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Preliminary Notions

1.1 Aerodynamic Force and Moment

An aircraft in flight is subject to several forces: gravity causes the weight force; the propulsion
provides a thrust, and the air the aerodynamic force A.1

The central problem of aerodynamics is the prediction of the aerodynamic force; as important
is its line of action, or equivalently its moment.

The motion of the aircraft through the air forces the air to move, setting up aerodynamic
stresses. In turn, by Newton’s Third Law of Motion, the stress in the air is transmitted back
across the surface of the aircraft. The stresses include pressure stresses and viscous stresses.
The aggregates of the stresses on the surface are the aerodynamic force and moment.

1.1.1 Motion of the Frame of Reference

Newton’s equations of motion are unchanged if the frame of reference is replaced with one
moving at a constant relative velocity; that is, the aerodynamic force can be computed or
measured equally well by an observer in the aircraft in steady flight as by an observer on
the ground. In the aeroplane’s frame of reference, it’s stationary and the air moves at a
velocity −V .

The equivalence is very useful in aerodynamics; e.g. instead of mounting models of wings
on force-measuring apparatus atop an express train as John Stringfellow did in the first half of
the nineteenth century, the aerodynamic force can be

• measured in a wind tunnel where a model of the aircraft is held fixed in an air-stream; or
• computed by a numerical solution of the governing equations on a grid fixed to the aircraft

surface.

Of course, other factors are involved in the interpretation of wind tunnel data (e.g. the effect
of the walls), or computational fluid dynamics (e.g. grid dependence).

1 Herein bold denotes a vector, italic a variable, and so bold italic a variable vector.
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1.1.2 Orientation of the System of Coordinates

Various choices of coordinate system in the frame of reference are possible; e.g.

• a geocentric system with coordinates latitude, longitude, and altitude;
• a Cartesian system defined by the instantaneous velocity, curvature, and torsion of the

flight; or
• a Cartesian system fixed to the aircraft, moving and rotating with it.

Although all physical results obtained must be independent of the choice of orientation, in
aerodynamics we almost always use the last of these, after carefully and explicitly defining it
in each case.

Most aircraft have an approximate plane of symmetry naturally dividing the craft into left
and right halves. (This symmetry is deliberately broken during independent deployment of
the left and right control surfaces.) The reference line is always chosen within this plane, and
generally approximately coincides with the long direction of the craft and the usual direction
of travel.

Our system of coordinates then consists of:

• the aircraft reference line (x, longitudinal or axial, positive ‘downstream’ or ‘behind’ for
the usual direction of flight);

• one axis at right angles to the reference line but still in the plane of symmetry (y, positive
in the direction considered up by seated pilots and passengers); and

• a third perpendicular to the plane of symmetry (z, spanwise, positive left).

These definitions of ‘backwards’, ‘upwards’, and ‘leftwards’ for increasing x, y, and z give
a right-handed coordinate system.

1.1.3 Components of the Aerodynamic Force

In simple cases, symmetry considerations imply that the aerodynamic force acts parallel to
the plane of symmetry. In such cases, the aerodynamic force A can be resolved into two
perpendicular component forces in two different ways.

First, A = L + D. The drag D is opposed to the direction of motion V of the aircraft (or
parallel to the direction of the airstream relative to the aircraft, −V ). The lift L is directed at
right-angles to the direction of motion.

Second, we have the simple Cartesian components: A = Axi + Ayj; here Ax and Ay are the
longitudinal and normal components. The two decompositions are illustrated in Figure 1.1.
Remember that in both diagrams, the horizontal x-coordinate corresponds to the (backward)
aircraft reference line and is not necessarily the same as horizontal with respect to the ground.

1.1.4 Formulation of the Aerodynamic Problem

The basic task of aerodynamics is to predict the aerodynamic force A, or the lift and drag
forces.
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Figure 1.1 Resolving the aerodynamic force into (a) lift and drag and (b) Cartesian components

Let’s see what we can say about this problem without knowing the details of the air flow
around the aircraft.

We assume:

• steady flight in a straight line;
• that the air extends to infinity in all directions around the aircraft, and that the air far from

the aircraft is otherwise undisturbed.

What then constitutes a specification of the problem?

• We need to know the geometry of the aircraft.
• We need to know the direction and magnitude of the aircraft velocity (or airstream velocity

relative to the aircraft).
• We need to know the properties of the air.

These three items are considered in Sections 1.2–1.4. In Section 1.5, we see how dimensional
analysis can be used to reduce the size of the problem, still without recourse to any detailed
fluid mechanics. Finally, in Section 1.6, we look at a real aerodynamical study and see how it
incorporates the preliminary notions presented in this chapter.

