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Introduction

The main differentiator of the new generation of autonomous systems that is emerg-
ing in the twenty-first century is the adaptivity of their intelligence. They are not
simply automatic (usually remote) control devices, not only adaptive control systems
in the narrow sense of systems with tunable parameters as in the last decades of the
past century, but they are rather systems with a certain level of evolving intelligence.
While conventional adaptive techniques (Astroem and Wittenmark, 1989) are suit-
able to represent objects with slowly changing parameters, they can hardly handle
complex (usually, nonlinear, nonstationary) systems with multiple operating modes
or abruptly changing characteristics since it takes a long time after every drastic
change in the system to update model parameters. The evolving systems paradigm
(Angelov, 2002) is based on the concept of evolving (expanding or shrinking) system
structure that is capable of adapting to the changes in the environment and internal
changes of the system itself that cannot solely be represented by parameter tuning/
adjustment.

Evolving intelligent systems (eIS) the concept of which was pioneered recently
(Angelov, 2002; Kasabov, 2002; Angelov and Kasabov, 2005; Kasabov and Filev, 2006,
Jager, 2006), develop their structure, their functionality, and their internal knowl-
edge representation through autonomous learning from data streams generated by the
(possibly unknown) environment and from the system self-monitoring. They often
(but not necessarily) use as a framework of implementation fuzzy rule-based (FRB)
and neurofuzzy (NF) or neural-network (NN) based systems and machine learning
as a tool for training. Alternative frameworks (such as conventional multimodel sys-
tems, decision trees, probabilistic, e.g. Markov, mixture Gaussian models, etc.) can
also be explored as viable frameworks of eIS and autonomous learning systems.

It should be noted that the physical embodiments of such systems can range
from micro-systems-on chip (Everett and Angelov, 2005), motes of a wireless sen-
sor network (Andreu, Angelov and Dutta Baruah, 2011), mobile robots (Zhou and
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Angelov, 2007; Liu and Meng, 2004; Kanakakis, Valavanis and Tsourveloudis, 2004)
to unmanned airborne vehicles (Valavanis, 2006) and computer-controlled industrial
processes (Filev, Larson and Ma, 2000; Macias-Hernandez et al., 2007).

The potential of these systems for industry was acknowledged by leading re-
searchers with a solid industrial background such as Dr. A. Kordon, R&D Leader,
Dow Chemical, TX, USA who said in 2006 “Evolving Intelligent Systems have a
high potential for implementation in industry” (http://news.lancs.ac.uk/Web/News/
Pages/930389757F5B0BF4802571FB003CB1A2.aspx); Dr. D. Filev, Senior technical
Staff at Ford R&D, Dearborn, MI, USA who also in 2006 said “Embedded soft com-
puting applications are the natural implementation area of evolving systems as one of the
main tools for design of real time intelligent systems” (same web reference as above).

The problem of automatic design of computationally intelligent systems for mod-
elling, classification, time-series prediction, regression, clustering from data has been
successfully addressed during the previous century by a range of techniques such as
by gradient-based techniques (as in the neurofuzzy approach ANFIS (Jang, 1993)), by
genetic/evolutionary algorithms (Fogarty and Munro, 1996; Angelov and Buswell,
2003), by using partitioning by clustering (Babuska, 1998), learning by least squares
(LS) techniques and so on. But, these approaches were assuming all data to be known
in advance (a batch or offline mode of learning) and were not directly applicable to
data streams.

At the same time, the twenty-first century is confronting us with a range of new
challenges that require completely new approaches. As John Naisbitt famously said
“today we are drowning in information but starved for knowledge” (Naisbitt, 1988).
We are in the midst of an information revolution witnessing an exponential growth
of the quantity and the rate of appearance of new information by; Internet users,
consumers, finance industry, sensors in advanced industrial processes, autonomous
systems, space and aircraft, and so on.

