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Motorcycle Dynamics

Vittore Cossalter, Roberto Lot, and Matteo Massaro
University of Padova, Italy

This chapter aims at giving a basic insight into the two-wheeled vehicle dynamics to be
applied to vehicle modelling and control. The most relevant kinematic properties are dis-
cussed in Section 1.1, the peculiarities of motorcycle tyres are reported in Section 1.2, the
most popular suspension schemes are presented in Section 1.3, while Sections 1.4 and 1.5
are devoted to the analysis of the vehicle in-plane and out-of-plane vibration modes. Finally,
Section 1.6 highlights the coupling between in-plane and out-of-plane dynamics.

1.1 Kinematics

From the kinematic point of view, every mechanical system consists of a number of rigid
bodies connected to each other by a number of joints. Each body has six degrees of freedom
(DOF) since its position and orientation in the space are fully defined by six parameters, such
as the three coordinates of a point (x, y, z) and three angles (yaw, roll, pitch). When a joint is
included, the number of DOFs reduces according to the type of joint: the revolute joint (e.g.,
the one defining the motorcycle steering axis) inhibits five DOFs, the prismatic joint (e.g., the
one defining the telescopic fork sliding axis) inhibits five DOFs, the wheel–road contact
joint inhibits three DOFs when pure rolling is assumed (only three rotations about the con-
tact point are allowed while no sliding is permitted), or one DOF when longitudinal and
lateral slippage is allowed (the only constraint being in the vertical direction, where the
compenetration between the wheel and the road is avoided).

1.1.1 Basics of Motorcycle Kinematics

Two-wheeled vehicles can be considered spatial mechanisms composed of six bodies:

• the rear wheel;
• the swingarm;
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4 Modelling, Simulation and Control of Two-Wheeled Vehicles

• the chassis (including saddle, tank, drivetrain, etc.);
• the handlebar (including rear view mirrors, headlamp, the upper part of the front suspen-

sion, etc.);
• the front usprung mass (i.e., the lower part of the front suspension, front brake calliper,

etc.);
• the front wheel.

These bodies are connected each other and with the road surface by seven joints:

• a contact joint between the rear wheel and the road surface;
• a revolute joint between the rear wheel and the swingarm, to give the rear wheel spin axis;
• a revolute joint between the swingarm and the chassis, to give the swingarm pivot on the

chassis;
• a revolute joint between the chassis and the handlebar, to give the steering axis;
• a prismatic joint between the handlebar and the front unsprung, to give the sliding axis of

the telescopic fork;
• a revolute joint between the front unsprung and the front wheel, to give the front wheel

spin axis;
• a contact joint between the front wheel and the road plane.

Therefore, the two-wheeled vehicle has nine DOFs, given the 20 DOFs inhibited by the four
revolute joints, five DOFs inhibited by the prismatic joint and the two DOFs inhibited by
the two contact joints (tyre slippage allowed), subtracted from the 36 DOFs related to the
six rigid bodies. It is also common to include the rear and front tyre deformation due to the
tyre compliance, and consequently the number of DOFs rises to 11.

Among the many different sets of 11 parameters that can be selected to define the vehicle
configuration, it is common (e.g. Cossalter et al. 2011b, 2011c) to use the ones depicted in
Figure 1.1: position and orientation of the chassis, steering angle, front suspension travel,
swingarm rotation and wheel spin rotations.

Finally, it is worth mentioning that these DOFs are related to the gross motion of the vehi-
cle, while additional DOFs are necessary whenever some kind of vehicle structural flexibility
is considered, e.g. Cossalter et al. (2007b).

7. steering angle

8. fork travel

10. wheel spin
11. wheel spin

9. swing arm rotation

1, 2, 3: chassis coordinates
4, 5, 6: yaw, roll and pitch angles

Figure 1.1 Degrees of freedom of a two-wheeled vehicle
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Some geometric parameters such as the wheelbase p, normal trail an and caster angle 𝜀,
are very important when it comes to the vehicle stability, manoeuvrability and handling.
In more detail, the wheelbase is the distance between the contact points on the road and
usually ranges between 1.2 and 1.6 m, the normal trail is the distance between the front
contact point and the steering axis (usually 80–120 mm) and the caster angle is the angle
between the vertical axis and the steering axis (usually 19–35∘).

In general, an increase in the wheelbase, assuming that the other parameters remain con-
stant, leads to an unfavourable increase in the flexional and torsional deformability of the
frame (this may reduce vehicle manoeuvrability), an unfavourable increase in the minimum
curvature radius, a favourable decrease in the load transfer during accelerating and braking
(this makes wheelie and stoppie more difficult) and a favourable increase in the directional
stability of the motorcycle.

The trail and the caster angle are especially important inasmuch as they define the geomet-
ric characteristics of the steering head. The definition of the properties of manoeuvrability
and directional stability of two-wheeled vehicles depend on these two parameters, among
others. Small values of trail and caster characterize sport vehicles, while higher values are
typical of touring and cruiser vehicles. The trail and caster are related to each other by the
following relationship:

an = Rf sin 𝜀 − d, (1.1)

where Rf is the front tyre radius and d is the fork offset; see Figure 1.2.
Finally, it is worth noting that all these parameters are usually given for the nominal (stand-

still) trim configuration, while they change as the vehicle speed, longitudinal and lateral
accelerations change.

1.1.2 Handlebar Steering Angle and Kinematic Steering Angle

While the driver operates the handlebar steering angle, the vehicle cornering behaviour is
determined by the projection on the road surface of the angle between the rear and front
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Figure 1.2 Wheelbase, caster angle and trail
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Figure 1.3 Kinematic steering angle Δ as a function of the handlebar steering angle 𝛿 for different
values of the roll angle 𝜙

wheel planes, the so-called kinematic steering angle. In two-wheeled vehicles, the relation-
ship between the handlebar and kinematic steering angles varies appreciably with the roll
angle. In particular, the steering mechanism is attenuated (i.e. the kinematic angle is lower
than the handlebar angle) up to a certain value of the roll angle (close to the value of the
caster angle), then it is amplified (i.e. the kinematic angle is higher than the handlebar angle);
see Figure 1.3 for example.

The following simplified expression can be used to estimate the kinematic steering angle
Δ from the handlebar steering angle 𝛿, the caster angle 𝜀 and the roll angle 𝜙:

Δ = arctan

(
cos 𝜀
cos𝜑

tan 𝛿

)
(1.2)

The local curvature of the vehicle trajectory C (or the turning radius Rc) can be estimated
from the kinematic angle Δ and the wheelbase p using the following expression:

C = 1
Rc

≅ tanΔ
p

= cos 𝜀
p cos𝜑

tan 𝛿 (1.3)

Note that Equation 1.3 does not include the effect of tyre slippage, whose contribution will
be described in Sections 1.2 and 1.5.2.

1.2 Tyres

The performance of two-wheeled vehicles is largely influenced by the characteristics of
their tyres. Indeed, the control of the vehicle’s equilibrium and motion occurs through the
generation of longitudinal and lateral forces resulting from the rider’s actions on the steering
mechanism, throttle and braking system. The peculiarity of motorcycle tyres is that they
work with camber angles up to 50∘ and even more, while car tyres rarely reach 10∘.
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Figure 1.4 Tyre forces and torques

1.2.1 Contact Forces and Torques

From a macroscopic viewpoint, the interaction of the tyre with the road can be represented
by a system composed of three forces and three torques, as in Figure 1.4:

• a longitudinal force Fx (positive if driving and negative if braking);
• a lateral force Fy;
• a force Fz normal to the road surface;
• an overturning moment Mx;
• a rolling resistance moment My;
• a yawing moment Mz.

Experimental observations show that the force and torque generation is mainly related to
the following input quantities:

• tyre longitudinal slip 𝜅;
• tyre lateral slip 𝜆;
• tyre camber angle 𝜙;
• tyre radial deflection 𝜁R;
• tyre spin rate 𝜔.

Therefore we can write:
Fx = Fx(𝜅, 𝜆, 𝜙, 𝜁R, 𝜔)
Fy = Fy(𝜅, 𝜆, 𝜙, 𝜁R, 𝜔)
Mx = Mx(𝜅, 𝜆, 𝜙, 𝜁R, 𝜔)
My = My(𝜅, 𝜆, 𝜙, 𝜁R, 𝜔)
Mz = Mz(𝜅, 𝜆, 𝜙, 𝜁R, 𝜔)

(1.4)

with the longitudinal force Fx mainly related to longitudinal slip 𝜅, lateral force Fy mainly
related to the lateral slip 𝜆 and the camber angle 𝜙, overturning moment Mx mainly related
to the camber angle 𝜙, rolling resistance mainly related to the wheel spin rate 𝜔 and yawing
moment mainly related to the lateral slip 𝜆 and camber angle 𝜙.



8 Modelling, Simulation and Control of Two-Wheeled Vehicles

Rl

Ru

x
z

Re

ω

Figure 1.5 Tyre radii

The longitudinal slip (positive when driving and negative when braking) is defined as:

𝜅 =
𝜔Re − Vx

Vx
, (1.5)

where Vx is the tyre longitudinal velocity, 𝜔 is the tyre spin rate and Re is the tyre effective
rolling radius. In particular, the effective rolling radius Re can be computed from the freely
rolling tyre as

Re = Vx∕𝜔. (1.6)

Note that the effective rolling radius does not coincide with either the tyre loaded radius
Rl or the the tyre unloaded radius Ru; see Figure 1.5. This should not be surprising since
the tyre is not a rigid body. Experimental observations show that Rl < Re < Ru. However, a
common assumption is Rl = Re.

