
Chapter 1

Introduction

1.1 Fluids as a State of Matter

A standard dictionary definition of a fluid is

a substance whose particles can move about
with freedom–a liquid or gas.

Whilst this formulation encapsulates our general concept of a fluid, it is not
entirely satisfactory as a scientific basis for the understanding of such mate-
rials. More formally within the context of fluid mechanics the fluid is seen as
an isotropic, locally homogeneous, macroscopic material whose particles are
free to move within the constraints established by the dynamical laws of con-
tinuum physics. The requirement that the fluid be a continuum implies that
if a volume of fluid is successively subdivided into smaller elements, each ele-
ment will remain structurally similar to its parent, and that this process of
subdivision can be carried out down to infinitesimal volumes. Under these
conditions several useful macroscopic concepts may be defined:

Fluid particle a fictitious particle fixed within the fluid continuum and mov-
ing with the velocity of the flow, and representing an average over a large
number of microscopic particles.

Fluid point fixed in the fluid moving with the flow velocity. A fluid particle
is always situated at the same fluid point.

Infinitesimal volume within the continuum of the fluid, and large com-
pared with microscopic scales, but small compared with macroscopic
ones.
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2 Introductory Fluid Mechanics

In fact of course the fluid is not a continuum in the strict mathematical
sense used above. The fluid is made up of discrete microscopic particles,
namely molecules, which are distributed randomly with a distribution of
velocities characteristic of the fluid in thermal equilibrium, typically given by
the Maxwell–Boltzmann distribution in a gas. Fortunately, at the densities
at which most experiments are conducted, the intermolecule separation is
extremely small and very much less than the laboratory scale. It is therefore
possible to average over small volumes which contain a very large number of
particles, yet are very small on the laboratory scale, and allow us to recover the
continuum approximation. In this manner we obtain terms which characterise
the fluid as a bulk material. Typical of these average quantities are:

Density number or mass of particles per unit volume.

Temperature average energy of the random motion per particle in thermal
equilibrium.

Pressure average momentum flow associated with the random motion per
unit area.

Flow velocity mean velocity of the molecules averaging out the random
motion.

The role of collisions amongst the particles plays an important role in defin-
ing irreversibility through the loss of correlation between the particles. Particles
collide on average after a distance equal to the mean free path, and time
after the collision interval. Since fluid mechanics assumes the fluid particles
are in thermal equilibrium and randomly distributed, this condition requires
that spatial and temporal averages be taken to include a large number of
collisions, i.e. the laboratory-scale length is large compared with the mean
free path and time to the collision interval. In practice this is not normally a
restrictive condition. The effects of the collisions on fluid transport (momentum
and energy) are thereby averaged over the thermal distribution to yield bulk
properties of the material, namely viscosity and thermal conduction respec-
tively. Consequently (ideal) fluid motion without viscosity or thermal conduc-
tion is dissipationless, entropy generation being due to viscosity and thermal
conduction.

Within the continuum theory it is implicitly assumed that locally the fluid is
in thermal equilibrium, although the temperature may vary globally through
the flow. As a result the thermodynamics of bulk materials may be applied
locally in the flow to calculate the pressure from the density and temperature
(say) using the equation of state of the fluid. More generally the quantities and
relations of equilibrium thermodynamics may be applied in the flow.
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The flow of a basic fluid may be calculated using Newtonian mechanics,
classical thermodynamics and the values of viscosity and thermal conductivity.
From the above discussion, the conditions under which this theory may be
applied are:

Laboratory-scale lengths must be large compared with the
intermolecule separation and mean free path.
Characteristic laboratory times must be large compared with the
collision interval.
The fluid must locally be in thermal equilibrium.

The theory may be readily extended to relativistic mechanics and also to
include additional dissipative terms, e.g. due to radiation. However, under
normal laboratory conditions these are not required. Astrophysical systems
provide examples of flows where more general approaches may be required.

Provided the above conditions are met, it is relatively straightforward to
show that the fluid dynamical equations (to be obtained later) may be directly
derived from the governing kinetic theory of the molecules.

1.2 The Fundamental Equations for Flow
of a Dissipationless Fluid

The basic equations of fluid mechanics stem from simple concepts of conser-
vation applied to mass, momentum and energy. These are completed by the
thermodynamic equation of state of the material, in which the flow is to be
calculated. The equations are, of course, complemented by the boundary con-
ditions in an appropriate form, depending on the nature of the problem. In any
problem, we seek to find five variables: three velocity components (v) and two
thermodynamic state variables, e.g. density ρ and pressure p, as functions of
space r and time t. In many problems the actual number of variables required
is reduced, either by symmetry to a restricted number of spatial dimensions
or by a specified thermodynamic state, e.g. constant entropy or constant tem-
perature. The problem is often further simplified by the restriction to steady
flow, when there is no time variation.

Initially we will consider only dissipationless or ideal flow where the entropy
of a fluid particle remains constant, i.e. viscosity and thermal conduction
are neglected, deferring the treatment of flows in which viscosity plays a role
until later; many important systems are treatable within the inviscid limit.
We may quite generally identify two different conditions of flow involving
the entropy of the fluid: adiabatic flow when the specific entropy of a fluid
particle is constant in time; and isentropic flow where the specific entropy of
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each fluid particle has the same initial value. Many flows are both isentropic
and adiabatic, e.g. the ideal steady flow of a fluid, whose specific entropy on
entry is everywhere constant.

