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      Introduction    

1

1.1    Introduction to System Identification 

 In this chapter a brief introduction to linear and nonlinear system identification will be pro-

vided. The descriptions are not meant to be detailed or comprehensive. Rather, the aim is to 

briefly describe the methods from a descriptive point of view so the reader can appreciate the 

broad development of the methods and the context in which they were introduced. Maths is 

largely avoided in this first chapter because detailed definitions and descriptions of the mod-

els, systems, and identification procedures will be given in the following chapters. 

 The main theme of the book – methods based around the NARMAX (nonlinear autoregres-

sive moving average model with exogenous inputs) model and related methods – will also be 

introduced. In particular, the NARMAX philosophy for nonlinear system identification will 

be briefly described, again with full details given in later chapters, and how this leads into the 

important problems of frequency response functions for nonlinear systems and models of 

spatio-temporal systems will be briefly developed. 

1.1.1   System Models and Simulation 

 The concept of a mathematical model is fundamental in many branches of science and engineer-

ing. Virtually every system we can think of can be described by a mathematical model. Some 

diverse examples are illustrated in Figure   1.1  . All the systems illustrated in Figure   1.1   can be 

described by a set of mathematical equations, and this is referred to as the mathematical model of 

the system. The examples included here show a coal-fired power station, an oil rig, an economic 

system represented by dealing screens in the stock exchange, a machine vision system  (autonomous 
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2 Nonlinear System Identification

guided vehicle), a vibrating car, a bridge structure, and a biomedical system. Although each sys-

tem is made up of quite different components, if each is considered as a system with inputs and 

outputs that are related by dynamic behaviours then they can all be described by a mathematical 

model. Surprisingly, all these systems can be represented by just a few basic mathematical opera-

tions – such as derivatives and integrals – combined in some appropriate manner with coeffi-

cients. The idea of the model is that it describes each system such that the model encodes 

information about the dynamics of the system. So, for example, a model of the power station 

would consist of a set of mathematical equations that describe the operation of pulverising the 

coal, burning it to produce steam, the turbo-alternator, and all the other components that make up 

this system. Mathematical models are at the heart of analysis, simulation, and design. 

      Assuming that accurate models of the systems can be built then computers can be pro-

grammed to simulate the models, to solve the mathematical equations that represent the sys-

tem. In this way the computer is programmed to behave like the system. This has numerous 

advantages: different system designs can be assessed without the expense and delay of physi-

cally building the systems, experiments on the computer which would be dangerous on the real 

system (e.g., nuclear) can be simulated, and information about how the system would respond 

to different inputs can be acquired. Questions such as ‘how does the spacecraft behave if the 

re-entry angle is changed or one of the rockets fails?’, or ‘how would the economy respond to 

a cut in interest rates, would this increase/decrease inflation/unemployment?’, and so on, can 

all be posed and answered. Models therefore are central to the study of dynamical systems. 

 Figure 1.1     Examples of modelling, simulation, and control. Courtesy of dreamstime.com. For a color 

version of this fi gure, please refer to the color plates 
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Introduction 3

1.1.2    Systems and Signals 

 A mathematical model of a system can be used to emulate the system, predict the system 

response for given inputs, and investigate different design scenarios. However, these objec-

tives can only be achieved if the model of the system is known. The validity of all the simula-

tion, analysis, and design of the system is dependent on the model being an accurate 

representation of the system. The construction of accurate dynamic models is therefore funda-

mental to this type of analysis. So how are mathematical models of systems determined? 

 One way, called analytical modelling, involves breaking the system into component parts 

and applying the laws of physics and chemistry to each part to slowly build up a description. 

For example, a resistor can be described by Ohms law, mechanical systems by force and 

energy balance equations, and heat conduction systems by the laws of thermodynamics, and 

so on. This process can clearly be very complex, it is time-consuming and may take several 

man-years, it is problem-dependent, requires a great deal of expertise in many diverse areas of 

science, and would need to be repeated if any part of the system changed through redesign. 

 But, returning to the examples of the dynamic systems in Figure   1.1   suggests there is an 

alternative approach which overcomes most of these problems and which is generally appli-

cable to all systems. Given the mathematical model and the input to a system, the system 

response can be computed; this is the simulation problem. All the systems in Figure   1.1   pro-

duce input and output signals, and if these can be measured it should be possible to work out 

what the system model must have been. This is the converse to the simulation problem – given 

measurements of the system inputs and outputs, determine what the mathematical model of 

the system should be. This is called ‘system identification’; it provides the link between 

 systems and signals and is the unifying theme throughout this book. System identification 

therefore is just a means of measuring the mathematical model of a process. 