Sometimes a slightly different formulation of longitudinal slip is adopted:

𝜅′ =
𝜔Re − Vx

𝜔Re
(1.7)

It can easily be shown that
𝜅′ = 𝜅∕(1 + 𝜅) (1.8)

and the relative difference between the two is:

𝜀 = (𝜅′ − 𝜅)∕𝜅 = −𝜅′ (1.9)

which is typically lower than 5% in normal conditions (i.e. no skidding).
The lateral slip is defined as:

𝜆 = − arctan
Vy

Vx
(1.10)

where Vy is the lateral velocity of the tyre and Vx is the longitudinal velocity. The sign is
chosen to give positive force for positive slip.

Sometimes another input quantity is considered, the turn slip 𝜙t:

𝜙t = − 1
Rc

= − 𝜓̇
Vx

(1.11)

where Rc is the curvature of the tyre contact point path and 𝜓̇ is the yaw rate. This quantity
is important only at very low speed and therefore is not considered in the following sections.
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1.2.2 Steady-State Behaviour

A widely used model for computing the steady-state tyre forces and moment is based on the
so-called Magic Formula (Pacejka 2006). The general form is:

y(x) = D sin[C arctan{Bx − E(Bx − arctan Bx)}] (1.12)

where y(x) passes through the origin x = y = 0, reaches a maximum and subsequently tends
to a horizontal asymptote; see Figure 1.6. For given values of the coefficients B,C,D,E, the
curve shows an anti-symmetric shape with respect to the origin. To allow the curve to have
an offset with respect to the origin (e.g. because of ply-steer and conicity of the tyre), two
shifts SH and SV can be introduced:

Y = y(x) + SV
x = X + SH

(1.13)

Coefficient D > 0 represents the peak value of the curve, while the product BCD corre-
sponds to the slope of the curve at the origin (e.g. the lateral slip stiffness when the lateral
force is reported in the vertical y axis and the lateral slip is reported in the horizontal x axis).
The shape factor C > 0 determines the shape of the resulting curve. The factor B is used
to determine the slope at the origin and is called the stiffness factor. The factor E ≤ 1 is
introduced to control the curvature at the peak and at the same time the horizontal position
of the peak. The various factors depend on the tyre normal load Fz (or tyre radial deflection).

In particular, the slope of the lateral force BCDy is especially sensitive to load variation,
and is usually modelled as follows (Figure 1.7):

BCDy = p1 sin(2 arctan(Fz∕p2)) (1.14)

The sideslip stiffness attains a maximum p1 at a normal load Fz = p2.

x

y

xm

D
Dsin( C )

2

π
arctan(BCD)

Figure 1.6 Main parameters of the tyre Magic Formula

BCDy

Fz

p1

p2

Figure 1.7 Tyre cornering stiffness as a function of normal load
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Another widely used tyre formula is the Burckhardt model (Kiencke and Nielsen 2001):

y(x) = 𝜗1(1 − e−x𝜗2 ) − x𝜗3 (1.15)

Again, the curve typically passes through the origin x = y = 0, reaches a maximum and
subsequently decreases. An offset can be added, following the same approach used above.

Typical tyre curves are depicted in Figure 1.8.
A fundamental concept when dealing with tyre behaviour is the coupling between lon-

gitudinal and lateral forces on the contact patch. In practice, the tyre gives the maximum
longitudinal (lateral) force when in pure longitudinal (lateral) slip condition. Indeed, the
theoretical analysis on physical models (Pacejka 2006) shows that the tyre longitudinal and
lateral force generation depends on the following theoretical slip quantities:

𝜎x =
𝜅

1 + 𝜅
𝜎y =

tan 𝜆
1 + 𝜅

(1.16)

rather than on the practical slip quantities 𝜅 and 𝜆, and that there exists a total slip:

𝜎 =
√
𝜎2x + 𝜎2y (1.17)
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which defines the maximum friction force available from the tyre. The corresponding total
force can be split between the longitudinal and lateral directions, according to the slip 𝜎x
and 𝜎y. Also, the effect of camber can be included into the sideslip as follows:

𝜆∗ = 𝜆 +
k𝜙
k𝜆
𝜙 (1.18)

and the formulas for forces read:

Fx =
𝜎x

𝜎
Fx0(𝜎) Fy =

𝜎y

𝜎
Fy0(𝜎) (1.19)

where Fx0 and Fy0 are the longitudinal and lateral forces in pure slip condition.
There is also a newer empirical approach to modelling force coupling (Pacejka 2006). To

describe the effect of combined slip on the lateral force and longitudinal force characteristics,
the following hill-shaped function G is employed:

G = D cos(C arctan(Bx)) (1.20)

where x is either the longitudinal slip 𝜅 or the lateral slip 𝜆 (or tan 𝜆). The coefficient D is
the peak value, C determines the height of the hill’s base and B influences the sharpness of
the hill, which is the main factor responsible for the shape of the function. The formulas in
combined slip conditions read

Fx = GxFx0(𝜅) Fy = GyFy0(𝜆) (1.21)

1.2.3 Dynamic Behaviour

The relationships between the tyre inputs (slips, camber, load/deflection and spin) and the
tyre outputs (forces and torques) described in the previous section hold in steady-state con-
ditions. However, the tyre forces do not arise instantaneously: to appear the tyre needs to
travel a certain distance, which depends on the tyre characteristics. The physical reason is
the tyre flexibility, and the related behaviour can be explained as follows.

We consider a tyre whose contact point has longitudinal velocity Vx + 𝜁̇x and lateral veloc-
ity Vy + 𝜁̇y, where Vx and Vy are the velocities of the contact point when neglecting tyre
deformation, while 𝜁̇x and 𝜁̇y are the deflection velocities; see Figure 1.9.

contact area

Vx + ζx

C

Vy + ζy

Figure 1.9 Tyre contact area with deflections
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The observed longitudinal slip (e.g. with sensors on the rim) is

𝜅 =
𝜔Re − Vx

Vx
(1.22)

with𝜔 the rim spin rate and Re the effective rolling radius, while the actual (or instantaneous)
longitudinal slip experienced by the contact point is

𝜅i =
𝜔Re − 𝜁̇x − Vx

Vx
(1.23)

and therefore

𝜅i = 𝜅 −
𝜁̇x

Vx
(1.24)

Similarly, the observed lateral slip is

𝜆 = − arctan
Vy

Vx
, (1.25)

while the actual (or instantaneous) lateral slip is

𝜆i = − arctan
Vy + 𝜁̇y

Vx
. (1.26)

Under small angle assumption it is

𝜆i = 𝜆 −
𝜁̇y

u
(1.27)

At the tyre–road contact point, the slip-induced longitudinal and lateral forces balance the
deflection-induced forces. Under small slips assumption the following relationships hold:

k𝜅𝜅iFz = k𝜁x
𝜁x k𝜆𝜆iFz = k𝜁y

𝜁y (1.28)

where k𝜅 and k𝜆 are the lateral slip stiffness and longitudinal slip stiffness respectively, k𝜁x

and k𝜁y
are the lateral and longitudinal structural stiffness and Fz is the tyre normal load.

When introducing Equations 1.24 and 1.27 into 1.28 one obtains:

k𝜅

(
𝜅 −

𝜁̇x

Vx

)
Fz = k𝜁x

𝜁x (1.29)

k𝜆

(
𝜆 −

𝜁̇y

Vx

)
Fz = k𝜁y

𝜁y (1.30)

which yields, after the elimination of carcass deflections 𝜁x and 𝜁y

Fx0 =
𝜎𝜅

u
Ḟx + Fx (1.31)

Fy0 =
𝜎𝛼

u
Ḟy + Fy (1.32)
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where Fx and Fy are the actual tyre forces (i.e. computed with the instantaneous slip 𝜅i and
𝜆i), while Fx0 and Fy0 are the tyre forces computed with the practical slips 𝜅 and 𝜆 and:

𝜎𝜅 =
k𝛼Fz

k𝜁x

𝜎𝛼 =
k𝜆Fz

k𝜁y

. (1.33)

In practice, there is a deformation-induced lag between Fx,Fy and Fx0,Fy0. The resulting
first-order differential equations are called relaxation equations, with 𝜎𝜅,𝛼 the relaxation
lengths. Equation 1.33 shows that the longitudinal (lateral) relaxation length increases with
the longitudinal (lateral) slip stiffness and with the normal load, while it reduces with the
longitudinal (lateral) structural stiffness. The relaxation length represents the space that the
wheel has to cover in order for the force to be 63% of the steady-state force. Typical values
of relaxation length are in the range 0.10–0.4 m, the higher values corresponding to higher
tyre normal load and higher speeds.

