, let

𝜇(A) = inf

{ ∞∑
i=1

𝜇(Ui) ∶ A ∩ E∞ ⊂

∞⋃
i=1

Ui and Ui ∈ 
}

. (1.9)

(Thus, we take the smallest value we can of
∑∞

i=1 𝜇(Ui) where the sets Ui are in 
and cover A ∩ E∞; we have already defined 𝜇(Ui) for such Ui.) It is not difficult to
see that if A is one of the sets in  , then (1.9) reduces to the mass 𝜇(A) specified in
the construction. The complete proof that 𝜇 satisfies all the conditions of a measure
and that its values on the sets of  determine its values on the Borel sets is quite
involved, and need not concern us here. As 𝜇(ℝn\Ek) = 0, we have 𝜇(A) = 0 if A
is an open set that does not intersect Ek for some k, so the support of 𝜇 is in Ek
for all k. ◽
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Example 1.8 Lebesgue measure by repeated subdivision

Let k denote the collection of ‘binary intervals’ of length 2−k, that is of the form
[r2−k, (r + 1)2−k) where 0 ⩽ r ⩽ 2k − 1. If we take 𝜇[r2−k, (r + 1)2−k) = 2−k in the
above construction, we get that 𝜇 is Lebesgue measure on [0, 1].

To see this, note that if I is an interval in k of length 2−k and I1, I2 are the
two subintervals of I in k+1 of length 2−k−1, we have 𝜇(I) = 𝜇(I1) + 𝜇(I2) which
is (1.8). By Proposition 1.7, 𝜇 extends to a mass distribution on [0, 1]. We have
𝜇(I) = length(I) for I in  , and it may be shown that this implies that 𝜇 coincides
with Lebesgue measure on any set.

We say that a property holds for almost all x, or almost everywhere (with respect
to a measure 𝜇) if the set for which the property fails has 𝜇-measure zero. For
example, we might say that almost all real numbers are irrational with respect to
Lebesgue measure. The rational numbers ℚ are countable; they may be listed as
x1, x2, . . . , say, so that 1(ℚ) =

∑∞
i=1 1{xi} = 0.

Although we shall usually be interested in measures in their own right, we shall
sometimes need to integrate functions with respect to measures. There are technical
difficulties concerning which functions can be integrated. We may get around these
difficulties by assuming that for f ∶ D → ℝ a function defined on a Borel subset D
of ℝn, the set f −1(−∞, a] = {x ∈ D ∶ f (x) ⩽ a} is a Borel set for all real numbers
a. A very large class of functions satisfies this condition, including all continuous
functions (for which f −1(−∞, a] is closed and therefore a Borel set). We make
the assumption throughout this book that all functions to be integrated satisfy this
condition; this is true of functions that are likely to be encountered in this area of
mathematics.

To define integration we first suppose that f ∶ D → ℝ is a simple function, that
is, one that takes only finitely many values a1, . . . , ak. We define the integral with
respect to the measure 𝜇 of a non-negative simple function f as

∫ f d𝜇 =
k∑

i=1
ai𝜇{x ∶ f (x) = ai}.

The integral of more general functions is defined using approximation by simple
functions. If f ∶ D → ℝ is a non-negative function, we define its integral as

∫ fd𝜇 = sup
{
∫ g d𝜇 ∶ g is simple, 0 ⩽ g ⩽ f

}
.

To complete the definition, if f takes both positive and negative values, we let
f+(x) = max{f (x), 0} and f−(x) = max{−f (x), 0}, so that f = f+ − f−, and define

∫ fd𝜇 = ∫ f+d𝜇 − ∫ f−d𝜇

provided that both ∫ f+ d𝜇 and ∫ f− d𝜇 are finite.
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All the usual properties hold for integrals, for example,

∫ (f + g)d𝜇 = ∫ fd𝜇 + ∫ gd𝜇

and

∫ 𝜆fd𝜇 = 𝜆∫ fd𝜇

if 𝜆 is a scalar. Very useful is the monotone convergence theorem, that is, if
fk ∶ D → ℝ is an increasing sequence of non-negative functions converging
(pointwise) to f , then

lim
k→∞∫ fkd𝜇 = ∫ fd𝜇.