1.1.3    System Identification 

 System identification is a method of measuring the mathematical description of a system by 

processing the observed inputs and outputs of the system. System identification is the comple-

ment of the simulation problem. Surely the output signal contains buried within it the dynam-

ics of the mathematical model that produced this signal from the measured input, so how can 

this information be extracted? System identification provides a principled solution to this 

problem. Even in ideal conditions this is not easy because the form that the model of the sys-

tem takes will be unknown, is it linear or nonlinear, how many terms are in the model, what 

type of terms should be in the model, does the system have a time delay, what type of nonlin-

earity describes this system, etc.? Yet, if system identification is to be useful, these problems 

must be resolved. The advantages of system identification are many: it is applicable to all 

systems, it is often quick, and can be made to track changes in the system. These advantages 

all suggest that system identification will be a worthwhile study. 

1.2     Linear System Identification 

 Linear systems are defined as systems that satisfy the superposition principle. Linear system 

identification can be broadly categorised into two approaches; nonparametric and parametric 

methods. Interest in linear system identification gathered significant momentum from the 
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4 Nonlinear System Identification

1970s onwards, and many new and important results and algorithms were developed (Lee, 

   1964 ; Deutsch,    1965 ; Box and Jenkins,    1970 ; Himmelblau,    1970 ; Astrom and Eykoff,    1971 ; 

Graupe,    1972 ; Eykhoff,    1974 ; Nahi,    1976 ; Goodwin and Payne,    1977 ; Ljung and Södeström, 

   1983 ; Young,    1984 ; Norton,    1986 ; Ljung,    1987 ; Södeström and Stoica,    1989 ; Keesman,    2011 ). 

Nonparametric methods develop models based typically on the system impulse response or 

frequency response functions (Papoulis,    1965 ; Jenkins and Watts,    1968 ; Eykhoff,    1974 ; 

Pintelon and Schoukens,    2001 ; Bendat and Piersol,    2010 ). These are usually based on correla-

tion methods and Fourier transforms, respectively, although there are many alternative meth-

ods. Special input signals were developed at this time, including multi-level sequences, of 

which the pseudo-random binary sequence was particularly important (Godfrey,    1993 ). 

Pseudo-random sequences could be easily designed and generated and were an ideal sequence 

to use in experiments on industrial plants to identify linear models. The sequences could be 

tailored to the process under investigation, so that the power of the input excitation was 

matched to the bandwidth of the process. This had the advantage that the noise-free signal 

output was maximised and hence the signal-to-noise ratio on the measured output was 

enhanced. Pseudo-random binary sequences were the best approximation to white noise and 

this led to important advantages when using cross-correlation to identify the models because 

if the input was correctly designed, so that the autocorrelation of the input was an impulse at 

the origin, the Wiener–Hopf equation (Jenkins and Watts,    1968 ; Priestley,    1981 ; Bendat and 

Piersol,    2010 ) which relates the cross-correlation between the input and output of a system to 

the convolution of the system impulse response and the autocorrelation function simplifies so 

that the cross-correlation becomes directly proportional to the system impulse response. This 

was a significant result, and the use and development of pseudo-random sequences continued 

for many years. The other advantage of using a designed input, not just a pseudo-random 

sequence, was that the input could be measured almost perfectly. 

 The introduction of the fast Fourier transform (FFT) in 1965 (Jenkins and Watts,    1968 ) 

meant that previously slow methods of computing the Fourier transform of a data sequence 

became much faster and efficient, with increases in speed of orders of magnitude. Linear sys-

tem identification methods based on the cross and power spectral densities were further devel-

oped, following the introduction of the FFT, to provide estimates of the system frequency 

response. The advantages of these approaches, which replaced the convolution in time with 

the much simpler algebraic relationships in the Laplace and frequency domains, were offset 

by the need to window and smooth the spectral estimates to obtain good estimates (Jenkins 

and Watts,    1968 ; Bendat and Piersol,    2010 ). Coherency functions were used to detect poor 

estimates, and a catalogue of methods was developed based on the frequency response func-

tion estimates. This fed into developments in mechanical engineering based on modal analysis 

(Worden and Tomlinson,    2001 ), which became established as an important method of analys-

ing and studying vibrations in all kinds of structures. 

