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Overhead Transmission Lines
and Their Circuit Constants

In order to understand fully the nature of power systems, we need to study the nature of transmission
lines as the first step. In this chapter we examine the characteristics and basic equations of three-
phase overhead transmission lines. However, the actual quantities of the constants are described in
Chapter 2.

1.1 Overhead Transmission Lines with LR Constants

1.1.1 Three-phase single circuit line without overhead
grounding wire

1.1.1.1 Voltage and current equations, and equivalent circuits

A three-phase single circuit line between a point m and a point n with only L and R and without an
overhead grounding wire (OGW) can be written as shown in Figure 1.1(a). In the figure, r, and L, are
the equivalent resistance and inductance of the earth, respectively. The outer circuits I and II connected
at points m and n can theoretically be three-phase circuits of any kind.

All the voltages V,, Vj, V. and currents I,,, I, I are vector quantities and the symbolic arrows show
the measuring directions of the three-phase voltages and currents which have to be written in the same
direction for the three-phases as a basic rule to describe the electrical quantities of three-phase circuits.

In Figure 1.1, the currents /,,, /5, I in each phase conductor flow from left to right (from point m to
point n). Accordingly, the composite current I, + I, + I, has to return from right to left (from point n
to m) through the earth—ground pass. In other words, the three-phase circuit has to be treated as the set
of ‘three-phase conductors + one earth circuit’ pass.

In Figure 1.1(a), the equations of the transmission line between m and n can be easily described as
follows. Here, voltages V and currents / are complex-number vector values:

mVa = nVa = (ra + joLaag)ly + jooLapely + joLacgle — mnVe @D
mV Vb - .]thagI + (}"}, + Jthbg)]b + Jthch V @ (l l)
wVe = Ve = JOLeagla + jooLepgly + (re + joLecg)le — Ve @ '

@

where ,, V, = (rg + joLg)lg = —(rg + joLg)(la + Ip + Ic )
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Figure 1.1 Single circuit line with LR constants

Substituting @ into (D, and then eliminating ,,, Vg, I,

mVa = nVa = (ra +71g + joLagg + L)l + (rg + JOLapg + Lo)lp+(rg + jwLacg + L)l O

Substituting @ into Q) and () in the same way,
mVo = uVp = (rg + joLpag + L)l + (rp+ rg + joLppg + Lg)Ip+ (rgtjoLpeg+Lg)Ie ®
mVe = nVe= (rg + ja)Lcag + Lg)la + (rg + ijcbg + Lg)lb + (rc +rg + joLeg + Lg)lc @

1.2)
Now, the original Equation 1.1 and the derived Equation 1.2 are the equivalent of each other, so
Figure 1.1(b), showing Equation 1.2, is also the equivalent of Figure 1.1(a).
Equation 1.2 can be expressed in the form of a matrix equation and the following equations are
derived accordingly (refer to Appendix B for the matrix equation notation):

m vu n Va
me - n Vb
l’l‘lVC nVC
ra + rg + joLagg + Lg rg + joLapg + Lg rg + joLgeg + Lg 1,
=| rg+ joLyg + L, p + 1y + joLppe + L g + joLpeg + Lg L, | (1.3)
rg + joLeag + Lg rg + joLepg + Ly re +rg + joLeeg + Lg 1.
Taa + joLgg Tap + joLgp Tac + joLac I,
=| 1ba + joOLpg Tpb + jOLpp Tpe + joLpe || Ip
rC(l + ijL'll er + ijCb rL'L' + ijL'L' IL'
Zaa Zab Zac Ia
=| Zpg Zpp Zpe || I
Zcu Zcb ch IC
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where Zya = Yaa + joLag = (ra +1g) + jo(Lagg + Lg) }

Zpp, Zcc are written in similar equation forms (1.4)
and Z,., Zp. are also written in similar forms
Now, we can apply symbolic expressions for the above matrix equation as follows:
mV abe = uVabe = Zabe * Labe (1.5)
where
m Va n Va Zaa Zab Zac I a
mVabc = mV ’ "Vﬂbf = Vb ’ lebL‘ = Zpa Zpp ZLpe ) Iabc = 1 (1.6)
m VC n Vc an Zcb ZCC I c

Summarizing the above equations, Figure 1.1(a) can be described as Equations 1.3 and 1.6 or
Equations 1.5 and 1.6, in which the resistance r, and inductance L of the earth return pass are already
reflected in all these four equations, although I, and ,, V, are eliminated in Equations 1.5 and 1.6. We
can consider Figure 1.1(b) as the equivalent circuit of Equations 1.3 and 1.4 or Equations 1.5 and 1.6. In
Figure 1.1(b), earth resistance r, and earth inductance L are already included in the line constants Z,,,
Zap, etc., so the earth in the equivalent circuit of Figure 1.1(b) is ‘the ideal earth’ with zero impedance.
Therefore the earth can be expressed in the figure as the equal-potential (zero-potential) earth plane at
any point. It is clear that the mutual relation between the constants of Figure 1.1(a) and Figure 1.1(b) is
defined by Equation 1.4. It should be noted that the self-impedance Z,, and mutual impedance Z,;, of
phase a, for example, involve the earth resistance r, and earth inductance L.

Generally, in actual engineering tasks, Figure 1.1(b) and Equations 1.3 and 1.4 or Equations 1.5 and
1.6 are applied instead of Figure 1.1(a) and Equations 1.1 and 1.2; in other words, the line impedances
are given as Zaq, Zap, €tC., instead of Zyqg, Zyp,. The line impedances Zyg, Zpp,, Z are named ‘the self-
impedances of the line including the earth—-ground effect’, and Z,,, Z,, Z., etc., are named ‘the
mutual impedances of the line including the earth—ground effect’.

1.1.1.2 Measurement of line impedances Z,,, Z ), Z

Let us consider how to measure the line impedances taking the earth effect into account.

As we know from Figure 1.1(b) and Equations 1.3 and 1.4, the impedances Z,, Z,p,, Z4c, €tc., can be
measured by the circuit connection shown in Figure 1.2(a).

The conductors of the three-phases are grounded to earth at point n, and the phase b and ¢
conductors are opened at point m. Accordingly, the boundary conditions ,\V,, = ,V, = V. =0,1, =
I, = 0 can be adopted for Equation 1.3:

m Va 0 Zaa Zab Zac I,
w |71 O = Za | Loy | Zie 0 @® (17
m VC 0 an Zcb ch 0
mVa/Ia = Zaa7 me/Ia = Zbaa mVL-/Ia =Zeq @
Ia —> —> ]a
5 I,=0 — QL ==, ::|

—» /=0

° Ic:0_>
Q
@ @D
—>1g:—1u —>1g:O
(@ (b)

Figure 1.2 Measuring circuit of line impedance
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Therefore the impedances Zyq, Zyy,, Zge can be calculated from the measurement results of |V,
mVpr mVe and Iy,

All the impedance elements in the impedance matrix Z 4. of Equation 1.7 can be measured in the
same way.