If A is a Borel subset of D, we define integration over the set A by

∫A
fd𝜇 = ∫ f𝜒A d𝜇

where 𝜒A ∶ ℝn → ℝ is the ‘indicator function’ of A, defined by 𝜒A(x) = 1 if x is in
A and 𝜒A(x) = 0 otherwise.

Note that if f (x) ⩾ 0 and ∫ fd𝜇 = 0, then f (x) = 0 for 𝜇-almost all x.
As usual, integration is denoted in various ways, such as ∫ fd𝜇, ∫ f or

∫ f (x)d𝜇(x), depending on the emphasis required. When 𝜇 is n-dimensional
Lebesgue measure n, we usually write ∫ f dx or ∫ f (x)dx in place of ∫ f dn.

On a couple of occasions we shall need to use Egoroff’s theorem. Let D be a
Borel subset of ℝn and 𝜇 a measure with 𝜇(D) < ∞. Let f1, f2, . . . and f be func-
tions from D to ℝ such that fk(x) → f (x) for each x in D. Egoroff’s theorem states
that for any 𝛿 > 0, there is a Borel subset E of D such that 𝜇(D\E) < 𝛿 and such that
the sequence {fk} converges uniformly to f on E, that is, with supx∈E|fk(x) − f (x)| →
0 as k → ∞. For the measures that we shall be concerned with, it may be shown
that we can always take the set E to be compact.

1.4 Notes on probability theory

Understanding some of the later chapters of the book requires a basic knowledge
of probability theory. We provide a very brief overview of the concepts needed.

Probability theory starts with the idea of an experiment or trial; that is, an action
whose outcome is, for all practical purposes, not predetermined. Mathematically,
such an experiment is described by a probability space, which has three compo-
nents: the set of all possible outcomes of the experiment, the list of all the events
that may occur as consequences of the experiment and an assessment of likeli-
hood of these events. For example, if a die is thrown, the possible outcomes are
{1, 2, 3, 4, 5, 6}, the list of events includes ‘a 3 is thrown’, ‘an even number is
thrown’ and ‘at least a 4 is thrown’. For a ‘fair die’, it may be reasonable to assess
the six possible outcomes as equally likely.
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The set of all possible outcomes of an experiment is called the sample space,
denoted by Ω. Questions of interest concerning the outcome of an experiment can
always be phrased in terms of subsets ofΩ; in the above example, ‘is an odd number
thrown?’ asks ‘is the outcome in the subset {1, 3, 5}?’ Associating events depen-
dent on the outcome of the experiment with subsets of Ω in this way, it is natural
to think of the union A ∪ B as ‘either A or B occurs’, the intersection A ∩ B as
‘both A and B occur’, and the complement Ω\A as the event ‘A does not occur’,
for any events A and B. In general, there is a collection  of subsets of Ω that
particularly interest us, which we call events. In the example of the die,  would
normally be the collection of all subsets of Ω, but in more complicated situations, a
relatively small collection of subsets might be relevant. Usually,  satisfies certain
conditions; for example, if the occurrence of an event interests us, then so does its
non-occurrence, so if A is in  , we would expect the complement Ω\A also to be in
 . We call a (non-empty) collection  of subsets of the sample space Ω an event
space if

Ω\A ∈  whenever A ∈  (1.10)

and
∞⋃

i=1
Ai ∈  whenever Ai ∈  (1 ⩽ i < ∞). (1.11)

It follows from these conditions that ∅ and Ω are in  and that A\B and
⋂∞

i=1 Ai are
in  whenever A, B and Ai are in  . As far as our applications are concerned, we
do not, in general, specify  precisely – this avoids technical difficulties connected
with the existence of suitable event spaces.