 Parametric methods became popular from the 1970s onwards with an explosion of develop-

ments fuelled by the interest at that time in control systems and the development of methods 

of online process control, and adaptive control including self-tuning algorithms (Wellstead 

and Zarrop,    1991 ). These latter methods were all based on a model of the process that could 

be updated online. Least squares-based methods were developed and the effect of noise on the 

measurements was studied in depth, resulting in the introduction of algorithms including 

instrumental variables (Young,    1970 ), generalised least squares (Clarke,    1967 ), suboptimal 

least squares, extended least squares and maximum likelihood (Astrom and Eykhoff,    1971 ; 

Eykhoff,    1974 ). It was realised that data from almost every real system will involve inaccurate 
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Introduction 5

measurements and corruption of the signals by noise. It was shown that if the noise is corre-

lated or coloured, biased estimates will be obtained and that even small amounts of correlated 

noise can result in significantly incorrect models (Astrom and Eykhoff,    1971 ; Eykhoff,    1974 ; 

Goodwin and Payne,    1977 ; Norton,    1986 ; Södeström and Stoica,    1989 ). All the algorithms 

above therefore were designed to either accommodate the noise or model it explicitly (Clarke, 

   1967 ; Young,    1970 ). Even the offline algorithms were therefore iterative, so that both a model 

of the process and a model of the noise were identified by operating on the data set several 

times over until the algorithm converged. Later, in the 1980s, prediction error methods were 

developed; many of the earlier parameter estimation algorithms were unified under the predic-

tion error structure, and elegant proofs of convergence and analysis of the methods were 

developed (Ljung and Södeström,    1983 ; Norton,    1986 ; Ljung,    1987 ; Södeström and Stoica, 

   1989 ). The advantage of the prediction error methods was that they had almost the same 

asymptotic properties as the maximum likelihood algorithm but, while the probability density 

function of the residuals had to be known to apply maximum likelihood (which for linear 

systems could be taken as Gaussian), the prediction error methods optimised a cost function 

without any knowledge of the density functions (Ljung and Södeström,    1983 ; Ljung,    1987 ). 

This latter point became very important for the development of parameter estimation methods 

for nonlinear systems, where the signals will almost never be Gaussian and therefore the den-

sity functions will rarely be known. 

 Online or recursive algorithms were also actively developed from the 1970s onwards (Ljung 

and Södeström,    1983 ; Young,    1984 ; Norton,    1986 ). In contrast to the batch methods described 

above, where all the data is processed at once, in recursive methods the data is processed over 

a data window that is moved through the data set. This allows online tracking of slow time 

variation and is often the basis of adaptive, self-tuning, and many fault-detection algorithms. 

 The development of linear identification algorithms is still a very active and healthy research 

field, with many participants from all around the world. This has been encouraged by the ever-

increasing need to develop models of systems and the simple fact that system identification is 

relatively straightforward; it works well most of the time, and can be applied to any system 

where data can be recorded. 

1.3    Nonlinear System Identification 

 Nonlinear systems are usually defined as any system which is not linear, that is any system 

that does not satisfy the superposition principle. This contrarian description is very vague but 

is often necessary because there are so many types of nonlinear systems that it is almost 

impossible to write down a description that covers all the classes that can exist under the title 

of ‘nonlinear dynamic system’. Authors therefore tend to focus on particular classes of non-

linear systems, which can be tightly defined, but which are limited. Historically, system iden-

tification for nonlinear systems has developed by focusing on specific classes of system and 

specific models. The early work was dominated by methods based on the Volterra series, 

which in the discrete time case can be expressed as
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6 Nonlinear System Identification

where  u ( k ),  y ( k );  k  = 1, 2, 3 … are the measured input and output, respectively, and  1,( ),…� �h m m  

is the �’th-order Volterra kernel, or �’th-order nonlinear impulse response. The Volterra series 

is an extension of the linear convolution integral and represents mildly nonlinear systems as a 

series of multi-summations, or integrals in the continuous time case, of the Volterra kernels 

and the inputs. Most of the earlier algorithms assumed that just the first two, linear and quad-

ratic, Volterra kernels are present and used special inputs such as Gaussian white noise and 

correlation methods to identify the two Volterra kernels. Notice that for these early identifica-

tion methods the input has to be Gaussian and white, which is a severe restriction for many 

real processes and pre-recorded data sets. These results were later extended to include the first 

three Volterra kernels, to allow different inputs, and other related developments including the 

Weiner series. A very important body of work was developed by Wiener, Lee, Bose and col-

leagues at MIT from the 1940s to the 1960s (Wiener,    1958 ; Lee,    1964 ). Much of this work 

involved developing methods of analysis for nonlinear systems, but important identification 

algorithms were also introduced including the famous Lee and Schetzen method (1965). The 

books of Schetzen (   1980 ) and Rugh (   1981 ) describe the many developments based on the 

work of Volterra and Weiner. While these methods are still actively studied (Marmarelis and 

Marmarelis,    1978 ; Doyle  et al .,    2000 ) as methods of analysis, system identification based on 

the Volterra (and related Weiner) series is still challenging today. This is because of three basic 

requirements. First, the number of terms in the Volterra series is unknown at the start of the 

identification so methods which make assumptions that only the first two or three kernels are 

present cannot be applied with confidence because there may be many more terms and ignor-

ing these terms will produce incorrect estimates. Second, often special inputs such as Gaussian 

white noise are required which may not be possible in many real experiments and will not be 

applicable where data has been pre-recorded. Third, the number of points that need to be iden-

tified can be very large. For example, for a system where the first-order Volterra kernel  h  
1
 ( m  

