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Combinatorics

Combinatorics deals with the cardinality of classes of objects. The first example
that jumps to our minds is the computation of how many triplets can be drawn
from 90 different balls. In this chapter and the next we are going to compute the
cardinality of several classes of objects.

1.1 Binomial coefficients

1.1.1 Pascal triangle

Binomial coeffcients are defined as

(
n

k

)
:=

⎧⎪⎪⎨⎪⎪⎩
1 if k = 0,

0 k > n,
n(n − 1) . . . (n − k + 1)

k!
if n ≥ 1 and 1 ≤ k ≤ n.

Binomial coefficients are usually grouped in an infinite matrix

C := (Cn
k), n, k ≥ 0, Cn

k :=
(

n

k

)
called a Pascal triangle given the triangular arrangement of the nonzero entries,
see Figure 1.1. Here and throughout the book we denote the entries of a matrix
(finite or infinite) A = (ai

j ) where the superscript i and the subscript j mean the
ith row and the j th column, respectively. Notice that the entries of each row of
C are zero if the column index is large enough, Ci

j = 0 ∀i, j with j > i ≥ 0. We
also recall the Newton binomial formula ,

(1 + z)n =
(

n

0

)
+

(
n

1

)
z + · · · +

(
n

n

)
zn =

n∑
k=0

(
n

k

)
zk =

∞∑
k=0

(
n

k

)
zk.
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1 0 0 0 0 0 0 0 0 0 . . .

1 1 0 0 0 0 0 0 0 0 . . .

1 2 1 0 0 0 0 0 0 0 . . .

1 3 3 1 0 0 0 0 0 0 . . .

1 4 6 4 1 0 0 0 0 0 . . .

1 5 10 10 5 1 0 0 0 0 . . .

1 6 15 20 15 6 1 0 0 0 . . .

1 7 21 35 35 21 7 1 0 0 . . .

1 8 28 56 70 56 28 8 1 0 . . .

1 9 36 84 126 126 84 36 9 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.1 Pascal matrix of binomial coefficients (Cn
k), k, n ≥ 0.

Thus formula can be proven with an induction argument on n or by means of
Taylor formula.

1.1.2 Some properties of binomial coefficients

Many formulas are known on binomial coefficients. In the following proposition
we collect some of the simplest and most useful ones.

Proposition 1.1 The following hold.

(i)

(
n

k

)
= n!

k!(n − k)!
∀k, n, 0 ≤ k ≤ n.

(ii)

(
n

k

)
= n

k

(
n − 1

k − 1

)
∀k, n, 1 ≤ k ≤ n.

(iii) Stifel formula

(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
∀k, n, 1 ≤ k ≤ n.

(iv)

(
n

j

)(
j

k

)
=

(
n

k

)(
n − k

j − k

)
∀k, j, n, 0 ≤ k ≤ j ≤ n.

(v)

(
n

k

)
=

(
n

n − k

)
∀k, 0 ≤ k ≤ n.

(vi) the map k �→
(

n

k

)
achieves its maximum at k = ⌊

n
2

⌋
.

(vii)
n∑

k=0

(
n

k

)
= 2n ∀n ≥ 0.

(viii)
n∑

k=0

(−1)k
(

n

k

)
= δ0,n =

{
1 if n = 0,

0 if n �= 0.

(ix)

(
n

k

)
≤ 2n ∀k, n, 0 ≤ k ≤ n.
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Proof. Formulas (i), (ii), (iii), (iv) and (v) directly follow from the definition.
(vi) is a direct consequence of (v). (vii) and (viii) follow from the Newton
binomial formula

∑n
k=0

(
n
k

)
zk = (1 + z)n choosing z = 1 and z = −1. Finally,

(ix) is a direct consequence of (vii).

Estimate (ix) in Proposition 1.1 can be made more precise. For instance, from
the Stirling asymptotical estimate of the factorial,

n!

nne−n
√

2πn
→ 1 as n → ∞

one gets
(2n)! = 4nn2ne−2n

√
4πn (1 + o(1)),

(n!)2 = n2ne−2n2πn (1 + o(1)),

so that (
2n

n

)
= 4n

√
πn

1 + o(1)

1 + o(1)

or, equivalently, (2n
n

)
4n

√
πn

→ 1 as n → ∞. (1.1)

Estimate (1.1) is ‘accurate’ also for small values of n. For instance, for n = 4,
one has

(8
4

) = 70 and 44 1√
π4


 72.2.

1.1.3 Generalized binomial coefficients and binomial series

For α ∈ R we define the sequence
(
α
n

)
of generalized binomial coefficients as

(
α

n

)
:=

⎧⎪⎨⎪⎩
1 if n = 0,

α(α − 1)(α − 2) · · · (α − n + 1)

n!
if n ≥ 1.

Notice that
(
α
k

) �= 0 ∀k if α /∈ N and
(
α
k

) = 0 ∀k ≥ α + 1 if α ∈ N. The power
series

∞∑
n=0

(
α

n

)
zn (1.2)

is called the binomial series .

Proposition 1.2 (Binomial series) The binomial series converges if |z| < 1 and

∞∑
n=0

(
α

n

)
zn = (1 + z)α if |z| < 1.
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Proof. Since ∣∣∣( α
n+1

)∣∣∣∣∣∣(α
n

)∣∣∣ = |α − n|
|n + 1| → 1 as n → ∞,

it is well known that n
√|an| → 1 as well; thus, the radius of the power series in

(1.2) is 1.
Differentiating n times the map z �→ (1 + z)α , one gets Dn(1 + z)α = α(α −

1) · · · (α − n + 1)(1 + z)α−n, so that the series on the left-hand side of (1.2) is
the McLaurin expansion of (1 + z)α .

Another proof is the following. Let S(z) := ∑∞
n=0

(
α
n

)
zn, |z| < 1, be the sum

of the binomial series. Differentiating one gets

(1 + z)S ′(z) = αS(z), |z| < 1,

hence ( S(z)

(1 + z)α

)′ = (1 + z)S ′(z) − αS(z)

(1 + z)α+1
= 0.

Thus there exists c ∈ R such that S(z) = c (1 + z)α if |z| < 1. Finally, c = 1
since S(0) = 1.

Proposition 1.3 Let α ∈ R. The following hold.