The equations above describe the effect of flexibilities on the longitudinal force due to
longitudinal slip, and lateral force due to lateral slip. Actually, in two-wheeled vehicles there
is a significant component of the lateral force related to the camber angle𝜙. Therefore, under
small 𝜙 assumption, Equation 1.28 becomes

(k𝜆𝜆i + k𝜙𝜙)Fz = k𝜁y
𝜁y (1.34)

where k𝜙 is the camber stiffness, and after substitution Equation 1.32 gives

Fy0 +
𝜎𝛼

Vx
Fz𝜙̇ =

𝜎𝛼

Vx
Ḟy + Fy. (1.35)

Finally, it is worth mentioning the gyroscopic couple that arises as a result of the time rate
of change of the tyre camber distortion, the wheel spin rate and the belt inertia. This effect
is visible for certain types of tyre at high speeds, and leads to an increase of the observed
relaxation length 𝜎𝛼 (De Vries and Pacejka 1998).

1.3 Suspensions

Suspensions serve several purposes such as contributing to the vehicle’s road-holding/
handling, keeping the rider comfortable and reasonably well isolated from road noise. These
goals are generally at odds. In addition, the suspensions affect the vehicle’s trim while
accelerating, braking, turning and so on. The proper choice of front and rear suspension
characteristics depends on many parameters: the weight of the rider and the vehicle, the
position of the centre of gravity, the characteristics of stiffness and vertical damping of the
tyres, the geometry of the motorcycle, the conditions of use, the road surface, the braking
performance, the engine power and the driving technique, among others.

1.3.1 Suspension Forces

The total force F exerted by the spring–damper group is the sum of the following different
actions:

F = Fe + Fd + Ff + Fp (1.36)
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Figure 1.10 Elastic force as a function of preload

where Fe is the elastic force exerted by the coil spring and/or air spring (or different elastic
components), Fd is the damping force exerted by the shock absorber, Ff is the friction force
and Fp is the end-stroke pad force.

Preloading is commonly used to adjust the initial position of the suspension with the
weight of the vehicle and rider acting on it. It consists of a precompression of the spring:
as a consequence, if the spring is stressed with forces that are lower than or equal to the
preload, it is not compressed. In practice, this adjustment shifts the curve of the elastic force
as a function of travel Fe; see Figure 1.10.

1.3.2 Suspensions Layout

Several suspension layouts have been used over the years and the following sections present
a brief overview.

1.3.2.1 Front Suspension Types

The most widespread front suspension is the telescopic fork (Figure 1.11a). It is made up of
two telescopic sliders which run along the interior of two fork tubes and form a prismatic

(a)

telescopic fork push arm trail arm

(b) (c)

Figure 1.11 Example of front suspensions
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joint between the unsprung mass of the front wheel and the sprung mass of the chassis. The
telescopic fork is characterized by limited inertia around the axis of the steering head.

Two limitations of the telescopic fork are the impossibility of attaining progressive force
displacement and the rather high values of the unsprung mass that is an integral part of the
wheel. To overcome the typical defects of the telescopic fork, alternative solutions have been
proposed: push arm (Figure 1.11b), trail arm (Figure 1.11c) and four-bar linkage (like the
BMW Duolever).

The front arm suspension and four-bar linkage suspensions can be designed so as to present
total or partial anti-dive behaviour in braking conditions. Further, the absence of a prismatic
joint eliminates the typical dry friction problems of telescopic forks.

1.3.2.2 Rear Suspension Types

The classic rear suspension is composed of a swingarm (a rocker made up of two oscillat-
ing arms) with two spring–damper elements, one on each side (Figure 1.12a). The main
advantages are the simplicity of construction and the modest reactive forces transmitted to
the chassis. Among its disadvantages are a poorly progressive force–displacement charac-
teristic and the possibility that the two spring–damper units generate different forces and
therefore torsional stress on the swingarm.

An alternative is represented by the cantilever mono-shock system, characterized by
only one spring–damper unit. However, this suspension does not enable a progressive
force–displacement characteristic and the positioning of the spring–shock absorber unit
close to the engine can cause problems with the absorber’s heat dissipation.

The introduction of a four-bar linkage in the rear suspension makes it easier to obtain
the desired stiffness curves. Different attachment points of the spring–damper elements can
be chosen: for example, in the Kawasaki Uni-Trak the suspension element is between the
rocker and the chassis (Figure 1.12b), in the Suzuki Full-Floater it is between the rocker
and the swingarm and in the Honda Pro-Link the element is between the connecting rod and
the swingarm. Modest unsprung masses are obtained, as well as large wheel amplitude, but
langer reactive forces are exchanged between the various parts of the four-bar linkage.

The four-bar linkage (Figure 1.12c) is also the basis of a suspension used especially on
the final shaft transmission with universal joints (e.g. the BMW Paralever). The wheel is
attached to the connecting rod of the four-bar linkage. The suspension acts as if it were
composed of a very long fork fastened to the chassis at the centre of rotation (the point
of intersection of the axes of the two rockers). An additional small four-bar linkage can be

(a)

classic swinging arm swinging arm with four-bar four-bar-linkage suspension

rockers

connecting
rod

(b) (c)

Figure 1.12 Example of rear suspensions
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added to provide a suitable attachment point for the spring–shock element and thus a proper
suspension behaviour.

1.3.3 Equivalent Stiffness and Damping

From a dynamics point of view, the vehicle can be considered as a main sprung body (chas-
sis and rider) connected to two unsprung bodies (wheels) with two elastic systems (front and
rear suspension). Also, rather than the characteristics of the spring–damper units, it is impor-
tant to consider the characteristics of the suspensions in terms of wheel vertical displacement
as a function of the vertical force applied. Therefore it is useful to reduce the real suspensions
to equivalent, simpler, suspensions represented by two vertical spring–damper elements that
connect the unsprung masses to the sprung mass. The parameters defining the equivalent sus-
pension are: reduced stiffness, reduced damping, dependence of the reduced stiffness on the
vertical displacement (progressive/regressive suspension), maximum travel and preloading.

To derive the equivalent (or reduced) stiffness, we consider the expression of the variation
of the spring force Fe as a function of the travel:

Fe = F0 + kL(L − L0) (1.37)

where F0 is the spring force at the initial suspension travel L0, kL is the stiffness at L0 and
L is the travel after variation. The power balance between the actual spring force Fe and its
equivalent vertical force Fz at the wheel centre is

Fzż = FeL̇ = Fe
𝜕L
𝜕z

ż (1.38)

Therefore
Fz = Fe

𝜕L
𝜕z

= Fe𝜏, (1.39)

where 𝜏 is the velocity ratio, between the suspension travel velocity and the wheel vertical
velocity. The equivalent stiffness kz is

kz =
𝜕Fz

𝜕z
= kL𝜏

2 + Fe
𝜕𝜏

𝜕z
. (1.40)

When assuming a constant velocity ratio the expression simplifies to

kz = kL𝜏
2. (1.41)

The derivation of the equivalent (reduced) damping is carried out using the same approach,
and therefore Equation 1.40 can also be used for the damping by replacing kz, kL with cz, cL.

The preload of the equivalent suspension can be computed with the following expression
(again from force power balance):

Fz|L=0 = Fe|L=0𝜏 (1.42)

Finally, the dependence of the reduced stiffness on the vertical displacement can be affected
either by changing the characteristic of the velocity ratio 𝜏 or by changing the characteristics
of the spring element kL.
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Figure 1.13 Reduced stiffness for the telescopic fork

1.3.3.1 Front

The equivalent stiffness and damping can be easily computed for the widely spread tele-
scopic fork (Figure 1.13). The velocity ratio is derived by considering the geometric rela-
tionship between the fork travel and the wheel vertical displacement:

𝜏 = 𝜕L
𝜕z

= 1
cos(𝜀)

(1.43)

where 𝜀 is the caster angle. Under the assumption of constant stiffness kL and damping cL
coefficients, and constant velocity ratio 𝜏, the reduced values are

kz =
kL

cos2𝜀
cz =

cL

cos2𝜀
(1.44)

In more complex linkages, the velocity ratio is computed numerically from a kinematic
analysis of the mechanism. When it is not constant, or the spring/damper coefficients are
not constant, the full Equation 1.40 should be used.

Usually the suspension stiffness kL is in the range 13–25 kN/m, and the equivalent stiffness
kz in the range 15–37 kN/m, while the damping coefficient cL is in the range 500–2000
Ns/m, and the equivalent cz in the range 550–2200 Ns/m, with the velocity ratio 𝜏 in the
range 1.05–1.25 and the caster angle in the range 19–35∘.

1.3.3.2 Rear

The velocity ratio of a rear suspension featuring a linkage depends on many parameters and
sometimes cannot be expressed analytically. In any case, the ratio can be easily computed
numerically from a kinematic analysis of the mechanism. Typical values of 𝜏 for a swingarm
with a four-bar linkage are in the range 0.3–0.6. Usually the suspension stiffness kL is in
the range 100–150 kN/m, and the equivalent stiffness kz in the range 10–55 kN/m, while
the damping coefficient cL is in the range 5–15 kNs/m and the equivalent cz in the range
450–5400 Ns/m.
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1.4 In-Plane Dynamics

Vehicle dynamics can be divided between in-plane and out-of-plane dynamics. The former
involve the motion of the vehicle in its symmetry plane (e.g. pitch, bounce, suspension travel)
and mostly affect the riding comfort and road-holding, while the latter involve the lateral
motion of the vehicle (e.g. yaw, roll, steer) and strongly affect the stability and safety. In
straight running, two-wheeled vehicles are substantially symmetric and in-plane and out-
of-plane motions are decoupled (therefore they can be examined separately), whereas while
cornering strong interactions occur.