It is reported that every year more than 1 Exabyte (=1018 bytes) of data are
generated worldwide, most of it in digital form (http://news.bbc.co.uk/2/hi/
technology/4079417.stm). Toshiba recently coined the phrase ‘digital obesity’ to illus-
trate the ever-growing amount of data that are generated, transmitted and consumed
by the users today. In this ocean of data the useful information and knowledge very
often is difficult to extract in a clear and comprehensive, human-intelligible form. The
availability of convenient-to-use and efficient methods, algorithms, techniques, and
tools that can assist in extracting knowledge from the data (Martin, 2005) is a pressing
demand at individual and corporate level, especially if this can be done online, in
real time.

The new challenges that cannot be successfully addressed by the existing tech-
niques, especially in their complexity and interconnection, can be summarised
as follows:

i. to cope with huge amounts of data;
ii. to process streaming data online and in real time;

iii. to adapt to the changing environment and data pattern autonomously;
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iv. to be computationally efficient (that means, to use recursive, one-pass, nonitera-
tive approaches);

v. to preserve the interpretability and transparency in a dynamic sense.

To address these new challenges efficient approaches are needed that deal with data
streams (Domingos and Hulten, 2001), not just with batch sets of data (Fayyad et al.,
1996), detect, react and take advantage of concept shift and drift in the data streams
(Lughofer and Angelov, 2011). Efficient collaborative and interactive schemes are
also needed for a range of applications in process industries (for self-calibrating, self-
maintaining intelligent sensors of the new generation), in autonomous systems and
robotics (for systems that have self-awareness, replanning and knowledge summari-
sation capabilities), in multimedia and biomedical applications, to name a few.

Autonomous learning (AL) is understood in this book in the context of both system
structure and system parameters. This means that the overall process of design, devel-
opment, redesign/update, adaptation, use and reuse of such systems is autonomous,
including the stages of the system design that traditionally assume heavy human
involvement and are normally done offline (the system being designed not in real time
in which the process that is using this system runs in). Therefore, our understanding
of AL and our concept of eIS is intricately related to the concepts of online and real-time
system structure and parameter design and exploitation and to data streams rather
than to data sets. This is the main differentiator in comparison with the traditional
disciplines.

1.1 Autonomous Systems

Autonomous systems are often seen as the physical embodiments of machine intel-
ligence. The concept of autonomous systems (AS) is not new and is closely related
to AI and cybernetics, but became more popular during the last decade or so mainly
due to the interest (and funding) from the defence and aerospace industries. AS are
significantly different from simple automatic control systems, ACS (Astroem and
Wittenmark, 1989). In fact, each AS has at its lower level (Layer 1) an ACS, usu-
ally, for motion control, for control of the sensors and actuators, and so on. An AS,
however, has also important upper layers in its architecture (Figure 1.1) that concern
perceptions-behaviours (layer 2 that also corresponds to structure identification in
AL systems) and the representation of the environment (usually in a form of rule
base, states, or a map, but not necessarily limiting to these forms of representation)
in the model and self-monitoring functions (layer 3 that is linked to the prediction).

AS can be seen as a fusion of computationally enabled sensor platforms
(machines/devices) that possess the algorithms (respectively, the software) needed
to empower the systems with evolving intelligence that is manifested through inter-
action with the outside environment and self-monitoring.

Examples include, but are not limited to unmanned airborne systems, UAS, un-
manned ground-based vehicles, UGVs (Figure 1.3), and so on.



JWST237-c01 JWST237-Angelov October 8, 2012 14:59 Trim: 244mm X 168mm Printer Name: Markono

4 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Perceptions 

Sensors 

Behaviours

Actuators 

Self-monitoring 

environment

info goals

Layer 3 

Layer 2 

Layer 1 

Increasing
Abstraction

Increasing
Detail

Data Actions

Model 

Figure 1.1 A three-layer structure of an autonomous system. (layer 1 – low-level direct
control, including teleoperation; layer 2 – a more abstract, behavioural autonomy,
specific tasks; layer 3, often called deliberate autonomy – the upper abstract layer of
modelling the environment and self-monitoring)

1.2 The Role of Machine Learning in Autonomous Systems

The core functionality of an AS depends on the ability to be aware of the environment
(through data streams generated by the sensors) and to make decisions accordingly.
Obviously, such decisions cannot be made on the basis of a preprogrammed logic
because this will assume a full knowledge of all the environments in which the
system will operate and will not be flexible enough. Therefore, core elements of any
AS are self-monitoring and self-adaptation. Autonomous learning and extracting new
knowledge as well as updating the existing knowledge base are vitally important for
such type of systems.

