
JWST474-c01 JWST474-Bonnini Printer: Yet to Come June 9, 2014 14:6 Trim: 229mm × 152mm

1

One- and two-sample location
problems, tests for symmetry
and tests on a single
distribution

1.1 Introduction

Many real phenomena can be represented by numerical random variables. Consider-
ing a given population and a random sample of it, for forecasting or improving the
effectiveness of inferential techniques related to estimation and testing of hypothesis,
it would be useful to know the functional form of the distribution of the data. Some-
times, the central interest of the statistical analysis is focused only on the symmetry
or on the location of the distribution itself. Another very common statistical problem
consists of comparing two independent populations in terms of central tendency. In
the simpler cases the object of the analysis is a univariate population, but in some
real applications we are in the presence of many variables and multivariate datasets.

The methods presented in this chapter consist of rank or permutation procedures
for the tests of the hypotheses cited above. Section 1.2 is an introduction to rank
and permutation tests. In Section 1.3, devoted to one-sample tests, the Kolmogorov
procedure for testing whether the data are distributed according to an hypothesized
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cumulative distribution function (CDF), and the permutation test on the symmetry of
the distribution are taken into account. Section 1.4 deals with multivariate one-sample
tests, and introduces the multivariate location problem and the multivariate test on
symmetry. In Section 1.5 the univariate two-sample location problem is discussed.
Section 1.6 considers the multivariate extension of the location problem for two
independent populations and presents some solutions for it.

In the one-sample problems the data are a random sample of numerical data X =
{X1,… , Xn} from the unknown population under study. In the two-sample problems
the numerical sample data fom the jth unknown population are Xj = {Xj1,… , Xjnj

},
with j = 1, 2 and n1 + n2 = n. In the multivariate extensions, in the presence of q
component variables, for the one-sample problem, the observation related to the ith
statistical unit is denoted by Xi = {Xi1,… , Xiq} and, for the two-sample problem,
the observation related to the ith statistical unit in the jth group is denoted by Xji =
{Xji1,… , Xjiq}.

1.2 Nonparametric tests

Traditional parametric testing methods are based on the assumption that data are
generated by well-known distributions, characterized by one or more unknown pop-
ulation parameters (mean, median, variance, etc.) and the hypotheses of the problems
are formulated as equalities/inequalities related to these unknown parameters. For
example, the location problem can be formalized using the mean parameter, the scale
problem can be expressed in terms of variance comparisons, etc.

In other words parametric methods are based on a modeling approach and on the
introduction of stringent assumptions, often quite unrealistic, unclear and connected
with the availability of inferential methods (Pesarin, 2001). Hence the critical values
or alternatively the p-values can be computed according to the distribution of the test
statistic under the null hypothesis, which can be derived from the assumptions related
to the assumed underlying distribution of data. When the assumed distribution is not
true, when we are not sure whether it is true or not or when it is not plausible, other
methods, which ignore the true distribution of data, are needed. These methods are
called nonparametric or distribution-free.

Since, when the parametric assumptions hold, the nonparametric procedures are
only slightly less powerful than the parametric methods and they are the only valid
solution when the parametric assumptions do not hold, nonparametric tests are in gen-
eral more flexible and often more appropriate than parametric counterparts. Basically
the nonparametric testing procedures can be classified into two kinds of methods:
rank based tests and permutation tests.

1.2.1 Rank tests

The main aspect which characterizes rank tests is that observations are transformed
into their sample ranks. Hence in the rank tests we compare the observations based
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on their ranks within the sample. Formally the rank of the ith observation with respect
to a set of n data is given by

Ri = R(Xi) =
∑

1≤j≤n

I(Xj ≤ Xi),

where R is the (increasing) rank operator, Xi is the transformed observation, I(A) is
the indicator function of the event A, that is I(A) = 1 when A is true and I(A) = 0
otherwise. Hence the rank of Xi within {X1,… , Xn} is equal to 1 if Xi is the minimum
value, it is equal to 2 if Xi is the second smaller value, up to n if Xi is the maximum.
Often in the case of ties, the midrank method is applied, that is the mean of the ranks
corresponding to the positions in the sorted set of observations is assigned to the
tied observations. Formally if rank r is assigned to t observations equal to a certain
value x (t ≤ r), that is r observations in the set {X1,… , Xn} are less than or equal
to x, then the rank of these t observations, according to the midrank rule, is adjusted
into the mean value of the t ranks (r − t + 1), (r − t + 2),… , r. Rank transformation
is non-bijective, in the sense that a given set of ranks {R1,… , Rn} may correspond
to distinct sets of sample data.

Let us consider an example related to a pharmacological experiment. A pharma-
ceutical company needs to test whether a new experimental drug for lowering blood
cholesterol levels is more effective than another drug already present in the pharma-
ceutical market. A group of patients is treated with the new drug and another group
with the old drug. The null hypothesis consists of ‘no difference’ between the two
treatment effects; the alternative hypothesis states the superiority of the new drug, that
is the effect of the new drug is greater than the effect of the old one. Let us denote with
n1 and n2 the number of patients treated with the new and the old drug, respectively,
independent samples from populations with continuous probability function F1 and
F2, respectively. The null hypothesis of no difference between the effects of the two
treatments can be written as H0 : F1 = F2 = F with F unknown. H0 implies that the
two samples can be considered as just one sample from a unique distribution F. A
way to solve this problem is provided by the Wilcoxon rank sum test, a rank based
testing procedure which takes into account the ranking of the observations within
the pooled sample of n1 + n2 data and considers the sum of the ranks of the first
sample as test statistic. When H0 is true, the test statistic tends to take neither too
large nor too small values. The distribution of the test statistic under the null hypoth-
esis can be computed considering all the possible rankings as equally likely and the
corresponding values of the statistic. Hence the computation of critical values and
p-values does not depend on the unknown distribution F. This is why it is considered
a distribution-free method.

1.2.2 Permutation tests and combination based tests

In many testing problems, the dataset can be seen as a partition into groups or samples
according to the treatment levels of a real or symbolic experiment. According to the
permutation testing principle, if two experiments characterized by the same sample
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space (the set of all possible samples) give the same dataset, then the result of the
testing procedure conditional on the dataset itself must be the same, provided that the
exchangeability condition with respect to samples holds under the null hypothesis
(Pesarin, 2001). This is the reason why inference based on permutation tests is also
called conditional inference.

In real applications, random sampling, on which the parametric methods are
based, is rarely achieved. Hence often the unconditional inferences associated with
parametric tests are not applicable. In these situations permutation tests are suitable
solutions. Furthermore some common assumptions of parametric methods, such as the
existence of mean values and variances, or equal variances of responses (homoscedas-
ticity) under the alternative hypothesis are not needed within the permutation testing
procedures.

For example, for the two-sample test related to the pharmaceutical problem,
under the null hypothesis observations are exchangeable among samples because
they are supposed to come from the same population and their belonging to one
group or to another is actually random. A suitable test statistic for the problem
may be the difference of the two-sample means which is expected to take neither
too large nor too small values when H0 is true. The distribution of the test statis-
tic under the null hypothesis, and then the p-value of the test, can be computed
considering all the possible permutations (i.e., reallocations of the observations to
the two groups) as equally likely and computing the corresponding values of the
statistic for each permutation. Alternatively, for computational simplicity, a random
sample of all the possible permutations can be considered and the null distribution
of the test statistic can be well approximated by Conditional Monte Carlo (CMC)
techniques.

1.2.2.1 Nonparametric combination methodology

A suitable method to perform multivariate permutation tests or multiple permutation
test procedures is the so called nonparametric combination (NPC) of dependent
permutation tests. Let us suppose that the null hypothesis H0 of a testing problem
can be broken down into k sub-hypotheses or partial hypotheses H01,… , H0k such
that H0 is true if and only if all the sub-hypotheses are true, formally H0 :

⋂k
i=1 H0i.

Similarly the alternative hypothesis H1 is true if and only if at least one of the null sub-
hypotheses is false, and consequently at least one of the alternative sub-hypotheses is
true, briefly H1 :

⋃k
i=1 H1i. Let T = T(X) be a k-dimensional vector of test statistics

and each component Ti(X) be a suitable test statistic for testing H0i against H1i
and without loss of generality assume that H0i is rejected for large values of Ti(X).
Assuming as usual that each row of the dataset corresponds to a statistical unit, and
considering for example a test for independent samples, the NPC method works as
follows:

1. Compute the vector of the observed values of T: Tobs = [T1(X),… , Tk(X)]′ =
[T1(0),… , Tk(0)]

′.
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2. Consider a permutation of the rows of the dataset, that is a reallocation of the
units to the groups, and compute the corresponding values of the test statistics:
T∗(1) = [T1(X∗(1)),… ,Tk(X∗(1))]

′
.

3. Perform B independent repetitions of step (2) and obtain T∗(b) = [T∗1(b),… ,

T∗k(b)]
′, b = 1,… , B.

4. For each i compute an estimate of the significance level function Pr{T∗i ≥ z} :
̂Li(z) = { 1

2
+
∑

r I[T∗i(r) ≥ z]}∕(B + 1), i = 1,… , k.

5. For each b compute 𝜆∗i(b) = ̂Li(T
∗
i(b)), b = 1,… , B and compute 𝜆i(0) = ̂Li(Ti(0)),

i = 1,… , k.