In this section, different in-plane models of increasing complexity are presented to high-
light the main vehicle dynamics involved.

In practice, these dynamics are excited by road undulations and/or by the inertial forces
generated while accelerating/braking. Suppose that the vehicle travels with constant velocity
Vx on a road with equidistant irregularities (e.g. the bays of a viaduct), Figure 1.14. The time
Δt required to cover the distance L between two irregularities (length of the bay) is equal to

Δt = L
Vx

(1.45)

and represents the period of the external excitation. A resonance condition occurs whenever
the excitation frequency is equal to the natural frequency of one of the in-plane vibration
modes of the vehicle. As an example, with L = 12 m and Vx = 24 m/s, it is Δt = 0.5 s, so
the excitation has a frequency of 2 Hz. In general, several frequency components are present
at the same time, depending on the road characteristics.

1.4.1 Pitch, Bounce and Hops Modes

Among the 11 DOFs necessary to fully define the vehicle trim (see Section 1.1), only seven
are involved in the in-plane dynamics: longitudinal and vertical motion of the chassis, pitch
of the chassis, suspension travel, wheels rotation. If we assume that the vehicle is traveling
at constant speed (which is a common assumption when dealing with comfort analysis),
the DOFs further reduce to four: vertical motion of the chassis, pitch angle and suspension
travel. This DOFs are related to four physical vibration modes: bounce, pitch, wheel front
hop and rear hop. Bounce is mainly related to the vertical motion of the chassis, pitch is
mainly related to the pitch of the chassis and hops are mainly related to the wheels’ vertical

wavelength L

front unsprung mass

rear unsprung mass

sprung mass

forward velocity V

Figure 1.14 Road undulation
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rear hop mode
frequency = 10 Hz
damping ratio = 0.6

pitching mode
frequency = 2.5 Hz
damping ratio = 0.7

vertical bounce mode
frequency = 2 Hz
damping ratio = 0.3

rear hop mode
frequency = 15 Hz
damping ratio = 0.2

Figure 1.15 In-plane vibration modes

motion. In practice, every mode involves some contribution from all four DOFs. Figure 1.15
depicts an example of in-plane vibration modes, with typical values of natural frequency and
damping ratio.

In order to model in-plane dynamics, several simple models are commonly used in addition
to complex multibody models. The most popular are reported in the following sections.

1.4.1.1 Half-Vehicle Models

The half-vehicle model is a simple yet widespread model used to analyse the
suspension–tyre dynamics. The name is due to the fact that only one tyre and one
suspension are considered. Two versions are used: one DOF (or SDF) and two DOF.

In the simplest version (Figure 1.16) the model features a mass suspended by a
spring–damper element. The mass may represent either the sprung mass (whose share is
computed from the whole vehicle mass by considering the tyre loads distribution) or the
unsprung mass (wheel rim, brake calliper, etc.). In the former case the spring–damper
element represents the suspension, while the tyre compliance is neglected (Figure 1.16a),
in the latter case the spring–damper element represents the tyre compliance while the
suspension dynamics are neglected (Figure 1.16b). The undamped natural frequency f0,
damped frequency f and damping ratio 𝜁 are

f0 =
1
2𝜋

√
kz

m
f = f0

√
1 − 𝜁2 𝜁 =

cz

2m(2𝜋f0)
(1.46)
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(a) (b)

Figure 1.16 Half-vehicle model with (a) one DOF for sprung mass and (b) for unsprung mass

where kz is the stiffness, cz the damping coefficient and m the mass. As an example, we
consider a vehicle with a mass of 200 kg, including two wheels of mass 15 kg each, a rider
with a mass of 80 kg and the whole centre of mass exactly in the middle. We aim at estimating
the natural frequency of the front wheel–suspension system, given the front suspension
reduced vertical stiffness (see Section 1.3) kz = 15 kN/m and the tyre radial stiffness of
kT = 180 kN/m. If we want the model to capture the suspension mode, we use m = 140 kg
and kz = 15 kN/m, obtaining a natural frequency f0 = 1.64 Hz. Another option is to use a
combination of the suspension spring and tyre spring:

kz′ =
kzkT

kz + kT
(1.47)

In this case, the stiffness reduces to kz′ = 14 kN/m and the natural frequency to
f0 = 1.59 Hz. Otherwise, if we want the model to capture the wheel hop mode, we use
m = 15 kg and kz = 180 kN/m, obtaining a natural frequency of 17 Hz.

In the version with two DOFs (Figure 1.17), the model features two masses, representing
the sprung mass ms and unsprung mass mu, and two spring–damper elements, representing

Figure 1.17 Half-vehicle model with two DOFs
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the suspension characteristic and the tyre radial compliance. Therefore two modes influenc-
ing each other are captured. The expressions for the natural undamped frequencies are:

f 201,02 =
1

4𝜋2

−a1 ±
√

a21 − 4a2a0

2a2
(1.48)

with:
a2 = msmu a1 = kz(ms + mu) + kTmu a0 = kzkT . (1.49)

Using the vehicle parameters defined above, gives f01 = 1.58 Hz (suspension mode) and
f02 = 18.15 Hz (wheel hop mode).

1.4.1.2 Full-Vehicle Models

The full-vehicle model has four DOFs and is depicted in Figure 1.18. Since there are no
analytic and compact expressions for the system natural frequencies, the equations of motion
are reported as:

M{ẍ} + C{ẋ} + K{x} = 𝟎 (1.50)

with:

x =

⎧⎪⎪⎨⎪⎪⎩

z

𝜇

zF

zR

⎫⎪⎪⎬⎪⎪⎭
M =

⎡⎢⎢⎢⎢⎢⎣

m 0 0 0

0 IyG 0 0

0 0 mf 0

0 0 0 mr

⎤⎥⎥⎥⎥⎥⎦
(1.51)

p
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b p − b
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cz,r , kz,r cz,f , kz,f

cT,r , kT,r cT,f , kT,f

Zf

m, IyG

Zr

μ

Figure 1.18 Full-vehicle model with four DOFs
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C =

⎡⎢⎢⎢⎢⎢⎣

cz, f + cz, r cz,f (p − b) − cz, rb −cz, f −cz, r

cz, f (p − b) − cz, rb (p − b)2cz, f + cz, rb
2 −cz, f (p − b) cz, rb

−cz, f (−p + b)cz, f cz, f + cT ,f 0

−cz, r cz, rb 0 cz, r + cT , r

⎤⎥⎥⎥⎥⎥⎦
K =

⎡⎢⎢⎢⎢⎢⎣

kz, f + kz, r −kzV , rb + kz, f (p − b) −kz, f −kz, r

−kz, rb + kz, f (p − b) (p − b)2kz, f + kz, rb
2 −kz, f (p − b) kz, rb

−kz, f (−p + b)kz, f kz, f + kT , f 0

−kz, r kz, rb 0 kz, r + kT , r

⎤⎥⎥⎥⎥⎥⎦
where mf and mr are the front and rear unsprung masses respectively, m is the sprung mass,
kz, f and kz,r are the front and rear suspension reduced stiffness, cz, f and cz,r are the front and
rear suspension reduced damping, kT , f and kT , r are the front and rear tyre radial stiffness
and cT , f and cT , r are the front and rear tyre radial damping.

Note that the undamped radian frequencies 𝜔 can be numerically derived from

|K − 𝜔2M| = 𝟎 (1.52)

while for the full modal analysis the system must be reduced to a standard first-order for-
mulation before computing the eigenvalues.

1.4.2 Powertrain

Powertrain dynamics involve the fluctuation of the vehicle’s longitudinal velocity and wheel
rotations, the three DOFs not considered in the models presented in the previous section.
Figure 1.19 depicts a common motorcycle powertrain layout, which includes the crankshaft
(where the engine propulsive or braking torque is generated), the primary and secondary
shafts (whose velocity ratio is set by the rider operating the gearbox lever), the chain final
transmission and the rear wheel.

x

front wheel

driveshaft

primary shaft

chain
sprocket

secondary shaft

rear wheel

ring sprocket

ωf

ωmωp
ωs

ωr

Figure 1.19 Motorcycle powertrain
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Figure 1.20 Squat and load transfer lines

It is worth noting that the geometry of the final transmission strongly affects the vehicle
trim while varying the propulsive force. In particular, it can be shown (Cossalter 2006) that
the variation of the trim of the vehicle rear end (with respect to the standstill configuration)
mainly depends on a parameter called the squat ratio R:

R = tan 𝜏
tan 𝜎

(1.53)

where 𝜏 is the angle of the load transfer line and 𝜎 is the angle of the squat line; see
Figure 1.20, where the lines are depicted for the swingarm with chain final transmission
(Figure 1.20a) and for the four-bar linkage with shaft final transmission (Figure 1.20b).

In more detail, the transfer load line represents the direction of the transfer tyre force acting
on the rear contact point. The load transfer is originated by the vehicle acceleration and/or
aerodynamic forces. Therefore two transfer lines can be computed: in the case of significant
acceleration, the transfer line is the load line, whereas for mild acceleration, the transfer line
is the aerodynamic line:

tan 𝜏 =
hg

p
or tan 𝜏 =

ha

p
(1.54)

where hg is the height of the vehicle centre of mass, ha is the height of the aerodynamic
centre and p is the wheelbase.