The dependence between autonomy and learning is a two-way process – on the
one hand, autonomous systems require learning in order to be aware of, explore, and
adapt to the dynamic environment; on the other hand, learning algorithms require
autonomy to make them independent of human involvement. The lack or low level
of autonomy in most of the currently existing algorithms leads to the need to develop
new generations of AL systems (ALS) to play an important role in the design and
maintenance of autonomous systems (e.g. UAV, UGV, intelligent/soft sensors, etc.).
A system (however well may it have been designed) that is not empowered by an
autonomous machine learning capability will fail helplessly in a situation that was



JWST237-c01 JWST237-Angelov October 8, 2012 14:59 Trim: 244mm X 168mm Printer Name: Markono

Introduction 5

Evolving
clustering

Offline
Clustering

Error criteria
minimisation

Structure 
Identification

Parameters
Learning

Evolving the 
System

process 

info goals

Layer 3 

Layer 2 

Layer 1 

Data
Predictions/
Classification/
Control

Density 
Estimation

Increasing
Flexibility,
Autonomy

Figure 1.2 A graphical representation of an autonomous machine learning system
(layer 1 – ‘traditional’ (parameters only learning) approach; layer 2 – offline learning of
system structure using clustering and data density (it should be noted that other meth-
ods instead of density-based clustering can be used at this layer); layer 3 represents
the evolving system structure – the upper layer of autonomous learning that often also
includes self-monitoring (not represented for simplicity)

not predicted at the design stage or a situation that is described by parameters widely
out of the range of parameters considered during the design stage.

A system that has learning capabilities and an evolving model of the real world
will try to adapt and create new rules, to drop rules that are outdated and irrelevant
to the new situation and will at least have a higher chance to succeed. In reality, most
of the complex environments are unpredictable, nonlinear and nonstationary. An

Figure 1.3 Autonomous UGVs (laboratory-scale mobile robot Pioneer3DX) in a convoy
formation outside Infolab21, Lancaster University campus
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autonomous system must have the ability to learn quickly (from a single or few data
samples) and to extract knowledge from the data streams collected by the sensors in
real time, to rank the previously existing knowledge and to compare the relevance
of the new knowledge to the previous knowledge leading to an update of the world
model. The role of specific types of machine learning that are particularly suitable for
online, real-time update of a real world model with evolving (growing or shrinking)
nature is vitally important for the development of truly autonomous systems.

1.3 System Identification – an Abstract Model of the Real World

An autonomous system must have a model of the world (the environment that sur-
rounds the AS and its internal functioning). Usually, this model is in the context of
the goal that the AS must perform. Development of such models is governed by the
system identification (Ljung, 1987), which is a topic usually considered in relation
to control theory. Systems are often considered to be described by a set of (differen-
tial) equations. Alternative representations, for example statistical Bayesian, Markov
models, decision trees, and so on. are also viable world models (see Chapter 2). An al-
ternative that is particularly suitable to represent intelligent systems and knowledge is
the fuzzy rule-based form of representation (to be discussed in Chapter 4). Whichever
framework is used, however, the identification is usually considered in terms of:

a. the structure (with heavy human involvement, usually offline, at the design
stage); and

b. parameters (often automatically, online, during the process of exploitation).

In what follows the concept for each of the two key aspects of identification problem
will be briefly described.

1.3.1 System Structure Identification

The structure of the world model or the system is usually considered to be suggested
by the human expert. It may take the form of:

a. a set of differential equations;
b. transfer function (time or frequency domain);
c. a set of fuzzy rules;
d. a neural network;
e. a stochastic model (e.g. Markov states model), and so on.

In this book, without limiting the concepts, the last three forms will be considered
as examples. The main reason is their suitability to represent human intelligible
knowledge in a granulated form.