6. For each b compute the combined values T ∣∣∗(b) = 𝜓(𝜆∗1(b),… , 𝜆∗k(b)) and T ∣∣(0) =
𝜓(𝜆1(0),… , 𝜆k(0)) using a suitable combining function 𝜓 .

7. Compute the estimate of the p-value of the test as 𝜆∣∣ =
∑

b I[T ∣∣∗(b) ≥ T ∣∣(0)]∕B.

The final decision should be based on 𝜆∣∣ in the sense that H0 should be rejected in
favor of H1 if 𝜆∣∣ ≤ 𝛼. The NPC method is very useful to solve complex problems, in
particular multivariate problems or problems where a multivariate test statistic may
be suitable. The main advantage with respect to other standard parametric methods
is that the multivariate distribution of the test statistic does not need to be known
or estimated, and in particular the dependence structure between the component
variables does not need to be known or explicitly specified. The dependence is
implicitly taken into account through the permutation strategy and the application
of the combining function 𝜓 . The combining function must satisfy the following
simple properties: (1) it must be nonincreasing in each argument; (2) it must attain
its supremum even when only one argument tends to zero; and (3) for each 𝛼 level
the critical value T ∣∣

𝛼

is assumed to be finite and strictly smaller than the supremum
value. Some suitable combining functions are:

� the Fisher omnibus combining funtion: T ∣∣F = −2
∑

i log(𝜆i);

� the Liptak combining funtion: T ∣∣L =
∑

iΦ−1(1 − 𝜆i);

� the Tippett combining function: T ∣∣T = maxi(1 − 𝜆i).

Tippett combination provides powerful tests when one or a few but not all of the alter-
native sub-hypotheses are true; Liptak’s function has a more powerful behavior when
all of the alternative sub-hypotheses are jointly true; Fisher’s solution is intermediate
between the two.

1.3 Univariate one-sample tests

The basic assumption of an inferential problem is that the observed phenomena can
be represented by random variables with unknown distributions. The goal of the
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inferential study consists of investigating some aspects of the unknown distribution.
Let us assume that the observed random sample has been drawn from a numerical
population with unknown CDF F(x). In order to test whether F(x) is equal to a
fully specified function (without any unknown nuisance parameter), a powerful and
commonly used solution is provided by the procedure introduced by Kolmogorov
(1933). Such a procedure is based on the comparison between the empirical distri-
bution function (EDF) and the specified tested distribution (see Section 1.2.1). As
it tests the distribution’s fit to a set of data, it is classified as a goodness-of-fit test.
In this sense it can be considered an alternative for ordinal data to the goodness-
of-fit chi-square test, valid for nominal categorical variables. An important differ-
ence between the two procedures is that, for continuous variables, the Kolmogorov
test is exact even for small sample sizes (in the case of non continuity it is not
distribution-free), while the chi-square test requires that n is large enough so that the
test statistic under the null hypothesis approximately follows a chi-square distribution
(Conover, 1999).

In some applications the test involves only one or a few aspects of the functional
form of F(x), hence only a specific property of F(x) is specified under H0. This is the
case of the test on symmetry, very useful in particular in the statistical quality control
of industrial processes (see Section 1.2.2). For continuous variables, symmetry of
the distribution around the origin is equivalent to the property: F(x) = 1 − F(−x)
∀x ∈ . Let us consider the cited one-sample problems.

1.3.1 The Kolmogorov goodness-of-fit test

Let X = {X1,… , Xn} be a random sample from a population with unknown
continuous CDF F(x) and assume an interest in testing the hypothesis that F(x)
corresponds to a known and completely specified distribution F0(x) against the
alternative that this is not true. The testing procedure proposed by Kolmogorov
(1933) is based on the supremum of the vertical distance between F0(x) and the
EDF based on the observed sample X. Smirnov (1939) proposed an extension of
the Kolmogorov test for comparing the distributions of two independent popu-
lations. Statistics based on the vertical distance between F0(x) and the EDF are
called Kolmogorov-type statistics, while similar statistics based on the vertical dis-
tance between two EDFs are called Smirnov-type statistics (Conover, 1999). The
Kolmogorov goodness-of-fit test presented in this paragraph is also called the one-
sample Kolmogorov–Smirnov test. Formally the problem consists of testing the null
hypothesis

H0 : F(x) = F0(x)

against the alternative

H1 : F(x) ≠ F0(x).
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The EDF of X is ̂Fn(x) = 1∕n
∑n

i=1
I(Xi ≤ x) where I(Xi ≤ x) takes value 1 if

Xi ≤ x and 0 otherwise. The Kolmogorov test statistic is given by

Dn = sup
x∈

|̂Fn(x) − F0(x)|.

In some problems, the alternative hypothesis is one-sided, that is the CDF F(x)
is supposed to be smaller than F0(x) or larger than F0(x). Formally the one-sided
alternative might be

H1 : F(x) ≤ F0(x) ∀x ∈  and F(x) < F0(x) for some x,

or similarly

H1 : F(x) ≥ F0(x) ∀x ∈  and F(x) > F0(x) for some x,

thus the suitable test statistic is D+
n = maxx∈[F0(x) − ̂Fn(x)] and D−

n =
maxx∈[̂Fn(x) − F0(x)], respectively. The tests reject the null hypothesis for large
values of the test statistics.

A result shows that if X is a random sample from an absolutely continuous
population with the CDF F0, then the distribution of the statistic Dn does not depend
on F0 but only on the sample size n (Bagdonavicius et al. 2011). Therefore in the two-
sided test, the hypothesis H0 is rejected with a significance level 𝛼 when Dn > D

𝛼

(n),
where D

𝛼

(n) is the critical value of the statistic Dn, that is the (1 − 𝛼)-quantile of
the null distribution of Dn. Equivalently, the null hypothesis is rejected when the
p-value of the test (probability that under H0 the test statistic takes values greater
than the observed value of Dn) is less than 𝛼. A similar procedure should be applied to
the one-sided tests. Exact quantiles for Dn and approximate quantiles for D+

n and D−
n

have been tabulated. When n > 40 the asymptotic approximation may be used. Some
computationally friendly representations of the distribution of the test statistics for
sample sizes less than 100 and with no ties are proposed by Marsaglia et al. (2003)
and Birnbaum and Tingey (1951). When F0(x) is discrete, a modification for the
computation of the quantiles of the test statistics might be applied (Conover, 1972;
Coberly and Lewis, 1973).

The basic package of R includes the function ks.test, which computes the
Kolmogorov–Smirnov statistic for the one-sample or two-sample cases. The presence
of ties in the case of noncontinuous variables generates a warning. If ties arise
because of rounding, the test may be approximately valid, but even modest amounts
of rounding can have an important effect on the computation of the test statistic.

Consider an industrial experiment in which we have a sample of n = 10 fabrics
subjected to washing. The goal of the experiment is to analyze the performance of
a new experimental detergent for clothes. Specifically, the response variable under
study is the so called reflectance, that is the proportion of incident light which a given
surface (of fabric) is able to reflect, which can be considered a measure related to the
cleaning efficacy of the detergent. Suppose we wish to test, at the significance level
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Table 1.1 Sample data of reflectance in the experiment on detergent performance.

Piece of fabric 1 2 3 4 5
Reflectance 0.608 0.533 0.912 0.498 0.885
Piece of fabric 6 7 8 9 10
Reflectance 0.291 0.805 0.436 0.868 0.721

𝛼 = 0.01, whether the reflectance is uniformly distributed or not, namely whether it
follows the distribution law  (0, 1). The observed sample is displayed in Table 1.1.

The null hypothesis of the testing problem is

H0 : F(x) = F0(x) =
⎧
⎪
⎨
⎪⎩

0 when x < 0

x when 0 ≤ x < 1

1 otherwise,

where F(x) is the CDF of the reflectance, here represented by a continuous random
variable. The function F0(x) specified in the null hypothesis is the CDF of the uniform
distribution in the interval [0, 1]. The alternative hypothesis is H1 : F(x) ≠ F0(x).

The R code for the analysis is the following:

> ref=c(0.608,0.533,0.912,0.498,0.885,0.291,0.805,0.436,0.868,0.721)
> plot(ecdf(ref),xlim=c(0,1),verticals=TRUE,xlab="Reflectance",

main="")
> curve(punif,from=0,to=1,add=TRUE,lty="dashed",lwd=2)
> ks.test(ref,"punif",alternative="two.sided")

and the output of ks.test is

#######################################################################

#One-sample Kolmogorov--Smirnov test

#

#data: ref

#D = 0.336, p-value = 0.1651

#alternative hypothesis: two-sided

#######################################################################

The command plot(ecdf(ref),xlim=c(0,1),verticals=TRUE,xlab="Refle
ctance",main="") gives the EDF of the sample, and the argument xlim

indicates the interval to be visualized on the x axis. With the command
curve(punif,from=0,to=1,add=TRUE,lty="dashed", lwd=2) we can draw on
the same graph the CDF of the uniform distribution. The first argument indicates the
type of probability distribution and punif corresponds to the  (0, 1) distribution.
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Figure 1.1 Representation of the EDF of reflectance (dots) and CDF of U(0, 1)
(dashed line).

The argument lty defines the line type. The graph is shown in Figure 1.1. It seems
we are in the presence of an acceptable level of goodness-of-fit.