1
 ) 

is described by say 30 samples, 30 × 30 points will be required for the second-order kernel 

 h  
2
 ( m  

1
 ,  m  

2
 ), 30 × 30 × 30 for the third-order  h  

3
 ( m  

1
 ,  m  

2
 ,  m  

3
 ), and so on, and hence the amount of 

data required to provide good estimates becomes excessively large (Billings,    1980 ). These 

numbers can be reduced by exploiting certain symmetries but the requirements are still exces-

sive irrespective of what algorithm is used for the identification. However, the Volterra series 

is still enormously important as a descriptor of nonlinear systems and as a method of analysis, 

although this can often be achieved by identifying alternative model forms and then mapping 

these back to the Volterra model. 

 Because of the problems of identifying Volterra models, from the late 1970s onwards other 

model forms were investigated as a basis for system identification for nonlinear systems. 

Various forms of block-structured nonlinear models were introduced or reintroduced at this 

time (Billings and Fakhouri,    1978 ,    1982 ; Billings,    1980 ; Haber and Keviczky,    1999 ). The 

Hammerstein model consists of a static single-valued nonlinear element followed by a linear 

dynamic element. The Wiener model is the reverse of this combination, so that the linear ele-

ment is before the static nonlinear characteristic. The General Model consists of a static linear 

element sandwiched between two dynamic systems. Other models, such as the  S 
m
  , Uryson, 

etc. models, represent alternative combinations of elements. All these models can be repre-

sented by a Volterra series, but in this case the Volterra kernels take on a special form in each 

case. Identification consists mainly of correlation-based methods, although some parameter 

estimation methods were also developed. The correlation methods exploited certain properties 

of these systems which meant that if specific inputs were used, often white Gaussian noise 

01.indd   601.indd   6 6/21/2013   5:12:24 AM6/21/2013   5:12:24 AM



Introduction 7

again, the individual elements could be identified one at a time. This resulted in manageable 

requirements of data and the individual blocks could sometimes be related to components in 

the system under study. Methods were developed, based on correlation and separable func-

tions, which could determine which of the block-structured models was appropriate to repre-

sent a system (Billings and Fakhouri,    1978 ,    1982 ). Many results were introduced and these 

systems continue to be studied in depth. The problem of course is that these methods are only 

applicable to a very special form of model in each case and cannot therefore be considered as 

generic. They make too many assumptions about the form of the model to be fitted, and if little 

is known about the underlying system then applying a method that assumes a very special 

model form may not work well. All the above are essentially nonparametric methods of iden-

tification for nonlinear systems. 

1.4    NARMAX Methods 

 The NARMAX model was introduced in 1981 as a new representation for a wide class of 

nonlinear systems (Billings and Leontaritis,    1981 ; Leontaritis and Billings,    1985 ; Chen and 

Billings,    1989 ). The NARMAX model is defined as

    

= − − … −
− − − … − −
− − … − +

( ) [ ( 1), ( 2), , ( ,

( ), ( 1

)

)), , ( ,

( 1), ( 2), , ( )] ( )

y

u

e

y k F y k y k y k n
u k d u k d u k d n
e k e k e k n e k

  (1.2) 

where  y ( k ),  u ( k ), and  e ( k ) are the system output, input, and noise sequences, respectively;  n  
 y 
 , 

 n  
 u 
 , and  n  

 e 
  are the maximum lags for the system output, input, and noise;  F [·] is some nonlinear 

function, and  d  is a time delay typically set to  d  = 1. The model is essentially an expansion of 

past inputs, outputs, and noise terms. The exact form of the model and the class of systems that 

can be represented by this model will be discussed in Chapter 2. However, the essence of the 

NARMAX model is that past outputs are included in the expansion. The importance of this 

can be explained by considering linear FIR (finite impulse response) and IIR (infinite impulse 

response) filters. The FIR filter

    1 2
( ) ( 1) ( 2) ( )nby k b u k b u k b u k nb= − + − + + −�

  
(1.3) 

expands the system response in terms of past inputs only. The IIR filter

    1 1
( ) ( 1) ( ) ( 1) ( )na nby k a y k a y k na b u k b u k nb+ − + + − = − + + −� �

 
 (1.4) 

expands the response in terms of past inputs and outputs, where  na  and  nb  represent the model 

orders. So, for a simple linear system, an FIR filter may typically need 50 weights ( nb  = 50) 

whereas the IIR filter would need maybe 4 ( na  =  nb  = 2), simply because the information in the 

many past inputs expanded as an FIR filter can be captured by just a few output lagged terms 

in an IIR filter. The trade-off is that the IIR filter can be more difficult to estimate, but it is far 

more concise. For nonlinear systems the Volterra series expands the current output as a series 

in terms of past inputs only. In the nonlinear case this can lead to an explosion in the number 

of terms to be estimated. It is easy to suggest nonlinear examples where the model inherently 

has nonlinear output terms, like the Duffing or Van der Pol models (Nayfeh and Mook,    1979 ; 

Pearson,    1999 ), where the output terms in these models will inevitably create a very long 
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8 Nonlinear System Identification

Volterra series. NARMAX, however, can capture these effects easily because nonlinear lagged 

output terms are allowed. This makes the identification easier because fewer terms are required 

to represent systems, but it also means that noise on the output has to be taken into account 

when estimating the model coefficients. The Volterra, block-structured models, and many 

neural network architectures can all be considered as subsets of the NARMAX model. Since 

NARMAX was introduced, by proving what class of nonlinear systems can be represented by 

this model, many results and algorithms have been derived based around this description. 

Most of the early work was based on polynomial expansions of the NARMAX model. These 

are still the most popular methods today, but other more complex forms based on wavelets and 

other expansions have been introduced to represent severely nonlinear and highly complex 

nonlinear systems. A significant proportion of nonlinear systems can be represented by a 

NARMAX model, including systems with exotic behaviours such as chaos, bifurcations, and 

sub-harmonics. 

1.5    The NARMAX Philosophy 

 While NARMAX started as the name of a model, it has now developed into a philosophy of 

nonlinear system identification (Billings and Tsang,    1989 ; Billings and Chen,    1992 ). The 

NARMAX approach consists of several steps:  

 Structure detection Which terms are in the model?

 Parameter estimation What are the model coefficients?

 Model validation Is the model unbiased and correct?

 Prediction What is the output at some future time?

 Analysis What are the dynamical properties of the system?

 Structure detection forms the most fundamental part of NARMAX. In linear parameter esti-

mation it is relatively easy to determine the model order. Often models of order one, two, 

three, and so on are estimated and this is quick and efficient. The models are then validated 

and compared to find which is the simplest model that can adequately represent the system. 

This process works well because, assuming a pulse transfer function representation, every 

increase in model order only increases the number of unknown parameters by two – one extra 

coefficient for the numerator and the denominator. Over-fitted models are easily detected by 

pole zero cancellations and other methods. 

 But this naïve approach does not easily carry over to the nonlinear case. For example, a 

NARMAX model which consists of one lagged input and one lagged output term, three lagged 

noise terms, expanded as a cubic polynomial, would consist of 56 possible candidate terms. 

This number of candidate terms arises because the expansion by definition includes all pos-

sible combinations within the cubic expansion. Naïvely proceeding to estimate a model which 

includes all these terms and then pruning will cause numerical and computational problems 

and should always be avoided. However, often only a few terms are important in the model. 

Structure detection, which aims to select terms one at a time, is therefore critically important. 

This makes sense from an intuitive perspective – build the model by putting in the most impor-

tant or significant term first, then the next most significant term, and so on, and stop when the 

model is adequate, it is numerically efficient and sound, and most important of all leads to 

simple parsimonious models that can be related to the underlying system. 
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Introduction 9

 These objectives can easily be achieved by using the orthogonal least squares (OLS) 

 algorithm and its derivatives to select the NARMAX model terms one at a time (Korenberg 

 et al .,    1988 ; Billings  et al .,    1989 ; Billings and Chen,    1998 ). This approach can be adopted for 

many different model forms and expansions, and is described in Chapter 3. 

 These ideas can also be adapted for pattern recognition and feature selection with the 

advantage that the features are revealed as basis functions that are easily related back to the 

original problem (Wei and Billings,    2007 ). The basis vectors are not potentially functions of 

all the initial features as is the case in principal component analysis, which then destroys easy 

interpretation of the results. 

  The philosophy of NARMAX therefore relates to finding the model structure or fitting the 
simplest model so that the underlying rule is elucidated . Building up the model, term by term, 

has many benefits not least because if the underlying system is linear, NARMAX methods 

should just fit a linear model and stop when this model is a good representation of the system. 

It would be completely wrong to fit a nonlinear model to represent a linear system. For exam-

ple, the stability of linear systems is well known and is applicable for any input. This does not 

apply to nonlinear systems. Over-fitting nonlinear systems, by using either excessive time lags 

or excessive nonlinear function approximations, not only induces numerical problems but can 

also introduce additional unwanted dynamic behaviours and disguises rather than reveals the 

relationships that describe the system. 