System structure in the case of differential equations may comprise of the num-
ber and type of the differential (or difference) equations, the number of inputs and
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outputs. In the case of the transfer function it may include the order and type (e.g.
‘all poles’ or ‘all zeros’). For neural networks (NN) the structure may define layers,
feedback or feedforward, memory, number of inputs, outputs, and other elements
that are optional. For the case of fuzzy systems the structure includes the following:

a. number of fuzzy rules;
b. number of inputs (features) and outputs;
c. type of the membership functions and their position in the data/feature space

(this is not necessary for the specific type of fuzzy rule-based models considered
in Section 4.3);

d. type of antecedents (scalar or vector);
e. type of the consequents (e.g. Zadeh–Mamdani (Zadeh, 1975; Mamdani and

Assilian, 1975) or Takagi–Sugeno (Takagi and Sugeno, 1985));
f. type of connectives used (AND, OR, NOT);
g. type of inference (centre of gravity, ‘winner takes all’, etc.).

These will be further detailed and described in the next chapter.
Structure identification is an open research problem that still does not have a

satisfactory and universally accepted answer. Structure identification can be seen as a
nonlinear optimisation problem (Angelov, Lughofer and Klement, 2005) that aims to
select the best structure in terms of minimum error in prediction/classification/
control. Usually, it is not solved directly, but the structure is assumed to be provided.
In some works the authors apply genetic algorithms, GA (Michalewicz, 1996), genetic
programming, GP (Koza, 1992) and other numerical techniques for (partially) solving
it. In this book a systematic approach will be used that is based on density increment
that relates to the data density and distribution in the data space also taking into
account the time element (shift of the data density). A fully theoretical solution is
difficult, if possible at all.

Figure 1.4 illustrates in a very simplistic form the difference between the proposed
and the traditional approach with respect to the role of the system structure identifi-
cation – in ALS it is part of the automated process, while traditionally it is outside of
the loop of automation.

There are different ways to devise automatically the structure of the model, includ-
ing data space (regular) partitioning (Carse, Fogarty and Munro, 1996), clustering
(offline or online and evolving) (Chiu, 1994; Babuska, 1998; Angelov, 2004a), based
on data density (Angelov, 2002), based on the error (Leng, McGuinty and Prasad,
2005), and so on. The principle behind most of them is the old Latin proverb ‘divide et
impera’ which means ‘divide and conquer’ and leads to decomposition of a complex
problem into (possibly overlapping and interdependent) subproblems or subspaces
of the data space. The key questions that arise are:

� How to divide the problem or data space objectively (based on data density or the
error are two obvious options); note that the traditional criteria for cluster quality,
for example (Akaike, 1970) and so on, are designed to separate clusters well while
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Figure 1.4 The traditional versus the proposed approach

for the purpose of model structure identification the overlap must be tolerated to
avoid abrupt transitions between local models and gaps between them.

� Shall a data sample that is an outlier (which differs significantly from the existing
local models or clusters) be ignored or it may be a start of a new local model (regime
of operation); this problem is much more acute in online and real-time implemen-
tations when the decision must be taken based on the current data samples and no
or little history.

� The optimality of the structure is, generally, a nonlinear problem, and therefore, its
solution is, in principle, possible only numerically and offline; a possible pragmatic
solution is to optimise the parameters subject to a structure that is selected auto-
matically, but the optimality is then conditioned on the assumptions (as in other
existing approaches).

� The dilemma between plasticity and stability – how often the structure can and
should change – if it changes too often the system will lose its robustness; if it
changes very rarely it will lose its sensitivity.

� Ideally, an automated algorithm for model structure identification should not de-
pend on user- or problem-specific thresholds and parameters.

1.3.2 Parameter Identification

The problem of parameter identification is a much more established one (Ljung, 1987).
The aim is to determine the optimal values of parameters of the model/system in
terms of minimisation of the error of prediction/classification/control. If we use a
fuzzy rule-based model as a framework that include parameters of the consequents
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of the fuzzy rules and parameters of the membership functions of the antecedent part
of the rules (to be described and discussed in Chapter 4). If we use the particular
type of fuzzy rule-based model introduced recently by (Angelov and Yager, 2012),
(see Section 4.3) then the antecedent part is nonparametric.