Next, we associate probabilities with the events of  , with P(A) thought of
as the probability, or likelihood, that the event A occurs. We call P a probability
or probability measure if P assigns a number P(A) to each A in  , such that the
following conditions hold:

0 ⩽ P(A) ⩽ 1 for all A ∈  (1.12)

P(∅) = 0 and P(Ω) = 1 (1.13)

and if A1,A2, . . . are disjoint events in  ,

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai). (1.14)

It should seem natural for any definition of probability to satisfy these conditions.
We call a triple (Ω, ,P) a probability space if  is an event space of subsets

of Ω and P is a probability measure defined on the sets of  .
For the die-throwing experiment, we might have Ω = {1, 2, 3, 4, 5, 6} with the

event space consisting of all subsets ofΩ, and with P(A) = 1
6
× number of elements

in A. This describes the ‘fair die’ situation with each outcome equally likely.
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Often, Ω is an infinite set. For example, we might have Ω = [0, 1] and think of
a random number drawn from [0, 1] with the probability of the number in a set A
as P(A) = length(A). Here, the event space might be the Borel subsets of [0, 1].

The resemblance of the definition of probability to the definition of a measure
in (1.1)–(1.4) and the use of the term probability measure is no coincidence. Prob-
abilities and measures may be put into the same context, with Ω corresponding to
ℝn and with the event space in some ways analogous to the Borel sets.

In our applications later on in the book, we shall be particularly interested in
events (on rather large sample spaces such as spaces of continuous functions) that
are virtually certain to occur. We say that an event A occurs with probability 1 or
almost surely if P(A) = 1.

Sometimes, we may possess partial information about the outcome of an exper-
iment; for example, we might be told that the number showing on the die is even.
This leads us to reassess the probabilities of the various events. If A and B are in
 with P(B) > 0, the conditional probability of A given B, denoted by P(A|B), is
defined by

P(A|B) = P(A ∩ B)
P(B)

. (1.15)

This is thought of as the probability of A given that the event B is known to occur;
as would be expected P(B|B) = 1. It is easy to show that (Ω, ,P′) is a probability
space, where P′(A) = P(A|B). We also have the partition formula: if B1,B2, . . .
are disjoint events with

⋃
iBi = Ω and P(Bi) > 0 for all i, then for an event A,

P(A) =
∑

i

P(A|Bi)P(Bi). (1.16)

In the case of the ‘fair die’ experiment, if B1 is the event ‘an even number is thrown’,
B2 is ‘an odd number is thrown’ and A is ‘at least 4 is thrown’, then

P(A|B1) = P(4 or 6 is thrown)∕P(2, 4 or 6 is thrown) = 2
6
∕3
6
= 2

3
.

P(A|B2) = P(5 is thrown)∕P(1, 3 or 5 is thrown) = 1
6
∕3
6
= 1

3

from which (1.16) is easily verified.
We think of two events as independent if the occurrence of one does not affect

the probability that the other occurs, that is, if P(A|B) = P(A) and P(B|A) = P(B).
Using (1.15), we are led to make the definition that two events A and B in a proba-
bility space are independent if

P(A ∩ B) = P(A)P(B). (1.17)

More generally, an arbitrary collection of events is independent if for every finite
subcollection {Ak ∶ k ∈ J} we have

P

(⋂
k∈J

Ak

)
=
∏
k∈J

P(Ak). (1.18)
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In the die example, it is easy to see that ‘a throw of at least 5’ and ‘an even number
is thrown’ are independent events, but ‘a throw of at least 4’ and ‘an even number
is thrown’ are not.

The idea of a random variable and its expectation (or average or mean) is fun-
damental to probability theory. Essentially, a random variable X is a real-valued
function on a sample space. In the die example, X might represent the score on the
die. Alternatively, it might represent the reward for throwing a particular number,
for example, X(𝜔) = 0 if 𝜔 = 1, 2, 3, or 4, X(5) = 1 and X(6) = 2. The outcome of
an experiment determines a value of the random variable. The expectation of the
random variable is the average of these values weighted according to the likelihood
of each outcome.