The basic equations may be formulated in two complementary ways:

• In the frame of the laboratory–the Eulerian frame. In this frame the co-
ordinates are fixed in space and time. The derivatives used are the usual
partial derivatives

∂

∂t

∣∣∣∣
r

and ∇
∣∣
t

• In the frame of the moving particle–the Lagrangian frame. In this system
the spatial variation seen by the particle due to its motion is absorbed
into the time derivative

d
dt

=
∂

∂t
+ v · ∇ (1.1)

This system is often easier to set up, but becomes more complicated when
the dissipative terms, viscosity and thermal conduction, are important.

However, the two systems are entirely equivalent and each may be easily
derived from the other. They may also be used mixed if required. The actual
choice of which to use will depend on the nature of the problem.

1.3 Lagrangian Frame

The Lagrangian frame of reference considers the fluid from the point of view of
an observer on a fluid particle. Since many methods of calculation in compu-
tational fluid mechanics use the Lagrangian approach, we give a brief formal
introduction to these methods. A fluid particle may be conveniently identified
by a co-ordinate set, which is fixed on the particle, namely Λ = (λ, μ, ν), i.e. a
triad of numbers. For example, these may be the initial position of the particle
r0 = (x0, y0, z0). The position, velocity and thermodynamic state of the parti-
cle are therefore functions of time alone. Conceptually this leads to a simple
set of kinematic and dynamic relations governing the motion of the particle,
namely

dr
dt

= v and
dv
dt

=
F
m

(1.2)
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where F is the force acting on and m the mass of the fluid particle. The particle
has a finite size expressed by the increments in the Lagrangian co-ordinates
δΛi = (δλ, δμ, δν), and whose volume is given by the Jacobian

δV =
∂(x, y, z)
∂(λ, μ, ν)

δλ δμ δν (1.3)

which can be expressed as1

J =
∂(x, y, z)
∂(λ, μ, ν)

=
1

N !

{
εijk εlmm

∂xi

∂Λl

∂xj

∂Λm

∂xk

∂Λn

}

=
[

∂r
∂Λ1

∧ ∂r
∂Λ2

]
· ∂r
∂Λ3

(1.4)

where εijk is the perturbation symbol2

εijk =

⎧⎨
⎩

1 if (i �= j �= k) are in the sequence (1,2,3)
−1 if (i �= j �= k) are in the sequence (1,3,2)
0 otherwise

(1.5)

Spatial derivatives of quantities associated with the fluid particles, e.g. ther-
modynamic variables, are directly calculated in a Lagrangian framework. The
gradient of a scalar quantity f(λ, μ, ν), which is defined on the fluid particle,
is often required in the inertial Eulerian frame. Such terms are obtained by
the use of the total differential for the variable f and Cramer’s rule to solve

1We make extensive use of the index notation for vectors, where the vector is represented
by a general component in a Cartesian co-ordinate system

A ≡ (Ax, Ay, Az) ≡ Ai where i = 1, 2, 3

Sums over the indices are represented by Einstein’s repeated index summation notation. Thus
for example a scalar product is

A · B = Ai Bi ≡
N∑

i=1

Ai Bi

A repeated index indicates summation of that index over the full range of values N . The
summation rule also applies to the elements of matrices.

2The expansion of the determinant of an N × N matrix A = aij may be written as

det A = εijkai1 aj2 ak3 = εlmn a1l a2m a3n =
1

N !
εijk εlmnail ajm akn

the divisor N ! appearing because the first index l may be chosen in N different ways, the
second m in N − 1 ways, etc.
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the resulting set of simultaneous equations.3 Using the subscript notation and
Einstein’s repeated index summation rule gives

∇f
∣∣
i
≡ ∂f

∂xi
=

1
N ! J

{
εijk εlmn

∂f

∂Λl

∂xj

∂Λm

∂xk

∂Λn

}
(1.7)

where N = 3 is the dimensionality. The calculation of vector operators in Eule-
rian space, grad, div and curl, follows directly.

Taking the time derivative of the Jacobian, remembering that vi = dri/dt
and using equation (1.7) we obtain

dJ

dt
= J ∇ · v (1.8)

Since the mass δm of the particle is constant,

ρ J = δm/δλ δμ δν = ρ0 J0 (1.9)

where the initial density is ρ0 and the Jacobian J0. This is the Lagrangian
form for the conservation of mass. The specific volume of the particle is clearly
related to the Jacobian through

V =
1
ρ

=
J

J0
V0

and making use of equation (1.8) we obtain the more familiar form of the
Lagrangian mass conservation equation

dρ

dt
+ ρ∇ · v = 0

1.3.1 Conservation of Mass

This equation may be derived in a more direct manner by considering the
change in volume of a fluid particle ΔV with constant mass Δm = ρΔV and

3Cramer’s rule solves the non-singular set of simultaneous equations

aij xi = bj

by forming a set of determinants for the matrix elements D = det aij and those formed by
progressively replacing the ith column by the column ‘vector’ bj , namely

Di =

∣∣∣∣
ai′j when i′ �= i
bj i′ = i

∣∣∣∣

The solution is then
xi = Di/D (1.6)
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surface ΔS as it moves through the fluid. In a time δt the volume increases by

δ(ΔV ) =
�

ΔS
v · dS δt

=
�

ΔV
∇ · v dV δt

by Gauss’s theorem. As ΔV is small, the rate of dilation is

Θ̇ =
1

ΔV
lim
δt→0

{
δ(ΔV )

δt

}
= ∇ · v = −1

ρ

dρ

dt

since the mass of the particle is constant. Hence we obtain

dρ

dt
+ ρ∇ · v = 0 (1.10)

If the density of the fluid particle remains constant, i.e. the fluid is incom-
pressible,

∇ · v = 0 (1.11)

and the rate of dilation is zero, or alternatively the volume of a fluid element
is constant.