The problem of parameter identification is also an optimisation one, but often can
be considered as a linear or quadratic optimisation that guarantees uniqueness of the
solutions subject to certain constraints. This is the basis of the widely used recursive
least squares (RLS) method (Ljung, 1987). For general, nonlinear cases, they also use
numerical procedures, such as error back-propagation, EBP (Werbos, 1990), other
gradient-based techniques (e.g. conjugate gradients approach), and so on.

1.3.3 Novelty Detection, Outliers and the Link
to Structure Innovation

The topic of novelty (respectively, anomaly) detection is pivotal for fault detection
(Filev and Tseng, 2006) and video-analytics (Elgammal et al., 2002; Cheung and
Kamath, 2004). It has its roots in statistical analysis (Hastie, Tibshirani and Friedman,
2001) and analysis of the probability density distribution. The rationale is that novel-
ties (respectively, anomalies, outliers) significantly differ and their probability density
is significantly lower. Therefore, the test for a data sample to be considered as an
outlier/anomalous is to have a low density.

The problem of system structure identification, especially in real time, is closely
related to the outliers and anomaly detection, because an outlier at a given moment
in time may be a start of a new regime of operation or new local model. In such
case, the structure innovation will lead to increase of the density locally (around the
new focal point). In this book we argue that the data density (local and global) can
be used as an indicator for automatic system structure innovation and identification.
A drop of the global density indicates an innovation; an increase of local density indicates a
consolidation of a new regime of operation/new local behaviour.

1.4 Online versus Offline Identification

Autonomous systems have to be able to process and extract knowledge from stream-
ing data in a so-called online mode. This means that the data stream is being processed
sample-by-sample (here sample also means data item/instant) in a serial fashion, that
is, in the same order as the data item was fed to the ALS without having the entire
data stream/set available from the start. Imagine, a video stream – online processing
(Figure 1.5, right) means processing it frame by frame, not storing (buffering) the
whole video and then processing it offline (Ramezani et al., 2008).

Systems that operate in offline mode may be good in scenarios that are very close
or similar to the ones that they are specifically designed and tuned for. They need,
however, to be redesigned or at least retrained/recalibrated each time when the
environment or the system itself changes (e.g. in industry, the quality of raw materials,
such as crude oil entering a refinery varies; catalysers are being removed or added to
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Figure 1.5 Online and offline modes of operation of a system

the polymerisation tank; hackers change their behaviour when they attack a computer
system, UGV may enter an unknown zone, faults may develop in the subsystems of an
AS, etc.). Offline systems (Figure 1.5, left) work with a historical ‘snapshot’ of the data
stream and require all the previous data, which implies a much higher memory and
computational requirements. In contrast to that, online systems work on a per sample
basis and only require the current data sample plus a small amount of aggregated
information; they do not require all the history (all previously seen data samples) of
the data stream.

The online mode is often related to the real-time operation. It is important to stress
that there is a subtle difference in the sense that an algorithm can be online (in terms
of not storing the whole data sequence and processing data items one-by-one) and yet
it might work slowly enough to be real time (if the real-life process is very fast while
the computer processing unit, CPU is not that fast). In such cases there will be a delay
in the output (prediction, class label, control action) produced by the model/system
with respect to the real-world response. At the same time, a system may operate in a
real-time manner and yet be offline if the sampling rate is extremely low. For example,
in some biomedical problems the sampling (frequency of visits to the doctor and
taking of measurements) can be as low as once every week or even month. In such
cases, the system can learn from the whole previous history, process all previous data
samples iteratively. Since these are extreme cases, in this book the focus will be on
the ability of autonomous systems to learn online and in real time. Moreover, we
will be primarily interested in so-called recursive algorithms that assume no iterations
over past data, no storage/buffering of previous data and in a so-called one-pass
processing mode.

1.5 Adaptive and Evolving Systems

As was already said, an AS should adapt to the environment. The theory of adaptive
systems (Astroem and Wittenmark, 1989) is now a well-established part of control
theory and digital signal processing (Haykin, 2002). It usually is restricted to systems
with linear structures only and, more importantly; it does not consider the problem



JWST237-c01 JWST237-Angelov October 8, 2012 14:59 Trim: 244mm X 168mm Printer Name: Markono

Introduction 11

Adaptive 
systems 

Evolving 
systems 

Figure 1.6 Evolving systems as a superset of adaptive systems

of system structure adaptation. An adaptive system is considered a system with a
fixed, known structure that allows its parameters to vary/be adjusted. In this respect
the concept of evolving systems (Angelov, 2002) as a system with evolving structure
differs significantly. It is true, however, that evolving systems are also adaptive, but
the subject of the adaptation are both system parameters as with the adaptive (in a
narrow sense) systems as well as its structure. In this context, evolving systems can
be seen as a superset of adaptive systems, Figure 1.6.