1.2 Aircraft Geometry

Aircraft have complicated shapes and require a lot of numbers for their complete specification.
A number of common terms are in use, e.g. the span and chord of the wings, but these don’t
always have standard definitions. For example, Milne-Thomson (1973) lists several definitions
of the chord of a two-dimensional wing section:

As a general definition the chord of any profile is an arbitrary fixed line drawn in the plane of the
profile.
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(a)

(b)

(c)

Figure 1.2 Definitions of wing section chord: the line joining the leading edge centre of curva-
ture to the trailing edge (a); the line joining the ends of the camber line (b); and the double-tangent
to the lower surface (c). The NACA 2412 aerofoil (a, b) has no double-tangent to the lower sur-
face, so (c) is illustrated for a Clark Y profile. Dashed curve is the camber line and dot-dashed the
chord

The chord has direction, position, and length. The main requisite is that in each case the chord
should be precisely defined, since the chord enters into the constants which describe the aerodynamic
properties of the profile.

The official definition is the line which joins the centres of the circles of curvature of minimum
radius at the nose and tail.

Another definition is the longest line which can be drawn to join two points of the profile.
A third definition which is sometimes convenient is the projection of the profile on the double

tangent to its lower surface (i.e. the tangent which touches the profile at two distinct points).
This definition fails if there is no such point.

A fourth definition was used by NACA: NACA defined wing sections relative to a given
camber line (actually a curve) and then defined the chord as the straight line joining its ends.
For many wing sections, this will coincide at least approximately with the second of Milne-
Thomson’s definitions.

The definitions are illustrated in Figure 1.2. Notice that, apart from the double-tangent, the
other definitions give similar results; this is true for most typical aerofoils.

All of these are or have been in use, and we can do no better than warn of this and stress
that while how the chord is defined is relatively unimportant, it is essential that in each case
it be defined clearly and precisely. A similar state of affairs persists with regard to the other
dimensions of wings. Here we provide a list of common terms with rough definitions; see also
the Glossary and Section 1.8, Further Reading.

1.2.1 Wing Section Geometry

Of particular importance in the study of aerodynamics, as we shall see in Chapters 2–8, are
the two-dimensional sections of the wing parallel to the aircraft’s plane of symmetry; these are
called wing sections or aerofoils. Wing sections are parameterized by:
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Figure 1.3 NACA 2412 wing section, showing: the camber line (dashed); chord defined as its se-
cant (dot-dashed); leading edge circle of curvature (solid); chord length c; maximum thickness ratio t;
maximum camber ratio m; and chordwise fractional position of maximum camber p

chord As above (Section 1.2); see Figure 1.2.
maximum camber The camber line is the curve lying halfway between the upper and lower

surfaces. The maximum camber is its greatest distance from the chord. The ‘halfway’ can
be measured perpendicular to either the chord or the camber line.

chordwise location of maximum camber
maximum thickness measured perpendicular to either the chord or camber line
location of maximum thickness
leading edge radius of curvature
trailing edge radius of curvature or angle if the radius is zero

These concepts are illustrated in Figures 1.2 and 1.3.

1.2.2 Wing Geometry

The wings are parameterized by:

span b, the length of the line joining the tips of the wings, being the points on the wings
furthest from the plane of symmetry

planform area the projection of the wings on the spanwise–longitudinal (z–x) plane, includ-
ing or excluding the area where the wings and fuselage coincide or meet

root chord cr, the chord where the wings meet the fuselage or c(0), the chord of the wing
section in the plane of symmetry (projected, if required)

tip chord ct = c(±b/2) the chord of the wing sections furthest from the plane of symmetry;
zero for a delta-wing

average chord c̄, the ratio of the planform area to the span
aspect ratio , the ratio of the span to the average chord
taper ratio the ratio of the tip and root chords; zero for a delta-wing, and typically ≤ 1
sweep angle of the wing backward from the spanwise (z) axis, which is perpendicular to the

root chord, can be measured at leading edge, trailing edge, or one-quarter of the way along
the chord

which are all properties of the wing’s planform; i.e. its projection on the z–x plane. See
Figure 1.4.
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Figure 1.4 Planform of a wing, showing a chord c(z), the root chord cr , the span b, and the angle of
sweep. The plan projection of all chords are parallel. The dashed line joins the quarter-chord points. In
this wing, the tip chord is zero

Some additional parameters describe three-dimensional properties:

dihedral angle the upward tilt of the wings relative to the longitudinal–spanwise plane (called
anhedral if negative)

twist variation of the angle of the chord to the root chord along the span, called wash in or
out as the angle increases or decreases towards the wing tip.