(i)

(
α

k

)
= α

k

(
α − 1

k − 1

)
∀k ≥ 1.

(ii)

(
α

k

)
=

(
α − 1

k

)
+

(
α − 1

k − 1

)
∀k ≥ 1.

(iii)

(−α

k

)
= (−1)k

(
α + k − 1

k

)
∀k ≥ 0.

Proof. The proofs of (i) and (ii) are left to the reader. Proving (iii) is a matter
of computation:(−α

k

)
= −α(−α − 1) · · · (−α − k + 1)

k!
= (−1)k

α(α + 1) · · · (α + k − 1)

k!

= (−1)k
(

α + k − 1

k

)
.

A few negative binomial coefficients are quoted in Figure 1.2.

1.1.4 Inversion formulas

For any N , the matrix CN := (Cn
k), n, k = 0, . . . , N , is lower triangular and

all its diagonal entries are equal to 1. Hence 1 is the only eigenvalue of CN
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1 0 0 0 0 0 0 0 0 0 . . .

1 −1 1 −1 1 −1 1 −1 1 −1 . . .

1 −2 3 −4 5 −6 7 −8 9 −10 . . .

1 −3 6 −10 15 −21 28 −36 45 −55 . . .

1 −4 10 −20 35 −56 84 −120 165 −220 . . .

1 −5 15 −35 70 −126 210 −330 495 −715 . . .

1 −6 21 −56 126 −252 462 −792 1 287 −2 002 . . .

1 −7 28 −84 210 −462 924 −1 716 3 003 −5 005 . . .

1 −8 36 −120 330 −792 1 716 −3 432 6 435 −11 440 . . .

1 −9 45 −165 495 −1 287 3 003 −6 435 12 870 −24 310 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.2 The coefficients
(−n

k

)
.

with algebraic multiplicity N . In particular CN is invertible, its inverse is lower
triangular, all its entries are integers and its diagonal entries are equal to 1.

Theorem 1.4 For any n, k = 0, . . . , N , (C−1
N )nk = (−1)n+k

(
n
k

)
.

Proof. Let B := (Bk
n), Bk

n := (−1)n+k
(
n
k

)
so that both B and CNB are lower

triangular, i.e. (CNB)nk = 0 if 0 ≤ n < k. Moreover, (iv) and (viii) of Proposition
1.1 yield for any n ≥ k

(CNB)nk =
N∑

j=1

(
n

j

)
(−1)j+k

(
j

k

)
=

n∑
j=k

(−1)j+k

(
n

j

)(
j

k

)

=
(

n

k

) n∑
j=k

(−1)j+k

(
n − k

j − k

)
=

(
n

k

) n−k∑
i=0

(−1)i
(

n − k

i

)

=
(

n

k

)
δ0,n−k = δn,k.

A few entries of the inverse of the matrix of binomial coefficients are shown
in Figure 1.3. As a consequence of Theorem 1.4 the following inversion formulas
hold.

Corollary 1.5 Two sequences
{
xn

}
,
{
yn

}
satisfy

yn =
n∑

k=0

(
n

k

)
xk, ∀n ≥ 0

if and only if

xn =
n∑

k=0

(−1)n+k

(
n

k

)
yk, ∀n ≥ 0.



6 A FIRST COURSE IN PROBABILITY AND MARKOV CHAINS⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 . . .

−1 1 0 0 0 0 0 0 0 0 . . .

1 −2 1 0 0 0 0 0 0 0 . . .

−1 3 −3 1 0 0 0 0 0 0 . . .

1 −4 6 −4 1 0 0 0 0 0 . . .

−1 5 −10 10 −5 1 0 0 0 0 . . .

1 −6 15 −20 15 −6 1 0 0 0 . . .

−1 7 −21 35 −35 21 −7 1 0 0 . . .

1 −8 28 −56 70 −56 28 −8 1 0 . . .

−1 9 −36 84 −126 126 −84 36 −9 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.3 The inverse of the matrix of binomial coefficients C−1
N .

Similarly,

Corollary 1.6 Two N-tuples or real numbers
{
xn

}
and

{
yn

}
satisfy

yn =
N∑

k=n

(
k

n

)
xk, ∀n, 0 ≤ n ≤ N,

if and only if

xn =
N∑

k=n

(−1)n+k

(
k

n

)
yk, ∀n, 0 ≤ n ≤ N.

1.1.5 Exercises

Exercise 1.7 Prove Newton binomial formula:

(i) directly, with an induction argument on n;

(ii) applying Taylor expansion formula;

(iii) starting from the formula D((1 + z)n) = n(1 + z)n−1.

Exercise 1.8 Differentiating the power series, see Appendix A, prove the formulas
in Figure 1.4.

Solution. Differentiating the identity
∑∞

k=0 zk = 1
1−z

, |z| < 1, we get for
|z|<1

∞∑
k=0

kzk = z

∞∑
k=0

D(zk) = zD
( ∞∑

k=0

zk
)

= zD
( 1

1 − z

)
= z

(1 − z)2
;
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Let z ∈ C, |z| < 1, and n ∈ Z. We have the followings.

(i)
∞∑

k=0

kzk = z

(1 − z)2
,

(ii)
∞∑

k=0

k2zk−1 = D
( z

(1 − z)2

)
= 1 + z

(1 − z)3
,

(iii)
∞∑

k=0

(
n

k

)
zk = (1 + z)n,

(iv)
∞∑

k=0

k

(
n

k

)
zk = nz(1 + z)n−1,

(v)
∞∑

k=0

k2
(

n

k

)
zk = nz(1 + nz)(1 + z)n−2.

Figure 1.4 The sum of a few series related to the geometric series.

∞∑
k=0

k2zk−1 =
∞∑

k=0

D(kzk)

= D
( ∞∑

k=0

kzk
)

= D
( z

(1 − z)2

)
= 1 + z

(1 − z)3
.