The precise definition of a random variable requires a little care. We say that X is
a random variable on a probability space (Ω, ,P) if X ∶ Ω → ℝ is a function such
that X−1((−∞, a]) is an event in  for each real number a; in other words, the set of
𝜔 in Ω with X(𝜔) ⩽ a is in the event space. This condition is equivalent to saying
that X−1(E) is in  for any Borel set E. In particular, for any such E, the probability
that the random variable X takes a value in E, that is, P({𝜔 ∶ X(𝜔) ∈ E}), is defined.
It may be shown that P({𝜔 ∶ X(𝜔) ∈ E}) is determined for all Borel sets E from
a knowledge of P({𝜔 ∶ X(𝜔) ⩽ a}) for each real number a. Note that it is usual to
abbreviate expressions such as P({𝜔 ∶ X(𝜔) ∈ E}) to P(X ∈ E).

It is not difficult to show that if X and Y are random variables on (Ω, ,P) and
𝜆 is a real number, then X + Y ,X − Y , 𝑋𝑌 and 𝜆X are all random variables (these
are defined in the obvious way, e.g. (X + Y)(𝜔) = X(𝜔) + Y(𝜔) for each 𝜔 ∈ Ω).
Moreover, if X1,X2, . . . is a sequence of random variables with Xk(𝜔) increasing
and bounded for each 𝜔, then limk→∞Xk is a random variable.

A collection of random variables {Xk} is independent if, for any Borel sets Ek,
the events {(Xk ∈ Ek)} are independent in the sense of (1.18); that is, if, for every
finite set of indices J,

P(Xk ∈ Ek for all k ∈ J) =
∏
k∈J

P(Xk ∈ Ek).

Intuitively, X and Y are independent if the probability of Y taking any particular
value is unaffected by a knowledge of the value of X. Consider the probability
space representing two successive throws of a die, with sample space {(x, y) ∶ x, y =
1, 2, . . . , 6} and probability measure P defined by P{(x, y)} = 1

36
for each pair

(x, y). If X and Y are the random variables given by the scores on successive throws,
then X and Y are independent, modelling the assumption that one throw does not
affect the other. However, X and X + Y are not independent – this reflects that the
bigger the score for the first throw, the greater the chance of a high total score.

The formal definition of the expectation of a random variable is analogous to
the definition of the integral of a function; indeed, expectation is really the integral
of the random variable with respect to the probability measure. Let X be a random
variable on a probability space (Ω, ,P). First suppose that X(𝜔) ⩾ 0 for all 𝜔 in
Ω and that X takes only finitely many values x1, . . . , xk; we call such a random
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variable simple. We define the expectation, mean or average E(X) of X as

E(X) =
k∑

i=1
xiP(X = xi). (1.19)

The expectation of an arbitrary random variable is defined using approximation by
simple random variables. Thus for a non-negative random variable X

E(X) = sup{E(Y) ∶ Y is a simple random variable

with 0 ⩽ Y(𝜔) ⩽ X(𝜔) for all 𝜔 ∈ Ω}.

Lastly, if X takes both positive and negative values, we let X+ = max{X, 0} and
X− = max{−X, 0}, so that X = X+ − X−, and define

E(X) = E(X+) − E(X−)

provided that E(X+) < ∞ and E(X−) < ∞.
The random variable X representing the score of a fair die is a simple random

variable, because X(𝜔) takes just the values 1, . . . , 6. Thus

E(X) =
6∑

i=1

(
i × 1

6

)
= 31

2
.

Expectation satisfies certain basic properties, analogous to those for the integral. If
X1,X2, . . . are random variables, then

E(X1 + X2) = E(X1) + E(X2)

and, more generally,

E

(
k∑

i=1
Xi

)
=

k∑
i=1

E(Xi).

If 𝜆 is a constant,
E(𝜆X) = 𝜆E(X)

and if the sequence of non-negative random variables X1,X2, . . . is increasing with
X = limk→∞Xk a (finite) random variable, then

lim
k→∞

E(Xk) = E(X).