1.3 Velocity

As noted in Section 1.1.2, a reference line for the aircraft must be defined to specify the
coordinate system. The usual choice for a whole wing or aircraft is that of the root chord; for
a two-dimensional study of a wing section, the section’s chord may be used.

For two-dimensional motion (parallel to the plane of symmetry), the angle α between the
velocity and the aircraft reference direction is called the geometric angle of incidence or
geometric angle of attack. Note that it depends on the definition of the reference direction. The
sign of the angle is that of the y-component of the velocity of the air relative to the aircraft.

In terms of the incidence, and referring to Figure 1.1, the axial and normal components of
the aerodynamic force are related to the lift and drag by

L = Ay cos α − Ax sin α (1.1a)

D = Ax cos α + Ay sin α. (1.1b)

1.4 Properties of Air

After density, the two most important properties of air in aerodynamics are its compressibility
and its viscosity.

1.4.1 Equation of State: Compressibility and the Speed of Sound

The equation of state of a material relates its pressure and density. A material resists changes in
density by changing its pressure. The relevant material property is the compressibility. Using a
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Taylor series for the pressure as a function of density for small changes in density about some
reference level ρ0,

p(ρ) ≈ p(ρ0) + (ρ − ρ0)p′(ρ0)

≡ p(ρ0) + ρ − ρ0

ρ0

1

κ
(1.2)

where κ ≡ 1/ρ0p
′(ρ0) is the compressibility. (The Taylor series approximation to a function

matches at a given point first the value, then the derative, then the second derivative, and so on.)
Sound waves travel through the material with a speed a = 1/

√
ρ0κ. It is often more convenient

to use the speed of sound a as the parameter rather than κ, and we will do so here. In terms of
a, the first-order Taylor series approximation to pressure–density Equation (1.2) is

p(ρ) ≈ p(ρ0) + (ρ − ρ0)a2.

The Adiabatic Speed of Sound in an Ideal Gas

The compressibility of a gas depends on how quickly the compression occurs; specifically,
how the temperature varies, or is allowed to vary, during the compression. If the compression
is very fast, there may be insufficient time for heat transfer between the parcel of gas of interest
and its surroundings; this adiabatic compression applies to the passage of sound waves.

The work done during expansion by a unit mass is pδ(1/ρ), and the increase in internal
energy is cvδT . Without heat transfer, the conservation of energy implies that these sum to
zero and so dT = p dρ/cvρ

2.
This can be applied to the differential of the thermal equation of state of an ideal gas

p = ρRT, (1.3)

which besides the thermodynamic properties of pressure p, temperature T , and density ρ,
involves the gas constant R which for air is about 287.0 J/kg K.

dp = R(T dρ + ρ dT )

= R(T dρ + p dρ/cvρ)

= R(T + p/cvρ) dρ

ρ dp = pR(1/R + 1/cv) dρ

= p(1 + R/cv) dρ

= pγ dρ

κ = pγ

where we have defined the dimensionless number γ ≡ 1 + R/cv, a property of the gas, which
is independent of temperature and pressure insofar as the gas constant R and specific heat cv
are. When we return to this topic in more detail in Section 18.3.5 and Equation (18.9) we will
see that γ is the ratio of the isobaric and isochoric specific heat coefficients.

Thus,

a = 1√
ρκ

=
√

γp

ρ
=
√

γRT , (1.4)
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Listing 1.1 speed of sound: compute the speed of sound in air in m/s at a temperature (or array
of temperatures) in Kelvin.

function a = speed of sound (T), a = sqrt (1.4 * T * 287.0);

Temperature, T / ºC 
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Figure 1.5 Variation of the speed of sound in air with temperature at atmospheric pressures, according
to Equation (1.4)

The theoretical value of γ for diatomic gases is 7
5 , and this is a good approximation for

air, which, as far as its mechanical properties are concerned, largely consists of diatomic
nitrogen and oxygen. Thus the speed of sound depends only on temperature, and at T = 15◦C
= 288.15 K is a

.= 340 m/s. Values at other (absolute) temperatures are conveniently calculated
with a one-line Octave function (Listing 1.1), which was used to generate Figure 1.5.

1.4.2 Rheology: Viscosity

The constitutive law of a material relates the stress and stain. A material resists deforma-
tion by changing its stress. A fluid has no preferred shape, but resists the rate of change
of shape.