1.6    What is System Identification For? 

 The fundamental concept of structure detection, that is core to NARMAX methods, naturally 

leads into a discussion of what system identification is for. Very broadly, this can be divided 

into two aims. 

 The first involves approximation, where the key aim is to develop a model that approxi-

mates the data set such that good predictions can be made. There are many applications where 

this approach is appropriate, for example in time series prediction of the weather, stock prices, 

speech, target tracking, pattern classification, etc. In such applications the form of the model 

is not that important. The objective is to find an approximation scheme which produces the 

minimum prediction errors. Fuzzy logic, neural networks, and derivatives of these including 

Bayesian methods naturally solve these types of problems easily and well (Miller  et al .,    1990 ; 

Chen and Billings,    1992 ; Bishop,    1995 ; Haykin,    1999 ; Liu,    2001 ; Nelles,    2001 ). The approxi-

mation properties of these approaches are usually quoted based on the Weierstrass theorem, 

which of course equally applies to many other model forms. Naturally, users of these methods 

focus on the mean-squared-error properties of the fitted model, perhaps over estimation and 

test sets. 

 A second objective of system identification, which includes the first objective as a subset, 

involves much more than just finding a model to achieve the best mean-squared errors. This 

second aim is why the NARMAX philosophy was developed and is linked to the idea of find-

ing the simplest model structure. The aim here is to develop models that reproduce the dynamic 

characteristics of the underlying system, to find the simplest possible model, and if possible to 

relate this to components and behaviours of the system under study. Science and engineering 

are about understanding systems, breaking complex behaviours down into simpler behaviours 

that can be understood, manipulated, and exploited. The core aim of this second approach to 
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10 Nonlinear System Identification

identification is therefore, wherever possible, to identify, reveal, and analyse the rule that rep-

resents the system. So, if the system can be represented by a simple first-order dynamic  system 

with a cubic nonlinear term in the input this should be revealed by the system identification. 

Take, for example, two different oil rigs, which are similar but of a different size and operate 

in different ocean depths and sea states. If the underlying hydrodynamic characteristics which 

describe the action of the waves on the platform legs and the surge of the platform follow the 

same scientific law, then the identified models should reveal this (Worden  et al .,    1994 ; Swain 

 et al .,    1998 ). That is, we would expect the core model characteristics to be the same even 

though the parameter values could be different. Therefore, a very important aim is to find the 

rule so that this can be analysed and understood. Gross approximation to the data is not suf-

ficient in these cases, finding the best model structure is. Ideally, we want to be able to write 

the identified model down and to relate the terms and characteristics of the model to the sys-

tem. These aims relate to the understanding of systems, breaking complex behaviours down 

into simpler behaviours that can be simulated, analysed, and understood. These objectives are 

relevant to model simulation and control systems design, but increasingly to applications in 

medicine, neuroscience, and the life sciences. Here the aim is to identify models, often non-

linear, that can be used to understand the basic mechanisms of how these systems operate and 

behave so that we can manipulate and utilise them. 

 These arguments also carry over to the requirement to fit models of the system and of the 

noise. Noise models are important to ensure that the estimated model of the system is unbiased 

and not just a model of one data set, but noise models are also highly informative. Noise mod-

els reveal what is unpredictable from the input, and they indicate the level and confidence that 

can be placed in any prediction or simulation of the system output. 

 NARMAX started off as the name of a model class but has now become a generic term 

for  identification methods that aim to model systems in the simplest possible way. Model 

 validation is a critical part of NARMAX modelling and goes far beyond just comparing 

 mean-squared errors. One of the basic approaches involves testing whether there is anything 

predictable left in the residuals (Billings and Voon,    1986 ; Billings and Zhu,    1995 ). The aim is 

to find the simplest possible model that satisfies this condition. The idea is that if the models 

of the system and of the noise are adequate, then all the information in the data set should be 

captured in the model, and the remainder – the final residuals – should be unpredictable from 

all past inputs and outputs. This is statistical validation and can be applied to any model form 

and any fitting algorithm. Qualitative validation is also used to develop NARMAX estimation 

procedures that reproduce the dynamic invariants of the systems. Models that are developed 

based on term selection to obtain the simplest possible model have been shown to reproduce 

attractors and dynamic invariants that are topologically closer to the properties of the underly-

ing system dynamics than over-fitted models (Aguirre and Billings,    1995a ,    b ). This links back 

to the desire to be able to relate the models to the underlying system and to use the models to 

understand basic behaviours and processes not just to approximate a data set. 