The area of evolving systems (as described above) that was conceived around
the turn of the century (Angelov and Buswell, 2001; Angelov, 2002; Kasabov and
Song, 2002) is still under intensive development and ‘fermentation’. It is closely
related to (albeit developing independently from) the works on self-organising sys-
tems (Lin, Lin and Shen, 2001; Juang and Lin, 1999) and growing neural networks
(Fritzke, 1994). In the late 1990s and until 2001–2002 the term ‘evolving’ was also
used in a different context – in terms of evolutionary (this will be clarified in the
next section). Since 2002 and especially since 2006 when the IEEE started sup-
porting regular annual conferences and other events (the last one, the 2012 IEEE
Conference on Evolving and Adaptive Intelligent Systems, being in May 2012 in
Madrid) it is used for dynamically evolving in terms of system structure systems. In
2010, the publishing company Springer started a new journal on Evolving Systems
(http://www.springer.com/physics/complexity/journal/12530) and the number of
papers and citations is growing exponentially.

The research area of evolving systems is central to the very notion of autonomous
systems and autonomous learning and this will be made clearer and detailed in the
rest of the book.

1.6 Evolving or Evolutionary Systems

In computational intelligence research evolutionary algorithms (EA), including such
specific examples as genetic algorithms, GA (Goldberg, 1989; Michalewicz, 1996),
genetic programming, GP (Koza, 1992), artificial immune system (Kephart, 1994), and
so on. are computational algorithms that borrow heavily from the natural evolution.
They often use a ‘directed’ random search for solving loosely formulated optimisation
problems. They mimic a specific aspect of the natural evolution that is related to the
population-based genetic evolution that is driven by such mechanisms as mutation,
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Figure 1.7 Human beings are a good example of an ALS that evolves by learning
(new rules) from experience through their sensors using their brain

chromosomal crossover, reproduction, selection. The natural evolution also has the aspect
of individual self-development, especially for the case of human beings (Figure 1.7).
Starting as small babies we do not have any idea about the surrounding world, but
we start to collect data streams through our sensors and soon we start to create rules
using and evolving our brains. We start to recognise what is good and what is bad,
what is dangerous and what is safe, and so on. With time, our rule base grows; some
rules stop being used or become irrelevant or need some adaptation and adjustment
throughout our whole life. Some rules we are taught, some we infer ourselves.

It is interesting to note that the rules we acquire, update or stop using are not
precise, for example ‘IF we lift a bag weighing over 63.241 kg THEN we will get a broken
back’, but they are rather fuzzy, for example. ‘IF we lift heavy loads THEN we may get
a broken back’ or ‘IF it is cold THEN we take a coat’, and so on.

In essence, we self-develop. In this book we propose a systematic approach that
allows building autonomous systems with such capabilities – to self-develop, to learn
from the interaction with the environment and through exploration.

The Oxford Dictionary (Hornby, 1974, p. 358) gives the following definition of
genetic – “a branch of biology dealing with the heredity, the ways, in which char-
acteristics are passed on from parents to off-springs”. The definition of evolving
it gives (p. 294) is “unfolding; developing; being developed, naturally and gradu-
ally”. In brief, despite some similarity in the names, EA differ significantly from the
more recently introduced concept of evolving systems. While genetic/evolutionary
is related to populations of individuals and parents-to-offspring heredity, evolving is
applicable to individual system self-development (known in humans as autonomous
mental development, Figure 1.7). ‘Evolving’ relates more to learning from experience,
gradual change, knowledge generation from routine operation, rules extraction from
the data. Such capabilities are vital for autonomous systems and, therefore, we will
expand this idea in the book.