Provided that X1 and X2 are independent, we also have

E(X1X2) = E(X1)E(X2).

Thus, if Xi represents that kth throw of a fair die in a sequence of throws, the expec-
tation of the sum of the first k throws is E(X1 + · · · + Xk) = E(X1) + · · · + E(Xk) =
31
2
× k.
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We define the conditional expectation E(X|B) of X given an event B with
P(B) > 0 in a similar way but starting with

E(X|B) = k∑
i=1

xiP(X = xi|B) (1.20)

in place of (1.19). We get a partition formula resembling (1.16)

E(X) =
∑

i

E(X|Bi)P(Bi), (1.21)

where B1,B2, . . . are disjoint events with
⋃

iBi = Ω and P(Bi) > 0.
It is often useful to have an indication of the fluctuation of a random variable

across a sample space. Thus we introduce the variance of the random variable X as

var(X) = E((X − E(X))2)

= E(X2) − E(X)2

by a simple calculation. Using the properties of expectation, we get

var(𝜆X) = 𝜆2var(X),

for any real number 𝜆, and

var(X + Y) = var(X) + var(Y)

provided that X and Y are independent.
If the probability distribution of a random variable is given by an integral,

that is,

P(X ⩽ x) = ∫
x

−∞
f (u) du, (1.22)

the function f is called the probability density function for X. It may be shown
from the definition of expectation that

E(X) = ∫
∞

−∞
𝑢𝑓 (u) du

and

E(X2) = ∫
∞

−∞
u2f (u) du

which allows var(X) = E(X2) − E(X)2 to be calculated.
Note that the density function tells us about the distribution of the random

variable X without reference to the underlying probability space, which, for many
purposes, is irrelevant. We may express the probability that X belongs to any Borel
set E in terms of the density function as

P(X ∈ E) = ∫E
f (u) du.
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We say that a random variable X has uniform distribution on the interval [a, b] if

P(X ⩽ x) = 1
b − a ∫

x

a
du (a ⩽ x ⩽ b). (1.23)

Thus, the probability of X lying in a subinterval of [a, b] is proportional to the length
of the interval. In this case, we get that E(X) = 1

2
(a + b) and var(X) = 1

12
(b − a)2.

A random variable X has normal or Gaussian distribution of mean m and vari-
ance 𝜎2 if

P(X ⩽ x) = 1
𝜎
√
2𝜋 ∫

x

−∞
exp

(
−(u − m)2

2𝜎2

)
du. (1.24)

It may be verified by integration that E(X) = m and var(X) = 𝜎2. If X1 and X2
are independent normally distributed random variables of means m1 and m2 and
variances 𝜎2

1 and 𝜎2
2 , respectively, then X1 + X2 is normal with mean m1 + m2 and

variance 𝜎2
1 + 𝜎2

2 , and 𝜆X1 is normal with mean 𝜆m1 and variance 𝜆2𝜎2
1 , for any real

number𝜆.
If we throw a fair die a large number of times, we might expect the average

score thrown to be very close to 31
2
, the expectation or mean outcome of each throw.

Moreover, the larger the number of throws, the closer the average should be to the
mean. This ‘law of averages’ is made precise as the strong law of large numbers.

Let (Ω, ,P) be a probability space. Let X1,X2, . . . be random variables that
are independent and that have identical distribution (i.e. for every set E,P(Xi ∈ E)
is the same for all i), with expectation m and variance 𝜎2, both assumed finite. For
each k, we may form the random variable Sk = X1 + · · · + Xk, so that the random
variable Sk∕k is the average of the first k trials. The strong law of large numbers
states that, with probability 1, this average approaches the mean, that is,

lim
k→∞

1
k

Sk = m. (1.25)

We can also say a surprising amount about the distribution of the random variable Sk
when k is large. It may be shown that Sk has approximately the normal distribution
with mean km and variance k𝜎2. This is the content of the central limit theorem,
which states that for every real number x,

P

(
Sk − 𝑘𝑚

𝜎
√

k
⩽ x

)
→ ∫

x

−∞

1√
2𝜋

exp
(
−1

2
u2
)
du as k → ∞, (1.26)

that is, (Sk − 𝑘𝑚)∕(𝜎
√

k) converges (in some sense) to a normal distribution. This
is one reason why the normal distribution is so important – it is the form of distribu-
tion approached by sums of a large number of independent identically distributed
random variables.