 NARMAX modelling is a process that can involve feedback in the model-fitting process. As 

an example, if the initial library of terms that are used to search for the correct model terms is 

not large enough, then the algorithms will be unable to find the appropriate model. But, apply-

ing model validation methods should reveal that terms are missing from the model, and in 

some instances can suggest what type of terms are missing. The estimation process can then 

be restarted by including a wider range or different types of model terms. Only when the 

structure detection and all the validation procedures are satisfied is the model accepted as a 
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good representation of the system. Just using mean-squared errors is often uninformative 

and can lead to fitting to the noise, and in the worse case models that are little more than 

lookup tables. 

1.7    Frequency Response of Nonlinear Systems 

 In the analysis of linear systems a combined time and frequency domain analysis is ubiqui-

tous. Frequency domain methods are core in control system design, vibrations, acoustics, 

communications, and in almost every branch of science. However, an inspection of the non-

linear system identification literature over the last 20 years or so shows that mainly time 

domain methods have been developed. Neural networks, fuzzy logic, Bayesian algorithms are 

all based solely in the time domain and no information about frequency response is supplied. 

Linear methods would suggest that this is a gross oversight and NARMAX methods have been 

developed in both time and frequency. 

 Early methods of computing the generalised frequency response functions (GFRFs) – these 

are generalisations of the linear frequency response function – were based on the Fourier 

transform of the Volterra series and hence suffered from all the disadvantages including the 

need for very long data sets, unrealistic assumptions about the systems, and specialised inputs. 

However, all these problems can be avoided by mapping identified NARMAX models directly 

into the GFRFs (Billings and Tsang,    1989 ; Peyton-Jones and Billings,    1989 ). This means that 

the GFRFs can be written down and, importantly, that the effects in frequency can be related 

back to specific time domain model terms and vice versa. This links back to the importance of 

finding the simplest model structure and relating that model and its properties to the underly-

ing system characteristics. The linear case can be used to illustrate this point. For linear sys-

tems we might identify a state-space model, a weighting or impulse sequence, a pulse transfer 

function, or several other model forms. When the system is linear all these models are related 

and any one can readily be transformed into another. If each of these different model forms 

were identified for a particular system, if the models are unbiased and correct, they should all 

have exactly the same frequency response. In addition, just looking at time domain behaviours 

does not always reveal invariant characteristics which are so important in the scientific under-

standing of basic behaviours in any system. So, even if a correct linear model has been identi-

fied, obviously simulating this model with different inputs (maybe a random input and a swept 

sine) does not easily reveal properties of that system by visual inspection. But if the system is 

of second order, the frequency response in every case should show one resonance; this can be 

related to specific terms in the system model and hence back to the system under study, and 

shows a core invariant system behaviour. 

 The same argument holds for nonlinear dynamic systems but now the story is more com-

plex. First, many different types of models could be fitted to a data set from a nonlinear system – 

Volterra, NARMAX, nonlinear state-space, neural networks, etc. But it is often virtually 

impossible to map from one model to another and, as in the linear case, just looking at proper-

ties in the time domain only reveals half the picture. This is why we map NARMAX models 

to the GFRFs, because this reveals core invariant behaviours that can usually be interpreted in 

a very revealing manner. Because this is a mapping, each GFRF can be generated one at a time 

and even if there are a large number it is easy to evaluate which are important and when to 

stop. Core frequency response behaviours, which are essentially extensions of the concept of 
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12 Nonlinear System Identification

resonance, can then be identified and related back to the behaviour and properties of the 

underlying system. This process is relatively easy even for complex systems, has been 

extended to severely nonlinear systems with sub-harmonics and, while the potentially large 

number of GFRFs may at first appear to be a problem, this can be turned around and used as 

a great benefit. For example, in the design of a totally new class of filters called energy transfer 

filters. Frequency domain analysis is therefore core to the NARMAX philosophy and is dis-

cussed in Chapters 6 and 7. 

1.8    Continuous-Time, Severely Nonlinear, and Time-Varying 
Models and Systems 

 The vast majority of system identification methods, certainly for nonlinear systems, are based 

on discrete time models. This is natural because data collection inevitably involves data 

 sampling, so that the discrete domain is the natural choice. But there are situations where a 

continuous-time model would be preferable. Continuous-time models are often simpler 

in  structure than the discrete counterpart. For example, a second-order derivative term in 

 continuous time would involve at least three and often more, depending on the approxi-

mation scheme, terms in discrete time. Continuous-time models are also independent of the 

sample rate. 