If we consider a fuzzy rule-based system as a framework, an evolving FRB system
will learn new rules from new data gradually preserving majority of the rules learned
already (Angelov, 2002). This is very similar to the way that individual people learn,
see Figure 1.7. In a similar way to humans, an evolving fuzzy system (EFS) can be
initiated by an initial rule base (in a supervised manner the way we learn from parents
and teachers) or can start learning ‘from scratch’, autonomously.
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1.7 Supervised versus Unsupervised Learning

The very notion of autonomous systems is closely related to the unsupervised learn-
ing and reinforcement learning (Sutton and Barto, 1999). However, semisupervised
learning also has an important part to play because pragmatically no autonomous
system is assumed to be reproductive and out of users’ (human’s) control in terms
of monitoring – remember the famous Azimov’s laws of robotics (Azimov, 1950).
In other words, the level of autonomy of systems that are of practical interests
for industry, including defence and security is 4 or maximum 5a according to
Table 1.1. Examples of systems with lower level of autonomy (1–3) are decision
support systems, DSS (McDonald, Xydeas and Angelov, 2008).

In this book, we are interested in autonomy of the knowledge extraction from
data streams (autonomous learning) that (the same as the overall scheme of an AS,
Figure 1.2 – see the smiley face at the very top of the figure) does not fully exclude the
human user, but reduces his/her role to bare provision of goals and monitoring plus
the option to abort the operation on safety grounds (autonomy level 5a, see Table 1.1).
Provision of goals itself can be a source of definition of criteria for optimisation and
learning objectives. Most often the latter are related to minimisation of the prediction
error, maximisation of the classification rate, and so on.

The autonomous learning (AL) that can enable AS to adapt and evolve should
acquire more than a simple input–output mapping that is typical for traditional
(machine learning, fuzzy systems, neural networks, etc.) model learning techniques.

Table 1.1 Autonomy levels adapted from (Hill, Crazer, and Wilkinson, 2007)

Level Autonomy Authority Interaction

5b Full Machine monitored
by human

Machine does everything
autonomously

5a Machine chooses action, performs
it and informs human

4b Action unless
revoked

Machine backed up
by human

Machine chooses action and
performs it unless human
disapproves

4a Machine chooses action and
performs it if human approves

3 Advise and, if
authorised, act

Human backed up
by machine

Machine suggests options and
proposes one of them

2 Advice Human assisted by
a machine

Machine suggests options to
human

1 Advise only if
requested

As above when
requested

Human asks machine to propose
actions and human selects

0 None Human Whole task done by human except
for actual operation
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Instead, the emphasis in AL is on building and constantly monitoring the quality
and updating the structure of the system. The extracted knowledge usually (but not
necessarily) is in the form of human interpretable, fuzzy rules (Hopner and Klawonn,
2000). This learning is ‘on the fly’ starting from few or even a single data sample, if
needed, adapting quickly, but also being able to accommodate previous knowledge
(if it exists) and fuse it with the newly acquired knowledge.

The most effective scheme proved to be the combination of unsupervised learning
for model structure identification and semisupervised learning for parameter adjust-
ment where the supervision comes from the data stream but with a time delay and
not necessarily after each time step. The key in this scheme that is very much like
the scheme of adaptive filtering (Haykin, 2002) and adaptive control (Astroem and
Wittenmark, 1989) is the timing. The data stream often provides both the input and
output in terms of the AS but at the moment of prediction/classification/control ac-
tion generation a value can be unavailable (thus, the need to be predicted) while at the
next time instant (see Figure 1.5) these values (if available and measured) can serve
to feed back the learning in a supervised form. In this way, the supervised learning
can also be considered as an automatic process that is related more to the online form
of operation.

For example, if a system automatically models/infers/predicts the value of the
outside temperature tomorrow or the exchange rate tomorrow based on some mea-
surements and previous observations (history) then these predictions will be very
useful until we get the real/true value the next day (so, in some 23–24 hours we can
benefit from these predictions). The next day, we can use, however, the real/true val-
ues (if they are available because it may be available only sometimes, not necessarily
every day). If and when the true values are available an autonomous learning system
will be able to adjust and evolve without any direct human intervention.