1.3.2 Conservation of Momentum–Euler’s Equation

We consider the change of momentum of the fluid particle as a result of the
forces applied to it. The total force is due to the pressure exerted inwards over
the surface of the particle

−
�

ΔS
pdS = −

�
ΔV

∇p dV ≈ −∇p ΔV

and gravity Δmg where g is the acceleration due to gravity. Hence using
Newton’s second law of motion we obtain Euler’s equation:

dv
dt

= −1
ρ
∇p + g (1.12)

The preceding equation for flow in an inertial frame must be modified to
include the Coriolis and centrifugal forces in a rotating frame

dv
dt

+ 2 Ω ∧ v + Ω ∧ (Ω ∧ r) = −1
ρ
∇p + g (1.13)

where Ω is the angular velocity of rotation.
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1.3.3 Conservation of Angular Momentum

Angular momentum is not frequently used in fluid mechanics. However, as in
mechanics, it must be conserved in the absence of external torques. We may
obtain the relationship governing its variation directly by taking the vector
product of the radius vector with Euler’s equation (1.12). Thus the angular
momentum per unit mass of a fluid particle is

d(r ∧ v)
dt

= r ∧ dv
dt

= −1
ρ

r ∧∇p r ∧ g (1.14)

1.3.4 Conservation of Energy

Since the fluid is dissipationless, the energy equation takes the particularly
simple form of the first law of thermodynamics for an adiabatic change:

dε

dt
=

p

ρ2

dρ

dt
= −p

ρ
∇ · v (1.15)

where ε is the specific internal energy (per unit mass).

1.3.5 Conservation of Entropy

If dissipation in the fluid is negligible, i.e. the flow of an ideal fluid, the entropy
of a fluid element is constant. Therefore

ds

dt
= 0 (1.16)

where s is the specific entropy (per unit mass).

1.4 Eulerian Frame

We turn now to the equations in Eulerian form.

1.4.1 Conservation of Mass–Equation of Continuity

Consider a fluid of density ρ moving with velocity v in a closed volume V
stationary in the Eulerian frame with bounding surface S. The mass of fluid
enclosed in V is

�
V ρ dV . Thus the rate of increase of mass in V is

�
V

∂ρ

∂t
dV
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This mass gain must be balanced by a mass flow rate into V through S.
Since the mass flow rate out through an element dS is ρv · dS, we obtain

�
V

∂ρ

∂t
dV = −

�
S

ρv · dS

= −
�

V
∇ · (ρv) dV (1.17)

Hence, since V is arbitrary, the integrands must be equal, i.e.

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.18)

namely, the equation of continuity.
This equation has the characteristic form of a conservation equation, i.e.

∂

∂t
[Quantity per unit volume] + div[Flux of quantity]

= [Input per unit volume per unit time]
{ = 0 in this case}

where the flux is the quantity flowing per unit time through unit area normal
to the flow (see Appendix 10.A). In this case the flux j = ρv.

1.4.2 Conservation of Momentum

Momentum introduces a complication in that momentum itself is a vec-
tor. The momentum flux is a tensor. We therefore work in Cartesian
components using the general notation, i.e. ui for the ith component
(i = 1, 2, 3 [x, y, z]). We also use the Einstein summation convention for a
repeated index, namely ai bi =

∑3
i=1 aibi = a · b. The total momentum in V is

thus
�
V ρ vi dV , and the flow of momentum leaving through dS is ρ vi vj dSj .

The sources of momentum in V are the forces: the internal force due to the
hydrostatic pressure −pdSi (minus sign since pressure acts inwards) and the
external force due to gravity ρgi per unit volume.

The momentum balance equation for V is thus
�

V

∂(ρ vi)
∂t

dV = −
�

S
ρ vi vj dSj −

�
S

pdSi +
�

V
ρ gi dV

=
�

V
ρ gi −

∂

∂xj
[ρ vi vj + p δij ] dV (1.19)

where δij is the Kronecker delta.
Hence, as before, since V is arbitrary

∂(ρ vi)
∂t

+
∂(ρ vi vj + p δij)

∂xj
= ρ gi (1.20)
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This has the general form noted above since ∂aj/∂xj = ∇ · a. The momen-
tum flux Γij = ρ vi vj + p δij includes the internal force, in this case pressure
alone. By Newton’s second law of motion, this force corresponds to an impulse
which transfers momentum within the fluid body, but is conserved overall, as
one part of the fluid exerts an equal and opposite force (and therefore momen-
tum transfer) on another. The external force, gravity, corresponds to a source
term, which is not conserved.

1.4.3 Conservation of Angular Momentum

Angular momentum obeys a conservation law in the absence of external
torques. However, the form is a little more difficult to establish than for linear
momentum. As with linear momentum we expect that the angular momentum
flux will be a second-order tensor. We may obtain the relations directly by
considering the conservation of angular momentum in an arbitrary volume V
with surface S. The rate of change of the total angular momentum in V must
be balanced by the flow of angular momentum through the surface S due to
transport and to the torques exerted on the fluid at S by the pressure and
internally by any volume force. Thus

∂

∂t

�
V

ρ (r ∧ v) dV = −
�

S
[ρ r ∧ v] v · dS −

�
S

p r ∧ dS +
�

V
ρ r ∧ g dV

As before, noting that V is arbitrary and using Gauss’s theorem,4 we obtain

∂

∂t
[ρ r ∧ v] +

∂

∂xj
[ρ (r ∧ v)i vj ] + r ∧∇p = r ∧ (ρg) (1.21)

which may also be obtained by taking the vector product of r with equation
(1.20). This is clearly not in conservation law form due to the pressure term.
This can, however, be written as the divergence of a second-order tensor as
follows:

r ∧∇p = εijk xj
∂p

∂xk
= −εijk

∂

∂xj
(p xk)

where εijk is the perturbation symbol defined in equation (1.5).