1.1.1.3 Working inductance (Loq — Lgp)

Figure 1.2(b) shows the case where the current / flows along the phase a conductor from point m to n
and comes back from n to m only through the phase b conductor as the return pass. The equation is

with boundary conditions [, = —I, =1, 1. =0, Vo=V,
m Va n Va Zua Zab Zuc 1
wVo | =1 aVe | =1 Zoa | Zob | Zbe || 1 (1.8a)
m Vc n Vc an Zcb ZL-L- 0

Therefore

Vs — nVy = —(Zpp — Zpa)I = voltage drop of the phase b conductor between points m and n
V:mVameb = {(Zuu - ab)+(zbbfzba)}1 @
V/II= (Ve — mVp)/I = (Zaa — Zap) + (Zpp — Zpq) = {twice values of working impedance}

(1.8b)

Equation 1.8b(]) indicates the voltage drop of the parallel circuit wires a, b under the condition of the
‘go-and-return-current’ connection. The current / flows out at point m on the phase a conductor and
returns to m only through the phase b conductor, so any other current flowing does not exist on the
phase ¢ conductor or earth—ground pass. In other words, Equation 1.8b(D) is satisfied regardless of the
existence of the third wire or earth—ground pass. Therefore the impedance (Z,, — Z,p) as well as
(Zpp — Zp,) should be specific values which are determined only by the relative condition of the phase
a and b conductors, and they are not affected by the existence or absence of the third wire or earth—
ground pass. (Zs; — Zup) is called the working impedance and the corresponding (Lyq, — Lgp) is
called the working inductance of the phase a conductor with the phase b conductor.

Furthermore, as the conductors a and b are generally of the same specification (the same dimension,
same resistivity, etc.), the impedance drop between m and n of the phase a and b conductors should be
the same. Accordingly, the working inductances of both conductors are clearly the same, namely
(Laa = Lap) = (Lop — Lia)-

The value of the working inductance can be calculated from the well-known equation below, which
is derived by an electromagnetic analytical approach as a function only of the conductor radius » and
the parallel distance s, between the two conductors:

mVa — nVa = (Zaa — Zap)I = voltage drop of the phase a conductor between points m and n } D

Lyg — Lap = Lpp — Lpg = 0.460510g SaTb + 0.05 [mH/km] (1.9)
This is the equation for the working inductance of the parallel conductors a and b, whose deriving
process is shown in the section 1.3.1 as of theory of electromagnetism. The equation shows that the
working inductance L,, — Ly for the two parallel conductors is determined only by the relative
distance between the two conductors s, and the radius r, so it is not affected by any other conditions
such as other conductors or the distance from the earth surface.
The working inductance can also be measured as the value (1/2)V/I by using Equation 1.8b(2).

1.1.1.4 Self- and mutuval impedances including the earth-ground
effect Lgq, Ly

Now we evaluate the actual numerical values for the line inductances contained in the impedance
matrix of Equation 1.3.
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The currents I,,, I, I flow through each conductor from point mton and /, + I, + I, returns from n
to m through the ideal earth return pass. All the impedances of this circuit can be measured by the
method of Figure 1.2(a). However, these measured impedances are experimentally a little larger than
those obtained by pure analytical calculation based on the electromagnetic equations with the
assumption of an ideal, conductive, earth plane surface.

In order to compensate for these differences between the analytical result and the measured values,
we can use an imaginary ideal conductive earth plane at some deep level from the ground surface as
shown in Figure 1.3.

In this figure, the imaginary perfect conductive earth plane is shown at the depth H,, and the three
imaginary conductors o, f3, y are located at symmetrical positions to conductors a, b, c, respectively,
based on this datum plane.

The inductances can be calculated by adopting the equations of the electromagnetic analytical
approach to Figure 1.3.

1.1.1.4.1 Self-inductances Lyq, Lpp, Lcc  In Figure 1.3, the conductor a (radius r) and
the imaginary returning conductor « are symmetrically located on the datum plane, and the distance
between a and o is h, + H,. Thus the inductance of conductor a can be calculated by the following
equation which is a special case of Equation 1.9 under the condition s,, — h, + Hg:

ha + Ha

Laag = 0.4605 loglo
r

+0.05  [mH/km) (1.10a)

Conversely, the inductance of the imaginary conductor o (the radius is H,, because the actual
grounding current reaches up to the ground surface), namely the inductance of earth, is

ha + H,
L, = 0.4605 loglo% +0.05[mH/km]=0.05  [mH/km] (1.10b)
a

Therefore,
hy + H,
r

Laa = Laag + Lg = 0.4605 log +0.1  [mH/km] (1.11)

Lpp, Lce can be derived in the same way.

radius » [m]

earth surface
Hg—J300—9OO m

-=- imaginary datum plane

Figure 1.3 Earth—ground as conductor pass



6 HANDBOOK OF POWER SYSTEMS ENGINEERING

Incidentally, the depth of the imaginary datum plane can be checked experimentally and is mostly
within the range of Hg = 300 — 1000 m. On the whole H, is rather shallow, say 300 — 600 m in the
geological younger strata after the Quaternary period, but is generally deep, say 800 — 1000 m, in the
older strata of the Tertiary period or earlier.

1.1.1.4.2 Mvutual inductances Ly, Ly, Leg  The mutual inductance L, can be derived
by subtracting L,, from Equation 1.11 and the working inductance (Lyq — Lyp) from Equation 1.9:

ha + H,
Lap = Lag — (Laa — Lap) = 0.4605 log ;g — ta 005 [mH/km|
Sap Sab (1.12a)
=0.4605 log;o SL’ +0.05 [mH/km]
ab

Similarly

hy +H
b 0,05 [mH/km]
sy 22 (1.12b)
= 0.4605log;p—>+0.05 [mH/km]
Sab

Lba = 0.4605 loglo

where h, + H, = 2H, =2Hyg, and so on.

Incidentally, the depth of the imaginary datum plane H, =H, = (h, + H,)/2 would be between
300 and 1000 m, while the height of the transmission tower A, is within the range of 10-100 m (UHV
towers of 800-1000 kV would be approximately 100 m or less). Furthermore, the phase-to-phase
distance S, is of order 10 m, while the radius of conductor r is a few centimetres (the equivalent radius
re of EHV/UHV multi-bundled conductor lines may be of the order of 10-50 cm).

Accordingly,

H,=H,=H.=2H,> hs=hy, =hc>> Sap =Spc =Sca > T, T'eff (1.13)
sczﬂ?sba.;ha +H, =2H,=h, +H, ’
Then, from Equations 1.9, 1.11 and 1.12,
Laa .:.th .:.Lcm Lab i-LbL' .:.Lca (1- 14)

1.1.1.4.3 Numerical check Let us assume conditions su = 10m, r=0.05m,
H, = (ha+H,)/2= Hg =900m.
Then calculating the result by Equation 1.11 and 1.12,

Ly =220mH/km, L, = 1.09 mH/km

If H = (hy+H,;)/2=300m, then L, = 1.98mH/km, L, =0.87mH/km. As h,+ H, is
contained in the logarithmic term of the equations, constant values L,,, Ly, and so on are not
largely affected by h, + H,, neither is radius 7 nor regr as well as the phase-to-phase distance s,p.
Besides, 0.1 and 0.05 in the second term on the right of Equations 1.9-1.12 do not make a lot of
sense.

Further, if transmission lines are reasonably transpositioned, Z,;, = Zpp = Zcc, Zap = Zpe = Zcq CaN
be justified so that Equation 1.3 is simplified into Equation 2.13 of Chapter 2.