Moreover, for any non-negative integer n, differentiating the identities

∞∑
k=0

(
n

k

)
zk = (1 + z)n and

∞∑
k=0

(−n

k

)
zk = (1 + z)−n

for any |z| < 1, we get

∞∑
k=0

k

(
n

k

)
zk = z

n∑
k=0

D
((

n

k

)
zk

)

= zD
( n∑

k=0

(
n

k

)
zk

)
= zD((1 + z)n) = nz(1 + z)n−1;

∞∑
k=0

k2
(

n

k

)
zk = z

n∑
k=0

D
(
k

(
n

k

)
zk

)
= zD

( n∑
k=0

(
n

k

)
zk

)
= zD(nz(1 + z)n−1) = nz(1 + nz)(1 + z)n−2.
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1.2 Sets, permutations and functions

1.2.1 Sets

We recall that a finite set A is an unordered collection of pairwise different
objects. For example, the collection A hose objects are 1,2,3 is a finite set which
we denote as A = {1, 2, 3}; the collection 1,2,2,3 is not a finite set, and {1, 2, 3}
and {2, 1, 3} are the same set.

If A is a finite set with n objects (or elements), we may enumerate the
elements of A so that A = {

x1, . . . , xn

}
. Therefore, for counting purposes, we

can assume without loss of generality that A = {1, . . . , n}. The number n is the
cardinality of A, and we write |A| = n.

Proposition 1.9 Let A be a finite set with n elements, n ≥ 1. There are Cn
k = (

n
k

)
subsets of A with k elements.

Proof. Different proofs can be done. We propose one of them. Let dn,k be
the number of subsets of A with k elements. Obviously, dn,1 = n and dn,n = 1.
For 2 ≤ k ≤ n − 1, assume we have n football players and we want to select a
team of k of them, including the captain of the team. We may proceed in the
following way: first we choose the team of k-players: dn,k different teams can
be selected. Then, among the team, we select the captain: k different choices are
possible: so there are kdn,k ways to select the team and the captain. However,
we can proceed in another way: first we choose the captain among the n players:
there are n different possible choices. Then we choose k − 1 players among the
remaining n − 1 players: there are dn−1,k−1 possible choices. Thus

dn,k = n

k
dn−1,k−1

which by induction, gives

dn,k = n

k

n − 1

k − 1
. . .

n − k + 2

2
dn−k+1,1

= n

k

n − 1

k − 1
. . .

n − k + 2

2

n − k + 1

1
=

(
n

k

)
.

1.2.2 Permutations

Let N be a finite set and let n be its cardinality. Without loss of generality,
we can assume N = {1, 2, . . . , n}. A permutation of N is an injective (and thus
one-to-one) mapping π : N → N . Since composing bijective maps yields another
bijective map, the family of permutations of a set N is a group with respect to
the composition of maps; the unit element is the identity map; this group is called
the group of permutations of N . It is denoted as Sn or Pn. Notice that Pn is a
not a commutative group if n ≥ 3.

Each permutation is characterized by its image-word or image-list , i.e. by the
n-tuple (π(1), . . . , π(n)). For instance, the permutation π ∈ P6 defined by
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π(1) = 2, π(2) = 3, π(3) = 1, π(4) = 4, π(5) = 6 and π(6) = 5 is denoted as(
1 2 3 4 5 6
2 3 1 4 6 5

)
.

or, in brief, with its image-word 231465.
The set of permutations of N = {1 . . . , n} has n! elements,

|Pn| = n!

In fact, the image π(1) of 1 can be chosen among n possible values, then the
image π(2) of 2 can be chosen among n − 1 possible values and so on. Hence

|Pn| = n(n − 1)(n − 2) · · · 3 · 2 · · · 1 = n!

1.2.2.1 Derangements

Let π ∈ Pn be a permutation of N = {1, . . . , n}. A point x ∈ N is a fixed point
of π if π(x) = x.

We now compute the cardinality dn of the set Dn of permutations without
fixed points , also called derangements .

Dn :=
{
π ∈ Pn

∣∣∣ π(i) �= i ∀i ∈ N
}
.

Proposition 1.10 The cardinality of Dn is

dn = n!
n∑

j=0

(−1)j
1

j !
∀n ≥ 1.

Proof. If a permutation of N has j fixed points, 0 ≤ j ≤ n, then it is
a derangement of the other n − j points of N . Thus, a permutation with j

fixed points splits as a couple: the set of its fixed points and a derangement
of n − j points. There are

(
n
j

)
different choices for the j fixed points and

dn−j derangements of the remaining n − j points, so that, the possible
permutations of N with exactly j fixed points are

(
n
j

)
dn−j (where d0 = 1). Thus

|Pn| = ∑n
j=0

(
n
j

)
dn−j ∀n ≥ 1, i.e.

n! =
n∑

j=0

(
n

j

)
dn−j ∀n ≥ 0. (1.3)

The inversion formula of binomial coefficients, see Corollary 1.5, reads

dn =
n∑

j=0

(−1)(n+j)

(
n

j

)
j ! = n!

n∑
j=0

(−1)j

j !
∀n ≥ 0.
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0, 0, 1, 2, 9, 44, 265, 1 854, 14 833, 133 496, 1 334 961, 14 684 570, . . .

Figure 1.5 From the left, the numbers d0, d1, d2, d3, . . . of derangements of
0, 1, 2, 3, . . . points.

Corollary 1.11 The number dn of derangements of n points is the nearest integer
to n!/e.

Proof. The elementary estimate between the exponential and its McLaurin
expansion gives ∣∣∣ex −

n∑
j=0

xj

j !

∣∣∣ ≤ |x|n+1

(n + 1)!
, ∀x ≤ 0;

hence for x = −1 we get∣∣∣1

e
−

n∑
j=0

(−1)j

j !

∣∣∣ ≤ 1

(n + 1)!
,

so that, from Proposition 1.10 one gets∣∣∣dn − n!

e

∣∣∣ = n!
∣∣∣ n∑

j=0

(−1)j

j !
− 1

e

∣∣∣ ≤ n!

(n + 1)!
= 1

n + 1
≤ 1

3

for each n ≥ 2.

Figure 1.5 contains the first elements of the sequence {dn}.

1.2.3 Multisets

Another interesting structure is an unordered list of elements taken from a given
set A. This structure is called a multiset on A. More formally, a multiset on a
set A is a couple (A, a) where A is a given set and a : A → N ∪ {+∞} is the
multiplicity function which counts ‘how many times’ an element x ∈ A appears
in the multiset. Clearly, each set is a multiset where each object has multiplicity
1. We denote as

{
a2, b2, c5

}
or a2b2c5 the multiset on A := {a, b, c} where a

and b have multiplicity 2 and c has multiplicity 5. The cardinality of a multiset
(A, a) is

∑
x∈A a(x) and is denoted by |(A, a)| or #(A, a). For instance, the

cardinality of a2b2c5 is 9.
If B is a subset of A, then B is also the multiset (A, a) on A where

a(x) =
{

1 if x ∈ B,

0 if x /∈ B.