The first argument of the function ks.test indicates the observed data (ref in our
example), the second one indicates the supposed distribution in the null hypothesis
and the third indicates the type of alternative. The default is the two-sided alternative;
the options "less" or "greater" correspond to the one-sided alternatives.

The observed value of the test statistic is D = 0.336 and it corresponds to the
p-value 0.1651, thus there is no empirical evidence to reject the null hypothesis of
uniform distribution for the reflectance.

When F0(x) is not continuous the Kolmogorov test tends to be conservative
(Sprent and Smeeton, 2007) but, as we previously noted, methods for computation
of p-values have been proposed also for discrete distributions. For example, let us
consider the case of a bank where the average waiting time of a customer at the counter
is equal to 8 min. We wish to test whether the waiting time follows a(8) distribution,
that is a Poisson distribution with parameter 𝜏 = 8, by observing a random sample of
n = 20 waiting times. The significance level is 𝛼 = 0.05. The null hypothesis is

H0 : F(x) = F0(x) =
⎧
⎪
⎨
⎪⎩

0 when x < 0
x∑

k=0

e−88k

k! when 0 ≤ x < ∞

and the alternative is H1 : F(x) ≠ F0(x). The observed data are reported in Table 1.2.
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Table 1.2 Random sample of n = 20 waiting times (in minutes) of customers at the
counter in a bank.

Customer 1 2 3 4 5 6 7 8 9 10
Waiting time 9 8 5 4 4 7 12 6 9 11
Customer 11 12 13 14 15 16 17 18 19 20
Waiting time 10 6 11 7 7 8 11 13 9 9

The commands to perform the test are the following:

> wtime=c(9,8,5,4,4,7,12,6,9,11,10,6,11,7,7,8,11,13,9,9)
> ks.test(wtime,"ppois",8)

where in the ks.test command we have specified the CDF of a Poisson as tested
distribution, and the value of the related parameter.

No indication about the alternative is specified so that the default option (two-
sided) is considered. The output is

#######################################################################

#One-sample Kolmogorov--Smirnov test

#

#data: x

#D = 0.2166, p-value = 0.305

#alternative hypothesis: two-sided

#######################################################################

The observed value of the test statistic is 0.2166 and the p-value= 0.305 > 0.05 =
𝛼 leads to the decision of no rejection of the null hypothesis that the distribution of
the waiting time is (8). Note that in this situation a warning is generated, due to the
presence of ties.

For denoting the specific distribution F0(x) in the null hypothesis of the
Kolmogorov–Smirnov test, the options displayed in Table 1.3 can be used.

1.3.2 A univariate permutation test for symmetry

Sometimes an asymmetric distribution of the observed values of a response variable
might be a symptom of abnormalities of the phenomena under study. For example, in
the statistical quality control of industrial processes an asymmetry of the distribution
of the response may reveal the presence of some problems in the manufacturing
process. Let us assume that we are given a random sample of n = 24 washers drawn
by the whole production of a metallurgical factory. The data consist of differences
between the measured external diameters of the washers and the target value equal
to 10 μm (Table 1.4).
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Table 1.3 Options for the main distributions that can be tested with the
Kolmogorov procedure.

Discrete data Continuous data

Option Distribution Option Distribution

pbinom Binomial pbeta Beta
pgeom Geometric pcauchy Cauchy
phyper Hypergeometric pchisq Chi-square
ppois Poisson pexp Exponential

pf F
pgamma Gamma
pnorm Normal
pt Student’s t
punif Uniform
pweibull Weibull

Observing the density distribution of the observed data it is evident that we are in the
presence of right or positive asymmetry (Figure 1.2) because some of the sampled
washers present large external diameters (far from the target value) and this can cause
a high percentage of waste. We are interested to test whether the whole production
of the fabric is characterized by an asymmetric distribution of the external diameters
at 𝛼 = 0.10.

By generalizing the problem, let F be the unknown distribution of a continuous
variable, and let X =

{
X1,… , Xn

}
be a random sample of observations from such a

population. The test on the symmetry of F around the origin can be formalized by
the hypotheses

H0 : F(x) = 1 − F(−x)

against

H1 : F(x) ≠ 1 − F(−x).

To deal with this problem, we can consider the data as differences (Pesarin and
Salmaso, 2010). In this case, the observed measurement of each unit is considered as
if its sign was randomly assigned. In other words, under the null hypothesis the sign

Table 1.4 Differences (in micrometers) between the external diameters of washers
and the target value (10 μm).

1.6 1 −0.8 −1.3 1.4 −0.1 1.1 −1 −0.1 −0.6 0.7 −0.6
2.1 −1 3.5 0.6 −0.2 0.5 0.5 4 1.9 −0.4 0.4 1.4
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Figure 1.2 Frequency histogram for the differences between the external diameters
of washers and the target value (10 𝜇m).

of each difference is considered as if it were randomly assigned with probability 1
2
.

Thus, one way to solve the testing problem is to consider the test statistic given by
the absolute value of the sum of the sample values:

T =
|||||

n∑

i=1

Xi

|||||
.

Its distribution FT (t|X), conditional to a given set of observed values X1,… , Xn, is
obtained under the assumption that H0 is true by considering the random attribution
in all possible ways of the plus or minus sign to each value with equal probability.
Operationally, considering B permuted samples X∗ obtained by randomly attributing
the sign+ or− to each Xi, and calculating for each permuted sample the corresponding
permutation value T∗ of T , we can estimate the null distribution of T∗ according to
the permutation distribution and compute the p-value of the test.

The R code for the problem of the external diameters of washers follows:

> source("t2p.r")

> source("permsign.r")

> exdiam=c(1.6,1,-0.8,-1.3,1.4,-0.1,1.1,-1,-0.1,-0.6,0.7,-0.6,
+ 2.1,-1,3.5,0.6,-0.2,0.5,0.5,4,1.9,-0.4,0.4,1.4)

> exdiam=array(exdiam,dim=c(length(exdiam),1))
> perm.sign(x=exdiam,B=10000)
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The output is

#######################################################################

# Permutation Test for Symmetry

# $p.value

# 0.04029597

#######################################################################

The source files for the execution of the test are "t2p.r" and "permsign.r" and
they can be loaded with the source command. The former includes the code for the
computation of the significance level function and the p-values; the latter contains the
code for the computation of the test statistic and its permutation distribution. This is
done with the function perm.sign which computes the statistic T and its permutation
distribution, through random permutations of the signs of the observed data. The
function can be used also for the two-sample test for paired data. In the case of testing
for symmetry it requires two arguments: the array of observed data and the number
B of random permutations of signs. The dataset (exdiam in this case) has to be set
up as array with the array command. We consider B = 10 000 permutations. The
default value for the number of permutations for B is 1000. The function perm.sign

invokes the function t2p that computes the permutation p-value as the frequency of
permutation values of the test statistic that are greater than or equal to the observed
one. It is worth noting that the p-value results from the permutation distribution of
the statistic of interest that is obtained through random permutations of the signs of
the data. Considering that we do not use all the possible permutations but, for compu-
tational convenience, only a random sample of B permutations, then performing the
test many times, especially for small values of B, one can obtain different permutation
distributions, hence different p-values. To remember the sequence of the considered
sampled permutations the function set.seed(seed) can be used. With this function
we can specify a seed to be associated with the set of sampled permutations and
use this seed to identify and retrieve the same set of permutations when necessary.
For example, if we repeat the analysis without specifying the seed we may obtain
a different (but similar) p-value because, by performing the test again, a different
sample of 10 000 permutations is drawn:

> perm.sign(exdiam, B=10000)
#######################################################################

# Permutation Test for Symmetry

# $p.value

# [1] 0.03779622

#######################################################################

For storing the set of sampled permutations and use it again, it is possible to specify
the seed value (eg 1234) before the execution of the permutation test:

> set.seed(1234)

> perm.sign(exdiam, B=10000)
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#######################################################################

# Permutation Test for Symmetry

# $p.value

# [1] 0.03969603

#######################################################################

From this moment, every time the command perm.sign(exdiam,B=10000) will
be preceded by set.seed(1234), the procedure will always return the p-value
0.03969603.

In this example, the p-value leads to the rejection of H0 because it does not exceed
the significance level 𝛼 = 0.10. The distribution of the external diameters of the whole
production is not symmetric thus there is a problem in the production process. The
distribution of the external diameters of the whole production is not symmetric and
data agree with the hypothesis that there is a problem in the production process.
For this reason let us operate a stratification of the data distinguishing the washers
coming from plant A (first 12 values) and the ones produced by plant B (last 12
values). Figure 1.3 shows that the asymmetry of the distribution seems to be caused
by the production of plant B, because it is not in target and produces a high percentage
of washers with too large external diameter. This hypothesis must be tested with a
two-sample test on location (see Section 2.4).