We may apply these remarks to the experiment consisting of an infinite
sequence of die throws. Let Ω be the set of all infinite sequences {𝜔 =
(𝜔1, 𝜔2, . . . ) ∶ 𝜔i = 1, 2, . . . , 6} (we think of 𝜔i as the outcome of the kth
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throw). It is possible to define an event space  and probability measure P in such
a way that for any given k and sequence 𝜔1, . . . , 𝜔k (𝜔i = 1, 2, . . . , 6), the event
‘the first k throws are 𝜔1, . . . , 𝜔k’ is in  and has probability

( 1
6

)k
. Let Xk be the

random variable given by the outcome of the kth throw, so that Xk(𝜔) = 𝜔k. It
is easy to see that the Xk are independent and identically distributed, with mean
m = 31

2
and variance 211

12
. The strong law of large numbers tells us that, with

probability 1, the average of the first k throws, Sk∕k converges to 31
2

as k tends to
infinity, and the central limit theorem tells us that when k is large, the sum Sk is
approximately normally distributed, with mean 31

2
× k and variance 211

12
× k. Thus,

if we repeat the experiment of throwing k dice a large number of times, the sum of
the k throws will have a distribution close to the normal distribution, in the sense
of (1.26).

1.5 Notes and references

The material outlined in this chapter is covered at various levels of sophistica-
tion in numerous undergraduate and graduate mathematical texts. Any of the many
books on mathematical analysis, for example, the classics by Apostol (1974); Rudin
(1976) or Howie (2001), contain the basic theory of sets and functions. For thor-
ough treatments of measure theory see, for example, Taylor (1973a); Edgar (1998);
Capinski and Kopp (2007) or Tao (2011). For probability theory, Grimmett and
Stirzaker (2001) or Billingsley (2012) may be helpful.

Exercises
The following exercises do no more than emphasise some of the many facts that
have been mentioned in this chapter.

1.1 Verify that for x, y, z ∈ ℝn, (i) |x + y| ⩽ |x| + |y|, (ii) |x − y| ⩾ | |x| − |y||
and (iii) |x − y| ⩽ |x − z| + |z − y|.

1.2 Show from the definition of 𝛿-neighbourhood that A𝛿+𝛿′ = (A𝛿)𝛿′ .

1.3 Show that a (non-empty) set is bounded if and only if it is contained in some
ball B(0, r) with centre the origin.

1.4 Determine which of the following subsets of ℝ are open and which
are closed. In each case, determine the interior and closure of the set.
(i) A non-empty finite set A, (ii) the interval (0, 1), (iii) the interval [0, 1],
(iv) the interval [0, 1), (v) the set

{
0, 1, 1

2
,
1
3
,
1
4
, . . .

}
.

1.5 Show that the middle third Cantor set, Figure 0.1, is compact and totally
disconnected. What is its interior, closure and boundary?

1.6 Show that the union of any collection of open subsets of ℝn is open and
that the intersection of any finite collection of open sets is open. Show that
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a subset of ℝn is closed if and only if its complement is open and hence
deduce the corresponding result for unions and intersections of closed sets.

1.7 Show that if A1 ⊃ A2 ⊃ · · · is a decreasing sequence of non-empty compact
subsets of ℝn then

⋂∞
k=1 Ak is a non-empty compact set.

1.8 Show that the half-open interval [0, 1) = {x ∈ ℝ ∶ 0 ⩽ x < 1} is a Borel
subset of ℝ.

1.9 Let F be the set of numbers in [0, 1] whose decimal expansions contain the
digit 5 infinitely many times. Show that F is a Borel set.