COMBINATORICS 11

Given two multisets (B, b) and (A, a), we say that (B, b) is included in (A, a)

if B ⊂ A and b(x) ≤ a(x) ∀x ∈ B. In this case, (B, b) = (A, b̂) where

b̂(x) =
{

b(x) if x ∈ B,

0 if x /∈ B.

Proposition 1.12 Let A be a finite set, |A| = n. Let (A, a) be a multiset on A and
let k be a non-negative integer such that k ≤ a(x) ∀x ∈ A. The multisets included
in (A, a) with k elements are (

n + k − 1

k

)
.

Proof. Let A = {1, . . . , n}. A multiset S of cardinality k included in (A, a)

contains the element 1 x1 times, the element 2 x2 times, and so on, with x1 +
x2 + · · · + xn = k. Moreover, the n-tuple (x1, . . . , xn) characterizes S. We can
associate to a n-tuple (x1, . . . , xn) the binary sequence

00 . . . 0︸ ︷︷ ︸
x1

1 00 . . . 0︸ ︷︷ ︸
x2

1 . . . 1 00 . . . 0︸ ︷︷ ︸
xn−1

1 00 . . . 0︸ ︷︷ ︸
xn

(1.4)

where the symbol 1 denotes the fact that we are changing the element of A. This
is a binary word of length n + k − 1 with k zeroes.

The correspondence described above is a one-to-one correspondence between
the set of multisets of cardinality k included in (A, a) and the set of binary words
of length n + k − 1 with k zeroes. There are exactly(

n + k − 1

k

)
different words of this kind, so that the claim is proven.

1.2.4 Lists and functions

Given a set A, a list of k objects from the set A or a k-word with symbols in A

is an ordered k-tuple of objects. For instance, if A = {1, 2, 3}, then the 6-tuples
(1,2,3,3,2,1) and (3,2,1,3,2,1) are two different 6-words of objects in A. In these
lists, or words, repetitions are allowed and the order of the objects is taken into
account. Since each element of the list can be chosen independently of the others,
there are n possible choices for each object in the list. Hence, the following holds.

Proposition 1.13 The number of k-lists of objects from a set A of cardinality n is
nk .

A function f : X → A is defined by the value it assumes on each element of
X: if f : {1, . . . , k} → A, then f is defined by the k-list (f (1), f (2), . . . , f (k)),
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which we refer to as the image-list or image-word of f . Conversely, each k-list
(a1, a2, . . . , ak) with symbols from A defines the function f : {1, . . . , k} → A

given by f (i) := ai ∀i. If |A| is finite, |A| = n, we have a one-to-one correspon-
dence between the set Fk

n of maps f : {1, . . . , k} → A, and the set of the k-lists
with symbols in A. Therefore, we have the following.

Proposition 1.14 The number of functions in Fk
n is Fk

n := |Fk
n | = nk .

1.2.5 Injective functions

We use the symbol Ik
n to denote the set of injective functions f : {1, . . . , k} → A,

|A| = n, k ≤ n. Let I k
n = |Ik

n |. Obviously, I k
n = 0 if k > n. The image-list of an

injective function f ∈ Ik
n is a k-word of pairwise different symbols taken from A

To form any such image-list, one can choose the first entry among n elements, the
second entry can be chosen among n − 1 elements, . . ., the kth entry can be cho-
sen among the remaining n − k + 1 elements of A, so that we have the following.

Proposition 1.15 The cardinality I k
n of Ik

n is

I k
n = |Ik

n | = n(n − 1) · · · · · (n − k + 1) = k!

(
n

k

)
= n!

(n − k)!
.

Some of the I k
n ’s are in Figure 1.6.

1.2.6 Monotone increasing functions

Let Ck
n , k ≤ n, be the set of strictly monotone increasing functions

f : {1, . . . , k} → {1, . . . , n}. The image-list of any such function is an ordered
k-tuple of strictly increasing–hence pairwise disjoint–elements of {1, . . . , n}.
The k-tuple is thus identified by the subset of the elements of {1, . . . , n} appearing
in it, so that we have the following.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 . . .

0 1 2 3 4 5 6 7 8 9 . . .

0 0 2 6 12 20 30 42 56 72 . . .

0 0 0 6 24 60 120 210 336 504 . . .

0 0 0 0 24 120 360 840 1 680 3 024 . . .

0 0 0 0 0 120 720 2 520 6 720 15 120 . . .

0 0 0 0 0 0 720 5 040 20 160 60 480 . . .

0 0 0 0 0 0 0 5 040 40 320 181 440 . . .

0 0 0 0 0 0 0 0 40 320 362 880 . . .

0 0 0 0 0 0 0 0 0 362 880 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.6 The cardinality I k
n of the set of injective maps Ik

n for n, k ≥ 0.
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Proposition 1.16 The cardinality Ck
n of Ck

n is

Ck
n := |Ck

n| =
(

n

k

)
= Cn

k = (CT )kn.

1.2.7 Monotone nondecreasing functions

Let Dk
n be the class of monotone nondecreasing functions f : {1, . . . , k} →

{1, . . . , n}. The image-list of any such function is a nondecreasing ordered
k-tuple of elements of {1, . . . , n}, so that elements can be repeated. The
functions in Dk

n are as many as the multisets with cardinality k included in
a multiset (A, a), where A = {1, . . . , n} and a(x) ≥ k ∀x ∈ A. Thus, see
Proposition 1.12, we have the following.

Proposition 1.17 The cardinality Dk
n of Dk

n is

Dk
n := |Dk

n| = |Ck
n+k−1| =

(
n + k − 1

k

)
.

Another proof of Proposition 1.17. Consider the map φ : Dk
n → Fk

n+k−1 defined
by φ(f )(i) := f (i) + i − 1 ∀i ∈ {1, . . . , k}, ∀f ∈ Dk

n. Obviously, if f ∈ Dk
n,

then φ(f ) is strictly monotone increasing, φ(f ) ∈ Ck
n+k−1. Moreover, the corre-

spondence φ : Dk
n → Ck

n+k−1 is one-to-one, thus

Dk
n = |Dk

n| = |Ck
n+k−1| =

(
n + k − 1

k

)
.