Rheology in general is very complicated, but a good model for air is the linearly viscous fluid,
for which the stress is the sum of an isotropic part (the pressure) and a part proportional to the
rate of strain. Even for the linearly viscous fluid the constitutive law is complicated, as we shall
see in Section 15.2.2. The relevant point here is that the constitutive law introduces another
parameter: the coefficient of dynamic viscosity, μ, which has SI units of Pa s (or kg m−1 s−1).



Preliminary Notions 11

Listing 1.2 viscosity.m.

function m = viscosity (T)
m = 1.495e-6 * sqrt (T) ./ (1 + 120 ./ T);
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Figure 1.6 Variation of the coefficient of dynamic viscosity of air with temperature at atmospheric
pressures, according to Equation (1.5)

Correlating the Viscosity of Air with Sutherland’s Law

For sub-hypersonic aerodynamics within the lower parts of the atmosphere, it is usually ade-
quate to take the viscosity of air as depending only on the temperature. A simple correlation
is the Sutherland law

μ = S
√

T

1 + C
T

(1.5)

where T is the absolute temperature and S and C are coefficients determined from correlation
with experiments. Reasonable values are S = 1.495 μPa s/K−1/2 and C = 120 K. This is coded
in Octave as shown in Listing 1.2 and used to plot Figure 1.6.

Kinematic Viscosity

It is often more convenient to work with the coefficient of kinematic viscosity defined by

ν = μ

ρ
(1.6)

which evidently has SI units m2/s.
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1.4.3 The International Standard Atmosphere

For convenience in comparing data gathered at different times and places, an International
Standard Atmosphere has been defined. This specifies, among other properties, the pressure
p, density ρ, speed of sound a, and coefficients of dynamic μ and kinematic ν viscosity as
functions of altitude. These values are widely tabulated, but also easily computed.

The lowest layer of the International Standard Atmosphere is the troposphere. It begins at
sea level at 15◦C and 101.325 kPa and extends upwards to the base of the tropopause at 11 km
with the temperature decreasing by 6.5 K/km. The next lowest layer, up to 20 km, is the lower
part of the stratosphere, which is isothermal.

The variation of pressure and density with height is then computed from:

• the ideal gas Equation (1.3), relating pressure p, temperature T , and density ρ; and
• hydrostatic equilibrium, relating pressure, density, and altitude y.

1.4.4 Computing Air Properties

The speed of sound and viscosity can be computed directly from Equations (1.4) and (1.5),
respectively, and the temperature, so they’re easy. Computing the pressure and density requires
the solution of the differential equation of hydrostatic equilibrium – which is essentially what
remains of the Euler Equations (2.9) in the absence of velocity:

dp = −ρg dy. (1.7)

Troposphere

The temperature in the standard troposphere is defined to be

T (y) = T (0) − Γy, (1.8)

where T (0) = 15◦C = 288.15 K is the standard temperature at sea-level, and Γ = 6.5 K/km
is the standard constant lapse rate.

Expressing the density in terms of the ideal gas Equation (1.3) in the hydrostatic balance
with dy = −dT/Γ

dp = pg

RTΓ
dT

d ln p = g

ΓR
d ln T

p

p(0)
=
{

T

T (0)

}g/ΓR

,

where p(0) = 101325 Pa = 1 atm is the standard atmospheric pressure at sea level.
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Listing 1.3 atmosphere.m.

function [p, T, rho, a, mu] = atmosphere (y)

g = 9.80665; R = 287.0; cpcv = 7/5;
T0 = 15 + 273.15; p0 = 101325e0;
L = 6.5e-3; yt = 11e3; top = 20e3;

troposphere = y <= yt;
strat = ˜troposphere & (y <= top);
T = NaN (size (y)); p = T;

T(troposphere) = T0 - L * y(troposphere);
Ts = T0 - L * yt;
T(strat) = Ts;

p(troposphere) = p0 * (T(troposphere) / T0) .ˆ (g/L/R);
pt = p0 * (Ts / T0) ˆ (g/L/R);
p(strat) = pt * exp (g/R/Ts * (yt - y(strat)));

rho = p ./ (R * T);
a = speed of sound (T);
mu = viscosity (T);

Stratosphere

The lower part of the standard stratosphere is isothermal, so the hydrostatic balance reduces to

dp = −ρg dy

= −p

RT
g dy

d ln p = −g

RT
dy

p

pt
= exp

{ g

RT
(yt − y)

}
.

These properties for these two lowest layers of the atmosphere can be computed with an
Octave function (atmosphere.m, in Listing 1.3), as shown in Figure 1.7.