4This result is obtained from the vector identities

∇ · (A ∧ B) = B · ∇ ∧ A = A · ∇ ∧ B and ∇∧ (φA) = φ∇∧ A − A ∧∇φ

Hence using Gauss’s theorem when a is an arbitrary constant vector

a ·
�

p r ∧ dS =
�

a ∧ (pr) · dS =
�
∇ · (a ∧ pr) dV = a ·

�
r ∧∇p dV

from which, since a is arbitrary, equation (1.21) follows.
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Hence the total angular momentum flux is

Ξij = ρvi

(
εjkl xk vl

)
− (εijk p xk)

1.4.4 Conservation of Energy

The total energy per unit mass of the fluid includes both internal energy ε and
kinetic energy 1

2v2. The work done on the fluid is due to the pressure force on
the surface and to gravity. Thus

�
V

∂

∂t

[
ρ

(
ε +

1
2
v2

)]
dV = −

�
S

[
ρ

(
ε +

1
2
v2

)]
v · dS

−
�

S
pv · dS +

�
V

ρg · v dV +
�

V
WdV

where W is the energy deposited by external sources per unit volume per unit
time. Hence we obtain by the use of Gauss’s theorem and the arbitrary nature
of the volume V , as before,

∂

∂t

[
ρ

(
ε +

1
2
v2

)]
+ ∇ ·

[
ρ

(
h +

1
2
v2

)
v
]

= W + ρg · v (1.22)

where h = ε + p/ρ is the specific enthalpy (per unit mass). The energy flux is
thus (h + 1

2v2)v and includes in the enthalpy, h, a term for the work done by
one section of the fluid on another corresponding to the internal forces. The
work done by the external force is not conserved.

Since gravity is a conservative force, which is constant in time, we may
include the gravitational field in overall fluid energy (ε + 1

2v2 + U) per unit
mass where g = −∇U defines the gravitational potential. Using the equa-
tion of continuity (1.18) and the time invariance of the gravitational field, U ,
we obtain

∂

∂t

[
ρ

(
ε +

1
2
v2 + U

)]
+ ∇ ·

[
ρ

(
h +

1
2
v2 + U

)
v
]

= W (1.23)

1.4.5 Conservation of Entropy

In an ideal fluid, where entropy is conserved, entropy may also be written as
a conservation law. From equations (1.16) and (1.18) we obtain

∂

∂t
(ρ s) + ∇ · (ρ sv) = 0 (1.24)
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1.5 Hydrostatics

Consider the situation where the fluid is at rest. It follows from Euler’s equation
(1.12) (or directly) that the pressure force and gravity must balance, i.e.

∇p = ρg (1.25)

Since gravity only acts in the vertical direction (z, measured upwards) this
equation takes the simple form when the density is constant

p = −ρ g z + const

ρ g z is known as the hydrostatic head.
If the thermodynamic condition of the fluid is predetermined, the pressure

and density are related by the appropriate equation of state and are both
functions of the vertical height only. The fluid is therefore stratified. We may
identify two important cases.

1.5.1 Isothermal Fluid–Thermal and Mechanical Equilibrium

If the fluid is isothermal, i.e. the temperature T is constant everywhere, the
system is in thermal equilibrium. The equilibrium condition is written in terms
of the thermodynamic potential per unit mass Φ given by

dΦ = −sdT + V dp

where s is the specific entropy (per unit mass) and V = 1/ρ the specific volume.
Hence equation (1.25) integrates to

Φ + gz = const (1.26)

throughout the fluid.
This result is recognised as the standard result from thermodynamics for a

system in thermal equilibrium in an external field.

1.5.2 Adiabatic Fluid–Lapse Rate

If the fluid is isentropic, the specific entropy of the fluid is everywhere constant.
Since the enthalpy is

dh = T ds + V dp

equation (1.25) takes the form

h + gz = const (1.27)
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Alternatively, making use of the thermodynamic relations

∂T

∂p

∣∣∣
s

=
∂V

∂s

∣∣∣
p

=
∂T

∂s

∣∣∣
p

∂V

∂T

∣∣∣
p

=
α V T

cp
(1.28)

where α the coefficient of volume expansion and cp the heat content at constant
pressure (per unit mass),

α =
1
V

∂V

∂T

∣∣∣
p

and cp =
∂h

∂T

∣∣∣
p

= T
∂s

∂T

∣∣∣
p

(1.29)

The temperature varies as a function of the height alone

dT

dz
=

∂T

∂p

∣∣∣
s

dp

dz
=

α V T

Cp

dp

dz
= −α T

cp
g (1.30)

The rate at which the temperature decreases with height in the atmosphere,
namely Γ = −dT/dz, and the corresponding density and pressure changes, are
known as the adiabatic lapse rate. A very simple alternative derivation of this
result is useful. Starting from the second TdS equation of thermodynamics we
may write directly that

Tds = cpdT − T
∂V

∂T

∣∣∣
p
dp = 0 (1.31)

since ds = 0 for an adiabatic change. Hence using equation (1.25) we obtain
equation (1.30).

For a perfect gas obeying the ideal gas laws, α = 1/T and the lapse rate
takes the particularly simple form Γ = g/cp.