As regards the squat line, it passes through the rear tyre contact point and the point
A, which is the intersection of the swingarm axis with the chain axis, in the case of a
final transmission with chain and swingarm (Figure 1.20a), the swingarm pivot on the
chassis in the case of a final transmission with shaft and swingarm, and the intersection
of the two rockers in the case of a final transmission with shaft and four-bar linkage
(Figure 1.20b).

When R = 1 (often a design target) there is no variation of the trim of the vehicle rear
end while changing the tyre thrust force Fx. In practice, there may be a small variation, due
to the theoretical assumptions. When increasing the longitudinal force with R < 1 the rear
suspension extends, while in the case of R > 1 the rear suspension compresses.
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1.4.3 Engine-to-Slip Dynamics

The engine torque generated at the crankshaft is transferred through the powertrain to the
rear tyre, which generates a longitudinal force as a function of the longitudinal slip. These
dynamics are especially important when it comes to the design of traction control systems
(Massaro et al. 2011a, 2011b, Corno and Savaresi 2010): three simple models are described
below to highlight the physical characteristics of the system.

First we consider a very simple model of the powertrain which does not account for either
the tyre or the sprocket absorber flexibilities; see Figure 1.21(a). Note that the sprocket
absorber is a device usually placed between the rear wheel sprocket and the rim, with the
aim of damping the torsional vibration of the transmission system. This simple model is
presented because it is widespread.

The engine torque T is applied to the crankshaft, it is transmitted through the gearbox
(according to the selected gear ratio) to the output shaft (whose spin rate is 𝛽 in Figure
1.21a), it passes through the chain to the rear wheel rim (whose angular velocity is 𝜔) and
then to the contact point. The external forces acting on the model are the tyre longitudinal
force Fx and the tyre normal load Fz, but rolling resistance is neglected for simplicity. The
equation of motion reads:

(I𝑤 + It)𝜔̇ = 𝜏T − R Fx (1.55)

where I𝑤 is the rear wheel spin inertia, It is the transmission inertia reduced to the rear wheel,
𝜔 is the spin rate of the wheel rim, 𝜏 is the whole transmission ratio, T the engine torque at
the crankshaft, R the longitudinal force arm (assumed equal to the rolling radius) and Fx the
longitudinal force.

In more detail, the transmission inertia reduced to the rear wheel is computed from the
engine spin inertia Ie (plus clutch, starter, etc.), the gearbox primary shaft spin inertia Ip and
the gearbox output shaft spin inertia Io, given the primary ratio 𝜏p (between the crankshaft
and the primary shaft of the gearbox), the gear ratio 𝜏g (between the primary and the output
shaft of the gearbox thus depending on the selected gear) and the final ratio 𝜏f (between the
output shaft and the rear wheel):

It = ((Ie𝜏
2
p + Ip)𝜏2g + Io)𝜏2f (1.56)

Moreover the product of the primary ratio, the gearbox ratio and the final ratio is defined as
the whole transmission ratio:

𝜏 = 𝜏p𝜏g𝜏f (1.57)

and represents the ratio between the engine spin rate and the rear wheel spin rate.

Fz

(a) (b) (c)

Fz Fz

T T T

Fx Fx Fx
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ω
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Δ

Figure 1.21 Half-vehicle model
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For computation of the longitudinal road–tyre force, the full non linear formula is lin-
earized about the steady-state condition (i.e. steady-state longitudinal slip 𝜅ss and steady-
state longitudinal force Fx,ss), thus giving the following relationship between the actual force
Fx,𝜅 and the slip 𝜅:

Fx,𝜅 = Fx,ss + k𝜅(𝜅 − 𝜅ss)Fz (1.58)

where k𝜅 is the slope of the longitudinal slip curve at the linearization point (also called the
normalized longitudinal slip stiffness at the linearization point) and Fz is the tyre normal
load. The longitudinal slip is defined as:

𝜅 =
𝜔R − Vx

Vx
(1.59)

The model equation can be written in state space formulation:{
ẋ = Ax + BT

𝜅 = Cx
(1.60)

and the transfer function between engine torque and longitudinal slip can be expressed as:

H(s) = 𝜅

T
(s) = C(sI − A)−1B (1.61)

where I is the identity matrix, s the Laplace variable and:

A =

[
−

R2k𝜅Fz

(I𝑤 + It)Vx

]
B =

[
𝜏

I𝑤 + It

]
C =

[
R
Vx

]
x = [𝜔]. (1.62)

Therefore the system has one pole at:

p = −
R2k𝜅Fz

(I𝑤 + It)Vx
. (1.63)

Since all the parameters of Equation 1.63 are always positive but k𝜅 , the plant stability
(i.e., the sign of the pole) is bound to the sign of the normalized longitudinal slip stiffness
k𝜅 . In particular, the system is unstable when the slip stiffness k𝜅 is negative, and this usually
happens only for high values of slip (skidding condition), after the peak of the force–slip
curve, which usually occurs for slip values in the range 0.1–0.2. Finally, it is worth high-
lighting that the plant dynamic is very fast at low speeds, p(V → 0) = ∞, and very slow at
high speeds, p(V → ∞) = 0.

As a second step, the tyre circumferential compliance is also considered; see Figure
1.21(b). With respect to the previous model, now the rim angular velocity differs from the
tyre circumferential angular velocity, because of the deflection 𝜉. As a consequence, the
longitudinal slip expression changes to

𝜅i =
(𝜔 + 𝜉̇)R − Vx

Vx
. (1.64)

In practice, when it comes to road tests the tyre circumferential deflection is not considered
and the slip is computed according to Equation 1.59. For this reason, it is common to refer
to Equation 1.59 as practical slip, since this is the slip which is measured in practice, and
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to Equation 1.64 as instantaneous slip (Lot 2004), since this is the actual slip at the contact
point, which is the physical reason of the tyre longitudinal force. In other words, the instan-
taneous slip generates the longitudinal force, while the practical slip is what is observed.
Therefore, the instantaneous slip 𝜅i is used to compute the road–tyre force while the prac-
tical slip 𝜅 is observed when computing the engine-to-slip transfer function Equation 1.61
and when comparing numerical results with road tests. The physical effect of the flexibility
is to generate a phase lag between the practical slip and the actual force. Indeed, the actual
force is in phase with the instantaneous slip.

A spring–damper element is used to take into account the flexibility of the tyre, and in par-
ticular the following expression relates the tyre circumferential deflection 𝜉 and deflection
rate 𝜉̇ to the tyre longitudinal force Fx:

Fx,el = −(k𝜉𝜉 + c𝜉 𝜉̇)R (1.65)

At the contact point, there is force equilibrium between the force due to the elastic deflec-
tion Fx,el and the force due to the slippage Fx,𝜅 :

Fx,el = Fx,𝜅 (1.66)

The system now has two equations (1.56 and 1.66) and two state variables (𝜔 and 𝜉). The
following state space matrices are found:

A =

⎡⎢⎢⎢⎢⎣
−

R2k𝜅Nc𝜉
(I𝑤 + It)(k𝜅N + c𝜉V)

R2k𝜅Nk𝜉
(I𝑤 + It)(k𝜅N + c𝜉V)

−
k𝜅N

k𝜅N + c𝜉V
−

Vk𝜉
k𝜅N + c𝜉V

⎤⎥⎥⎥⎥⎦
B =

[ 𝜏

I𝑤 + It
0

]
C =

[R
V

0
]

x =
[
𝜔

𝜉

]
(1.67)

When inspecting the engine-to-slip transfer function (Equation 1.61), it turns out that at
null longitudinal speed the system is vibrating with undamped natural frequency f1,2 and
damping ratio 𝜁1,2:

f1,2 =
1
2𝜋

R

√
k𝜉

I𝑤 + It
𝜁1,2 =

c𝜉R

2
√

k𝜉(I𝑤 + It)
(1.68)

As the speed increases, the frequency reduces and the damping increases up to a critical
velocity (usually in the range 30–60 m/s):

Vcr =
(c𝜉R + 2

√
k𝜉(I𝑤 + It))Fzk𝜅R

k𝜉(I𝑤 + It)
(1.69)

Above this the system is no longer vibrating (the two poles turn from complex conjugate
pairs to real poles).
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It is worth noting that there is an alternative approach to account for this tyre force lag.
Instead of considering the tyre flexibility, it is possible to add a first-order differential
equation (relaxation equation, see Section 1.2.3) which replaces Equation 1.66 :

𝜎𝜅

Vx
Ḟx,𝜅 + Fx,𝜅 = F0

x,𝜅 (1.70)

where 𝜎𝜅 is the relaxation length, Vx is the longitudinal velocity, Fx,𝜅 the actual longitudinal
force, F0

x,𝜅 the longitudinal force computed with the practical slip of Equation 1.59. The two
approaches give similar results when

𝜎𝜅 =
k𝜅Fz

k𝜉
(1.71)

As a third step, a flexible sprocket absorber is introduced between the rear wheel chain
sprocket and the rear wheel rim, in addition to the compliant tyre; see Figure 1.21(c). The fol-
lowing expression is used to compute the absorber torque Ta as a function of its deflectionΔ:

Ta = kaΔ + caΔ (1.72)

where ka is the absorber stiffness, ca the damping coefficient and Δ the absorber deflection
rate. The state space matrices now read:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
R2k𝜅Nc𝜉

I𝑤(k𝜅N + c𝜉V)
R2k𝜅Nk𝜉

I𝑤(k𝜅N + c𝜉V)
ka

I𝑤

ca

I𝑤

−
k𝜅N

k𝜅N + c𝜉V
−

Vk𝜉
k𝜅N + c𝜉V

0 0

0 0 0 1
R2k𝜅Nc𝜉

I𝑤(k𝜅N + c𝜉V)
−

R2k𝜅Nk𝜉
I𝑤(k𝜅N + c𝜉V)

−ka

(
1
I𝑤

+ 1
It

)
−ca

(
1
I𝑤

+ 1
It

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎣
0
0
0
𝜏

It

⎤⎥⎥⎥⎥⎦
C =

[R
V

0 0 0
]

x =
[
𝜔 𝜉 Δ Δ

]T
(1.73)

No compact expressions for poles are available, but they can be easily computed numer-
ically from Equation 1.73. The four complex poles of the system are associated with two
torsional vibrating modes, which may be either identified in the tyre circumferential and
sprocket absorber deflection, or in the wheel and transmission spin.