1.5 Dimensional Theory

Following the considerations in Section 1.1.4, we expect that the aerodynamic force A for
steady symmetrical flight in a straight line is a function of the airspeed and incidence, the
aircraft geometry, and the air properties. This involves a lot of parameters.
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Figure 1.7 Relative variation of the lower International Standard Atmosphere with altitude

First, consider just the two-dimensional flow over a wing section of given shape but variable
size parameterized, say, by its chord length c. Then the lift (per unit span) is

	 = f (V, α, c, ρ, μ, a).

This is still a lot of parameters to have to vary in an experimental program. Some further
reduction can by achieved using dimensional theory.

An equation like ‘two metres plus three seconds equals five kilograms’ doesn’t make any
sense. We can only add or compare for equality quantities that have like units. However, we
can multiply different physical quantities; e.g.

1 kg × 9.8 m/s = 9.8 N

does make sense, since 1 N ≡ 1 kg m/s2.
Say we attempt to correlate the aerodynamic force by a functional form like

	 =
∑

kpqrstuV
pαqcrρsμtau

where p, q, . . . , u are undetermined powers and kpqrstu is a dimensionless coefficient. Then
every term in the summation must have the same units as 	:

N

m
= (m/s)p(−)q(m)r(kg/m3)s(Pa s)t(m/s)u.

Reduce all derived units—those except the kilogram, metre, and second—to the fundamen-
tal ones using N = kg m/s2 and Pa = kg/m s2, and equate powers of kg, m, and s. This
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leads to

kg

s2 = (m/s)p(−)q(m)r(kg/m3)s(kg/m.s)t(m/s)u

= mp

sp
(−)qmr kgs

m3s

kgt

mtst

mu

su

= mp+r−3s−t+ukgs+ts−p−t−u

so

for kg: s + t = 1 (1.9a)

for m: p + r − 3s − t + u = 0 (1.9b)

for s: − u − p − t = −2. (1.9c)

This is three equations in five unknowns, so we have two free parameters; say t and u. In terms
of them, the solution for the other three is s = 1 − t, p = 2 − t − u, and r = 1 − t. Then the
formula for the force is

	 =
∑

kqtuV
2−t−uαqc1−tρtau

=
∑

kqtuV
2αqcρ

(
μ

ρVc

)t ( a

V

)u

where the indices q, t, and u remain arbitrary. Divide through by ρV 2c to get

	

ρV 2c
=
∑

kqtuα
q

(
μ

ρVc

)t ( a

V

)u

.

Define

C	 ≡ 	
1
2ρV 2c

(coefficient of lift) (1.10)

Re ≡ ρVc

μ
≡ Vc

ν
(Reynolds number) (1.11)

Ma ≡ V

a
(Mach number). (1.12)

These three quantities have no units: i.e. are pure numbers or dimensionless quantities. Then

C	 = 2
∑

kqtuα
qRe−tMa−u,

so that the lift coefficient must depend only on the incidence and Reynolds and Mach numbers

C	 = C	(α, Re, Ma).

Similarly, for the drag coefficient

Cd = d
1
2ρV 2c

= Cd(α, Re, Ma),

where d is the drag per unit span.
In general, Buckingham’s 
 theorem states that a function of n parameters involving d

fundamental dimensions (e.g. mass, length, time) can be reduced to a dimensionless function
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of n − d dimensionless parameters. Here we reduced the lift correlation formula from n = 6
parameters to n − d = 6 − 3 = 3.

We see that the Reynolds number represents the influence of viscosity, and the Mach number
the influence of compressibility.

The same result can also be obtained by nondimensionalizing the full equations governing
the fluid motion: the Navier–Stokes equations.

To consider more general problems (e.g. other wing section shapes) we need more param-
eters. These should also be dimensionless, for example, quantities with dimensions of length
like

• maximum camber
• position of maximum camber
• maximum thickness
• position of maximum thickness

are usually introduced using their ratio to the chord length, as in Figure 1.3.
Another advantage of working with dimensionless quantities is that they have the same

value, regardless of whether the underlying dimensional quantities are measured in Imperial,
SI, or whatever other system of units.

1.5.1 Alternative methods

The 
 theorem can be exploited to derive simpler procedures for finding the dimensionless
parameters. A popular one is the Hunsaker–Rightmire method; here we present another, taken
from Bradshaw (1964).