Yet another proof of Proposition 1.17. We are now going to define a one-to-one
correspondence between a family of multisets and Dk

n. Let (A, a) be a multiset
on A = {1, . . . , n} with a(x) ≥ k ∀k. For any multiset (S, nS) of cardinality k

included in (A, a), let fS : A → {0, . . . , k} be the function defined by

fS(x) :=
∑
y≤x

nS(y),

i.e. for each x ∈ A, fS(x) is the sum of the multiplicities nS(y) of all elements
y ∈ A, y ≤ x. fS is obviously a nondecreasing function and fS(n) = k. More-
over, it is easy to show that the map

S �→ fS

is a one-to-one correspondence between the family of the multisets included
in (A, a) of cardinality k and the family of monotone nondecreasing func-
tions from {1, . . . , n} to {0, . . . , k} such that f (k) = 1. In turn, there is an
obvious one-to-one correspondence between this class of functions and the class



14 A FIRST COURSE IN PROBABILITY AND MARKOV CHAINS

of monotone nondecreasing functions from {1, . . . , n − 1} to {0, . . . , k}. Thus,
applying Proposition 1.17 we get

|Dn−1
k+1 | =

(
k + 1 + (n − 1) − 1

n − 1

)
=

(
n + k − 1

k

)
.

1.2.8 Surjective functions

The computation of the number of surjective functions is more delicate. Let Sk
n

denote the family of surjective functions from {1, . . . , k} onto {1, . . . , n} and let

Sk
n =

⎧⎪⎨⎪⎩
1 if n = k = 0,

0 if n = 0, k > 0

|Sk
n | if n ≥ 1.

Obviously, Sk
n = |Sk

n | = 0 if k < n. Moreover, if k = n ≥ 1, then a function
f : {1, . . . , n} → {1, . . . , n} is surjective if and only if f is injective, so that
Sn

n = |Sk
n | = In

n = n!
If k > n ≥ 1, then Sk

n �= ∅. Observe that any function is onto on its range.
Thus, for each j = 1, . . . , n, consider the set Aj of functions f : {1, . . . , k} →
{1, . . . , n} whose range has cardinality j . We must have

nk = |Fk
n | =

n∑
j=1

|Aj |.

There are exactly
(
n
j

)
subsets of {1, . . . , n} with cardinality j and there are Sk

j

different surjective functions onto each of these sets. Thus, |Aj | = (
n
j

)
Sk

j and

nk =
n∑

j=1

(
n

j

)
Sk

j ∀n ≥ 1.

Since we defined Sk
0 = 0, we get

nk =
n∑

j=0

(
n

j

)
Sk

j ∀n ≥ 0. (1.5)

Therefore, applying the inversion formula in Corollary 1.5 we conclude the fol-
lowing.

Proposition 1.18 The cardinality Sk
n of the set Sk

n of surjective functions from
{1, . . . , k} onto {1, . . . , n} is

Sk
n =

n∑
j=0

(−1)n+j

(
n

j

)
jk =

n∑
j=0

(−1)j
(

n

j

)
(n − j)k ∀n, k ≥ 1.



COMBINATORICS 15

We point out that the equality holds also if k ≤ n so that

1

n!

n∑
j=0

(−1)j
(

n

j

)
(n − j)k = 1

n!
Sk

n =
{

1 if k = n,

0 if k < n.

Another useful formula for Sk
n is an inductive one, obtained starting from

Sn
n = n! ∀n ≥ 0 and Sk

n = 0 for any k and n with k < n.

Proposition 1.19 We have⎧⎪⎨⎪⎩
Sk

n = n(Sk−1
n + Sk−1

n−1) if k ≥ 1, n ≥ 0,

Sn
n = n!,

Sk
0 = 0 if k ≥ 1.

(1.6)

Proof. Assume n ≥ 1 and k ≥ 1 and let f : {1, . . . , k} → {1, . . . , n} be a sur-
jective function. Let A ⊂ Sk

n be the class of functions such that the restriction
f : {1, . . . , k − 1} → {1, . . . , n} of f is surjective and let B := Sk

n \ A. The car-
dinality of A is nSk−1

n because there are Sk−1
n surjective maps from {1, . . . , k − 1}

onto {1, . . . , n} and there are n possible choices for f (k). Since the maps on B

have a range of (n − 1) elements, we infer that there are nSk−1
n−1 maps of this

kind. In fact, there are
(

n
n−1

) = n subsets E of {1, . . . , n} of cardinality n − 1
and there are Sk−1

n−1 surjective functions from {1, . . . , k − 1} onto E. Therefore,

Sk
n = |A| + |B| = nSk−1

n + nSk−1
n−1.

i.e. (1.6).

Some of the Sk
n’s are in Figure 1.7.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 . . .

0 1 0 0 0 0 0 0 0 . . .

0 1 2 0 0 0 0 0 0 . . .

0 1 6 6 0 0 0 0 0 . . .

0 1 14 36 24 0 0 0 0 . . .

0 1 30 150 240 120 0 0 0 . . .

0 1 62 540 1 560 1 800 720 0 0 . . .

0 1 126 1 806 8 400 16 800 15 120 5 040 0 . . .

0 1 254 5 796 40 824 126 000 191 520 141 120 40 320 . . .

0 1 510 18 150 186 480 834 120 1 905 120 2 328 480 1 451 520 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.7 The cardinality Sk
n of the set of surjective maps Sk

n for n, k ≥ 0.
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1.2.9 Exercises

Exercise 1.20 How many diagonals are there in a polygon having n edges?

1.3 Drawings

A drawing or selection of k objects from a population of n is the choice of k

elements among the n available ones. We want to compute how many of such
selections are possible. In order to make this computation, it is necessary to be
more precise, both on the composition of the population and on the rules of the
selection as, for instance, if the order of selection is relevant or not. We consider
a few cases:

• The population is made by pairwise different elements, as in a lottery: in
other words, the population is a set.

• The population is a multiset (A, a). In this case, we say that we are dealing
with a drawing from A with repetitions .

• The selected objects may be given an order. In this case we say that we
consider an ordered selection . Unordered selections are also called simple
selections .