Finally, it should be noted that when the engine-to-slip dynamics are of interest for fre-
quencies above 30 Hz, the tyre belt dynamics should also be added to the model (thus
increasing the number of state variables above four).

1.4.4 Chatter

The chatter of motorcycles is a vibration phenomenon which appears during braking and
consists of a vibration of the rear and front unsprung masses with frequency in the range
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Figure 1.22 Mechanisms generating longitudinal fluctuating slips

17–22 Hz, depending on vehicle characteristics. This vibration could be very strong and
acceleration of the unsprung masses can reach 5–10 g (Cossalter et al. 2012, 2008).

A physical explanation of the phenomenon is as follows. The braking manoeuvre may
be seen as a composition of two motions: the non-vibrating braking gross motion (i.e. the
sequence of equilibrium positions at chosen deceleration and different speeds), and the
vibrating motion (i.e. the vehicle oscillation around these equilibrium positions). During
braking, the kinetic energy of the gross motion is lost, but if there is an unstable mode part
of this energy which is transferred to the in-plane dynamics, so the chatter appears. In prac-
tice, when riders start braking there is a transient and the vehicle start vibrating around the
equilibrium position. These oscillations lead to a fluctuation of the rear longitudinal slip,
i.e. to a variation of the longitudinal force which may drive energy into the system, depend-
ing on the phase lag between the rear tyre longitudinal force and fluctuations of the contact
point position. The longitudinal slip fluctuations may be grouped into four main origins; see
Figure 1.22: a) the radial deflection of the rear tyre 𝜁R, b) the fluctuation of the swingarm
rotation Φ, c) the fluctuation of the longitudinal speed ẋ and d) the fluctuation of the sprocket
absorber deflection Δ.

The tyre torsion flexibility and the sprocket absorber flexibility are essential factors to
capture the chatter instability, and the chatter vibration depends on the braking style (only
front brake, front brake plus rear brake, with or without engine braking, etc.). In more detail,
the powertrain flexibility is related to a vibration mode (transmission mode) which involves
the powertrain inertia and may become unstable under certain motion condition (e.g., while
braking with certain deceleration at certain speeds). When inspecting the shape of this vibra-
tion mode, components related to the tyre vertical load fluctuation are found, which explain
the chattering behaviour.

It is worth stressing that this instability can appear on a perfectly flat road and with
perfectly balanced wheels. However, it is expected that both road unevenness and wheel
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imbalance can further excite the vibration. In particular, since the wheel spin frequency
f𝑤 is:

f𝑤 =
Vx

2𝜋R
(1.74)

with Vx is the vehicle speed and R the rolling radius, the typical speed range where the road
and/or the wheels may further excite the transmission mode is 32–42 m/s (115–150 km/h).

1.5 Out-of-Plane Dynamics

Lateral dynamics involve the lateral displacement of the vehicle, yaw, roll and steer angles.
In straight running, these dynamics are decoupled from in-plane dynamics, whereas while
cornering strong interactions occur. The out-of-plane behaviour has been extensively inves-
tigated over the years because it is related to the vehicle stability and safety (Cossalter 2006,
2011b).

In this section, first the two-wheeled steering static response is presented, then the most
important vibration modes are discussed.

1.5.1 Roll Equilibrium

The equilibrium roll angle 𝜙 can be estimated from the curve radius Rc and the vehicle speed
Vx as

𝜙 = arctan
V2

x

gRc
, (1.75)

where g is the gravitational acceleration, when considering that the resultant of the
centrifugal force and the weight force passes through the line joining the two road–tyre
contact points, under the assumption of think-disk tyre, null steering angle and negligible
tyre/engine gyroscopic effects. When including the effect of the tyre cross-section, Equation
1.75 changes to (Cossalter 2006):

𝜙 = arctan V2

gRc
+ Δ𝜙

Δ𝜙 = arcsin
t⋅sin

(
arctan V2

gRc

)
h−t

(1.76)

which highlights that the actual roll angle increases as the tyre cross-section increases (wide
tyre) and the centre of gravity lowers, with t the tyre cross-section and h the height of the
centre of gravity; see Figure 1.23.

1.5.2 Motorcycle Countersteering

The lateral dynamics of single-track vehicles is mainly controlled by rider’s steering action,
even though the rider’s body movements can give additional contribution. There is a sig-
nificant difference when comparing the rider’s steering action on a two-wheeled vehicle
with that of a driver in a four-wheeled vehicle. In a four-wheeled vehicle the driver turns
the steering wheel right (clockwise) to enter a right turn by applying a clockwise steering
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Figure 1.23 Roll equilibrium

torque, and keeps a clockwise steering torque and steering angle all through the turn; how-
ever, on a two-wheeled vehicle a completely different approach is used. In order to enter a
right turn, the rider has to steer the handlebar angle left (counter-steering manoeuvre) by
applying a counter-clockwise steering torque to the handlebar. As a consequence both a
centrifugal force on the vehicle and a front tyre lateral force are generated, thus the vehicle
leans right into the turn. At this moment, the rider can steer the handlebar into the turn. The
final steering torque may be either clockwise or counter-clockwise, depending the vehicle
characteristics. The preferred behaviour is to have a counter-clockwise steering torque and
a clockwise steering angle when riding a clock wise turn, and motorcycle engineers used to
adjust some vehicle parameters to obtain the desired steering torque behaviour.

It is worth noting that the counter-steering manoeuvre can be avoided by using body move-
ment to enter the turn (Bertolazzi et al. 2007). However, steering torque is rather more
efficient than body movement torque. Skilled riders take advantage of both mechanisms,
while most of the everyday riders ignore the counter-steering approach.

The steering torque applied by the rider to the handlebar is the reaction to the many
force contributions (Cossalter et al. 2010). When considering the equilibrium of the
front frame in steady-state condition, the rider’s steering torque reacts to the forces and
torques depicted in Figure 1.24: the tyre longitudinal force, lateral force, vertical load,
tyre rolling torque, yawing torque, weight and centrifugal force of the front assembly, and
the gyroscopic torque. These contributions can be divided into aligning components and
misaligning components. When the aligning components prevail, the rider’s handlebar
torque is inward to the turn, that is the rider pulls the handlebar with the hand inside
the turn. But when the misaligning contributions prevail, the rider’s handlebar torque
is outward to the turn, that is the rider pushes the handlebar with the hand inside the
turn. The tyre lateral force, tyre rolling torque, front frame centrifugal force and wheel
gyroscopic effect give self-aligning torques around the steering axis, whereas the tyre
longitudinal (braking) force, tyre normal force, tyre yaw torque and front frame weight
force give misaligning torques. It is worth noting that in the unusual case where the
front frame centre of gravity is behind the steering axis the centrifugal contribution
becomes misaligning and the weight contribution aligning. Note that when braking with
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Figure 1.24 Forces and torques acting on the front frame

the front tyre, a significant misaligning component arises, which adds to that related to the
longitudinal friction.

The main contributions to the whole steering torque are those related to the tyre normal
load and to the tyre lateral force, which almost balance each other. As a consequence of the
tyre carcass hysteresis, a rolling torque opposes the wheel rotation and a friction force arises.
The longitudinal friction force on the front tyre leads to a small misaligning contribution to
the steering torque, whose presence is due to the fact that the tyre carcass is not a thin disk,
and therefore the longitudinal force has a non-null component when the vehicle is leaned
because of the migration of the contact point on the tyre carcass. The tyre rolling torque
also gives an (aligning) contribution to the steering torque related to the fact that when the
vehicle is leaned, the rolling torque projection on the steering axis is no longer null. Another
important contribution is that related to the tyre yaw torque. This contribution to the steering
torque is always misaligning and significant. The gyroscopic contribution (always aligning)
to the steering torque arises because the front wheel is both rolling about its spin axis and
yawing as a consequence of the cornering manoeuvre. Finally, minor components are those
related to the front frame weight (misaligning), and to the front frame centrifugal effect
(aligning).