The test for symmetry may also be used for testing location on one-sample prob-
lems. To be specific, let us suppose that the observed data Y1,… , Yn are symmetrically
distributed around 𝛿 and that H0 : 𝛿 = 𝛿0, so that the transformations Xi = Yi − 𝛿0
are symmetrically distributed around 0 if and only if H0 is true.
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Figure 1.3 Frequency histograms for the differences between the external diameters
of washers and the target value (10 𝜇m) by production plant.
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1.4 Multivariate one-sample tests

Consider the case of multivariate data. Let X be a multivariate dataset from a sample of
size n and assume that the variable under study is q-dimensional. Formally the dataset
is X = {Xih; i = 1,… , n; h = 1,… , q} where Xih denotes the ith observation of the
hth variable. We assume that each of the nq-dimensional observations {Xi1,… , Xiq}
comes from a population with CDF Fi(x;𝜽), with i = 1,… , n, x ∈ q and 𝜽 =
(𝜃1,… , 𝜃q)′ is a generic location (vector) parameter. In this section we consider one-
sample tests concerning the location parameter 𝜽 and a multivariate extension of the
test on symmetry presented in the previous section.

1.4.1 Multivariate rank test for central tendency

The random variable Z taking values inq is said to be diagonally symmetric about
0 (q-dimensional vector of zeros) if both Z and−Z have the same CDF F (z) , z ∈ q.
For absolutely continuous CDFs with density function f (z) the diagonal symmetry
can be represented by f (z) = f (−z) ,∀z∈q (Puri and Sen, 1971).

Let us consider the multivariate location problem where the n q-variate popu-
lations with CDFs F1 (x; 𝜃) ,… , Fn(x;𝜽) are independent and diagonally symmetric
about 0. We wish to test whether the location (vector) parameter is null, that is
H0 : 𝜽 = 0 against H1 : 𝜽 ≠ 0. It is worth noting that the condition F1 (x;𝜽) = … =
Fn (x;𝜽) is not necessary (Puri and Sen, 1971).

For the general case of q-variate variables with not necessarily independent
marginal components, let us consider the following transformation of X: g(X) =
{siXih; i = 1,… , n; h = 1,… , q} where si = +1 or si = −1. The number of possi-
ble vectors of signs s = (s1,… , sn)′ is 2n hence, according to the basic permutation
principle, the multivariate permutation distribution is spread over 2n possible permu-
tations. Under H0 the permutation distribution is uniform because all the realizations
are equally likely with probability equal to 2−n (Puri and Sen, 1971). Hence we can
obtain a distribution-free test for the present problem.

Let us now take into account a wide class of multivariate rank tests, useful to solve
several different kinds of testing problems. Consider the n × q matrix R = [Rih] whose
generic element Rih represents the rank of |Xih| in the set of values {|X1h|,… , |Xnh|}.
No ties are admissible because of the continuity assumption. For each variable (that
is for each column of R) replace the ranks with the general scores E(h)(Rih). For each
marginal variable consider the rank order statistics

T (h) =
n∑

i=1

E(h) (Rih

)
cih, for h = 1,… , q.

The weights cih are the signs of the values Xih, that is cih = +1 if Xih > 0 and cih = −1
if Xih < 0. Let us denote with T the q-dimensional vector of statistics (T (1),… , T (q))′.
According to the permutation distribution E(T) = 0 and Var(T) = E(TT′) = nV. The
matrix V = [vjk] is assumed to be positive definite (if singular it can be replaced by
the highest order nonsingular minor of V) with elements

vjk = (1∕n)
∑n

i=1
E(j) (Rij

)
E(k) (Rik

)
cijcik.
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The test statistic for the multivariate location problem under study is

S = 1
n

T′V−1T,

where V−1 is the inverse of V. Large values of S lead to the rejection of the null
hypothesis in favor of the alternative hypothesis of non null central tendency.

According to the scores we can obtain different tests. Some examples are:

� E(h)(R) = 1, h = 1,… , q: multivariate sign test.

� E(h)(R) = R, h = 1,… , q: multivariate generalization of the one-sample
Wilcoxon signed rank test.

� E(h)(R) is the expected value of the Rth smallest observation of a sample of
size n from a chi-square distribution with 1 degree of freedom h = 1,… , q:
multivariate one-sample normal scores test.

We notice that all the considered tests cannot be applied to one-sided alternatives
and they require the continuity assumption for the multivariate response variable.
The solution proposed in this subsection for the present problem is the multivariate
extension of the one-sample Wilcoxon signed rank test. The multivariate sign test
does not require the symmetry, hence it is preferable to the signed rank test when
this assumption is not realistic or not plausible. Furthermore, this is the only solution
among these rank tests when only the signs of the differences are observed. Oth-
erwise, under the symmetry assumption and when ranks of the sample differences
can be determined, the Wilcoxon signed rank test is preferable because it uses more
information than the sign test, and then it is more powerful under H1, that is it rejects
H0 with higher probability when H0 is not true. The normal score test is less flexible
and it is preferable only in specific problems where it is reasonable to replace ordinary
ranks with the related normal scores.

Consider a customer satisfaction survey about a recently opened shopping center.
A sample of n = 29 customers was asked to evaluate 5 different aspects of the
shopping center, such as the environmental temperature, the brightness, the presence
of sales assistants, the range of products, and the background music volume. Note that
these variables represent conditions that can make the shopping experience pleasant
if present in the right amount, hence we can say that the best is ‘neither too much nor
too little’. Thus the evaluations are expressed on a scale from −100 (‘too little’) to
+100 (‘too much’) and where 0 corresponds to ‘just right’. We are interested to test
if the mean values of the evaluations are equal to 0 or not at the significance level
𝛼 = 0.05. The sample data are reported in Table 1.5.

An R function, to perform the multivariate one-sample location test based on
ranks, is in the package ICSNP. To perform the analysis, the following commands
should be typed:

> library(ICSNP)

> data=read.csv("mall.csv",header=TRUE,sep=";";)
> rank.ctest(X=data,Y=NULL,mu=NULL,scores="rank")
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Table 1.5 Customer satisfaction survey of a new shopping center.

Presence of Range of Background
Temperature Brightness sales assistants products music volume

20 61 35 57 58
42 40 17 11 9
38 22 46 36 12
0 −1 10 16 −11

100 19 30 −31 −25
−20 −41 47 −14 −94

5 18 43 14 −26
−5 −21 34 48 −45
−40 −78 −68 −10 13
−61 −82 25 7 −88
−83 −76 −71 −89 −72
−77 −84 −30 −58 −86

99 59 56 44 −92
−79 −75 −36 −24 −73

3 −3 27 −22 −12
41 4 50 26 −9
−37 23 29 45 −46

21 −18 8 33 −34
60 62 64 65 66
−19 −42 −44 −13 −23

2 −6 15 32 −93
98 −29 −17 −63 −43
−2 6 −38 −33 −15
−80 −85 −87 −56 −70

1 −4 63 31 −27
−60 −74 −59 −16 −39
−81 −62 −90 28 −57

39 −7 −8 37 24
−35 −65 −91 −69 −28

The command library(ICSNP) is necessary to load the package ICSNP. Before
installing ICSNP, the packages mvtnorm and ICS should be also loaded. The
data of the present application can be loaded from the file mall.csv with
the command data=read.csv("mall.csv",header=TRUE,sep=";"). The command
rank.ctest(X=data,Y=NULL,mu=NULL,scores="rank") performs the test. The
command requires a numeric data frame or matrix of data (X). The default value
for the second argument Y is equal to NULL, thus a one-sample test is performed.
The argument mu is a vector indicating the value of the location parameter under the
null hypothesis. The default value is NULL, that represents the origin, thus for this
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problem we do not need to specify it. The argument scores indicates the score func-
tion we want to apply, and scores="rank" is the choice to perform a signed rank test.
If scores="sign" a sign test is performed, whereas if scores="normal" a normal
score test is performed.

The output is:

#######################################################################

# Marginal One Sample Signed Rank Test

#

# data: data

# T=15.7926, df=5, p-value=0.007462
# alternative hyp.: true location not equal to c(0,0,0,0,0)

#######################################################################

Thus the observed value of the test statistic is equal to 15.793 and the p-value of the
test is equal to 0.007. Since the p-value is less than 0.05 we reject the null hypothesis
in favor of the alternative that the vector of means is not equal to (0, 0, 0, 0, 0)′.

1.4.2 Multivariate permutation test for symmetry

Let us introduce now the multivariate extension of the permutation procedure for the
test on symmetry. In this new problem the unknown distribution under investigation
is multivariate. As stated in the univariate case, the problem of testing symmetry is a
common problem in Statistical Quality Control where the goal of the analysis could be
to test the symmetry of the distribution around the target of two or more characteristics
of the product simultaneously considered. In other words, the interest is focused on the
symmetry of the marginal distributions but without neglecting the multivariate nature
of the problem and the possible dependence among the marginal variables. Formally
let f (x), with x ∈ q, denote the joint probability function (for discrete variables) or
density function (for continuous variables), and fi(x) the analogous marginal function
of the ith component variable. The null hypothesis of the problem is H0 : f (x) = f (−x)
and the alternative is H1 : f (x) ≠ f (−x). Practically this is equivalent to test the
diagonal symmetry of the multivariate distribution.

To face this problem we use the nonparametric combination (NPC) methodology
(Pesarin and Salmaso, 2010). We consider the null hypothesis as the intersection of
q null sub-hypotheses of symmetry for each marginal distribution and we assume
the global null hypothesis of symmetry to be true if each sub-hypothesis of marginal
symmetry is true. Conversely the alternative hypothesis of the problem is true if
at least one null sub-hypothesis is false. Hence the alternative hypothesis can be
considered as the union of q alternative sub-hypotheses of asymmetry. Formally,
according to Roy’s union-intersection principle (Roy, 1953), we can write the null
hypothesis as

H0 =
⋂q

i=1
H0i
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Table 1.6 External and internal diameters of washers (difference from the target
value in micrometers).