Some drawing policies simply boil down to the previous cases:

• In the lottery game, numbers are drawn one after another, but the order of
drawings is not taken into account: it is a simple selection of objects from
a set.

• In ordered selections the k-elements are selected one after another and the
order is taken into account.

• A drawing with replacement, i.e. a drawing from a set where each selected
object is put back into the population before the next drawing is equivalent
to a drawing with repetitions, i.e. to drawing from a multiset where each
element has multiplicity larger than the total number of selected objects.

1.3.1 Ordered drawings

Ordered drawings of k objects from a multiset (A, a) are k-words with symbols
taken from A.

1.3.1.1 Ordered drawings from a set

Each ordered drawing of k objects from a set A is a k-list with symbols in A

that are pairwise different. Thus the number of possible ordered drawings of k

elements from A is the number of k-lists with pairwise different symbols in A.
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If |A| = n, there are n possible choices for the first symbol, n − 1 for the second
and so on, so that there are

n(n − 1) . . . (n − k + 1)

different k-words with pairwise different symbols.

1.3.1.2 Ordered drawings from a multiset

Let (A, a) be a multiset where |A| = n and let k ∈ N be less than or equal to
min {a(x) | x ∈ A}. Each ordered drawing of k elements from (A, a) is a k-list
with symbols in A, where the same symbol may appear more than once. We
have already proven that there are nk possible k-lists of this kind, so that the
following holds.

Proposition 1.21 The number of ordered drawings of k elements from a multiset
(A, a) where k ≤ min {a(x) | x ∈ A} is nk .

In particular, the number of ordered drawings with replacement of k elements
from A is nk .

1.3.2 Simple drawings

1.3.2.1 Drawings from a set

The population from which we make the selection is a set A. To draw k objects
from A is equivalent to selecting a subset of k elements of A: we do not distin-
guish selections that contain the same objects with a different ordering.

Proposition 1.22 The number of possible drawings of k elements from a set of
cardinality n is

(
n
k

)
.

1.3.2.2 Drawings from a multiset

Let (A, a) be a multiset, |A| = n, and let k ≤ min {a(x) | x ∈ A}. Each sequence
S drawn from (A, a) is a sequence of symbols in A where repetitions may occur
and the order of the symbols is not taken into accout, e.g.

FABADABDF = FBFDDAABA

i.e. S is a multiset of k elements included in (A, a) (cf. Proposition 1.17).

Proposition 1.23 The number of simple drawings of k elements from a multiset
(A, a), is

(
n+k−1

k

)
provided k ≤ min {a(x) | x ∈ A}.

1.3.3 Multiplicative property of drawings

The previous results on drawings can also be obtained from the following com-
binatorics properties of drawings.
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Theorem 1.24 For each non-negative integer k let ak and bk be the numbers of
drawings of k objects from the multisets (A, a) and (B, b) made according to
policies P1 and P2, respectively. If A and B are disjoint, then the number of draw-
ings of k elements from the population obtained by the union of (A, a) and (B, b)

made according to policies P1 and P2 for the drawings from (A, a)

and (B, b), respectively, is

ck =
k∑

j=0

ajbk−j .

Proof. A drawing of k objects from the union of the two populations contains,
say, j elements from (A, a) and k − j elements from (B, b), where j is an
integer, 0 ≤ j ≤ k. The j elements drawn from (A, a) can be chosen in aj

different ways, while the n − j elements drawn from (B, b) can be chosen in
bk−j different ways and the two choices are independent. Thus,

ck =
k∑

j=0

ajbk−j .

A similar result holds for ordered drawings

Theorem 1.25 For each non-negative integer k let ak and bk be the number of
ordered drawings from the multisets (A, a) and (B, b) made according to policies
P1 and P2, respectively. If A and B are disjoint, then the number of ordered
drawings from the population union of (A, a) and (B, b) made according to policy
P1 for the elements of (A, a) and according to policy P2 for elements of (B, b) are

ck =
k∑

j=0

(
k

j

)
ajbk−j .

Proof. A drawing of k elements from the union of the two populations con-
tains j elements from (A, a) and n − j elements from (B, b) for some integer
j ∈ {0, . . . , k}. The j elements from (A, a) can be chosen in aj different ways,
the k − j elements drawn from (B, b) can be chosen in bk−j different ways and
the two chosen groups are independent. Finally, there are

(
k
j

)
ways to order such

selections. Thus,

ck =
k∑

j=0

(
k

j

)
ajbk−j .

1.3.4 Exercises

Exercise 1.26 A committee of 7 people has to be chosen among 11 women and 8
men. In each of the following cases compute how many different committees can
be chosen:
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• No constraint is imposed.

• At least two women and at least one man must be present.

• There must be more women than men.

• At least two women and no more than three men must be present.

1.4 Grouping

Many classical counting problems amount to a collocation or grouping problem:
how many different arrangements of k objects in n boxes are there? Putting it
another way, how many different ways of grouping k objects into n groups are
there? Also in this case a definite answer cannot be given: we must be more
precise both on the population to be arranged, on the rules (or policy) of the
procedure, and on the way the groups are evaluated. For example, one must say
whether the objects to be arranged are pairwise different or not, whether the order
of the objects in each box must be taken into account or not, whether the boxes
are pairwise distinct or not, and if further constraints are imposed. Here we deal
with a few cases, all referring to collocation or grouping in pairwise different
boxes . We consider the formed groups as a list instead of as a set: for instance,
if we start with the objects {1, 2, 3} then the two arrangements in two boxes
({1}, {2, 3}) and ({2, 3}, {1}) are considered to be different.

1.4.1 Collocations of pairwise different objects

Arranging k distinct objects in n pairwise different boxes is the act of
deciding the box in which each object is going to be located. Since both the
objects and the boxes are pairwise distinct, we may identify the objects and the
boxes with the sets {1, . . . , k} and {1, . . . , n}, respectively. Each arrangement
corresponds to a grouping map f : {1, . . . , k} → {1, . . . , n} that puts the object
j into the box f (j).

1.4.1.1 No further constraint

In this case the set of possible locations is in a one-to-one correspondence with the
set Fk

n of all maps f : {1, . . . , k} → {1, . . . , n}. Therefore, there are nk different
ways to locate k-different objects in n boxes.