1.1.1.5 Reactance of multi-bundled conductors

For most of the recent large-capacity transmission lines, multi-bundled conductor lines (n =2 — 8
per phase) are utilized as shown in Figure 1.4. In the case of n conductors (the radius of
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Figure 1.4 Overhead double circuit transmission line

each conductor is r), Ly of Equation 1.10a can be calculated from the following modified
equation: \
h, + H, 0.05
leg = 0.4605 ]Oglom+7 [mH/km]
h, + H, n O,r(l)S

Teq

=0.4605log,, [mH/km| ( (1.15a)

where  req = r!/" x w"=D/" is the equivalent radius and

w[m] is the geometrical averaged distance of bundled conductors

Vs

Refer the Supplement 1 for the introduction of equivalent radius of a multi-bundled conductors.
Since the self-inductance L, of the virtual conductor « given by Equation 1.10b is not affected by the
adoption of multi-bundled phase a conductors, accordingly

he +H,

€q

1
Laa = Laag + Lg = 0.4605 log; +0.05 (1 + —) [mH/km]} (1.15b)
n

1.1.1.5.1 Numerical check Using TACSR = 810 mm? (see Chapter 2), 2r = 40 mm and
four bundled conductors (n = 4), with the square allocation w = 50 cm averaged distance

1/6
w= (W2 - Wiz - wig - waz - wag - wag) !/

= (50-50v2-50 50 - 50v/2 - 50)"/¢ = 57.24cm (1.16)
req = r'/m wlt=D/m = 5 01/4 . 57.253/4 = 24.7cm
The equivalent radius req = 24.7 cm is 12.4 times r = 2.0 cm, so that the line self-inductance Ly,

can also be reduced by the application of bundled conductors. The mutual inductance L, of
Equation 1.12a is not affected by the adoption of multi-bundled conductor lines.
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1.1.1.6 Line resistance

Earth resistance 7, in Figure 1.1(a) and Equation 1.2 can be regarded as negligibly small. Accordingly,
the so-called mutual resistances 74, ¢, g in Equation 1.4 become zero. Therefore, the specific
resistances of the conductors r,, rp, 1. are actually equal to the resistances 744, rpp, 'ec in the impedance
matrix of Equation 1.3.

In addition to the power loss caused by the linear resistance of conductors, non-linear
losses called the skin-effect loss and corona loss occur on the conductors. These losses would
become progressionally larger in higher frequency zones, so they must be major influential
factors for the attenuation of travelling waves in surge phenomena. However, they can usually
be neglected for power frequency phenomena because they are smaller than the linear resistive
loss and, further, very much smaller than the reactance value of the line, at least for power
frequency.

In regard to the bundled conductors, due to the result of the enlarged equivalent radius r,, the
dielectric strength around the bundled conductors is somewhat relaxed, so that corona losses can
also be relatively reduced. Skin-effect losses of bundled conductors are obviously far smaller than that
of a single conductor whose aluminium cross-section is the same as the total sections of the bundled
conductors.

1.1.2 Three-phase single circuit line with OGW, OPGW

Most high-voltage transmission lines are equipped with OGW (overhead grounding wires) and/or
OPGW (OGW with optical fibres for communication use).

In the case of a single circuit line with single OGW, the circuit includes four conductors and the
fourth conductor (x in Figure 1.5) is earth grounded at all the transmission towers. Therefore, using the
figure for the circuit, Equation 1.3 has to be replaced by the following equation:

m Va n Va Zaa Zab Zac Zax Iy
mVh L a% | Zba | Zob | Zpe | Zpe | | D (1.17a)
m Vc n VC Zea Zcb Zee Zex I
mYx — 0 n Vx =0 Zxa Zyp Zye Zyx I
Extracting the fourth row,
1
Ix = - 7 (Zxala + thlh + Zchc‘) (1~17b)
xXx
pointm  ; _ a point n X
Iy — b a0 oc
/, c —» C °
m Va K:,i L, — V!V b
< PR

A

. / j - ‘\ a
ST T
— (I, t1.+1) 7 /K /

overhead grounding wire earth grounded at every tower

3

Figure 1.5 Single circuit line with OGW
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Substituting I, into the first, second and third rows of Equation 1.17a,

m Vu n Vu Zaa Zab Zac Iy Zaxl X
mVb - n Vb = Zpa Zpb Zpe | I | Zipads
m VL‘ n V(,' Z('l,l ZCb ZL'C IL' ZCXIX
Zoa — ZaxZxa Zop — ZaxZxp Zoe — ZaxZxc
Zyx Zax Zyx 7
Z, Z, Z 4
_ Zba _ LbxLxa be _ LbxLxd Zbc _ Lbxtxe Ib
Zyx Zyx Zyx ;
c
ZexZxa Zcxsz ZexZye
an_T Zcb_T ZL'L‘_T (1.18)
XX XX XX
chla Zzlzb chzc la
= Zéa Zéb Zéc ’ Iy
Zéa Zéb Zé‘c I
where Zyy = Zyq, Zpx = Zp, Zex = Zie
chla = Laa — 5aa: Zzllb =Zap — 5ab
Zaxea Zaxeh
P R
aa Zoe ab Zox

This is the fundamental equation of the three-phase single circuit line with OGW in which I, has
already been eliminated and the impedance elements of the grounding wire are slotted into the three-
phase impedance matrix. Equation 1.18 is obviously of the same form as Equation 1.3, while all the
elements of the rows and columns in the impedance matrix have been revised to smaller values with
corrective terms Oy = ZgxZya/Zxx etc.

The above equations indicate that the three-phase single circuit line with OGW can be
expressed as a 3 x 3 impedance matrix equation in the form of Equation 1.18 regardless of the
existence of OGW, as was the case with Equation 1.3. Also, we can comprehend that OGW has roles
not only to shield lines against lightning but also to reduce the self- and mutual reactances of
transmission lines.

1.1.3 Three-phase double circuit line with LR constants

The three-phase double circuit line can be written as in Figure 1.6 and Equation 1.19 regardless of the
existence or absence of OGW:

m Va n Va Zaa Zab Zac ZaA ZaB ZuC I a
mVb n Vb Zpg Zpp Zpc Zpa Zpp Zpc Iy
m Vc _ n Vc _ an Zcb ch ZcA ZCB ZCC . I c (] 1 9)
mVa nVa ZAa Zab Zac Zaa ZaB Zac 14
mVB VB ZBa ZBb ZBc ZpA ZBB Zpc Ip
mVe Ve Zca Zecp Zce Zca Zcp Zcc Ic

In addition, if the line is appropriately phase balanced, the equation can be expressed by
Equation 2.17 of Chapter 2.
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Figure 1.6 Three-phase double circuit line with LR constants

1.2 Stray Capacitance of Overhead Transmission Lines
1.2.1 Stray capacitance of three-phase single circuit line

1.2.1.1 Equation for electric charges and voltages on conductors

Figure 1.7(a) shows a single circuit line, where electric charges g, gp, g [C/m] are applied to phase a,
b, c conductors and cause voltages v4, vp, v [V], respectively. The equation of this circuit is given by

Va Paa Pab Pac da

Vo | = | Pba Pbb Pbc || _gb | -~ Vabc = Pabc " Qabe

Ve Pca Pch Pcc qc (] 203)
[—p— —_——

Vabe Pabe Yabc

where g [C/m], v[V] are instantaneous real numbers

. b b
radius 0 c, @ Q
7’ \
a v ,5\6 N
. Xab Vie a Q : \//\Cbc
charge gq c /5. \//L\: \C
arOg, EEC A O N
v | | ]
Ve I
]
] 1 1
(@) / / (b) 7
‘ VDb
o
@C”\’&/’\’Q\
a ’/Ejab I >/<Cbc
\\//Cca v
/(OCI \‘:\ - \ Vb
/ a(x(k :
: (I\P(") T

(©)

Figure 1.7 Stray capacitance of single circuit line
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The inverse matrix equation can be derived from the above equation as

9a kaa kap kac Va
o | = | kea | kev | kee || Vo | - dabe = Kabc  Vabe (1.20b)
dc kea kep kee Ve
—p— N
Gabe Kabe Vabe

Here, p,;. and kg are inverse 3 x 3 matrices of each other, so that p,,. - kspe =1 (1is the 3 x 3
unit matrix; refer to Appendix B).