External diameters
1.6 1 −0.8 −1.3 1.4 −0.1 1.1 −1 −0.1 −0.6 0.7 −0.6
2.1 −1 3.5 0.6 −0.2 0.5 0.5 4 1.9 −0.4 0.4 1.4

Internal diameters
−0.1 1 1.6 0.8 1 −0.2 0.1 0.5 −1.4 −0.3 2.4 −0.1

1.7 0.5 −0.1 0.5 1.5 1.2 0 1.4 0.4 −0.3 0.9 −1.1

against the alternative

H1 =
⋃ q

i=1H1i,

where H0i : fi(x) = fi(−x) and H1i : fi(x) ≠ fi(−x).
Under the null hypothesis exchangeability of the signs holds, that is for each

q-dimensional vector of observations (Xi1,… , Xiq)′, i = 1,… , n, the signs can be
permuted because the probability (for discrete variables) or density (for continu-
ous variables) of observing (Xi1,… , Xiq)′ and (−Xi1,… ,−Xiq)′ is the same. Let us
consider again the industrial example of Section 1.3.2 and assume an interest in
controlling both the external and internal diameters of washers. Let us assume to
observe a random sample of n = 24 measures of differences from the target values
of the external and internal diameters of washers drawn from the whole production.
The data represent the difference of these measures (in micrometers) from the target
values (Table 1.6 and Figure 1.4).

The R commands to perform the test are:

> source("t2p.r")

> source("comb.r")

> source("permsign.r")

> exdiam=c(1.6,1,-0.8,-1.3,1.4,-0.1,1.1,-1,-0.1,-0.6,0.7,-0.6,
+ 2.1,-1,3.5,0.6,-0.2,0.5,0.5,4,1.9,-0.4,0.4,1.4)

> indiam=c(-0.1,1,1.6,0.8,1,-0.2,0.1,0.5,-1.4,-0.3,2.4,-0.1,
+ 1.7,0.5,-0.1,0.5,1.5,1.2,0,1.4,0.4,-0.3,0.9,-1.1)

> x=array(c(exdiam,indiam),dim=c(length(exdiam),2))
> perm.sign(x,fun="F",B=10000)

With the source() command use of the functions included in the files "t2p.r",
"comb.r" and "permsign.r" is allowed. The code for performing the test is in "perm-

sign.r"; the code for computing the significance level function is included in "t2p.r"

and the code for the application of the NPC is in "comb.r". The perm.sign function
for the multivariate case requires three arguments. The first argument is the dataset
x (n × q matrix of data) defined as an array. The argument (fun) is the combination
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Figure 1.4 Frequency histogram for the differences between the internal diameters
of washers and the target value (in micrometers).

function: "F", "L" and "T" represent Fisher, Liptak and Tippett’s combination, respec-
tively. The third argument represents the number of permutations for estimating the
null permutation distribution of the test statistic.

The output, using the Fisher combining function and 10 000 permutations, is:

#######################################################################

# Multivariate Permutation Test for Symmetry

# Combination Function: Fisher

# $p.value

# 0.00549945

#######################################################################

Thus the p-value of the global test on symmetry is 0.005 and leads to reject the
null hypothesis of symmetry of the multivariate distribution at the significance level
𝛼 = 0.01.

1.5 Univariate two-sample tests

In this section we address the problem of comparing two independent samples in the
presence of one numerical variable. The data consist of n = n1 + n2 observations,
where nj denotes the size of the jth sample (j = 1, 2). We are considering the most
typical two-sample problem: the comparison of central tendencies.
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Let us denote with X1 =
{

X1i, i = 1,… , n1

}
the sample data from the first popu-

lation and with X2 =
{

X2i, i = 1,… , n2

}
the sample data from the second population.

The most important nonparametric solutions for the two-sample location problem are
the rank test proposed by Wilcoxon and the permutation two-sample test. These
testing procedures are described in the following subsections.

1.5.1 The Wilcoxon (Mann–Whitney) test

The Wilcoxon rank sum test can be applied in the presence of independent ran-
dom samples when the assumption of normal populations does not hold and the
parametric t-test cannot be applied. The assumptions of this test are: (1) the data
are realizations of continuous independent random variables and independence is
assumed both between samples and within samples; (2) random variables gener-
ating data of the same sample are identically distributed. Moreover, the Wilcoxon
test can also be applied in the presence of ordered categorical data, for example
when the response variable represents categorical judges or it takes values in a
Likert scale (Kvam and Vidakovic, 2007). The goal consists of comparing the cen-
tral tendencies of the two samples, to test whether the locations of the respective
populations are equal or not (two-sided test) or to test if one location is greater than
the other (one-sided test). In some applications, especially (but not only) in medi-
cal or pharmacological studies, the problem consists of investigating the presence
of a treatment effect represented by a shift of location. The null hypothesis is that
of no treatment effect, that is, the samples can be thought as drawn from the same
population.

An intuitive approach is to combine both samples into a single pooled ordered
sample and then assign increasing ranks to the sample values, with no regard to which
population each value comes from. Then the test statistic might be the sum of the
ranks assigned to the first sample. Extreme values of the test statistic are empirical
evidence in favor of the alternative hypothesis and the rejection region depends on
the type of alternative, one-sided or two-sided (Conover, 1999).

By formalizing the problem, let us assume that the CDFs of the compared
populations are F1(x) and F2(x) and let Xji be generated by the random variable
Zji. There are several ways of specifying the one-sided test. Two of them are the
stochastic (or random) effect model and the fixed effect model. According to the
former we have Z1i = 𝜇 + Δ1i + 𝜖1i and Z2i = 𝜇 + 𝜖2i, i = 1,… , nj, where 𝜇 is a con-
stant, 𝜖ji (j = 1, 2) are exchangeable random errors, with location equal to zero and
scale parameter equal to 𝜎, and Δ1i are nonnegative random variables representing
treatment effects. The latter is a special case whereΔ1i = 𝜃 with probability one, with
𝜃 an unknown constant parameter. According to the fixed effects model the variances
of the two compared populations are equal (homoscedasticity condition) and the two
distributions may differ only in the location.

The one-sided test can be presented as a test on stochastic dominance or a
test on location shift. In other words the hypothesis that, for example, the first
population tends to assume greater values than the second one, can be represented as
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F1(x) ≤ F2(x) ∀x ∈  and F1(x) < F2(x) for some x or, given the location parameter
𝜃, F1(x) = F2 (x − 𝜃) with 𝜃 > 0. The null hypothesis of the problem is

H0 : F1(x) = F2(x) ∀x ∈ ,

and the alternative hypothesis is the inequality between F1(x) and F2(x) just described
or, according to the location-shift model we can write H0 : 𝜃 = 0 and H1 : 𝜃 > 0. The
two representations are equivalent if we assume the fixed effect model. Henceforth
in this subsection we will consider this model.

The test statistic of the Wilcoxon rank sum test (equivalent to the Mann–Whitney
test) is based on the sum of the ranks of the elements of the first sample

W =
n1∑

i=1

R
(
X1i

)
,

where R(X1i) is the (increasing) rank of X1i in the pooled sample {X11,… , X1n1
,

X21,… , X2n2
}, thus it is equal to 1 if X1i is the smallest observed value, to 2 if X1i is

the second smallest observed value, and so on up to n = n1 + n2 for the largest value.
If the null hypothesis is true, the sum of the ranks of the first sample is expected

to be similar to that of the second sample, hence when W assumes large values H0
should be rejected in favor of H1. Under H0 the distribution of the statistic W does not
depend on unknown parameters but depends on the sample sizes n1 and n2, because
from the properties of ranks we obtain

P
{[

R
(
X11

)
,… , R

(
X1n1

)]
= (j1,… , jn1

)
}
=

n2!
n!

for all (j1,… , jn1
) obtained from n1 different elements of the set (1, 2,… , n1 + n2).

The minimum value of the statistic W is wmin = 1 +⋯ + n1 = n1(n1 + 1)∕2 and
the maximum value is wmax = (n2 + 1) + (n2 + 2) +⋯ + (n2 + n1) = n1(2n2 + n1 +
1)∕2. Hence for all k = wmin,… , wmax

P{W = k} = Nk
n2!
n!

where Nk is the number of vectors (j1,… , jn1
) satisfying the condition j1 +⋯+

jn1
= k. The exact distribution of W can be computed and tabulated. Clearly when the

alternative hypothesis is that the the first population takes smaller values than the sec-
ond, the null hypothesis is rejected for small values of the test statistic. Finally the two-
sided alternative hypothesis of inequality in distribution should be rejected if W ≤ c1
or W ≥ c2, where c1 and c2 are the maximum natural number and the minimum nat-
ural number, respectively, verifying the inequalities

∑c1
k=wmin

Pr{W = k|H0} ≤ 𝛼∕2

and
∑wmax

k=c2
P{W = k|H0} ≤ 𝛼∕2. Upper-tail probabilities of the Wilcoxon rank sum
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test statistic are available from www.wiley.com/go/hypothesis_testing (Hollander and
Wolfe, 1999). Under H0 the means and variances of the sum of ranks W are

E(W) =
n1(n + 1)

2

and

V(X) = Var(W) =
n1n2(n + 1)

12
,

respectively. An important result (Bagdonavicius et al., 2011) shows that if the
probability distributions of the populations are absolutely continuous, then when
n →∞, n1∕n → p ∈ (0, 1) under the null hypothesis

Z(n1,n2) =
W − E(W)
√

V(W)
d
→

Z∼N(0, 1).