A different way to do the computation is the following. Assume i1, . . . , in
objects are placed in the boxes 1, . . . , n, respectively, so that i1 + · · · + in = k.
There are

(
k
i1

)
different choices for the elements located in the first box,

(
k−i1
i2

)
different choices for the elements in the second box, and so on, so that there are(

k − i1 − · · · − in−1

in

)
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different choices for the elements in the nth box. Thus the different possible
arrangements are(

k

i1

)(
k − i1

i2

)
· · ·

(
k − i1 − · · · − in−1

in

)
=

= k!

i1!(k − i1)!

(k − i1)!

i2!(k − i1 − i2)!
· · · = k!

i1! i2! · · · in!
; (1.7)

the ratio in (1.7) is called the multinomial coefficient and is denoted as(
k

i1 i2 · · · in

)
.

From (1.7) we infer that the possible collocations of k pairwise different objects
in n pairwise different boxes are∑

i1+···+in=k

(
k

i1 i2 · · · in

)
where the sum is performed over all the n-tuples i1, . . . , in of non-negative inte-
gers such that i1 + · · · + in = k. Thus, from the two different ways of computing
collocations, we get the equality

nk =
∑

i1+···+in=k

(
k

i1 i2 · · · in

)
.

1.4.1.2 At least one object in each box

We now want to compute the number of different arrangements with at least one
object in each box. Assuming we have k objects and n boxes, collocations of
this type are in a one-to-one correspondence with the class of surjective maps
Sk

n from {1, . . . , k} onto {1, . . . , n}, thus there are

Sk
n =

n∑
j=0

(−1)j
(

n

j

)
(n − j)k

collocations of k pairwise different into n pairwise different boxes that place at
least one object in each box.

Another way to compute the previous number is the following. Assume
i1, . . . , in objects are located in the boxes 1, . . . , n, respectively, with at least
one object in each box, i.e. i1 + · · · + in = k and i1, . . . , in ≥ 1. As in (1.7),
there are (

k

i1 i2 · · · in

)
(1.8)
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ways to arrange k different objects in n boxes with ij objects in the box j . Thus
the number of arrangements with no empty box is∑

i1+···+in=k

i1,...,in≥1

(
k

i1 i2 · · · in

)
;

here, the sum is performed over all the n-tuples i1, . . . , in with positive compo-
nents with i1 + · · · + in = k. The above two ways of computing the number of
such collocations yield the identity

Sk
n =

∑
i1+···+in=k

i1,...,in≥1

(
k

i1 i2 · · · in

)
. (1.9)

1.4.1.3 At most one object in each box

We now impose a different constraint: each box may contain at most one object.
Assuming we have k objects and n boxes, collocations of this type are in a
one-to-one correspondence with the class of injective grouping maps Ik

n from
{1, . . . , k} onto {1, . . . , n}, thus there are

I k
n = k!

(
n

k

)
collocations of this type.

1.4.1.4 Grouping into lists

Here, we want to compute the number of ways of grouping k pairwise different
objects in n pairwise different boxes and pretend that the order of the objects in
each box matters. In other words we want to compute how many different ways
exist to group k objects in a list of n lists of objects. We proceed as follows.

The first object can be collocated in one of the n boxes, that is in n different
ways. The second object can be collocated in n + 1 different ways: in fact, it can
be either collocated in each of the n − 1 empty boxes, or it can be collocated
in the same box as the first object. In the latter case it can be collocated either
as the first or as the second object in that box. So the possible arrangements of
the second object are (n − 1) + 2 = n + 1. The third object can be collocated in
n + 2 ways. In fact, if the first two objects are collocated in two different boxes,
then the third object can either be collocated in one of the n − 2 empty boxes
or in two different ways in each of the two nonempty boxes. Thus, there are
(n − 2) + 2 + 2 = n + 2 possible arragements. If the first two objects are in the
same box, then the third object can either be collocated in one of the n − 1 empty
boxes or in the nonempty one. In the latter case, it can be collocated in three
different ways: either as the first, or between the two objects already present, or
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as the last one. Again, the third object can be collocated in (n − 1) + 3 = n + 2
ways. By an induction argument, we infer that there are n + k − 1 different
arrangements for the kth object. Thus, the number of different ordered locations
of k objects in n boxes is

n(n + 1)(n + 2) . . . (n + k − 1) = k!

(
n + k − 1

k

)
.

1.4.2 Collocations of identical objects

We want to compute the number of ways to arrange k identical objects in n

pairwise different boxes. In this case each arrangement is characterized by the
number of elements in each box, that is by the map x : {1, . . . , n} → {0, . . . , k}
which counts how many objects are in each box. Obviously,

∑n
s=1 x(s) = k. If

the k objects are copies of the number ‘0’, then each arrangement is identified
by the binary sequence

00 . . . 0︸ ︷︷ ︸
x(1)

1 00 . . . 0︸ ︷︷ ︸
x(2)

1 . . . 1 00 . . . 0︸ ︷︷ ︸
x(n−1)

1 00 . . . 0︸ ︷︷ ︸
x(n)

(1.10)

where the number ‘0’ denotes the fact that we are changing box.

1.4.2.1 No further constraint

Let us compute the number of such arrangements with no further constraint.
There is a one-to-one correspondence between such arrangements and the set
of all binary sequences of the type (1.10). Therefore, see Proposition 1.12, the
different collocations of k identical objects in n pairwise different boxes is(

n + k − 1

k

)
. (1.11)

1.4.2.2 At least one in each box

We add now the constraint that each box must contain at least one object. If
k < n no such arrangement is possible. If k ≥ n, we then place one object in
each box so that the constraint is satisfied. The remaining k − n objects can be
now collocated without constraints. Therefore, cf. (1.11), there are(

n + (k − n) − 1

k − n

)
=

(
k − 1

k − n

)
=

(
k − 1

n − 1

)
ways to arrange k identical objects in n boxes, so that no box remains empty.

1.4.2.3 At most one in each box

We consider arrangements of k identical objects in n pairwise different boxes
that place at most one object into each box. In this case, each arrangement is
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completely characterized by the subset of filled boxes. Since we can choose them
in

(
n
k

)
different ways, we conclude that the collocations of k identical objects in

n pairwise different boxes with at most one object per box is(
n

k

)
.

1.4.3 Multiplicative property

Combinatorial properties hold for collocations as well as for drawings.