Accordingly,
kaa = (phbpcc - p}%L)/A [F/m}
kpp = (pccpaa - P?a)/A [F/m]
kee = (paa Pbb — pzh)/A [F/m}
kap = kpa = _(pabpcc - pacpbc)/A [F/m} (1.20c)
kpe = kep = _(Pbcpaa — Pba Pca)/A [F/m}
kea = kac = _(pcapbb - Pchab)/A [F/m]
A = paa Pvb Pec + 2 Pab Poe Pac — (Paa Pic + Pbb pfa + pccpgb) [m3/F3]

where p [m/F] are the coefficients of the potential and k [F/m] are the electrostatic coefficients of
static capacity.
Modifying Equation 1.20b a little,

qa = kaaVa + kapVp + KacVe

= (kaq + kap + kac)va + (—kap) (va — vb) + (—kac)(va — ve) [C/m] 121
qp = (kpa + kpp + kpe)vp + (—kpe)(vp — ve) + (—kpa) (Vo — va) [C/m] ’
ge = (kea +kep +kee)ve + (—kea) (Ve — va) + (—k ) + (ve — vp) [C/m]
then
qa = CaaVa + Cuh(Va - Vh) + Cac(va - VC) [C/m]
qp = CopVp + Cpe (Vb — ve) + Cpa(Ve — Va) [C/m] (1.22)
ge = CeeVe + Cea(ve —va) + Cop(ve — vp) [C/m]

with qa, qp, gc [C/m], vp, vp, ve [V] and

Caa = kaa + kab + kac [F/m} Cab = _kab [F/m]
Cop = kpa +kpp +kpe  [F/m]  Cpe = —kp.  [F/m|
Cee = kea + kepp + kee [F/m} Cea = —kea [F/m]

]

]

]

1.23
Cac = —kae [F/m (1.23)
Cpa = 7kba [F/m
Cep = *kcb [F/m ’

Equations 1.22 and 1.23 are the fundamental equations of stray capacitances of a three-phase single
circuit overhead line. Noting the form of Equation 1.22, Figure 1.7(b) can be used for another
expression of Figure 1.7(a): Cuq, Cpp, Ccc are the phase-to-ground capacitances and C,, = Cp,,
Cpe = Cep, Coq = C,4e are the phase-to-phase capacitances between two conductors.

1.2.1.2 Fundamental voltage and current equations

Itis usually convenient in actual engineering to adopt current i(= dg/dt) [A] instead of charging value
¢ [C], and furthermore to adopt effective (rms: root mean square) voltage and current of complex-
number V, [ instead of instantaneous value v(z), i(z).



12 HANDBOOK OF POWER SYSTEMS ENGINEERING

Aselectric charge g(#) is the integration over time of current i, the following relations can be derived:

o = i, 1= @

i(f) = Re(v/2 - I(1)) = Re(V2 | 1] - /@ +0)) = /2| I | cos(wr + 0;) Q)
Re() shows the real part of the complex number(Re(a + jb) = a).
V() = Re(VZ V(1) = Re(2| V|- &/
- 2|V |cos(wt + 03) ©) (124)
o) = [0 = [Re(VZ| 1] - 0 a
= Re(V2|1]- | /@0 ar) (note that, in this book,
eJ(@r+0:) 31+ the exponential function
=Re (\/_| | - o > =Re (%) @  will be denoted by ‘e’).

Equation 1.22 can be modified to the following form by adopting Equation 1.24(4) and by
replacement of v,(r) — v/2V,(z) etc.:

21
Re (%) - Re{caa : \/Eva + Cap - \/E(Va - Vb) + Cac - \/E(Va - VC)}
V2,
Re( =77 ) = Re{Cpp - V2Vjy + Cpe - V2(Viy — Vo) + Cpa - V2(Vi — Vi) } (1.25)
V21,
Re( ) = Re{Cec- V2Ve + Cea - V2(Ve = Va) + Cep - V2(Ve = Vi) }
Therefore
1, = joCuaVa + jwcab(va - Vb) + jwcuc(va - Vc)

Iy = joCpVy + jooCpe(Vy — Ve) + jorCpa(Vy — Va) (1.26a)
I, = joCe Ve + ja)Cca(VC — Va) + jCUCCb(VC — Vb)

or, with a small modification,

Ia Cau + Cab + Cac —Cab 7Cuc Vu
I, |=jo —Cha Cpa + Cpp + Chpe —Cpe | Ve | (1.26b)
I c 7Cm —Ceb Cca + ch + Ccc Vc

This is the fundamental equation for stray capacitances of a three-phase single circuit transmission
line. Also Figure 1.7(c) is derived from one-to-one correspondence with Equation 1.26.

1.2.1.3 Coefficients of potential (p,.. Pab), coefficients of static capacity
(kaa, kqp) and capacitances (Cqq, Cop)

The earth surface can be taken as a perfect equal-potential plane, so that we can use Figure 1.8, in which
the three imaginary conductors o, f3, y are located at symmetrical positions of conductors a, b, c,
respectively, based on the earth surface plane. By assuming electric charges +q,, +¢, +¢. and —q,
—gp, —q. per unit length on conductors a, b, ¢, and «, f, y respectively, the following voltage equation
can be derived:

2h,
Vg = (VOItage of conductor a due to £ g, of conductor a, o : 2g, logeTa x9 x 10° [V])
—+ (voltage of conductor a due to £ g, of conductor b, f : 2¢; log, Jap x9 x 10° [V])
Sab

+ <v01tage of conductor a due to % g, of conductor c, y : 2¢. log, Say x9 x 10° [V]) ®
S

ac
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radius [m)]
+q.
c
h,
% earth surface
hL‘
" \1
’\ _\I 4.
~qq I\ M
o
AR
B
Figure 1.8 Three parallel overhead conductors
Equations for v, v, can be derived in the same way. Then
Va Paa Pab Pac 9a
Vb = Pba Pbb Pbc ’ qb
Ve Pca Pcb Pcc dc
2h, Sap Say
log, — log, — 1 s
08— 08¢ Sab 08 Sac
9a
2h Shy
=2x9x10° x logesb—“ loge—b log, LN a |@ (1.27)
Sha r She q
Sco Scp 2h. 4
log, — log, — log, —
08e Sea 08e Seb 08—

where su = Sp = /{52, — (ha — )2} + (ha o+ y)* = \[52, + Ahahy,

Refer the section 1.3.2 for the deriving process as of the Equation 1.27 as of theory of electromagnetism.

The equation indicates that the coefficients of potential (p,,, pup. etc.) are calculated as a
function of the conductor’s radius r, height (44, hy, hc) from the earth surface, and phase-to-phase
distances (s;p, Sqc, etc.) of the conductors. paq, pap, €tc., are determined only by physical allocations
of each phase conductor (in other words, by the structure of towers), and relations like p,, = pp, are

obvious.