1.5.2.1 Understeering and Oversteering

The steering behaviour of the vehicle depends on many parameters, and in particular on
the tyre properties. Indeed, when considering tyres slippage, the effective steering angle
becomes (Figure 1.25):

Δ∗ = Δ + 𝜆R + 𝜆F (1.77)
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Figure 1.25 Kinematic steering angle Δ and effective steering angle Δ∗

with Δ from Equation 1.2, 𝜆R the rear tyre sideslip angle and 𝜆F the front tyre sideslip angle.
In practice, the effective steering angle Δ∗ is equal to the kinematic steering angle Δ only
when both tyres have the same sideslip, that is 𝜆R = 𝜆F (or when there is no sideslip, which
is a reasonable assumption at very low speeds). Otherwise, it is smaller or larger, giving an
understeering or oversteering behaviour respectively.

The steering behaviour can be expressed by means of the steering ratio 𝜉:

𝜉 =
Rc0

Rc
= Δ∗

Δ
≈ 1 +

𝜆r − 𝜆f

Δ
(1.78)

where Rc0 is the kinematic radius of curvature and Rc is the actual radius of curvature.
The vehicle’s steering behaviour can be defined as follows:

• neutral: 𝜉 = 1 ⇐⇒ 𝜆R = 𝜆F;
• oversteering: 𝜉 > 1 ⇐⇒ 𝜆R > 𝜆F;
• understeering: 𝜉 < 1 ⇐⇒ 𝜆R < 𝜆F.

In case of oversteering vehicles, there may be a critical speed Vcr where Δ = 0 and there-
fore 𝜉 → ∞. Above this speed the vehicle is ridden in counter-steering, i.e. the rider has to
keep the handlebar turned outside the turn (as in speedway races).

Unlike in four-wheeled vehicles, considerable camber angles (up to 50–60∘) are present
while cornering with two-wheeled vehicles. Therefore the steering ratio is also significantly
affected by the characteristics of the lateral force as a function of camber (in addition to the
characteristics of the force as a function of lateral slip). This can be effectively highlighted
when expressing the steering ratio for a simple vehicle model under the assumption of small
roll angles and linear tyre behaviour:

Fy,R = (k𝜆,R𝜆R + k𝜙,R𝜙F)Fz,R Fy,F = (k𝜆,F𝜆F + k𝜙,F𝜙F)Fz,F (1.79)
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where Fy,R and Fy,F are the rear and front tyre lateral forces respectively, k𝜆,R and k𝜆,F are the
rear and front sideslip stiffnesses, k𝜙,R and k𝜙,F are the rear and front tyre camber stiffnesses,
𝜆R and 𝜆F are the rear and front sideslip angles 𝜙R and 𝜙F are the rear and front tyre camber
angles and Fz,R and Fz,F are the rear and front tyre normal loads. Solving Equation 1.79 for
the sideslip angles gives:

𝜆R = 1
k𝜆R

(Fy,R

Fz,R
− k𝜑R

𝜑R

)
𝜆F = 1

k𝜆F

(Fy,F

Fz,F
− k𝜑F

𝜑F

)
(1.80)

In steady turning, under the assumption of small camber angles, we have

Fy,R

Fz,R
≈ 𝜙R ≈ 𝜙F ≈

Fy,F

Fz,F
(1.81)

which can be used in Equation 1.80 to give

𝜆R ≈
1 − k𝜑R

k𝜆R

𝜑 𝜆F ≈
1 − k𝜑F

k𝜆F

𝜑 (1.82)

When using Equation 1.82 in Equation 1.78, the steering ratio becomes

𝜉 = 1

1 −
(

1−k𝜑R

k𝜆R

−
1−k𝜑F

k𝜆F

)
V2

x

gR

(1.83)

which shows that it is possible to mitigate the oversteering behaviour by increasing the rear
tyre camber stiffness and reducing the front tyre camber stiffness, as well as increasing the
rear tyre sideslip stiffness and reducing the front tyre sideslip stiffness.

Finally, note that other authors define the steering behaviour differently, using the variation
of the steering ratio (as a function of the vehicle speed Vx while travelling on a curve with
constant radius Rc) rather than its absolute value:

• neutral:
(
𝜕𝜉

𝜕V

)
Rc

= 1;

• oversteering:
(
𝜕𝜉

𝜕V

)
Rc

> 1;

• understeering:
(
𝜕𝜉

𝜕V

)
Rc

< 1.

With this latter definition, there may be oversteering also with 𝜆R < 𝜆F, where the previous
definition defines understeering. In practice, we define oversteering as a condition where,
on a steady turn, the rear tyre sideslip increases more than the front sideslip when increasing
the vehicle speed.

1.5.3 Weave, Wobble and Capsize

In straight motion out-of-plane dynamics involves four of the eleven DOFs necessary to
fully define the vehicle trim (see Section 1.1): the lateral displacement of the vehicle, the
yaw, roll and steer angles. These DOFs combine to give three well-known vibration modes:
capsize, weave and wobble.
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Figure 1.26 Weave mode

Capsize is a non-vibrating mode which mainly consists of a roll motion combined with
a lateral displacement (plus some less important steering and yaw movements). Depending
on the vehicle characteristics it can be stable at low speeds, then slightly unstable above
a critical speed, or slightly unstable over the whole speed range. In any case, this mode is
easily controlled by rider.

Weave is an oscillation of the entire motorcycle (Figure 1.26), with frequency rising with
speed from 0 up to 3–4 Hz depending on the vehicle characteristics. It is usually unstable for
speeds up to 6–7 m/s, then it is stable and tends to be poorly damped at high speeds (>100
km/h or 28 m/s). High speed instability may occur both hands-off or hands-on the handle-
bars, with the former having the potential to be more stable than the latter under the same
set of running conditions (Massaro et al. 2012). More precisely, at zero speed the weave
consists of two non-vibrating modes: body capsize and steering capsize. These two modes
coalesce to generate the vibrating weave at a speed in the range 0–1 m/s.

Body capsize is a capsize of the whole vehicle an inverted pendulum-like roll instability.
Its time constant 𝜏bc can be estimated with a simple inverted pendulum model:

𝜏bc =

√
Ix + Mh2

Mgh
(1.84)

where Ix is the whole vehicle moment of inertia around the centre of mass, M is the whole
vehicle mass, h is the height of the vehicle centre of mass and g is the gravitational acceler-
ation.

Steering capsize is a steering instability, due to the misaligning effects of both the front
frame mass and the front tyre normal load. Its time constant can be estimated with a simple
front frame model:

𝜏sc =

√
(Mf gbf + Fz,f an) sin 𝜀

If
(1.85)

where Mf is the front frame mass, bf is the distance of the front frame centre of mass from
the steering axis, Fz,f is the front tyre normal load, an is the normal trail and 𝜀 is the caster
angle.
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front frame oscillations

Figure 1.27 Wobble mode

Finally, wobble is a vibrational mode dominated by the oscillation of the front steering
assembly around the steering axis (Figure 1.27) in the range 6–10 Hz. In practice, wobble
mode is usually visible with hands off the handlebars (Cossalter et al. 2007b) and, depending
on front assembly structural compliance and wheel imbalance, may become perceptible to
the rider at low to medium speeds.

Summarizing, the typical stability behaviour of a motorcycle at constant speed in straight
line motion is the following. At standstill, the vehicle is unstable because of body capsize
and steering capsize. Indeed, riders put their feet on the road to prevent the vehicle from
falling over. For speeds up to 6–7 m/s the motorcycle is unstable because of weave mode
and therefore a rider action is needed to stabilize the vehicle. Above 6–7 m/s the vehicle
enters a self-stabilizing zone, so no rider action is necessary to stabilize the system (the two-
wheeled vehicle also keeps upright with the rider’s hands off the handlebars). At increasing
speeds, the capsize may become slightly unstable (with hands off the handlebar), but this
instability is easily stabilized by rider’s passive action on the handlebars. If the vehicle has
been properly designed, there should not be any weave or wobble instability in normal riding
conditions. However, high speed and cargo loading promote poorly damped weave while
wobble may be triggered by wheel imbalance and certain road surfaces. Moreover, these
two vibration modes are dangerous because riders may have difficulty in controlling them.
In addition, most of the parameters improving the stability of one, worsen the other. This is
why their behaviour must be carefully considered when designing the vehicle.