For each of the relevant dimensions, e.g. mass, length, and time, choose a quantity involving
that dimension; e.g. ρ for mass, V for time, and c for length. Then take each of the remaining
quantities and multiply or divide by an appropriate power of each of these in turn to eliminate
the dimensions. Thus, writing [=] to indicate dimensional equivalence,

	

ρ
[=]m3.s−2

	

ρV 2 [=]m

	

ρV 2c
[=]1,

which leads us to the lift coefficient. Operating similarly on μ and a would lead us to the
Reynolds and Mach numbers, respectively.

1.5.2 Example: Using Octave to Solve a Linear System

Although the system of three linear Equations (1.9a) in five variables was easy enough to solve
by hand, this also makes it ideal for demonstrating the use of Octave for these problems. Much
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larger systems will be encountered later in the lumped vortex (Chapter 7), panel (Chapter 8),
and vortex lattice (Chapter 14) methods and they will really require automatic computation.

First, let us rewrite the three Equations (1.9a) as a single matrix equation.

⎡
⎢⎣

0 0 1 1 0

1 1 −3 −1 1

−1 0 0 −1 −1

⎤
⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p

r

s

t

u

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎨
⎪⎩

1

0

−2

⎫⎪⎬
⎪⎭ (1.13)

Then partition the five variables into those remaining free (t and u) and those that will be
expressed in terms of them (p, r, and s).⎡

⎢⎣
0 0 1

1 1 −3

−1 0 0

⎤
⎥⎦
⎧⎪⎨
⎪⎩

p

r

s

⎫⎪⎬
⎪⎭+

⎡
⎢⎣

1 0

−1 1

−1 −1

⎤
⎥⎦
{

t

u

}
=

⎧⎪⎨
⎪⎩

1

0

−2

⎫⎪⎬
⎪⎭

Now, hoping that the square matrix at the left is nonsingular, left-multiply through by its
inverse. (If it were singular this step would fail, which would indicate that the partitioning
should be reconsidered; this doesn’t apply in this example.)⎧⎪⎨

⎪⎩
p

r

s

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

0 0 1

1 1 −3

−1 0 0

⎤
⎥⎦

−1⎛
⎜⎝
⎧⎪⎨
⎪⎩

1

0

−2

⎫⎪⎬
⎪⎭−

⎡
⎢⎣

1 0

−1 1

−1 −1

⎤
⎥⎦
{

t

u

}⎞⎟⎠ (1.14)

Carrying out the matrix solutions (omitting the details here since it will shortly be redone
automatically in Octave using its backslash operator)⎧⎪⎨

⎪⎩
p

r

s

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

2

1

1

⎫⎪⎬
⎪⎭−

⎡
⎢⎣

1 1

1 0

1 0

⎤
⎥⎦
{

t

u

}
=

⎧⎪⎨
⎪⎩

2 − t − u

1 − t

1 − t

⎫⎪⎬
⎪⎭ , (1.15)

which is exactly the answer obtained previously.
The matrix from Equation (1.13) can be set up and then Equation (1.14) executed in Octave

quite directly, as shown in Listing 1.4, with output in Listing 1.5.

Listing 1.4 Octave code for solving the 5 × 3 linear system, implementing Equation (1.14) for
reducing the number of governing parameters from 5 to 3.

A = [ 0, 0, 1, 1, 0;
1, 1, -3, -1, 1;
-1, 0, 0, -1, -1];

bound = 1:size (A, 2) <= size (A, 1);
A(:,bound) \ [1; 0; -2]
A(:,bound) \ A(:,˜bound)
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Listing 1.5 Octave output for Listing 1.4, being the 3 constants and 3 × 2 coefficients in
Equation (1.15).

ans =
2
1
1

ans =
1 1
1 0
1 0

1.6 Example: NACA Report No. 502

Here we look at an example of an actual wind-tunnel study of the aerodynamic force on a
wing.

Silverstein A 1935 Scale effect on Clark Y airfoil characteristics from NACA full-scale wind-tunnel
tests. Report 502, NACA.

It exhibits many of the points noted above.
Noting discrepancies in previously published wind-tunnel data, Silverstein (1935) carried

out a new set of force measurements on a wing in a wind-tunnel, using different airstream
speeds V , wing sizes (varying chord length c and span b), and geometric angle of incidence α.

Silverstein (1935, table I) defines the geometry of the Clark Y wing section using the
dimensionless ordinates of the upper yU and lower yL surfaces as functions of the dimensionless
distance along the chord. Using this data, reproduced here in Table 1.1, we can reconstruct the
profile and the camber line, as in Figure 1.8. We see that:

• The maximum camber is about 6% of the chord length, and occurs about 30% along the
chord from leading to trailing edge.