In atmospheric physics several distinct lapse rates are identified:

1. Dry adiabatic lapse rate is the rate of decrease of temperature with
height of dry (unsaturated) air under adiabatic conditions. Since air is
approximately a perfect gas the lapse rate is given by g/cp ≈ 9.8 K/km,
where in dry air cp = 1004 J/kg/K and g = 9.81 m/s2. The dry adiabatic
lapse rate is independent of the height.

2. The moist saturated adiabatic lapse rate is the rate at which the
air temperature decreases as it rises when maintained at its dew point
(i.e. saturated with water vapour). It is significantly smaller than the
dry lapse rate due to the latent heat released by the water vapour as it
condenses, forming a liquid cloud, and thereby raising the temperature.
Unlike the dry lapse rate the saturated value varies with height, typically
having a value of about 5 K/km.
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An approximate expression for the moist adiabatic lapse rate may be derived by
including the latent heat released as the air rises by modifying equation (1.31)
to include the condensation

T ds = cp dT − T
∂V

∂T

∣∣∣
p
dp + Ldr = 0 (1.32)

where r is the specific humidity or mixing ratio (mass ratio of water vapour to
dry air) and L = 2.453 × 106 J/kg the latent heat of vaporisation.

The variation in the mixing ratio as the temperature and pressure change may
be approximately calculated from the application of Dalton’s law of partial
pressures

r = ε
pv

(p − pv)
≈ ε

pv

p
(1.33)

where pv is the water vapour partial pressure and ε = Ra/Rv = 287/462 is
the ratio of the gas constants for air and water vapour respectively, which
can be expressed in terms of the ratio of molecular masses, ε = Mv/Ma =
18.015/28.964 = 0.622. The saturated water vapour pressure pv is given by the
Clausius–Clapeyron equation

dpv

dT
=

L

(Vv − VlT )
≈ Lpv

RvT 2
(1.34)

where the specific volume of the vapour Vv is much larger than that of the liquid
Vl, and the vapour behaves as an ideal gas. Hence we obtain

1
r

dr

dz
≈ 1

pv

dpv

dz
− 1

p

dp

dz

≈ L

RvT 2

dT

dz
+

1
p
ρg

= − L

RvT 2
Γ +

1
RaT

g (1.35)

Substituting for dp/dz and dr/dz we obtain an approximate expression for the
lapse rate of air saturated with water vapour

Γ =
g

cp

[
1 +

Lr

Ra T

]
[
1 +

L2 r ε

cp Ra T 2

] (1.36)

The mixing ratio r varies with temperature as the saturated vapour pressure
given by the integral of equation (1.34). Since the latent heat is almost constant

ln
(

pv

p0

)
=

L

Rv

(
1
T0

− 1
T

)
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where (p0, T0) is a suitably chosen initial (saturated) condition, e.g. at the triple
point of water where p0 = 611.73 Pa, T0 = 273.16K. This equation taken with
equation (1.33) may be used to calculate the dew point : that is, the temperature
to which a given parcel of air (with known specific humidity and pressure)
must be cooled before it starts to condense. However, tabular and graphical
representations are used to make this a much easier task in practice.

3. Environmental lapse rate is the measured rate of decrease of temper-
ature with height in the atmosphere.

1.5.3 Stability of an Equilibrium Configuration

Although the system may be in mechanical equilibrium, it may not be stable.
If the configuration is unstable, convection currents are set up within the fluid,
which tend to mix the fluid to establish a uniform temperature.

We may derive the condition for the equilibrium to be stable by considering
the effect of a small displacement of a fluid element ξ in the direction z. The
system is stable if its response is to restore the perturbation to its original posi-
tion. Thus let us suppose that the fluid element has a specific volume V (p, s) at
its equilibrium position z and let us suppose that the specific volume changes
adiabatically in response to a pressure change to p′ at (z + ξ) to V (p′, s).5 The
fluid will displace an equal volume of fluid whose pressure p′ and entropy s′

correspond to the equilibrium values at (z + ξ). If the displaced fluid element
is heavier than the one it displaces, it will tend to sink and the equilibrium
will be restored. Thus a necessary condition for stability is

V (p′, s′) − V (p′, s) ≈ ∂V

∂s

∣∣∣
p

ds

dz
ξ =

α T

ρ cp

ds

dz
ξ > 0 (1.37)

where we have made use of the thermodynamic relations as before,
equation (1.28).

Since the constants in the above inequality are all positive, the condition for
stability reduces to

ds

dz
> 0 (1.38)

that is, the entropy increases with height.
The limiting case of stability, that the entropy is constant with height, cor-

responds to the adiabatic lapse rate, equation (1.30). Applying these results
to the atmosphere, we can see that it is unstable if the temperature falls less

5We may imagine that the change takes place sufficiently slowly to be reversible with
viscosity and thermal conduction negligible.
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rapidly than the adiabatic lapse rate going to higher altitudes, i.e. if the envi-
ronmental lapse rate is greater than the adiabatic one

dT

dz
>

dT

dz

∣∣∣
lapse

= −α T

cp
g (1.39)

In practice convection tends to reduce temperature gradients to the adiabatic
lapse rate where the atmosphere is marginally stable. The adiabatic lapse rate
may therefore be used to give an approximation to the variation of temperature
and pressure with altitude.

The relationship of the adiabatic and the environmental lapse rates plays an
important role in determining the generation of upward thermals. If a parcel
of air is unsaturated and rises, being unstable it ascends, cooling at the dry
lapse rate, until the dew point is reached and water vapour starts to condense.
This is approximately the level of the cloud base. At this point the lapse rate is
decreased to the moist saturated vapour rate, causing the parcel to ascend more
rapidly and leading to the formation of rain. In an extreme case the rapidly
rising stream of air leads to the formation of a characteristic thunder cloud.