Hence for large sample sizes the normal approximation of the distribution of W can be
used. The Mann–Whitney test is a testing procedure proposed for the same location
problems described. For the one-sided test, where the first population is supposed to
take greater values than the second in the alternative hypothesis, the test statistic is

U =
∑n1

i=1

∑n2

s=1
Dis,

where Dis = I
(
X1i > X2s

)
= 1 if X1i > X2s and 0 otherwise. With a similar logic the

Mann–Whitney test for the lower-tail one-sided test and the two-sided test can be
derived. The Mann–Whitney test is equivalent to the Wilcoxon rank sum test.

The basic package of R contains the function wilcox.test, which computes the
Wilcoxon rank sum test statistic and the p-value for the one-sample and the two-
sample case. By default an exact p-value is computed if the sample sizes are less than
50 and there are no ties. Otherwise, a normal approximation is used.

Let us consider the following problem. Before being able to enrol in a first level
degree course of Economics at some Italian Universities, students have to do an
entrance test related to mathematical skills. The examination consists of a written test
and, according to the final score, the students could be asked to participate to a pre-
liminary remedial course. In Table 1.7 the test results for a university of two samples
of candidates coming from scientific and classical studies backgrounds, respectively,
are shown. Sample sizes are n1 = n2 = 10. We wish to test whether the mathematical
skills of the two groups of students are equivalent against the alternative hypothesis
that students coming from scientific studies are better prepared in Mathematics. Let
Scorescient and Scoreclass denote the random variables representing the test result for a
student from a scientific and from a classical high school, respectively. The hypotheses

of the testing problem are H0 : Scorescient
d
=Scoreclass and H1 : Scorescient

d
>Scoreclass.
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Table 1.7 Results of the examination of mathematical skills for applicants
enrolling in a university Economics course, coming from scientific and classical
studies backgrounds.

Scientific studies
82.261 81.191 74.902 87.119 84.410 81.551 90.806 82.818 71.843 82.504

Classical studies
66.131 89.327 75.119 68.449 77.942 70.756 68.533 65.219 82.723 66.637

The symbol
d
= denotes equality in distribution, that is equality of the CDFs. The math-

ematical notation
d
> denotes stochastic dominance, that is the cumulative distribution

of Scorescient is less than or equal to the CDF of Scoreclass (and the strict inequality
is true for some subsets of ). In other words, under the alternative hypothesis the
scores of candidates coming from scientific studies tend to be distributed on greater
values. The significance level is 𝛼 = 0.01.

Looking at the two-sample density histograms (Figure 1.5), it seems that the score
distribution of students from scientific studies is shifted toward greater values than
the score of students from classical studies. For testing whether this conclusion based
on descriptive statistics can be extended to the corresponding populations we may
apply the Wilcoxon–Mann–Whitney test.
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Figure 1.5 Histograms of the results of the examination of mathematical skills for
applicants enrolling in a university Economics course, coming from scientific and
classical studies backgrounds.
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The R code for the analysis is the following:

> scient=c(82.261,81.191,74.902,87.119,84.410,81.551,90.806,
+ 82.818,71.843,82.504)

> class=c(66.131,89.327,75.119,68.449,77.942,70.756,68.533,
+ 65.219,82.723,66.637)

> wilcox.test(scient,class,alternative="greater")

Through the command wilcox.test(x,y,alternative="greater") we can per-
form the one-sided test of Wilcoxon–Mann–Whitney for comparing x and y (vectors
of data of the first and second sample, respectively) for testing the hypothesis that
the first population tends to take greater values than the second. For testing the
opposite one-sided hypothesis the last argument should be alternative="less".
For the two-sided alternative of inequality in distribution the syntax is alternative=
"two.sided".

The final output after the application of the R code to the described problem is:

#######################################################################

#Wilcoxon rank sum test

#

#data: scient and class

#W = 81, p-value = 0.009272

#alternative hypothesis: true location shift greater than 0

#######################################################################

The observed value of the test statistic is W = 81 and the corresponding p-value
is equal to 0.009 that leads to reject the null hypothesis in favor of the hypothesis
that the scores of candidates coming from scientific studies tend to be greater at the
significance level 𝛼 = 0.01.

A problem, similar from the statistical point of view but related to a completely
different application, is the following. An experiment is designed to see if farmed fish
exhibit a lower protein content than wild fish caught in the open sea. The experiment
is performed on a species of saltwater fish. The goal consists of assessing whether
there is a significant negative difference between the percentages of proteins in farmed
fish and in wild fish. Let Protfarmed denote the percentage of proteins in farmed fish
and Protsea denote the percentage of proteins in wild fish. The null hypotheses of

the problem is H0 : Protfarmed
d
=Protsea and the alternative is H1 : Protfarmed

d
<Protsea.

Two samples of healthy fish, similar in terms of age, gender, weight, etc., of sizes
n1 = n2 = 12 were drawn from the respective populations (Table 1.8).

From a descriptive point of view sample data related to farmed fish tend to be
greater than data related to the other sample, as shown in Figure 1.6.

Then the R code for this test is:

> farm=c(18.85,16.93,19.29,18.31,17.27,18.64,17.82,19.00,19.58,
+ 18.04,17.27,19.19)
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Table 1.8 Percentage of proteins in two samples of farmed and wild fish.

Farmed fish
18.85 16.93 19.29 18.31 17.27 18.64 17.82 19.00 19.58 18.04 17.27 19.19

Wild fish
19.23 19.57 19.50 18.64 18.70 19.54 19.04 20.67 20.71 18.99 19.37 19.06

> sea=c(19.23,19.57,19.50,18.64,18.70,19.54,19.04,20.67,20.71,
+ 18.99,19.37,19.06)

> wilcox.test(farm,sea,alternative="less")

and the output is:

#######################################################################

#Wilcoxon rank sum test

#

#data: farm and sea

#W = 26.5, p-value = 0.004672

#alternative hypothesis: true location shift less than 0

#######################################################################
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Figure 1.6 Histograms of protein percentage in two samples of farmed and wild
fish.
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The option for the alternative hypothesis now is "less". The value of the test statistic
is W = 26.5 and it corresponds to a p-value equal to 0.005, that leads to rejecting the
null hypothesis in favor of the hypothesis of stochastic dominance, that is the amount
of proteins in farmed fish is lower.

1.5.2 Permutation test on central tendency

The problem of comparing the central tendency of two independent samples in the
presence of one numerical variable may be addressed also through a permutation
solution. Let us assume homoscedasticity (i.e., equal variances) in the null hypothesis
and denote with F1 and F2 the compared nondegenerate continuous distributions,
both from the same family F. Consider the stochastic dominance problem where
in the alternative hypothesis the first population is supposed to take greater values
than the second. In other words, H1 asserts the stochastic dominance of the first
population on the second. Note also that H0 implies exchangeability of observed data
with respect to groups, and observed data may be viewed as if they were randomly
assigned to two groups but they come from the same population.

The permutation solution does not need the assumption that means and variances
of the response variables are finite. It only needs location parameters (mean, median,
or others) to be finite and proper sampling indexes for them to be available. Unlike
the Wilcoxon test, the permutation test does not require the continuity of the response
variables and can be applied also in the presence of ties without any correction or
approximation. Furthermore rank transformation is not one-to-one with respect to
the dataset X, hence the sufficiency property is not satisfied. A transformation of
X is a sufficient statistic if it contains all the necessary information for solving the
inferential problem on F. Hence the Wilcoxon rank sum test can have some power
decay. Instead the permutation test is conditioned to the whole dataset X which is a
sufficient statistic for F (Pesarin, 2001).

Let us consider X = X1
⨄

X2 with
⨄

denoting vector concatenation, so that the
two samples are pooled into one and the first n1 elements of X correspond to X1 and
the remaining n2 elements to X2.

A suitable permutation test statistic is T∗ = X
∗
1 − X

∗
2 where X

∗
j =

∑nj

i=1 X∗ji∕nj,
j = 1, 2, are the sample means of the first n1 elements and of the remaining n2
elements of X∗, respectively, and X∗ is a permuted dataset, that is a vector obtained
by changing the position of elements, or equivalently by randomly assigning n1 of the
observed values to the first sample and the remaining to the second. As a consequence
of exchangeability, under the null hypothesis the distribution of T∗ can be estimated
by permuting the dataset B independent times and computing the value of the statistic
corresponding to each permutation (Pesarin and Salmaso, 2010). The p-value of the
test is 𝜆 =

∑B
b=1 I(T∗(b) ≥ T0)∕B (proportion of T∗ permuted values greater than or

equal to T0), where T∗(b) is the value of the statistic related to the bth permutation and

T0 is the observed value of the statistic corresponding to the unpermuted dataset.
Consider the problem of the examination of mathematical skills of applicants

enrolling in a university Economics course, coming from scientific and classical
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studies backgrounds (Table 1.7 and Figure 1.5). The R code for the application of the
permutation test and the final result are:

> source("t2p.r")

> source("perm_2samples.r")

> data=c(scient,class)
> lab=rep(1:2,each=10)
> data_mat=cbind(lab,data)
> T=perm.2samples(data_mat,alt="greater",B=10000)
> T$p.value

[1] 0.00779922

The function perm.2samples(data,alt,B), defined in the file "perm_2samples.r"

(which requires the code in the file "t2p.r" for the computation of the p-value),
computes the permutation distribution of the test statistic and it requires that data
are arranged in a matrix where the first column contains the label of the groups and
the second column contains the observed data. We can specify the type of alternative
as usual with the options alt="greater", alt="less" or alt="two.sided". The
default number of permutations is B = 1000 but a different number can be specified
in the third argument (e.g., B = 10 000). Here the matrix of data is data_mat:

lab data

[1,] 1 82.261

[2,] 1 81.191

... ... ...