 The established literature on most systems and processes is almost always based on con-

tinuous-time integro-differential equations. So that, if the identification involves a study of a 

system that has been analysed before using different modelling approaches such as analytical 

modelling using the basic laws of science, then an identified continuous-time model can more 

easily be compared to previous models. In the modelling of the magnetosphere and space 

weather (see the case studies in Chapter 14 for a specific example), there is a considerable 

body of analytical modelling work developed by physicists over many years. If nonlinear 

continuous-time models can be identified then these can be compared to the previous work 

and indeed the analytical models can be used to prime the model structure selection (Balikhin 

 et al .,    2001 ). Model validation can also be used to validate existing physically derived models 

and NARMAX methods can be used to find missing model terms and to analyse these models 

in the frequency domain. This is why we both study the estimation of the structure – that is, 

what model terms to include – and estimate the parameters in complex nonlinear differential 

equation models. NARMAX methods can be extended to solve these problems, often without 

the need to differentiate data which always increases noise considerably. 

 Severely nonlinear systems that exhibit sub-harmonics are also studied. These results are 

developed following the philosophy of finding the simplest possible model and because sub-

harmonics is a frequency domain behaviour, developing algorithms that allow the user to see 

the properties in the frequency domain is important (Li and Billings,    2005 ). These algorithms 

allow NARMAX to be applied to model very exotic and complex dynamic behaviours. 

 Time-varying systems have been extensively studied based on classical LMS, recursive 

least squares, and Kalman filter-based algorithms. But most of the existing methods only 

work for slow time variation. However, by using a new wavelet expansion-based approach, 

NARMAX algorithms have been developed to track rapid time changes and movements and 

to map these to the frequency domain where invariant characteristics can be tracked – for EEG 

analysis, for example. These problems are discussed in detail in Chapters 9, 10, and 11. 
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1.9    Spatio-temporal Systems 

 Spatio-temporal systems are systems that evolve over both space and time (Hoyle,    2006 ). 

Purely temporal systems involve measurements of a variable over time. There are also exam-

ples where measurements at one spatial location, for example an electrophysiological probe in 

the brain, or a flow monitor in a river, also produce a temporal signal. But both these examples 

are strictly spatio-temporal systems. That is, the dynamics at each spatial location may depend, 

in a nonlinear dynamic way, both on what happened back in time and what happened at other 

spatial locations back in time. There are many applications of such systems, for example the 

dynamics of cells in a dish, the growth of crystals, neuro-images, etc. These are a very impor-

tant and neglected class of systems, and hence NARMAX methods have been developed to 

identify several different model classes which can be used to represent spatio-temporal behav-

iours including cellular automata, coupled map lattices, and nonlinear partial differential 

equations. 

 The concept of model structure is even more important for spatio-temporal systems because 

a model of a system may involve just a few lagged time terms at a few, possibly nonadjacent 

spatial locations. Grossly approximating the system would therefore be inappropriate, and 

again the key challenge is to find the model structure which now involves finding the neigh-

bourhood that defines the spatial interactions and the temporal lags. Invariant behaviours are 

also important in spatio-temporal systems, simply because a model excited with different 

inputs will produce different patterns that evolve over time. Depending on the choice of inputs, 

the patterns produced from an identical model could be significantly different when inspected 

visually. Comparing different models and different patterns to discover the rules of the under-

lying behaviours is therefore very difficult. That is why the GFRFs for NARMAX models 

have recently been introduced for spatio-temporal NARMAX models. These problems are 

discussed in detail in Chapters 12 and 13. 

1.10     Using Nonlinear System Identification in Practice 
and Case Study Examples 

 While there is a considerable literature on algorithms for nonlinear system identification of all 

sorts of shapes and forms, there are a relatively small number of users who are expert at apply-

ing these methods to real-life systems. Most authors just use simulated examples to illustrate 

and test their algorithms. Linear parameter estimation and NARMAX models can be studied 

and thoroughly tested by simulating known models and comparing the initial simulated model 

coefficients to those identified. This provides a powerful means of evaluating the methods. 

Neural networks, which are designed to purely approximate systems, produce models that 

usually contain so many weights or parameters and basic approximating units that the model 

representation cannot be written down, and maybe conveniently therefore cannot be tested to 

check the training procedures do indeed identify the exact same model that was used as a 

simulated test to begin with. 

 This is why the overall aim of this book is to try to introduce and show the reader how 

to apply NARMAX methods to real problems. The emphasis therefore is on describing the 

methods in a way that is as transparent as possible, deliberately leaving out all the variants of 

the methods and their complex derivations and properties, all of which are available in the 

literature. 
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14 Nonlinear System Identification

 Hence, in Chapter 14, practical aspects of nonlinear system identification and many case 

studies are described. The case studies are deliberately taken from a wide range of systems 

that we have analysed over recent years and range from modelling space weather systems, 

through to the identification of the visual system of a fruit fly, to the modelling of iceberg flux 

in Greenland, and many other systems. All the case studies are for real problems where the 

main objective is to use system identification as a tool to understand the complex system being 

studied in a way that is revealing, transparent, and as simple as possible. 
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