1.6 Streamlines

A streamline is a line whose tangent is everywhere parallel to the flow. In
Cartesian co-ordinates its equation is

dx

vx
=

dy

vy
=

dz

vz
(1.40)

In steady flow, but not in non-steady flow, the streamlines are the particle
paths (streaklines). The surface of a body immersed in a flow must be a stream-
line, since there is no flow through it. In streamlined flow around a body, the
neighbouring streamlines closely parallel the surface from entry to exit. This
is in contrast to the flow around a non-streamlined body, where the streamline
touching the surface may separate and leave the neighbourhood of the body.

A closely related concept is the tube of flow, namely a region of flow whose
walls are streamlines, and thus parallel to the flow. Consequently no flow can
take place through the wall of the tube. The total flux of any quantity through
any cross-section of a tube of flow is therefore constant.

1.7 Bernoulli’s Equation: Weak Form

Bernoulli’s equation is a direct consequence of the equations for a dissipation-
less fluid. It has a simple form, which makes it suitable for many applications,
particularly for order of magnitude estimates.
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In steady, dissipationless flow, the flow at any point on a streamline satisfies
the following simple relation:

h +
1
2
v2 + U = const (1.41)

If the fluid is incompressible, ρ = const, then the enthalpy h is replaced by
p/ρ. Under the above conditions this equation is known as the weak form
of Bernoulli’s equation. Other forms will be seen to occur under different
conditions.

The proof follows from Euler’s equation (1.12) as follows. In steady flow
∂/∂t ≡ 0, and thus

(v · ∇)v = −1
ρ
∇p −∇U

∇(1/2v2) − v ∧ (∇∧ v) = −∇(h + U) (1.42)

since the fluid is dissipationless, the entropy change ds = 0 and dh = (1/ρ) dp.
Hence integrating along the streamline and noting that v ∧ (∇∧ v) is perpen-
dicular to v, we obtain equation (1.41).

Alternatively, if we consider a narrow tube of flow surrounding a streamline
of cross-section δS, normal to the flow, then in steady flow the total mass flow
ρ v δS = const, the total energy flow

ρ v (h + 1/2v2 + U) δS = const

and we again obtain Bernoulli’s equation (1.41).
The two proofs are based on momentum and energy flow respectively–a

consequence of the fact that in ideal flow the equation of state has only
one independent thermodynamic variable, because, due to the dissipationless
nature of the flow, the entropy of a fluid particles is constant.

Bernoulli’s equation enables the definition of a useful quantity expressing
the total energy available in the flow, which is the value of the constant along
the streamline in equation (1.41):

1
2
v2
max = h +

1
2
v2 + U (1.43)

vmax being the limit speed, i.e. the velocity that the fluid would acquire if both
the pressure and gravitational potential were zero.

1.8 Polytropic Gases

A useful representation of many real gases is the polytropic gas, whose
equation of state is the ideal gas law, and whose adiabatic equation of state
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is the familiar expression
p

ργ
= const (1.44)

where γ is the ratio of specific heats, or adiabatic index. A large number of
gases behave as polytropic gases with an appropriate value of the adiabatic
index γ. For these materials the specific internal energy and specific enthalpy
are given by

ε =
1

(γ − 1)
p

ρ
and h =

γ

(γ − 1)
p

ρ
(1.45)

For future reference the specific entropy (per unit mass) is given by

s = cV ln
(

p

ργ

)
+ s0 (1.46)

where cV is the specific heat per unit mass.
The limit speed in polytropic gases can be expressed in terms of the critical

velocity, when the flow velocity equals the local sound speed c =
√

∂p/∂ρ|s =√
γp/ρ. From Bernoulli’s equation (1.41) we obtain

v∗ = c∗ =

√
(γ − 1)
(γ + 1)

vmax (1.47)

Another set of quantities, which are often useful in calculations with poly-
tropic gases, is the stagnation sound speed, pressure and density. These are
specified by the condition that the flow velocity is zero. They are generally
defined by the stagnation sound speed

c0 =

√
(γ − 1)

2
vmax (1.48)

with p0 and ρ0 obtained through the equation of state in the form

c

c0
=

(
p

p0

)(γ−1)/2γ

=
(

ρ

ρ0

)(γ−1)/2

=
{

1 + (γ − 1)M0
2/2

1 + (γ − 1)M2/2

}1/2

(1.49)

where M = v/c is the Mach number.
The other class of material, which is important in dissipationless flows, is

incompressible, where the density of a fluid particle is constant, ρ = const.
Liquids are the obvious examples of this condition. However, as we shall see,
gases also behave in this way when their flow speed is much less than the sound
speed (subsonic flows). For incompressible flow the integral

1
ρ

�
dp =

� dp

ρ
=

p

ρ

is used in applications such as Bernoulli’s equation. We can therefore replace
h ⇒ p/ρ in these cases.
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1.8.1 Applications of Bernoulli’s Theorem

1.8.1.1 Vena Contracta

We consider the flow from a reservoir containing an incompressible fluid
through a small hole in one of the walls of area S2. The pressure in the fluid
in the reservoir far from the hole is approximately constant p1 and the flow
velocity v1 ≈ 0. Bernoulli’s equation for the flow speed through the hole v2

where the pressure is atmospheric, p2, is

1
2�

��
0

v2
1 +

p1

ρ
=

1
2
v2
2 +

p2

ρ
(1.50)