[10,] 1 82.504

[11,] 2 66.131

[12,] 2 89.327

... ... ...

[20,] 2 66.637

The p-value is computed with the function t2p that computes the significance level
function of the test statistic T according to the permutation distribution. The vector
t2p(T) contains the significance levels corresponding to each of the permutation
values of the test statistic and the first element is the significance level corresponding
to the observed value of the test statistic, that is the p-value. The p-value can be
obtained by typing T$p.value. The value 0.008 leads to the rejection of the null
hypothesis in favor of the alternative that candidates from scientific schools are better
prepared in mathematics. The result is then the same of the Wilcoxon test.

Also for the second problem of fish (Section 2.4.1), we can apply the permutation
test:

> data=c(farm,sea)
> lab=rep(1:2,each=12)
> data_mat=cbind(lab,data)
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> T=perm.2samples(data_mat,alt="less",B=10000)
> T$p.value

[1] 0.00089991

Even in this case the p-value (0.001) is less than 𝛼, hence the null hypothesis must be
rejected in favor of the alternative hypothesis that the amount of proteins in farmed
fish is less than in fish coming from the sea. The conclusion is then similar to that of
the Wilcoxon test.

1.6 Multivariate two-sample tests

This section is dedicated to the multivariate extension of the two-sample location
problem. The dataset here consists of n = n1 + n2 observations from two independent
q-variate populations, where n1 and n2 are the sizes of the two samples. The ith
multidimensional observation in the jth group is denoted by Xji =

{
Xji1,… , Xjiq

}
. A

rank based and a permutation solution are considered.

1.6.1 Multivariate tests based on rank

Let us consider the problem of testing the identity of two multivariate distributions
F1 and F2. We shall assume that F1 and F2 have a common unspecified form but
possible different location vectors.

Let Fj(x) be the CDF, belonging to the class of all continuous distribution func-
tions, for the jth population with j = 1, 2. According to the fixed effect model and
denoting with Zji the multivariate random variable from which Xji is assumed to be
generated, we have Z1i = 𝝁 + 𝜽 + 𝝐1i and Z2i = 𝝁 + 𝝐2i, i = 1,… , nj, j = 1, 2, where
𝜇 ∈ q is a constant vector, 𝜖ji are exchangeable q-variate random errors, with loca-
tion equal to the null vector and variances/covariances matrix equal to 𝚺, and 𝜽 ∈ q

is the vector of parameters representing treatment fixed effects. The hypothesis to be
tested is

H0 : F1(x) = F2(x) = F(x) for all x ∈ q

against the general two-sided alternative

H1 : F1(x) ≠ F2 (x) .

For the translation-type alternatives, the null hypothesis can be written as

H0 : 𝜽 = 0

against the alternative

H1 : 𝜽 ≠ 0.
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The alternative hypothesis states that at least one element of the vector of effects 𝜃 is
not equal to zero, that is at least for one component of the response variable we have
a non-null effect.

Let Rjih be the rank of Xjih in the set {X11h,… , X1n1h, X21h,… , X2n2h} for
h = 1,… , q. Let Rh denote the observed n-dimensional vector of ranks related to
the hth variable and consider the n × q matrix R = [R1,… , Rq]. Each column of this
matrix can be considered as a permutation of the numbers 1, 2,… , n. Thus R can be
considered a realization of a n × q random matrix with (n!)q possible realizations.
Since the q marginal components of the multivariate response are in general stochas-
tically dependent, the joint distribution of the elements of the matrix of ranks will
depend on the unknown distribution F even when H0 : F1(x) = F2(x) = F(x) holds.
Under H0, the distribution of the matrix of ranks conditional to the observed matrix
R over the set S (R∗) of all the possible permutations of the rows R∗ under H0 is
uniform. The probability of observing one of the n! = n ⋅ (n − 1) ⋅… ⋅ 2 ⋅ 1 possible
realizations is 1∕n!.

A general class of rank scores can be defined as follows:

E(h)(R) = gh

( R
n + 1

)
,

with h = 1,… , q and 1 ≤ R ≤ n. Hence the matrix R can be replaced by E =
[E1,… , Eq] where

Eh =
[
E(h) (R11h

)
,… , E(h)

(
R1n1h

)
, E(h) (R21h

)
,… , E(h)

(
R2n2h

)]′

with h = 1,… , q. For each sample and for each of the q variables the average rank
score can be computed as

Tj∙h =

∑nj

i=1
E(h)

(
Rjih

)

nj
.

Under H0 the average rank scores should be close to the total mean scores

T∙∙h =
(

n1T1∙h + n2T2∙h

)
∕n and the contrasts

(
Tj∙h − T∙∙h

)
should stochastically

be close to zero for j = 1, 2 and h = 1,… , q. In the presence of C ≥ 2 groups a
suitable test statistic for this problem might be

L =
C∑

j=1

nj[Tj − T]′V−1[Tj − T],

where Tj = [Tj∙1,… , Tj∙q]′, T = [T∙∙1,… , T∙∙q]′ and V is the permutation covariance

matrix of the contrasts Tj − T under H0 (see Section 3.5). L is Hotelling’s type
test statistic used in a parametric test which assumes that data are generated by a
multivariate normal distribution. Hence it is a suitable test statistic under normality.
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When the multivariate distribution is very far from the normal, this statistic may be
not a valid choice. Hence for the two-sample problem a possible test statistic is

L = n1[T1 − T]′V−1[T1 − T] + n2[T2 − T]′V−1[T2 − T].

For large values of n and q asymptotic distributions for L are derived (Puri and
Sen, 1971). The permutation distribution of L asymptotically, in probability, reduces
to the chi-square distribution with q(C − 1) degrees of freedom. Thus for C = 2 the
null hypothesis should be rejected when L ≥ 𝜒2

q;𝛼 where 𝛼 denotes the significance
level. According to the type of scores, different tests can be performed:

� For the Multivariate Multisample Median Test the score should be

E(h)(R) =
{

1 if R ≤ n∕2

0 otherwise,

hence Tj∙h is the proportion of values less than the median in the jth sample for
the hth variable.

� For the Multivariate Rank Sum Test we define

E(h)(R) = R
n + 1

,

hence the statistic Tj∙h is equal to (n + 1)−1 times the average rank in the jth
sample for the hth variable.

� For the Normal Scores Test we put p = n−R+1
n+1

and

E(h)(R) = zp,

where zp is the (1 − p)th quantile of the standard normal distribution that is
the value such that Φ(zp) = 1 − p, with Φ denoting the CDF of the standard
normal distribution.

The median test is preferable when the interest is focused on median comparisons,
that is when the median is the location parameter under study. The normal scores
test may be used only in specific problems, when it is reasonable to replace ordinary
ranks with the related normal scores. Otherwise, among the rank based procedures,
the rank sum test is the better choice. All the procedures described in the present
subsection are based on the assumption that responses are continuous variables and
can be applied only for two-sided tests.

Let us consider again the example related to the entrance test to enrol in the
Economics course (Subsection 2.4.1). In this application, the scores of a sample of
20 candidates to enroll in the Economics course are related to mathematical skills
and to economic knowledge. Half of the 20 students come from scientific studies
and the others come from classical studies. We want to test whether the bivariate
distribution of the scores of the two groups are the same, against the alternative, that
the distributions of the two groups differ. In other words the goal consists of testing
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Table 1.9 Results of the examination of mathematical skills and economic
knowledge for applicants enrolling in a university Economics course, coming from
scientific and classical studies backgrounds.

Scientific studies

Mathematical skills 82.261 81.191 74.902 87.119 84.41
Economic knowledge 87.807 96.851 77.155 99.330 98.570

Mathematical skills 81.551 90.806 82.818 71.843 82.504
Economic knowledge 69.909 75.220 62.405 73.750 81.182

Classical studies

Mathematical skills 66.131 89.327 75.119 68.449 77.942
Economic knowledge 79.451 92.708 74.730 66.063 62.818

Mathematical skills 70.756 68.533 65.219 82.723 66.637
Economic knowledge 92.883 99.869 97.991 61.801 84.395

whether the mathematical skills and the economic knowledge of the groups are the
same or not. The significance level is 𝛼 = 0.10. Formally by denoting with Math and
Econ the variables representing the scores of the two tests, the null hypothesis is

H0 : (Mathscient, Econscient)
d
= (Mathclass, Econclass),

that is the null hypothesis is true if the bivariate distributions of the scores on Math-
ematics and Economics are equal between the groups. The alternative hypothesis
is

H1 : (Mathscient, Econscient)
d
≠ (Mathclass, Econclass),

that is the scores of the two groups are different. Table 1.9 shows the data for the
problem.