1.10 Show that the coordinate transformation of the plane(
x1
x2

)
→

(
c cos 𝜃 −c sin 𝜃
c sin 𝜃 c cos 𝜃

)(
x1
x2

)
+
(

a1
a2

)
is a similarity of ratio c, and describe the transformation geometrically.

1.11 Find lim x→0 f (x) and limx→0 f (x) where f ∶ ℝ+ → ℝ is given by (i) sin x;
(ii) sin(1∕x) and (iii) x2 + (3 + x) sin(1∕x).

1.12 Let f , g ∶ [0, 1] → ℝ be Lipschitz functions. Show that the functions defined
on [0, 1] by f (x) + g(x) and f (x)g(x) are also Lipschitz.

1.13 Let f ∶ ℝ → ℝ be differentiable with |f ′(x)| ⩽ c for all x. Show, using the
mean value theorem, that f is a Lipschitz function.

1.14 Show that every Lipschitz function f ∶ ℝ → ℝ is continuous.

1.15 Let f ∶ ℝ → ℝ be given by f (x) = x2 + x. Find (i) f −1(2), (ii) f −1(−2) and
(iii) f −1([2, 6]).

1.16 Show that f (x) = x2 is Lipschitz on [0, 2], bi-Lipschitz on [1, 2] and not Lip-
schitz on ℝ.

1.17 Show that if E is a compact subset of ℝn and f ∶ E → ℝn is continuous, then
f (E) is compact.

1.18 Let A1,A2, . . . be a decreasing sequence of Borel subsets of ℝn and let
A =

⋂∞
k=1 Ak. If 𝜇 is a measure on ℝn with 𝜇(A1) < ∞, show using (1.6)

that 𝜇(Ak) → 𝜇(A) as k → ∞.

1.19 Show that the point mass concentrated at a (see Example 1.2) is a measure.

1.20 Show how to define a mass distribution on the middle third Cantor set,
Figure 0.1, in as uniform a way as possible.

1.21 Verify that Lebesgue measure satisfies (1.1)–(1.3).

1.22 Let f ∶ [0, 1] → ℝ be a continuous function. For A a subset of ℝ2 define
𝜇(A) = {x ∶ (x, f (x)) ∈ A}, where  is Lebesgue measure. Show that 𝜇 is
a mass distribution on ℝ2 supported by the graph of f .
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1.23 Let D be a Borel subset of ℝn and let 𝜇 be a measure on D with 𝜇(D) < ∞.
Let fk ∶ D → ℝ be a sequence of functions such that fk(x) → f (x) for all x
in D. Prove Egoroff’s theorem: that given 𝜀 > 0, there exists a Borel subset A
of D with 𝜇(D\A) < 𝜀 such that fk(x) converges to f (x) uniformly for x in A.

1.24 Prove that if 𝜇 is a measure on D and f ∶ D → ℝ satisfies f (x) ⩾ 0 for all x
in D and ∫D f d𝜇 = 0 then f (x) = 0 for 𝜇-almost all x.

1.25 If X is a random variable show that E((X − E(X))2) = E(X2) − E(X)2 (these
numbers equalling the variance of X).

1.26 Verify that if X has the uniform distribution on [a, b] (see (1.23)), then
E(X) = 1

2
(a + b) and var(X) = (b − a)2∕12.

1.27 Let A1,A2, . . . be a sequence of independent events in some probability
space such that P(Ak) = p for all k, where 0 < p < 1. Let Nk be the random
variable defined by taking Nk to equal the number of i with 1 ⩽ i ⩽ k for
which Ai occurs. Use the strong law of large numbers to show that, with
probability 1, Nk∕k → p as k → ∞. Deduce that the proportion of successes
in a sequence of independent trials converges to the probability of success
of each trial.

1.28 A fair die is thrown 6000 times. Use the central limit theorem to estimate
the probability that at least 1050 sixes are thrown. (A numerical method will
be needed if the integral obtained is to be evaluated.)