However, in steady flow, the momentum flux through the hole must balance
that in the reservoir. Thus the momentum balance in direction i is given by
�

S
(ρ vi vj + p δij) dSj =

�
(S−S2)

(ρ vi vj + p) dSj +
�

S2

(ρ vi v2x + p2) dSx = 0

where S is the surface area of the reservoir including the hole and x is the
direction of the normal to the area of the hole. We assume that the pressure
over the wall (excluding the hole) is approximately constant and equal to p1.
By symmetry we may assume that the components in the y and z directions
cancel. Similarly the integral over the inner surface contains area elements
which cancel except over the projection of the hole on to the internal surface.
Therefore �

S2

(ρ���
0

v1
2 + p) dS =

(
ρv2x

2 + p2

)
S2 (1.51)

where v2x
2 is the mean square velocity at the hole in the direction normal to its

area x. Comparing equation (1.50) with equation (1.51) we see that v2x
2 �≈ v2

2.
This is due to flow near the wall, where the velocity is non-parallel through the
hole. As a result, after leaving the hole the flow continues to converge, reaching
a minimum cross-section when all the streamlines are approximately parallel,
and the velocity is approximately v2

2 ≈ v2x
2. The minimum area–vena con-

tracta–is thus approximately Smin ≈ 1
2S2. In fact experiment gives a value of

Smin ≈ 0.624 S2. The difference is accounted for mainly by pressure variations
in the fluid near the hole.

If a tube is inserted into the fluid–Borda’s mouthpiece–so that the fluid
enters the exiting flow well away from the wall, the pressure and velocity in
the neighbourhood of the entry correspond to the uniform symmetric value, as
assumed above. As a result the area reduction is found to be very nearly the
predicted value 1

2 .



20 Introductory Fluid Mechanics

1.8.1.2 Flow of gas along a pipe of varying cross-section

Gas obeying the polytropic equation of state moves steadily along a pipe of
decreasing cross-section from a reservoir at pressure p0 and density ρ0 to an
exit at pressure p1. We assume that the speed of flow across a cross–section
is constant–the hydraulic approximation. Since the flow is adiabatic we may
apply Bernoulli’s equation to the flow

h +
1
2

v2 =
γ

(γ − 1)
p

ρ
+

1
2

v2 =
γ

(γ − 1)
p0

ρ0

where the initial speed v0 is assumed to be very small, i.e. stagnation.
Introducing the sound speed and noting that the adiabatic equation of state

(1.44) is appropriate,

c =
√(

γ p

ρ

)
= c0

(
ρ

ρ0

)(γ−1)/2

Bernoulli’s equation can be rewritten as

1
2
v2 =

1
(γ − 1)

(c2
0 − c2)

The mass flux is therefore

j = ρv =
√ [

2
(γ − 1)

]
ρ0

(
c2

c2
0

)1/(γ−1) √ (
c2
0 − c2

)
Differentiating j with respect to c2 we find a turning point at

c2
0 − c2 = 1/2(γ − 1) c2. Since j → 0 as v → 0 and c → c0, this turning point

must be a maximum. At the maximum, the flow speed equals the sound speed
(sonic flow):

v = v∗ = c = c∗ =
√

2
γ + 1

c0 (1.52)

the critical speed.
Since the initial velocity v0 ≈ 0 the critical pressure and density at the sonic

point are

p∗ =
[

2
(γ + 1)

]γ/(γ−1)

p0 and ρ∗ =
[

2
(γ + 1)

]1/(γ+1)

ρ0 (1.53)

Figure 1.1 shows the characteristic parameters of the flow plotted as fractions
of those at the critical point, where the flow velocity equals the sound speed,
together with the local Mach number M = v/c.
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Figure 1.1: Characteristic parameters of the flow through a convergent/divergent nozzle.

Provided the external pressure pext exceeds the critical pressure p∗, the flow
in the pipe is determined by the conditions at the exit, p1 = pext.

The discharge (total mass flow) jS must remain constant, whilst the flux j
cannot increase beyond the critical value, even if the cross-section of the pipe
continues to decrease. Therefore the flux must adjust itself to be a maximum at
the minimum cross-section, i.e. at the exit p1 = p∗ when the external pressure
pext is less than p∗. The discharge is then

ρ∗v∗Smin

If the external pressure pext is less than the critical p∗, the flow is said to be
choked, and there must be an additional expansion external to the pipe. In
a uniformly converging pipe, the flow cannot become supersonic even if the
external pressure is very low. To achieve a supersonic flow it is necessary to
allow the flow to expand after the sonic point so that the increasing speed can
be accommodated by a decreasing flux. This is accomplished by terminating
the converging section by a throat of minimum cross-section followed by a
diverging section. Such a pipe is a de Laval nozzle, and may be used to produce
a supersonic jet of gas. The discharge in such a nozzle is determined by the
critical flux at the throat.

The nozzle with fixed walls is an example of a tube of flow, since in each
case the boundary condition of no flow through the wall must be upheld. The
flow parameters along such a tube must therefore be identical to those derived



22 Introductory Fluid Mechanics

above. In particular, in the neighbourhood of the sonic point, where M = 1, the
flux is nearly constant even though the flow speed changes. The cross-section
of the tube of flow is therefore nearly constant in this locality. Hence, within
the ideal (dissipationless) flow approximation, the flow can neither expand nor
contract transversely in the transonic region where M ≈ 1 –behaviour which
Busemann called a streampipe. This result turns out to be important in the
design of aircraft at near sonic speeds (see Section 12.5.1).