The R package ICSNP contains tools for nonparametric multivariate analysis. In
particular in this package is the function rank.ctest(X,Y,mu,scores) that performs
the C-sample location test (with C ≥ 2) based on marginal ranks, for which the three
described score functions are available. For the two-sample test the function requires
the nj × q matrices of sample observations (X,Y) and a vector indicating the difference
in the means under the null hypothesis (mu). NULL indicates no difference between the
group means. The argument scores requires the type of score test to be performed to
be specified. It may be "sign" for a sign test, "rank" for a rank test or "normal" for
a normal score test. The R code for the analysis is:

> library("ICSNP")

> data=read.csv("test_eco.csv",header=TRUE,sep=";")
> X=data[1:10,c(2,3)]
> Y=data[11:20,c(2,3)]
> rank.ctest(X,Y,mu=NULL,scores="rank")
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The output is:

#######################################################################

# Marginal Two Sample Rank Sum Test

#

#data: X and Y

#T=5.8684, df=2, p-value=0.05317
#alternative hypothesis: true location difference is

# not equal to c(0,0)

#######################################################################

The function returns some information and in particular the observed value of the
test statistic T and the p-value for the test (p-value). Note that only the two-sided
alternative is available for this test. Thus for our multivariate example, we observe
a p-value equal to 0.053 < 0.10 that leads to the rejection of the null hypothesis
of equal distributions in favor of the alternative that the two score distributions are
different.

Another interesting problem is the multivariate extension of the application on
fish also introduced in Section 2.4. Let us assume an interest in assessing whether
there is a difference between farmed and wild fish in terms of percentage of proteins
and lean body mass (lbm). The hypothesis we want to test is that there is no difference
in the bivariate distribution between the two groups, against the general alternative
that the two distributions differ. The observed data on the two samples of fish are
reported in Table 1.10. The hypotheses of the problem are.

H0 :
(
Protfarmed, LBMfarmed

) d
=

(
Protsea, LBMsea

)
,

against

H1 :
(
Protfarmed, LBMfarmed

) d
≠

(
Protsea, LBMsea

)
.

Table 1.10 Percentages of proteins and lean body mass in two samples of farmed
and wild fish.

Wild fish

Proteins 20.67 19.34 18.67 19.33 19.42 19.80
Lean body mass 5.62 3.32 4.10 8.50 5.94 4.45

Proteins 19.01 18.91 18.51 19.09 18.99 19.63
Lean body mass 8.24 7.90 5.60 1.97 10.50 5.50

Farmed fish

Proteins 17.27 18.55 19.03 18.03 17.17 18.63
Lean body mass 0.98 2.74 7.82 1.33 1.56 5.47

Proteins 17.82 18.40 19.22 19.32 19.11 19.08
Lean body mass 7.98 5.20 1.78 1.23 4.78 5.91
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Under the null hypothesis, the percentage of proteins and lbm levels are equal in the
two groups of fish while under the alternative the two groups of fish differ.

The R code to perform the analysis is:

> library("ICSNP")

> bass_mv=read.csv("bass_mv.csv",header=TRUE,sep=";")
> X=bass_mv[1:12,c(2:3)] #first sample

> Y=bass_mv[13:24,c(2:3)] #second sample

> rank.ctest(X,Y,scores="rank")

The output is:

#######################################################################

# Marginal Two Sample Rank Sum Test

#

#data: X and Y

#T=8.8108, df=2, p-value=0.01221
#alternative hypothesis: true location difference is

# not equal to c(0,0)

#######################################################################

The resulting p-value is 0.012 hence at the significance level 𝛼 = 0.05 the null
hypothesis should be rejected in favor of the alternative that the two populations of
fish differ in the amount of proteins and/or lbm.

1.6.2 Multivariate permutation test on central tendency

A natural extension of the two-sample permutation test to multivariate problems is
now presented. In this framework the data is q-dimensional (q ≥ 2). Often in tests
for complex hypotheses, in the presence of many response variables or when several
aspects of the distribution are involved, the overall testing problem can be broken
down into a finite set of k > 1 different partial tests. Note that the number q of
responses does not always coincide with k, although for most multivariate location
problems k = q. As in the problems considered before, the null hypothesis consists
of the equality in distribution of two multivariate responses, for example the equality
in distribution of each marginal variable. The NPC methodology can be applied.
Even in this case H0 may be properly and equivalently broken down into a finite set
of sub-hypotheses H0i, i = 1,… , k each appropriate for a partial aspect of interest
or for a marginal variable (Pesarin and Salmaso, 2010). Therefore H0, also called
the global null hypothesis, is true if all the H0i are jointly true and thus it may be
written as

H0 :
⋂k

i=1
H0i.
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The alternative hypothesis states that at least one of the null sub-hypotheses H0i is
not true. Hence the alternative may be represented by the union of k sub-alternatives
as

H1 :
⋃k

i=1
H1i

where each sub-hypothesis H1i is the alternative of H0i. Thus H1 is true when at
least one sub-alternative is true. In this framework, H1 is called the global alternative
hypothesis. For each univariate partial test on central tendency the difference of
sample means may be a suitable test statistic and a univariate permutation test on
central tendency may be applied (Section 1.5.2). Through the NPC methodology
(Section 1.2.2) the partial p-values are combined to obtain a univariate test statistic
suitable to solve the multivariate problem.

The main advantage of this procedure, besides the possibility of considering mul-
tivariate response variables neither assuming any specific distribution nor specifying
the dependence structure among the component variables (but taking it into account
implicitly), is in its great flexibility that allows the solution of very complex prob-
lems. No continuity assumption is needed, hence it may be applied to continuous,
discrete or mixed multivariate variables. It can also be applied to one-sided alterna-
tives and even to complex alternatives where some of the partial sub-hypotheses H1i
are two-sided and others one-sided with different possible directions.

Let us consider the example of the examination for students wishing to enroll
in the Economics course. The scores in the Mathematics examination and in the
Economics examination are considered for the sample of 20 students, 10 of which
come from scientific studies and the others come from classical studies. To test
whether the distributions of the two populations of students are the same, against
the alternative that the distribution of the population coming from a scientific high
school is stochastically greater, that is that students from scientific studies tend to get
better results, using the multivariate permutation test with B = 5000 permutations,
the following R code should be applied:

> source("dataperm.r")

> source("umultiaspect.r")

> source("t2p.r")

> source("comb.r")

> data=read.csv("test_eco.csv",header=TRUE,sep=";")
> lab=rep(c(1,2),c(10,10))
> data_rev=cbind(lab,data[,2:3])
> perm=dataperm(dataset=data_rev,B=5000)
> l=u_multi_aspect(perm,rep("DM",2),rep(1,2),maspt=0)$P
> T2=comb(l,"F")
> pv=t2p(T2)[1]
> pv

> [1] 0.01898102
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The scripts are included in the files "dataperm.r", "umultiaspect.r", "t2p.r" and
"comb.r" which can be loaded with the source command. The first is useful for
permutating the dataset, the second for the calculation of the permutation multivariate
distribution of the partial test statistics, the third for obtaining the significance level
function and the fourth for the combination of partial tests. After the loading of data
from the file "test_eco.csv" the dataset must be set in the form:

var1 var2

1 x11 x12

1 x21 x22

... ...

1 xn1 xn2

2 y11 y12

2 y21 y22

... ...

2 ym1 ym2

that is with the vector of labels of the two groups (of sizes n and m) in the first column
and with the variables of interest in the following columns.

The function dataperm(dataset,B) performs B random permutations of the
multivariate dataset obtaining B permuted datasets. The function u_multi_aspect

considers the observed and permuted datasets (output of dataperm), computes the
multivariate distribution of partial test statistics and the corresponding significance
levels according to the type of alternative. In this case the test statistics are the differ-
ences of means ("DM") for both the partial tests (i.e., for both the variables) hence the
second argument is rep("DM",2). In the case of categorical variables, instead of dif-
ference of means, it is possible to use the Anderson–Darling statistic with the option
"AD". In the present problem the type of alternative, for each partial test, is group1
> group2 hence the next argument is rep(1,2) or equivalently c(1,1). If we want
consider the opposite alternative group2> group1 for both the partial tests we have to
specify rep(-1,2) or c(-1,-1) and for the two-sided alternative rep(0,2) or c(0,0).
Of course different alternatives can be specified and tested for the two partial tests
using c(-1,1), c(1,0), etc. To recover the multivariate significance level function
the command is l=u_multi_aspect(...)$P. Thus we can obtain the combined test
statistic combining the significance level functions and compute the corresponding
p-value through the commands T2=comb(l,"F") and l2=t2p(T2)[1], respectively.
For the combination, the possible choices are "F" for the Fisher function, "L" for the
Liptak rule and "T" for the Tippett formula.

The resulting p-value is 0.019 < 𝛼 = 0.10 hence, as with the rank test, the null
hypothesis should be rejected in favor of the alternative of better preparation of
students coming from scientific high schools. The p-value of the permutation test is
less than that of the rank test (0.053). This result is consistent with the greater power
of the combination based procedure.
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