In conclusion, the coefficients of potential (puq, pas, €tc.), the coefficients of static capacity (k,,
kap, etc.) and the capacitance (Cuq, Cyp, etc.) are calculated from Equations 1.27, 1.20 and 1.23,
respectively. Again, all these values are determined only by the physical allocation of conductors and

are not affected by the applied voltage.
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1.2.1.4 Stray capacitances of phase-balanced transmission lines

Referring to Figure 1.8, a well-phase-balanced transmission line, probably by transposition, can be
assumed. Then

h=ha=hy=he, 1= Sab = Sba = Sbe = Scb =Sca = Sac (1.28)
Sap = Sba = Say =Sca =Sby =Scp '
Ps = Paa = Pbb = Pec } (1.29)
Pm = Pab = Pba = Pac = Pca = Pbc = Pcb
Accordingly, Equation 1.20 can be simplified as follows:
A=pl+ 217;12— 3psp3,
= (Ps - pm) (Ps + 2Pm) N
. R . Ps T Pm
ks = kaa =kpp =kee = (p? — p2)/A =
§ aa cc (ps pm)/ (ps _ pm)(ps +2pm)
km =kap = kba =kac = kea =kpe = kep = _(Pmps - przn)/A (1.30)
_ —Pm
(Ps — pm)(Ps +2pm)
1
ks+2ky = ————
' " DPs +2pm
and from Equation 1.23
CS = Cau = Cbb = CL‘L‘ = ks + 2km = m
Cn=Cup = Cpy=Che = Cea =Che = Cop = —kyp, (1.31)
Pm Pm
= = -G
(ps - Pm)(Ps + 2pm) Ps — Pm
and from Equation 1.27 \
_ . . 9 2h
Ps = Paa = Pbb = Pec =2 %9 % 10 log67 [m/F] @D
s,
Pm = Pab = Pbc = Pea =2 X 9 X 10910gesL; [m/F]
2 2
55+ (2h)
=2 % 9 x 10°log, Y ————
St
A
=2x9x10° loge{l + <S—) } [m/F] ©) [ (1.32)
il

where generally

20\ 2
h> sy, (—) >1
i

and

2h
S pm=2x9 % 10° loges—” [m/F| Q'
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Substituting ps, p,, from Equation 1.32 into Equation 1.31,
S 2pm 2h 2hn\ 3
P 2Pm 2><9><109(10ge—+210ge—> 2><9><10910ge%
r Su sy
0.02413 _ 0.02413
= = X107 [F/m] = = [uF/km] @
logo— logo—
g10 ) g10 )
(zero-sequence capacitance)
while ) (1.33)
log, — logjg—
Pm . S B,
— D 2h 2h S
Ps — Pm = i | —
log, r log, ” 08107,
o 2h o 2h
8075, 002413 ©810%,
“Cn=0Cs ) li’"p =G iZ = 843 ' iZ[MF/km] @
s Pm log;o— 10&0? logo—
i

In conclusion, a well-phase-balanced transmission line can be expressed by Figure 1.9(a) and
Equation 1.26b is simplified into Equation 1.34, where the stray capacitances Cs, C,, can be calculated

from Equation 1.33:

I, Cs +2Cy —C, —C, v,
1 = ](U —Cn Cs + 2Cy, —Cn : Vi
1 c — Cm — Cm CS + 2Cm Vc

[ p— (p—
Lo Cape Vabe

Sodgpe = jwcabc *Vabe

(1.34)

Incidentally, Figure 1.9(a) can be modified to Figure 1.9(b), where the total capacitance of one phase
C=Cs+3C,, is called the working capacitance of single circuit transmission lines, and can be

calculated by the following equation:

1

C =Cys+3C = (ks + 2km) + 3(—ki) = ks — ki e

1 1
2h 2h Su [
2% 9x 109(loge——loge—) 2x9x10%log, -~
r Sl
0.02413
= i [wWF/km] (positive sequence capacitance) @
logjo—~

In case of multi-bundled (n) conductor lines, the radius r is replaced by the
equivalent radius refr,

Feq = rl/n % W(nfl)/n [m] @

where w is the geometrical averaged distance between bundled conductors.

(1.35)

Refer the Supplement 1 for the introduction of equivalent radius of a multi-bundled conductors.
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c O g™ Cm c
¢l ¢ CJ_ CJ_SC 3q m3cT

1] o0

(b) single circuit line

(a) single circuit line

Figure 1.9 Stray capacitances of single circuit overhead line (well balanced)

1.2.1.4.1 Numerical check Taking the conditions conductor radius = 0.05 m, averaged
phase-to-phase distance s; = 10 m and average height 4 = 60 m, then by Equations 1.33 and 1.35,
we have

Cy = 0.00436 wE/km, C,y = 0.00204 wF/km and C = C; + 3C,y = 0.01048 wF/km

1.2.2 Three-phase single circuit line with OGW

Four conductors of phase names a, b, ¢, x exist in this case, so the following equation can be derived as
an extended form of Equation 1.26a:

Iy = joCaaVa + j(lJCab(Va - Vb) + jwcac(va - Vc) + jwcax(va - Vx) (1.36a)
where V,; = 0, because OGW is earth grounded at every tower. Accordingly,
I[l C{l(l + Cﬂh + C{,IL' + C[IX - ab 7C11L' Vll
Iy |=jo —Cha Cpa + Cpp + Cpe + Cix —Che Vi
Ic _Cca —Lob CL‘a + Crb + Ccc + Cc.\' Vc
(1.36b)

This matrix equation is again in the same form as Equation 1.26b. However, the phase-to-ground
capacitance values (diagonal elements of the matrix C) are increased (the value of C,, is increased for
the phase a conductor, from C,, + Cup + Cye 10 Coq + Cap + Coe + Cop).

1.2.3 Three-phase double circuit line

Six conductors of phase names a, b, ¢, A, B, C exist in this case as is shown in Figure 1.10, so the
following equation can be derived as an extended form of Equation 1.26a:

I, = jo[CuaVy + Cop(Vy —Ve)+ Caa(Va — Va) + Cap(Vy — Va)

- Vo)l

- Vb) + Cac(va

+ Cuc(Va (1.37a)
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Then
Cua + Cap+
Cac + CaA+ —LCab —Cac —LaA —Cap —LaC
Cup + CaC
Cpa + Crpt+
—Cha Cpe + Cpat+ —Cie —Cpa —Cpp —Cic
Cos + Cpc v
Cca + chJr 4
—Ceq —Ceb Cee + Cea+ —Ceca —Cep —Cec Vb
Ceg + Cec Ve
Caa + Cap+ Vi
—Caa —Cap —Cac Cac + Caat+ —Cas —Cac Va
Cab + Cac %
Cpa + Cpp+ c
—Cga —Cgp —Cge —Cga Cpc + Cpat+ —Cge
Cap + Che
Cca + Cep+
—Cca —Ccp —Cee —Cca —Ccn Ccc + Ceat
Cep + Cee (1.37b)
It is obvious that the double circuit line with OGW can be expressed in the same form.
The case of a well-transposed double circuit line is as shown in Figure 1.9(b):
Grim | - ~Cn ~Ch -, Gy
m
la _Cm Cx * 2/C " _Cm _Cin _C;n _CI/W Va
] +3Cin v
b Cs +2Cy / / / b
IC ]( , - Cm 7Cm +3C,/,, —Lm —Lm 7Cm VC
= ja
Ia _C]/n —C,In _Cr/n G 2/C " —Cp —Cp Va
Ig +3Cn Vg
Cs +2C
Ic ~Ch G ~Ch ~Co ‘o | Ve
C, +2C,
_Cr/n _Cén _Cm _Cm ‘+3C;n "

Cs=Caa=Cpp =Coe =Can =Cpp=Cec
Cn=Cup=Cpc="-=Cap=Cpc="--
C;,nE ”A.:‘Cbc.:'”'?CAa.:.CBb.:.“'

: one phase-to-ground capacitance
: capacitance between two conductors of the same circuit
: capacitance between two conductors of a different circuit

(1.38)

Above, we have studied the fundamental equations and circuit models of transmission lines and the
actual calculation method for the L, C, R constants. Concrete values of the constants are investigated
in Chapter 2.