Case study 1.I Munroe Effect–Shaped Charge Explosive

The collapse of lined cavities has long been known to produce a high-velocity jet
and a slower moving slug from the liner material. The jet can penetrate steel plate.
Originally used in mining it was developed as an anti-tank weapon during the Second
World War. The basic theory of the effect is relatively simple (Birkhoff et al., 1948).
A wedge-shaped block of explosive, lined with a thin metal layer (liner), is detonated
from the apex end. The detonation wave moving through the explosive causes an
inward implosion. The metal layer is fluidised by the intense pressure generated by
the detonation, and driven towards the axis with velocity v0. As a result the apex
moves along the axis as the detonation proceeds through the block, Figure 1.2(a). To
an observer moving with the apex it appears that material flows steadily down the
arms and leaves as a jet (forward) and slug (backward) along the axis, Figure 1.2(b).
Provided the detonation moves with constant velocity through the block u0, the flow
in this frame of reference is steady. Therefore we may apply Bernoulli’s theorem to
the collision of the two streams from each arm, and thus to the incoming and outgoing
flows. Following the impulsive pressure pulse immediately after the detonation, the
pressure falls rapidly and the fluid moves freely along the arms, so that the pressure
on both the fluid in the arms and that moving along the axis is approximately constant
on impact at the apex. Hence it follows from Bernoulli’s theorem that the flow speeds in
both axial flows, backwards (slug) and forward (jet), are equal to that of the incoming
flows v′ in the apex frame. The velocities of the slug and jet in the laboratory frame
are then obtained by transforming back from the apex frame.

CL
α
αDetonation

Explosive Liner

β
β

(a)

Vs Vj

V′

V′

(b)

Figure 1.2: The geometrical arrangement of the flow system for the shaped charge
detonation with a wedge: (a) shows the arrangement in the laboratory frame, and (b) that
seen by an observer moving with the apex.
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Figure 1.3: The geometrical arrangement of the flow system for the shaped charge
detonation with a wedge in the laboratory frame. OCD is the original position of the liner.
OAB is the axis, i.e. the path of the apex. AC = v′(t′ − t) is the position of the liner at
time t, apex position A. BC = v0(t

′ − t) is the path of the liner particles from t to t′, when
they reach the apex. Thus the apex moves from A to B in time t to t′ and AB = u(t′ − t).
In time t to t′ the detonation has moved from C to D and CD = u0(t

′ − t)/ cos(α), and the
liner lies along BD. The relevant angles are ∠OCA = ∠BDC = (β − α),
∠ACB = ∠BCD = ∠CBD = [π − (β − α)]/2 and ∠ABC = [π − (β + α)]/2, and the
dynamics described by �ABC and �ABD. (a) Detonation at C at time t. (b) Detonation
at D at time t′.

The analysis of the problem in the laboratory frame involves the geometry of the
flow. Let α be the half angle of the wedge, and β the angle of the flow the fluidised
liner makes with the centre line, Figure 1.3. We assume that in the laboratory frame,
the fluidised liner velocity bisects the initial and accelerated planes of the layer. In
Figure 1.3(a) we see the situation where the detonation has reached the point C at
time t. The line AC represents the line of the fluidised layer at this time, A being at
the apex at time t. AC also represents the line of the flow in the apex frame. The fluid
itself moves along the line BC bisecting the angle ∠ACD in the laboratory frame,
reaching the axis at time t′. Thus AB is the movement of the apex in time t′ − t,
namely u (t′ − t), and BC the flow of the fluid over the same time v0 (t′ − t). Since
∠ACB = [π − (β − α)]/2 and ∠BAC = β, the velocity of the apex

u = v0

cos[ 12 (β − α)]
sinβ

Furthermore, since the velocity of the fluid along the arms in the apex frame v′ =
v0 − u, we see that it is given by the third side of the 
ABC, namely

v′ = v0

cos[ 12 (β + α)]
sin β

since ∠ABC = [π − (β + α)]/2. Alternatively AC is the line of flow in the apex frame
for fluid starting at t and arriving at the apex at t′, thus AC = v′ (t′ − t) and we
obtain the same result for v′.

It now remains to calculate the value of β from the speed of the detonation through
the block, u0. Referring to Figure 1.3(b), the detonation reaches point D at time t′.
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BCD is isosceles since ∠BCD = ∠CBD = [π − (β − α)]/2, so that

sin
[
1
2
(β − α)

]
=

v0 cos α

2u0
and β = α + 2 arcsin

(
v0 cos α

2u0

)

In the apex frame, the component of momentum along the axis after collision must
balance that before

msvs − mjvj = m0 v′ cos β (1.54)

where ms, mj and m0 = ms + mj are the masses of the slug, jet and liner respectively,
and the angle of the incoming flow to the axis is β. The laboratory velocities of the
slug and the jet respectively are given by the transformation of the velocities ∓v′ from
the apex frame back into the laboratory frame:

vs = u − v′ and vj = u + v′ (1.55)

Thus we obtain the velocity of the slug and the jet in the laboratory frame in terms
of the experimental parameters (u0, v0, α)

vs = v0

{
cos[ 12 (β − α)]

sin β
−

cos[ 12 (β + α)]
sin β

}
= 2

sin(β/2) sin(α/2)
sin β

v0

vj = v0

{
cos[ 12 (β − α)]

sin β
+

cos[ 12 (β + α)]
sin β

}
= 2

cos(β/2) cos(α/2)
sin β

v0

(1.56)

respectively, and the masses are

ms = m0
(1 + cos β)

2
and mj = m0

(1 − cos β)
2

(1.57)