Theorem 1.27 For each non-negative integer k, let ak and bk be the number
of collocations of k pairwise different objects in two sets S1 and S2 of pairwise
different boxes with policies P1 and P2, respectively. If S1 ∩ S2 = ∅, then the dif-
ferent collocations of the k objects in S1 ∪ S2 following policy P1 for collocations
in boxes of S1 and policy P2 for collocations in boxes of S2 is

ck =
k∑

j=0

(
k

j

)
ajbk−j .

Proof. Let j objects, 0 ≤ j ≤ k be collocated in the boxes of the set S1 and
let the other k − j objects be collocated in the boxes of S2. There are aj different
ways of placing j objects in the boxes of S1 and bk−j different ways of placing
(k − j) objects in the boxes of S2. Moreover, there are

(
k
j

)
different ways to

choose which objects are collocated in the boxes of S1. Hence,

ck =
k∑

j=0

(
k

j

)
ajbk−j ∀k ≥ 0.

A similar result holds for the collocations of identical objects.

Theorem 1.28 For each non-negative integer k, let ak and bk be the number of
collocations of k identical objects in two sets S1 and S2 of pairwise different boxes
with policies P1 and P2, respectively. If S1 ∩ S2 = ∅, then the collocations of the k

objects in the boxes of S1 ∪ S2 made according to policy P1 for the collocations in
the boxes of S1 and according to policy P2 for the collocations in the boxes of S2 is

ck =
k∑

j=0

ajbk−j .

Proof. Let j objects, 0 ≤ j ≤ k be collocated in the boxes of the set S1 and
let the other k − j objects be collocated in the boxes of S2. There are aj ways of
placing j objects in the boxes of S1 and bk−j different ways of placing (k − j)
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objects in the boxes of S2. Since the objects are identical, there is no way to
select which the j objects to be placed in the boxes of S1 are. Then the possible
different collocations are

ck =
k∑

j=0

ajbk−j ∀k ≥ 0.

1.4.4 Collocations in statistical physics

In statistical physics, each ‘particle’ is allowed to be in a certain ‘state’; an
‘energy level’ is associated with each state. The total energy of a system of
particles depends on how many particles are in each of the possible states; the
mean value of the energy depends on the probabilities that particles stay in a
certain state. Thus, the number of possible collocations of the particles in the
available states must be evaluated.

1.4.4.1 Maxwell-Boltzmann statistics

This is the case of classical statistical physics: the particles are distinct and no
constraint is imposed on their distribution in different states. The number of
possible collocations of k particles in n states is thus the number of collocations
of k pairwise different objects in n pairwise different boxes, i.e. nk .

1.4.4.2 Bose–Einstein statistics

The particles are indistinguishable and no constraint is imposed on their distri-
bution in different states. Particles with this behaviour are called bosons . The
number of collocations of k particles in n states is then the number of collocations
of k identical objects in n pairwise different boxes, i.e.(

n + k − 1

k

)
=

(
n + k − 1

n − 1

)
.

1.4.4.3 Fermi–Dirac statistics

The particles are indistinguishable and each state can be occupied by at most
one particle (Pauli exclusion principle). Particles following this behaviour are
called fermions . Then the collocations of k particles in n states is the number
of possible choices for the states to be occupied, i.e.

(
n
k

)
. Obviously, the Pauli

exclusion principle implies n ≥ k.

1.4.5 Exercises

Exercise 1.29 A group of eight people sits around a table with eight seats. How
many different ways of sitting are there?
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Exercise 1.30 Compute the number gn,k of subsets of {1 . . . , n} having cardinality
k and that do not contain two consecutive integers.

Solution. There is a one-to-one correspondence between the family of the
subsets of cardinality k and the set of binary n-words given by mapping a
subset A ⊂ {1, . . . , n} to its characteristic function 1A. Namely, to the subset
A ⊂ {1, . . . , n} we associate the binary n-word (a1, a2, . . . , an) where ai = 1 if
i ∈ A and ai = 0 otherwise. Consequently, the family we are considering is in
a one-to-one correspondence with the binary n-words in which there cannot be
two consecutive 1’s, in

0001000101000101

Considering the 0’s as the sides of a box that contains at most one 1, we have
k 1’s and n − k + 1 boxes with at most one 1 per box. Thus, each collocation
is uniquely detected by the choice of the k nonempty boxes. Thus, see Section
1.4.2, gn,k = (

n−k+1
k

)
.

Exercise 1.31 A physical system is made by identical particles. The total energy of
the system is 4E0 where E0 is a given positive constant. The possible energy levels
of each particle are k E0, k = 0, 1, 2, 3, 4. How many different configurations are
possible if;

(i) the kth energy level is made of k2 + 1 states;

(ii) the kth energy level is made of 2(k2 + 1) states;

(iii) the kth energy level is made of k2 + 1 states and two particles cannot occupy
the same state.

Exercise 1.32 For any non-negative integer n ≥ 0, define

xn := x(x + 1)(x + 2) · · · (x + n − 1),

xn := x(x − 1)(x − 2) · · · (x − n + 1).

Prove that
xn = (−1)n(−x)n. (1.12)

[Hint. Take advantage of (iii) of Proposition 1.3.]

Exercise 1.33 n players participate in a single-elimination tennis tournament.
How many matches shall be played?

Exercise 1.34 You are going to place 4 mathematics books, 3 chemistry books
and 2 physics books on a shelf. Compute how many different arrangements are
possible. What if you want to keep books of the same subject together?
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Exercise 1.35 A comittee of 4 is to be chosen from a group of 20 people. How
many different choices are there for the roles of president, chairman, secretary,
and treasurer?

Exercise 1.36 How many bytes of N digits exist with more zeroes than ones?

Exercise 1.37 There are 40 cabinet ministers sitting around a circular table. One
seat is reserved for the Prime Minister. In how many ways can the other ministers
seat themselves?

Exercise 1.38 Thirty people meet after a long time and they all shake hands. How
many handshakes are there?

Exercise 1.39 Find the number of solutions to equation x + y + z + w = 15:

(i) in the set of non-negative integers;

(ii) in the set of positive integers;

(iii) in the set of integers such that x > 2, y > −2, z > 0, w > 3.

Exercise 1.40 Find the number of non-negative integer solutions (x, y, z, t) of
x + y + z + t ≤ 6.