Figure 1.10 Stray capacitance of double circuit line (well balanced)
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1.3 Working Inductance and Working Capacitance
The Equation 1.9 for working inductance and Equation 1.35 for working capacitance as well as
Equation 1.27 for capacitive induced voltage were briefly shown in the previous sections. Now we

introduce these equations and examine what these equations mean from the physical viewpoint of
electromagnetism.

1.3.1 Introduction of working inductance

_____ NS
R DN
7. >
NN
s N
/
/! W
(] X ‘. \
[ N
[ [N
[ [
[ ]
[ '/
\ \ /
\\\ I//
Y /l,
\\\\\ ’¢’,/
(@ S~JIITTeT (W)

Figure 1.11

1.3.1.1 Introduction of self-inductance L., of a straight conductor

As is shown in Figure 1.11, one conductor a (radius r) is laid out straight in an area of permeability
1= U - 1y (4 is permeability in vacuum space and p is relative permeability and ;, = 1.0 in
vacuum space). If current i flows through conductor a, concentric circular magnetic paths are
composed in a conductor section as well as in outer space, and the central point O of the conductor a
is also the central point of induced concentric magnetic paths. The concentric magnetic paths in the
outer space of the conductor a is examined first. A thin concentric magnetic ring path at point x from O
with length 27x and width dx can be imaged. The magnetic resistance R of the ring path is proportional
in the length of the ring path 27x[m], and is inversely proportional in the sectional areal x dx[m?).
Namely,

2
r="T" [A - turn/Wb] where x > r (1.39a)
udx

where p = i, - po :the permeability of the ring path

Lo: permeability in vacuum space (p9 = 4 x 1077 by MKS rational unit system)

Ws: relative permeability (1, = 1.0 in vacuum space)

The reason that y is 47 x 1077 in MKS rational unit system is discussed later in section 1.3.4.
If current i[A] is flowed through the conductor (or if electromotive force i[A - turn] is charged in
the conductor), flux dy is produced through the ring path with sectional depth dx and

_L_mr
dy = R 2w dx [Wb] (1.39b)
The linking flux number dv) is _
dp=1-dp=""""ax (1.39¢)
2mx

Therefore the total linking flux 1),,, of the space from the conductor surface (radius r[m]) to point S is

S S S . .
po o
Vo = J b= | 1= | 5= {E'“’g“}

e S (HsHe e SY
T 2nm loger—( 27 loger> !

s

" (1.39d)
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Next, linking flux number 1);, in the conductor section is examined. If current i[A] is flowed through
the conductor, the current within space of diameter x[m] is

2

ih=i-> [A] wherer>x>0 (1.40a)
I

The intensity of magnetic field at the ring path with length 27x and width dx which is x distant from
point O in the radial direction is:

Ix
H=— [A-t 1.40b
- [A - turn/m] ( )
The flux density is:
T dg i x
B = gy to - H = ”wndznio x_ “w"dzn"rg [Wb/m?] (1.40¢)

where (., is the relative permeability of the conductor
The flux at the x distant ring path with dx width is:

Heond * Mo * i-x
2nr?

The turn number of the conductor within circle of radius x can be considered x> / 72, then the linking
flux number is

or r r . 2 r
_ _ . _ Heond “ Mo " 1-X X7 ., Heond *Ho . 3
Win = .‘(Jdlﬂm = I[le'd@ = JOT'ﬁ%dx = JOW'I'X dx

Heond * Fo 1 4 " . Heond " Ho 1 4 . Heond " Mo
— feond 1O |° .= leond 0 - .= feond 7O 1.40
2t [4 * } o 2nA (4 ) A TR (1.40e)

do=B- (1 xdx)=Bdx= - dx [Wb] (1.40d)

As the result of all the above Equations (1.39d)(1.40e), total linking flux numbers which is
produced by current i of the conductor a and interlink with the current i itself between the area of
conductor a to outer space point S is:

Hs Mo, S Heond Mo
Viotal = Wour + Vin = ( ‘27_5 loge;*’%) ol (L.41a)

As the definition of inductance is the linking flux number per 1A, or L = /i, then
Loa = l//t({ml _ Hs - .uOI §

+ﬂcond':“0 (1.41b)
i 2n

08¢ 87

S S
or Ly = (0.4605uslog107 + 0.05/.LC0M1> x 1076 [H/m] = 0.46051,log,y = + 0.05/4,,q [mH /km]
r r
where p1,: permeability of vacuum space, and y, = 47 x 10~ by MKS rational unit system

(1.41c)

This is the self inductance of the conductor a, and the equation correspond with Equation (1.10a).

1.3.1.2 Introduction of working-inductance Ly, - L., of two conductors

In next, working inductance L,, — L, of two conductors a and b is examined. (refer Figure 1.11(b)).

Two conductors a and b (radius r) are lay out in parallel with distance S and the current i [A] go out
on the conductor a and come back from b, or current i [A] flows in a and current —i [A] flows in b.
Now, we image an arbitrary point y(S}, S»), which is Sydistant from a and S, distant from b, and the
point y is far distant from both conductors a and b, namely, S; = S, > S.
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Current i [A] of conductor a produces concentric flux of conductor a and all these flux interlink with
the current i, so that linking flux number is given by Equation (1.41a). That is again,

2 8

Next, current —i [A] of conductor b produces concentric flux of conductor b. Among these flux,
linking flux to which current i of conductor a links with can be calculated by accumulating dv,,
from S to S,. That is,

Yy = Jzzdwab - Jf(—i)dsa - JSZ M g {“(_” 1ogex} z

g 2nx 2n

_ (ﬂloges—;) (i) (1.42b)

. S ) .
Vaa = (:us—ﬂ;u() log, 71 + M) i where it = fieonq - Ho (1.42a)

21

The total linking flux number of current i of conductor a is the sum of ¢,,and —1,;,, and reminding
S8 >> S

v = [(Hoe S Heona Mo\ (B 52

l//aa l#ab_(zﬂsloge r+ 87 ) l+<2nloge S) ( l)

) (1.42¢)
1

The definition of inductance is linking flux numbers per 1 Ampere, that is L = /i, then

_ S . . S .
Laa_Lab:lpaa . l//abzﬁlo e_l_i_:ucond :u0::“S :u010 e__‘_.ucond Ho (1.42d)
i 2n r 8 21 r 87
Now, we have introduced general equation of working inductance L., — Lgp.

The Equation (1.42d) is modified a little by putting 1, = 47 x 1077 as of MKS rational unit system.

S .
Log — Loy = (2.‘1‘\- loge ; + %) : 10_7 [H/m}
S S (1.42e)
= (0.4605 logio~ + o.osumd) x 10 [H/m] = 0.460510g19~ + 00515, [mH/km]

This is the working inductance of two conductors lay out through three dimensional vacuum space,
and is of course the same with Equation (1.9). In case of vacuum space or air space ;1 = 1.0 and
Ieona 18 the permeability of aluminum or copper and is fi,,,; = 1.