• The third of Milne-Thomson’s definitions of chord has been used: a line tangent to the
lower surface at two points. Note that if, instead, the chord had been defined as the straight
line joining the ends of the camber line, the chord would have a different angle, and so the
geometric incidence would be modified for the same airstream.

• The coordinates are all normalized by the chord.

Although the airspeed, chord length, and wing span were all varied, Silverstein enables easy
and meaningful comparison between the results of different runs by quoting and presenting
them in terms of the dimensionless Reynolds number and coefficient of lift (see e.g. his figure 5).
Also, although Silverstein measured airspeed in miles per hour and chord length in feet, the
dimensionless numbers are exactly the same as if he had used SI units.
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Table 1.1 Upper and lower surface ordinates for
the Clark Y aerofoil.

100x/c 100yU/c 100yL/c

0 3.50 3.50
1.25 5.45 1.93
2.5 6.50 1.47
5 7.90 0.93
7.5 8.85 0.63

10 9.60 0.42
15 10.68 0.15
20 11.36 0.03
30 11.70 0.00
40 11.40 0.00
50 10.52 0.00
60 9.15 0.00
70 7.35 0.00
80 5.22 0.00
90 2.80 0.00
95 1.49 0.00

100 0.12 0.00

Source: After Silverstein (1935, table I).

Figure 1.8 The Clark Y profile, from Silverstein (1935, table I); the upper nodes are marked with plus
signs

1.7 Exercises

1. A wing has span b and root chord cr, compute the planform area, mean chord, and aspect
ratio if the planform is
(a) elliptic;
(b) triangular, with zero tip chord;
(c) trapezoidal, with taper ratio t.

2. Invert Equations (1.1a) and (1.1b) to obtain the Cartesian components.
Ans.:

Ax = D cos α − L sin α

Ay = D sin α + L cos α.
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3. In the Introduction to NACA Report No. 463, Stack (1933) wrote

The advantages of model testing as an aid to the solution of full-scale problems are often
neutralized by the inaccurate reproduction of the full-scale flow in the model test. The conditions
which must be fulfilled in the model test so that the results may be directly applicable to the
full-scale problem are twofold. First, the model must be geometrically similar to the full-scale
object – a condition usually obtained – and second, the model flow pattern must be similar
to the full-scale flow pattern – a condition generally not fulfilled. The principal factors that
determine flow similarity and the Reynolds nuber ρVl/μ and the compressibility factor V/Vc

where Vc is the velocity of sound in the gas.

To what quantity in Section 1.5 does the ratio V/Vc correspond?

4. Consider a wing at 12◦ incidence. The lift and drag coefficients are 1.2 and 0.1092,
respectively. Calculate the axial and normal force coefficients. (These figures are from
Silverstein 1935, table II.)

5. (a) If Re = 1.12 × 106 for a wing section of chord c = 4 ft, what must the air-speed be,
assuming sea-level air? (Again, these figures are from Silverstein 1935, table II.)

(b) What would the free-stream Mach number have been?
(c) If the chord and span were c = 4 ft and b = 24 ft, the wing-planform was rectangular,

and the lift and drag coefficients were as given in Exercise 4, what must the lift and
drag forces have been?

(d) What would the Reynolds number be in water at the same speed?
(e) What speed in water would give the same Reynolds number?

6. Nondimensionalize the two-dimensional incompressible Navier–Stokes equations for con-
stant density and viscosity:

∂u

∂x
+ ∂v

∂y
= 0

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ μ

(
∂2u

∂x2 + ∂2u

∂y2

)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ μ

(
∂2v

∂x2 + ∂2v

∂y2

)
.

If the velocity is normalized by q∞ and the coordinates by c, how should the pressure
be nondimensionalized if the pressure term is to remain finite as the Reynolds number
Re ≡ ρq∞c/μ tends to: (a) 0; (b) ∞.

7. Golf balls (which have a standard minimum diameter of 42.7 mm) can exceed 300 km/h
when driven, although recreational players generally achieve less than half this. What are
the Reynolds and Mach numbers of the ball under these conditions, near sea level in the
standard atmosphere?

8. The normal altitude of Qantas’s A380-800 passenger aircraft is 10 700 – 13 100 m. How
much do the properties of air vary over this range, and how different are they from those
at sea level.
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What is the Mach number at the cruising speed of 920 km/h? What is the cruising
Reynolds number, based on the mean wing chord length of 10.6 m?