1.5.3.1 Rigid Bodies Model

In this section the results of a basic model made of rigid bodies are presented to discuss
the lateral vibration modes of the vehicle (www.multibody.net). Since the aim is to study
the stability in straight motion at constant speed, the presence of the suspensions can be
neglected and only four DOFs are required: lateral displacement y, yaw angle 𝜓 , roll angle
𝜙 and steering angle 𝛿. Moreover, the tyre properties can be linearized, since only small
lateral slips and the roll angle will be employed by a vehicle vibrating around the upright
trim. Tyre pure rolling can be assumed in the longitudinal direction, since there is no interest
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in the longitudinal dynamics. The effect of tyre flexibility (and the related force lag, see
Section 1.2.3) is accounted for by including in the model the front and rear tyre lateral
deflection 𝜁R and 𝜁F. Note that the non-instantaneous tyre behaviour is essential for capturing
wobble. The only rider input is the steering torque 𝜏. The model has four rigid bodies: the
rear frame (including rider and swingarm), the front frame (handlebar and suspension) and
wheels. Its equations of motion can be written in state space form:

ẋ = Ax + Bu
x = {y, 𝜓, 𝜓, 𝜙, 𝜙, 𝛿, 𝛿, 𝜁R, 𝜁F}T

u = {𝜏} (1.86)

where y, 𝜓 , 𝜙, 𝛿 represent the derivatives of the corresponding variables.
The stability is analysed by computing the eigenvalues of A in Equation 1.86 at different

speeds, see the dotted lines of Figure 1.28. The hands-off vehicle stability reads as follows.
Up to a speed of 0.6 m/s the vehicle is unstable because of both body capsize (real positive
eigenvalue with time constant 0.30 s at 0.1 m/s) and steering capsize (real positive eigenvalue
with time constant 0.17 s at 0.1 m/s). At 0.6 m/s the two unstable modes coalesce to give the
unstable weave (complex conjugate pair eigenvalues), whose frequency rises from 0 at 0.6
m/s to 0.4 Hz at 7 m/s. From here on the weave is stable and its frequency rises with speed (3
Hz at 40 m/s). Note that at high speeds the mode moves towards the instability area. Wobble
has a frequency in the range 7–8 Hz and is unstable for speeds higher than 22 m/s. Capsize
is stable in the whole speed range. There is also another mode, usually called rear wobble or
weave 2: it is vibrating for speeds up to 25 m/s, then it splits into two non-vibrating modes.
This mode is not very interesting because it is very stable over the whole speed range, and
therefore is not shown in Figure 1.28.
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1.5.3.2 Effect of the Frame Compliance

The frame compliance and rider passive mobility can significantly affect the stability of two-
wheeled vehicles (Cossalter et al. 2007b) includes an experimental validation). In particular,
the most important structural flexibility is that of the front assembly with respect to the rear
assembly, while the rider passive roll vibration is the most important rider passive motion
affecting stability.

The model used in the previous section is extended to include the main vehicle compli-
ance (the equations and state matrices are reported at www.multibody.net). In particular,
several DOFs are added to account for: swingarm torsion and bending flexibility (𝛼R and
𝛽R), front frame bending and torsion flexibility (𝛼F and 𝛽F) and rider lateral and roll passive
motion on the saddle (yp and 𝜙p). The motion along these new DOFs is restrained by means
of spring–damper elements tuned to replicate the real vehicle compliance properties. The
additional DOFs are related to the same number of complex conjugate pairs representing
the structural modes of vibration. Even more important, these DOFs enter the weave and
wobble which affects their stability.

In particular, the front frame bending strongly affects the wobble stability (Figure 1.29).
The rigid vehicle model predicts a stable wobble at low speeds (up to 22 m/s in the vehicle
considered here) and unstable wobble at high speeds, but when including the front flexibility
the model predicts an instable vibration mode at low speeds and a stable mode at high speeds.
In other words, the front frame flexibility reverses the behaviour of wobble stability as a
function of speed. The physical reason of the stabilization effect is the additional gyroscopic
effect generated by the deflection rate combining with the wheel spin inertia and spin rate
(Cossalter et al. 2007b).

The effect of swingarm bending and torsion flexibility on weave stability is depicted in
Figures 1.30 and 1.31 respectively. In the vehicle analysed, the bending has a negligible to
positive effect on high speed weave stability (again the stabilizing effect is related to the
additional gyroscopic effect induced by bending deflection), while the torsion flexibility
worsens the high speed weave stability.
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Figure 1.31 Effect of rear torsion on weave

The effect of the rider’s passive motion has been considered by allowing the rider to vibrate
on the saddle. The rider’s body is split into a lower body (from feet to hip) and an upper body
(from hip to head). The lower body is allowed to move laterally with respect to the rear frame,
while the upper body is allowed to roll with respect to the lower, around a roll axis passing
in the neighbourhood of the rider’s hip. The rider’s motion is restrained by spring–damper
elements tuned to give the typical rider modal characteristics (the lateral natural frequency
is usually in the range 3.5–4.0 Hz with damping ratio in the range 0.3–0.6, while the roll
natural frequency is in the range 0.8–1.5 Hz and damping ratio 0.1–0.3 (Nishimi et al.
1985, Katayama et al. 1987). The rider’s passive motion is included in the model, and its
stability is compared with the case with rigid bodies in Figure 1.28, where the continuous
lines represent the model with the compliant bodies and the rider’s motion, while the dotted
lines represent the model with rigid bodies. The rider’s lateral motion is related to a new
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vibration mode named rider shake while the roll motion deeply merges with the weave,
whose curve is now split. In practice, the rider’s motion stabilizes the wobble at low speed
and significantly stabilizes the high speed weave, since the effect of roll on weave is the
more important contribution.

When accelerating, the weave mode tends to increase its frequency while that of the wob-
ble reduces, and a coupling between them may also take place. When braking, the wobble
mode increases its frequency and usually reduces its damping while the weave reduces its
frequency and damping. It is worth stressing that all the considerations reported in this
section refers to the free vehicle stability, that is, they remain valid when the rider has hands
off the handlebar or gently grasping the handlebar (Massaro et al. 2012).

1.5.3.3 Effect of the Rider Impedance

In practice, the rider has their hands on the handlebar while riding the vehicle. This may
change the two-wheeled vehicle stability because of the loop created between the rider’s
body, the rear frame (where the rider sits) and the front frame (where the rider’s hands are).
The effect of such rider passive steering impedance on vehicle stability has only recently
been investigated (Sharp and Limebeer 2004, Cossalter et al. 2011a, Massaro and Cole
2012, Massaro et al. 2012, with only the last including a comparison with experimental
road tests).

To model this effect, the rider’s upper body is allowed to yaw with respect to their lower
body and the handlebar. The motion is restrained by spring–damper elements properly tuned
to give the experimentally measured rider’s modal properties, Figure 1.32.

The effect of rider impedance is to stabilize the wobble mode and to destabilize the high
speed weave mode. The effect is similar to that of a steering damper. However, while an
ideal steering damper generates a steering torque 𝜏 proportional to and in phase with the

Figure 1.32 Rider impedance model
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steering angle rate 𝛿̇:
𝜏 = cd𝛿̇ (1.87)

the steering torque generated by the rider changes with frequency, both in magnitude and
in phase. Moreover, while the steering damper generates equal and opposite torques on the
front assembly and on the rear assembly, the rider does it only at low and high frequency,
because of the presence of the inertia.

1.6 In-Plane and Out-of-Plane Coupled Dynamics

In the previous two sections in-plane and out-of-plane dynamics have been treated sepa-
rately, using simplified models in order to highlight the most important vehicle behaviour.
However there are conditions (e.g. entering a curve while braking, Massaro 2011, Massaro
and Lot 2010) where it is essential to capture the coupling between in-plane and out-of-
plane dynamics using full vehicle models like FastBike (Cossalter et al. 2011b; Cossalter
et al. 2011c). Below three typical examples of coupled dynamics are reported.

Cornering Stability

When cornering, the in-plane and out-of-plane dynamics couple (Cossalter et al. 2004)
and all the vehicle vibration modes include both in-plane and out-of-plane DOFs. The
interactions may be predicted from straight line motion stability, when in-plane and
out-of-plane modes have eigenvalues close to each other in the root locus. A typical
coupling is between bounce/pitch and weave: in this condition also the set-up of the sus-
pension can be used to control the cornering oscillations. Similarly, wobble may combine
with wheel front hop mode, to give a steering oscillation combined with the suspension
oscillation.

It is also important to highlight that, while in straight line motion the in-plane modes are
almost speed independent, while in cornering all the modes depend on the speed of travel.

Kick Back

Road undulations or transverse joints, such as on motorway bridges, may unload the front
wheel of the vehicle, which lifts up from the road surface. The rider usually reacts automati-
cally with a steering action bringing the front wheel plane out of the driving direction of the
bike. When the front wheel makes contact with the road surface again, the front frame is not
in force equilibrium with respect the steering axis. As a consequence an impulsive force is
generated, which ‘kicks back’ the front frame opposite to the direction of the steering angle
(Lot and Massaro 2007). The kick back phenomenon can be so heavy that the rider cannot
control the handlebar and consequently loses control of the motorcycle. The steering angle
can reach very high values. This phenomenon may appear both in straight-running (espe-
cially when accelerating) or while cornering. It is worth noting that it is not related to a new
vibration mode, but to the stability of weave and wobble modes. In practice, the less stable
mode is the most excited and therefore the resulting vibration may either be in the wobble
or in the weave frequency range.
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High Side

This phenomenon is due to the interaction between the rear tyre lateral force and the longi-
tudinal force. It can happen during a braking manoeuvre while entering a curve or during a
thrusting manoeuvre while exiting from a curve (Cossalter et al. 2007a).

For example, to exit the curve the rider starts to thrust the rear wheel, therefore the longi-
tudinal driving force increases and adds to the existing lateral force. If the total tyre friction
force reaches the limit value, the rear wheel loses grip and therefore the rear of the motorcy-
cle moves outwards from the turn. The rider reacts by reducing the throttle opening, so the
thrust force reduces suddenly, and the rear tyre regains its grip. The existing large sideslip
(originated by the earlier grip loss), generates a lateral force impulse that violently pushes
the motorcycle upwards and may even throw the rider out of the saddle. In any case, weave
mode is strongly excited by the impulse action.
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