1.3.2 Introduction of working capacitance

Now referring to Figure 1.12(a), we introduce working capacitance of two parallel conductors a and b
(radius r) with the same lay out of that in the previous section. Supposing the case in that the conductor
aischarged by +¢ [C/m] and b is charged by —q [C/m], and the condition of point y is examined which
is 1, Sy distant from the conductors a and b. Because the conductor radius r is quite small
(81, 82 >> r), it can be presumed that the charges +¢ and —g are allocated at the center pin points
of the conductors a and b. The intensity of electric field Uy, [V/m] at point y caused by +¢ [C/m] of
conductor a and U,,[V/m] caused by —g[C/m] of conductor b are:

q

—q
U,, =
YT e - 8y

:2n5~S2

[V/m], Uy, [V/m] (1.43)

where ¢ = ¢, - gp: permittivity of the circuit field

1
€0 permittivity of vacuum space and —— = 9 x 10° by MKS rational unit system
. . POPEI 4718()
€y: relative permittivity (1.44)
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dmey, sy

conductor x /‘\

V= 2q 1o S_z / lines of electric force

equipotential surface
v

Ry
2 (e /\7/
Vx : S~ N \ T
i \; S» J ‘\‘ h
1 7 ' ‘
1 / i
g i /! w7 Ov
Ov ===d---pmmmd=mf ground surface
\4 r ; ;
1 / /
S : /, S?
toy
i
Ve 11 )
conductor x”  —q conductor)
(@) (b)

Figure 1.12

The electric potential at the mid-point which is the same distance from the two conductors (the point of
S1 = 8, = §/2) should be obviously zero, then,

S/2 S/2 S/2 1 S/2 1
vy= J U,dS) + J UydSy = J L 4dS) + J (—q)dS;
S

S, 5, 2meS) S, 27‘[652.
1 s/2 1 s/2 1 S,
= | |z—-log.S — |=— - log.S q=|z— log.—) -
<{2n5 08e ILI {27755 08e 2} N q (2715 08e S1> q
1 N
vy = (m -log, ﬁ) -q where e =¢; g9 (1.45a)
then
2 S
vy = Tlog, 22 x 9 x 10° [V] (1.45b)
Es S1
where
=9x10° by MKS rational unit system (1.46)
4dneg

The Equation of surface potential v of the conductor a is given by S;—r S,—S as a special case
of (1.45a).

1 S
Vg = (2 — - log, _) g (1.47a)
TEs * €0 r

2 S
Vo = ?qloge " x 9 x 10° [V] byMKS rational unit system (1.47b)
A

The capacitance C, from conductor a (or b) to the zero potential plane (neutral plane) at the mid-
point of conductors a and b is given by:

Cq == —1 % (1.48a)
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Applying MKS rational unit system by Equation (1.46) and decimal logarithm,

, 0.02413 B 0.02413¢,
Co= = <= < % 1070 [F/m] = =2 [uF /km)] (1.48b)
2x9x 109 10ge; loglo; loglo;

The Equations (1.45a)(1.47a)(1.48a) explain natural physics whose forms are not affected by
selection of any measuring unit system, and Equations (1.45b)(1.47b)(1.48b) are the expression by
MAKS rational unit system based on Equation (1.46).

Now, let us compare the Figure 1.12(a) and (b). The potential of neutral plane g is zero, so that the
plane can be equated with earth ground, and therefore Figure 1.12(a) and (b) are equivalent of each
other. In other words, theory of transmission line can be treated by a set of real conductor a with
charge +¢q and imaginary conductor o with charge —q. Needless to say Equation (1.48b) corresponds
to Equation (1.35).

Furthermore, if we change space distance Sy, S, from the conductors a and o but by keeping S, /S|
as of constant value, v, of Equation (1.45a,b) should be kept unchanged. So Equation (1.45) gives
equipotential lines as is shown in Figure 1.12(b).

1.3.3 Special properties of working inductance
and working capacitance

The equation of working inductance and working capacitance were introduced in the previous section.
These are again:

. S - U
Loa — Lap = - Sznﬂ 0 log, —+ K ””’édn Ho (1.42d)
1
C, :vi:ﬁ (1.48a)
@ log,>
2meg - €9 r

Also permeability and permittivity were explained through the deriving process, and these are
again, by our MKS rational unit system:
Uo: permeability of vacuum space, and p, = 41 x 1077
1
€p: permittivity of vacuum space, and y— 9 x 10° (1.49)
TEQY
Now, let us examine furthermore about the above equations. The right side second term
Heona * Mo/ 8 of Equation (1.42d) is of linking flux number in narrow conductor section, so that it
can be ignored when phenomena of wide space is examined. Then, working inductance L,, — L, and
working capacitance C, relate of each other as follows:

Hs - Ho S) S I 1

1
T ) = 1/ ( o loge; =

—log. — - .
2mes - €0 gl Hs - Ho X &s - €0
In case of vacuum space p, = 1.0 and ¢; = 1.0, then

1 1
Loq — ah) . (Ca) B Vo €0 -

co (the constant value) (1.50)

By MKS unit system

_ 1 B 1 — 8 Im
=m0 oy e (1.51)

= 300,000 km/sec
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Now it was found that 1 /\/ (Lea — Lap) - (C,) always comes to 1 /, /Iy - €0 which takes constant

value ¢y unconditionally. From the physical viewpoint, if current flow through a straight conductor
lay out in three dimensional vacuum space, it would be accompanied by magnetic line with
permeability p, and electric line of force with permittivity €. Furthermore, 1 /\/m takes constant
value ¢y unconditionally.

In fact, Equation (1.50)(1.51) are the climax of the conclusion which was presented by James C
Maxwell in 1873 in his famous paper (refer Coffee break 5). The constant ¢y is of a value with
dimension of ‘distance/time’ or ‘velocity’. With these conclusive equations, Maxwell presumed as
follows

i) electromagnetic wave would exist and it can propagate through ‘vacuum space without
‘ether’,

ii) The propagating velocity of the wave is always constant value 1 /\/m = ¢y, and it would
be 300,000km/sec if it is measured by MKS rational unit system. This was the time that
electromagnetic wave was discovered theoretically by Maxwell. He also presumed by
analogy that light from the sun must be also a kind of wave having the same velocity
300,000km/sec.

1.3.4 MKS rational unit system and the various MKS practical
units in electrical engineering field

1.3.4.1 MKS rational unit system

We discuss about fundamentals of MKS rational unit system as the last subject of this chapter.

The velocity of electromagnetic wave ¢ is an universal unchanged constant, and the value is
co = 1/\/ig €0 = 3 x 108 [m/ sec] if measured by MKS unit system. In next, co is the unchanged
value 300,000km/sec, so that i, - €¢ is also unchanged value. In other words, we can freely determine
either one of 1, or €9 as methods of unit system selection although i, - €9 = 1 / cg is unchanged value.
Namely, if one value is given to one of i, and ¢ as its definition, the another should be defined
dependently to satisfy the above equation.

Therefore, 1, and ¢y are defined as follows by MKS rational unit system.

to = 4m x 1077 [H/m| (1.52a)
1 1
= = 1.52b
<0 (4nx 1077)-c3  4nx 9 x 107 ( )
1 8
cp = ———— =3 x 10° [m/ sec] (1.52¢)
Ho - €0

Now, we go back to the historical story of MKS rational unit system.
Famous Coulomb’s laws for force by electric charge and for force by magnetic pole can be
described by Gaussian unit system and by MKS rational unit system as follows:

Coulomb’s law by electric charge gj,q2 Coulomb’s law by magnetic polemy, my

. my - m
Gaussian unit system F= gl 2(]2 F="1 5 2
r r
1 . 1 mi-m (1.53)
MKS rational unit system F=——: a qu F = S 5 2 [V/mz]
dneg 1 4rpgy r

where €y and f, are defined by Equation (1.52a,b) by MKS rational unit system.
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radius r

surface 4mr?