9. How does the coefficient of kinematic viscosity vary with altitude in the International
Standard Atmosphere? Graph and tabulate it at each kilometre from sea level up to the
top of the isothermal part of the stratosphere, both in absolute terms and as a ratio to the
value at sea level.

10. Between 20 and 32 km, the stratosphere has a lapse rate of Γ = −1 K/km. Extend List-
ing 1.3 and Figure 1.7 to this height.

11. Reaction Engines Ltd’s A2 hypersonic transport is envisaged as cruising at Mach five
at an altitude of 100 000 ft. The total length of the craft is 132 m. Using the results of
Exercise 10, what would be the A2’s air-speed? What would be its Reynolds number
(based on the given overall length)?

12. For each of the properties defined by the International Standard Atmosphere, how high can
one go above sea-level before it changes by 1%? By 10%? Given a steady cruising altitude
of 5 km, what variations in altitude correspond to these same variations in atmospheric
properties?

13. Does humidity affect the properties of air? Under atmospheric conditions, water vapour
and dry air combine together ideally; i.e. the water vapour and dry air sharing a given
volume of space have a common temperature and their (‘partial’) densities and pressures
are what they would be if they were alone, with each behaving as an ideal gas. The total
density and pressure is the sum of that for each component. The gas constant for water
vapour is about 461.5 J/kg K.

The ‘saturation pressure’ of water is a function of temperature, roughly

log10
p

mmHg
= 8.07131 − 1730.63

T/K − 39.724
,

where 760 mmHg = 101 325 Pa. The partial pressure of water at a given temperature and
relative humidity is the saturation pressure times the relative humidity. The partial pressure
of dry air, then, is the difference between the total pressure and the partial pressure of water
vapour.

Consider humid air at 101.325 kPa, 15◦C, and 50% relative humidity. What is the total
density? How different is this from the density of dry air at the same temperature and
(total) pressure?

14. If the partial pressure of water vapour in humid air exceeds the saturation pressure, the
moisture will begin to condense out as droplets.

Say a given volume of humid air at the conditions considered in the last question is raised
in altitude through the standard atmosphere, so that the temperature and total pressure fall,
while the composition (absolute humidity) is conserved. How does the relative humidity
of the parcel vary with height? At what height is saturation achieved?

15. What about the droplets of liquid water in a cloud, do they affect atmospheric properties?
Consider a typical cloud at 10 km above sea level consisting of 50 000 000 droplets per
cubic metre, each of diameter 10 �m. What mass do these droplets add to each unit volume
of air?
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1.8 Further Reading

The pioneering aeronautical experiments of Henson and Stringfellow were described by Davy
(1931). For an introduction to the use of wind tunnels, see Glauert (1926, chapter 14), Prandtl
and Tietjens (1957), Bradshaw (1964, chapter 2), and Liepmann and Roshko (1957).

For frames of reference and how to define the geometric angle of incidence, see Milne-
Thomson (1973) or Anderson (2007).

For alternative quantitative descriptions of wings and their sections, see Dommasch et al.
(1967), Kuethe and Chow (1998), Bertin (2002), Houghton and Carpenter (2003), or Anderson
(2007). Details on the NACA wing sections can be found in Abbott et al. (1945) and Abbott
and von Doenhoff (1959).

The Sutherland law is one of the most common forms of equations used to describe the
dependence viscosity on temperature (Glasstone 1946; Montgomery 1947).

The International Standard Atmosphere (ISO 1975), its predecessors, and their importance
in aerodynamics are discussed by Glauert (1926), Batchelor (1967), Milne-Thomson (1973),
Hoerner and Borst (1985), and Kuethe and Chow (1998); tables may be found in Bertin (2002)
and Anderson (2007).

The concept of dimensional analysis is fundamental and therefore difficult to reduce to
simpler terms. Once grasped it is obvious but until then it can appear abstract. Such funda-
mental concepts are best acquired by reading different explanations until the darkness sud-
denly clears; for dimensional analysis, try Glauert (1926), Hunsaker and Rightmire (1947),
Karamcheti (1966), Batchelor (1967), Milne-Thomson (1973), Streeter and Wylie (1983),
Kuethe and Chow (1998), or Anderson (2007). All textbooks on aerodynamics or fluid me-
chanics will contain some explanation of dimensional analysis, not least because of the utility
of dynamical similarity. Bertin (2002) demonstrates the approach mentioned of nondimen-
sionalizing the Navier–Stokes equations. For the method of Hunsaker and Rightmire (1947),
see Streeter and Wylie (1983) or Anderson (2007); the alternative method of Section 1.5.1 is
taken from Bradshaw (1964).
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