1.8 Structure of the Book

The book is structured in three main parts preceded by this introductory chapter
and closed by an Epilogue. This introductory chapter provided the motivation, back-
ground, a brief review of the previous and existing research work and publications
in related areas as well as sets up some of the basic terminological definitions in the
context of ALS.

The first part is dedicated to the systematic foundations of the methodology
on which the ALS is based, including basics of probability theory (Chapter 2),
pattern recognition and machine learning and especially clustering and classifica-
tion (Chapter 3), the basics of fuzzy systems theory including neurofuzzy systems
(Chapter 4).

Part II describes the methodology of autonomous learning systems. Chapter 5
introduces the evolving systems covering topics like data space partitioning, prox-
imity measures, clustering, online input variable selection, monitoring the quality,
utility and age of clusters, and so on. Chapter 6 describes the methodology for
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autonomous learning of the parameters of evolving systems stressing the difference be-
tween local and global learning methods. It also describes multi-input–multi-output
(MIMO) systems, the inference mechanisms and methods for autonomous normali-
sation and standardisation of the data streams that the ALS processes online. In this
chapter the fuzzily weighted recursive least squares (wRLS) method is described in
the context of various possible learning modes. The issue of outliers and drift are
discussed in the context of robustness.

In Chapter 7, the autonomous predictors, estimators, and filters are described. They
are powerful tools for addressing time-series modelling and a range of other related
problems of adaptive estimation and filtering. For example, the methodology behind
one of the very interesting applications of ALS – autonomous sensors, AutoSense,
is described in more detail in this chapter form the theoretical point of view and is
revisited in Part III of the book from the application point of view.

Chapter 8 describes the autonomous classifiers using AutoClassify as an example
that is based on evolving clustering and fuzzy rule-based systems.

Chapter 9 outlines autonomous learning controllers, AutoControl based on the
concept of evolving fuzzy rule-base and the relatively old concept of indirect adaptive
control.

Finally, Chapter 10 closes Part II with a discussion of collaborative ALS – a topic that
has large potential for future development mainly in robotics, defence and related
areas of security, surveillance, aerospace, and so on.

Finally, Part III is dedicated to various applications of the ALS with the clear
understanding that the list of applications that the author and his students and
collaborators have developed during the last decade is open for expansion. Indeed, a
growing number of publications by other authors in the area of evolving, autonomous
learning system, the regular IEEE conferences and events on this topic illustrate the
huge potential for further growth. The adoption by leading industrial companies of
these ideas demonstrates the potential which these pioneering concepts have for the
Economy and the Society.

Chapter 11 describes the application aspects of AutoSense to a range of products
(e.g. kerosene, gasoil, naphta) of a real large-scale oil refinery located in Santa Cruz de
Tenerife, owned and run by CEPSA, Spain. One particular problem discussed in this
chapter that has safety implications is the autonomous prediction of inflammability
index (e.g. Pensky-Martens or Abel (Ishida and Iwama, 1984)) in real time. In the
same chapter another range of application studies (courtesy of Dr. Arthur Kordon,
The Dow Chemical, Texas, USA) are described. These include chemical compositions
and propylene.

Chapter 12 is focused on the application issues of AutoClassify and AutoClus-
ter in mobile robotics. The illustrative examples and video material are available
at www.wiley.com/go/angelov. Both landmark identification and recognition and
navigation and control subtasks were considered.

Chapter 13 describes applications of the recursive density estimation (RDE) ap-
proach to video surveillance applications (autonomous novelty detection and object
tracking in video streams) that the author and his students introduced recently.
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Chapter 14 provides a description of the application of the proposed ALS approach
to model evolving user behaviour. This applies to users of computers, home appliances,
the Internet, and so on. Most of the existing approaches ignore the aspect of dynamic
evolution of the behaviours of the users and considers them as ‘averaged’ statistics
very much in the sense of ‘one size fits all’ paradigm. The proposed ALS approach
allows personalisation and learning specific users) in real time.

The book also provides a source of basic mathematical foundations used in the text,
discusses the problems of real-life applications and will be very useful to be used with
the software package available at www.entelsensys.com.

Additional teaching material (slides) that can be used for short courses or lectures
can also be downloaded from the above website.