Figure 1.13

In order to compare both unit systems, we imagine a hollow sphere as shown in Figure 1.13. If the
radius is 7, the surface area is 4772 regardless of unit system. If electric charge +¢ = 1.0 is placed at
the center point of the sphere, the electric line of force would be radiated uniformly towards the sphere
surface. Now, we are free to count the total numbers of the radiated line of force. And then, the
number is counted as 1(one) by Gaussian unit system, 47 by CGS(cm, gr, sec) rational unit system,
4 x 1077 by MKS rational unit system.

By Gaussian unit system, the expression of Coulomb’s law is simple; however the number of line of
force per unit area would become 1 / 47r?. By CGS unit system, total number is 47, and then the number
per unit area at the surface is 1 / r? which means we can count the line of force per unit area by the
equation without 47. Generally by CGS rational unit system, we can escape from the inconvenience of
47 or 2/7 by removing them in the related equations in counting various physical quantities, while on
the other hand 47 or 2/% are always included in equations based on Gaussian unit system.

MKS rational unit system has the same concept with the CGS rational unit system except that
m instead of c¢m and kg instead of g are adopted. In conclusion, p, and gy are defined by
Equation (1.52b)(1.52c) by MKS rational unit system because of the above reason.

Hereunder is an comparison of MKS rational unit system and CGS rational unit system in regard
with force F and energy,

1 Neuton = 10 dyne
energy = (force) - (distance) = (kg - m/sec?) - (m) = (g - cm/sec?) - (cm) - 107 (1.54)
Neuton dyne

The digits number are different by10° times for force and by 107 times for energy.

1.3.4.2 Practical MKS units for electrical engineering physics

A conspectus of various electrical practical units is explained in brief as the last part of this chapter.

The meter unit system was established in 1875 and then unit system based on three fundamental
units m, kg, sec were popularized all over the world. In 1951, Ampere was added as the forth
fundamental unit, and the expanded MKSA unit system was authorized, which means various
units for electrical physics were officially combined with various units for Newton physics. After this
year, Kelvin(K) for temperature and Candela(cd) for light intensity were added, and then in 1960, the
International unit system (SI: International System of Units) was established which includes seven
fundamental units as shown in Table 1.1. This is today’s Expanded MKS unit system. All other units



1 OVERHEAD TRANSMISSION LINES AND THEIR CIRCUIT CONSTANTS 25

Table 1.1 Fundamental units by International unit system (SI)

Quantity Name Symbol
Distance meter m
Weight kilogram kg
Time second sec
Current ampere A
Thermodynamic temperature Kelvin K
Molecule volume mol mol
Light intensity candela cd

Table 1.2 Definition of various derived units in electrical physics

Neuton = m - kg/ sec?
Pascal = Newton/m?
Joule = Newton - m
Watt = Joule/ sec = Neuton - m/ sec
Volt = Watt/Ampere
Ohm = Volt/Ampere
Weber = Volt - sec
Tesla = Weber /m?
Henry = Weber/Ampere
Coulomb = Ampere - sec
Farad = Coulomb/Volt

except these seven units are defined dependently as the derived units from seven fundamental units.
Further, useful derived units are defined with proper unit names. As an example, the unit for electric
charge +¢ is counted as time-integration of Ampere then having unit value of Ampere - sec. Therefore
new unit name Coulomb is defined for the derived unit Ampere - sec. In other words C = A - sec is a
derived unit defined with proper unit name. Tablel.2 shows various derived units having proper
defined unit names in electrical physics.

1.4 Supplement: Proof of Equivalent Radius
reqg =r'/".w"1/" for a Multi-bundled Conductor

The equivalent radius r,, = ri/m . wn=1/m of a multi-bundled conductor in Equations (1.15a) and
(1.35(2)) can be proved as follows.

1.4.1 Equivalent radius for inductance calculation

One phase n-bundled conductor is examined where (n: number of conductors, r: radius of each
conductor, w: averaged distance between two conductors, 4: height above ground level. As all the
elemental conductors are well balanced, the equation bellow is derived as of analogy to Equation (1.3).

V1 sV1 Ly L Ly, i
rV2 sV2 Ly L Ly, i
|| =je] - - N (1

rVn sVn Ly Ly L in
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If the voltage and current of the bundled-conductor are v and i, the voltage and current of each
elemental conductor is v and i/n, then.

Vv §V Ly L, L, i/n
A I Y . L, L Ly | i/n @
v W Lw Ln L i/n
Then we have
. I\ .
v —gv=jo{Ls + (n— 1)Ly} (Z) - 3)

h+H
where Lg = 0.4605 log J;

+0.05 (4a)

h+H
Ly = 0.46051og, 14 005 (4b)

w
If the above bundled-conductor is equivalent with a single conductor with radius r,, and arranged at
the same height 4, and is charged with the same v and i,

PV — sV =j0Leg - i (5)

+H

h
where L., = 0.4605log;, +0.05 (6)

Teq
As the Equation (3) and (5) should be equal, then

Leg = {Ly + (n — 1)L} G) )

therefore

h+H
0.4605 log, +

req r

h+H h+H 1
+0.05= { (0‘4605 logg i + 0.05> + (n—1)(0.46051og,, + + 0.05)} (7>
w n

then,

h+H
+ 0.05 = 0.4605log;, n yn—/n

h+H
0.4605 loglo +
Teq

+0.05 ®)

therefore
req — rl/n . w(nfl)/n. (9)

This is the same with Equation (1.15a).
1.4.2 Equivalent radius of capacitance calculation

If the voltage and charge of a n-bundled conductor is v and +¢, the charge of each elemental conductor
is +¢/n. Then the following equation is derived in analogy with Equation (1.27).

2h o ! 2h 0
v =2(q/n) log. — x 9 x 10° + Y, 2(¢q/n) log, — x 9 x 10
r 1 w

1/n (n—1)/n
= Zq{loge (?) +log, (?) } x 9 x 10° (10)

:2q‘10gem><9>< 10
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If the above n-bundled conductor is equivalent to a single conductor with radius r,, and the same
height A, and is charged with the same v and +¢,

2h
v =2gloge— x 9 10° an
eq

Comparing the both equations, the equation below is derived.

Feg = r/m W=/, (12)
This is the same with Equation (9), and of course with Equation (1.35(2)).
Now above all, inductance as well as capacitance of multi-bundled conductors can be calculated by
applying equivalent radius given by Equation (9) or (12). This is the proof of Equation (1.15a) and
(1.35Q).

Coffee break 1: Electricity, its substance
and methodology

The new steam engine of James Watt (1736-1819) ushered in the great dawn of the Industrial
Revolution in the 1770s. Applications of the steam engine began to appear quickly in factories,
mines, railways, and so on, and the curtain of modern mechanical engineering was raised. The
first steam locomotive, designed by George Stephenson (1781-1848), appeared in 1830.

Conversely, electrical engineering had to wait until Volta began to provide ‘stable
electricity’ from his voltaic pile to other electrical scientists in the 1800s. Since then, scientific
investigations of the unseen electricity on one hand and practical applications for telegraphic
communication on the other hand have been conducted by scientists or electricians simulta-
neously, often the same people. In the first half of the nineteenth century, the worth of electricity
was recognized for telegraphic applications, but its commercial application was actually
realized in the 1840s. Commercial telegraphic communication through wires between New
York and Boston took place in 1846, followed at Dover through a submarine cable in 1851.
However, it took another 40 years for the realization of commercial applications of electricity as
the replacement energy for steam power or in lighting.







