
1
Overhead Transmission Lines
and Their Circuit Constants

In order to understand fully the nature of power systems, we need to study the nature of transmission

lines as the first step. In this chapter we examine the characteristics and basic equations of three-

phase overhead transmission lines. However, the actual quantities of the constants are described in

Chapter 2.

1.1 Overhead Transmission Lines with LR Constants

1.1.1 Three-phase single circuit line without overhead
grounding wire

1.1.1.1 Voltage and current equations, and equivalent circuits

A three-phase single circuit line between a point m and a point n with only L and R and without an

overhead grounding wire (OGW) can be written as shown in Figure 1.1(a). In the figure, rg and Lg are

the equivalent resistance and inductance of the earth, respectively. The outer circuits I and II connected

at points m and n can theoretically be three-phase circuits of any kind.

All the voltages Va, Vb, Vc and currents Ia, Ib, Ic are vector quantities and the symbolic arrows show

the measuring directions of the three-phase voltages and currents which have to be written in the same

direction for the three-phases as a basic rule to describe the electrical quantities of three-phase circuits.

In Figure 1.1, the currents Ia, Ib, Ic in each phase conductor flow from left to right (from point m to

point n). Accordingly, the composite current Ia þ Ib þ Ic has to return from right to left (from point n

to m) through the earth–ground pass. In other words, the three-phase circuit has to be treated as the set

of ‘three-phase conductors + one earth circuit’ pass.

In Figure 1.1(a), the equations of the transmission line between m and n can be easily described as

follows. Here, voltages V and currents I are complex-number vector values:

mVa � nVa ¼ ðra þ joLaagÞIa þ joLabgIb þ joLacgIc � mnVg r

mVb � nVb ¼ joLbagIa þ ðrb þ joLbbgÞIb þ joLbcgIc � mnVg s

mVc � nVc ¼ joLcagIa þ joLcbgIb þ ðrc þ joLccgÞIc � mnVg t

where mnVg ¼ ðrg þ joLgÞIg ¼ �ðrg þ joLgÞðIa þ Ib þ IcÞ u

9>>>>=
>>>>;

(1.1)
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Substituting u into r, and then eliminating mnVg, Ig,

mVa � nVa ¼ ðra þ rg þ joLaag þ LgÞIa þ ðrg þ joLabg þ LgÞIbþðrg þ jwLacg þ LgÞIc v

Substituting u into s and t in the same way;

mVb � nVb ¼ ðrg þ joLbag þ LgÞIa þ ðrbþ rg þ joLbbg þ LgÞIbþ ðrgþjoLbcgþLgÞIc w

mVc � nVc¼ ðrg þ joLcag þ LgÞIa þ ðrg þ joLcbg þ LgÞIb þ ðrc þ rg þ joLccg þ LgÞIc x

9>>>>>=
>>>>>;

(1.2)

Now, the original Equation 1.1 and the derived Equation 1.2 are the equivalent of each other, so

Figure 1.1(b), showing Equation 1.2, is also the equivalent of Figure 1.1(a).

Equation 1.2 can be expressed in the form of a matrix equation and the following equations are

derived accordingly (refer to Appendix B for the matrix equation notation):

mVa

mVb

mVc

�
nVa

nVb

nVc

¼
ra þ rg þ joLaag þ Lg rg þ joLabg þ Lg rg þ joLacg þ Lg

rg þ joLbag þ Lg rb þ rg þ joLbbg þ Lg rg þ joLbcg þ Lg

rg þ joLcag þ Lg rg þ joLcbg þ Lg rc þ rg þ joLccg þ Lg

�
Ia

Ib

Ic

(1.3)

�
raa þ joLaa rab þ joLab rac þ joLac

rba þ joLba rbb þ joLbb rbc þ joLbc

rca þ joLca rcb þ joLcb rcc þ joLcc

�
Ia

Ib

Ic

�
Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

�
Ia

Ib

Ic

point m point m point npoint n

Ib

Ic Ic

Ib

Ig = – (Ia + Ib + Ic) Ig = – (Ia + Ib + Ic)

mVa mVanVa nVa

mVb mVb

mnVg

nVb nVb

mVc mVc
nVc nVc

ra

raa

rc

rb

Ia IaLabg

Laag

Laa

Zac

Zbc

Zbb

Zcc

Zab

Zaa

Lbcg

Lacg

earth
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Figure 1.1 Single circuit line with LR constants
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where Zaa ¼ raa þ joLaa ¼ ðra þ rgÞ þ joðLaag þ LgÞ

Zbb; Zcc are written in similar equation forms (1.4)

and Zac, Zbc are also written in similar forms

Now, we can apply symbolic expressions for the above matrix equation as follows:

mV abc � nV abc ¼ Zabc � Iabc (1.5)

where

mV abc ¼
mVa

mVb

mVc

; nV abc ¼
nVa

nVb

nVc

; Zabc ¼
Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

; Iabc ¼
Ia

Ib

Ic

(1.6)

Summarizing the above equations, Figure 1.1(a) can be described as Equations 1.3 and 1.6 or

Equations 1.5 and 1.6, in which the resistance rg and inductance Lg of the earth return pass are already

reflected in all these four equations, although Ig and mnVg are eliminated in Equations 1.5 and 1.6. We

can consider Figure 1.1(b) as the equivalent circuit of Equations 1.3 and 1.4 or Equations 1.5 and 1.6. In

Figure 1.1(b), earth resistance rg and earth inductance Lg are already included in the line constants Zaa,

Zab, etc., so the earth in the equivalent circuit of Figure 1.1(b) is ‘the ideal earth’ with zero impedance.

Therefore the earth can be expressed in the figure as the equal-potential (zero-potential) earth plane at

any point. It is clear that the mutual relation between the constants of Figure 1.1(a) and Figure 1.1(b) is

defined by Equation 1.4. It should be noted that the self-impedance Zaa and mutual impedance Zab of

phase a, for example, involve the earth resistance rg and earth inductance Lg.

Generally, in actual engineering tasks, Figure 1.1(b) and Equations 1.3 and 1.4 or Equations 1.5 and

1.6 are applied instead of Figure 1.1(a) and Equations 1.1 and 1.2; in other words, the line impedances

are given as Zaa, Zab, etc., instead of Zaag, Zabg. The line impedances Zaa, Zbb, Zcc are named ‘the self-
impedances of the line including the earth–ground effect’, and Zab, Zac, Zbc, etc., are named ‘the
mutual impedances of the line including the earth–ground effect’.

1.1.1.2 Measurement of line impedances Zaa, Zab, Zac

Let us consider how to measure the line impedances taking the earth effect into account.

As we know from Figure 1.1(b) and Equations 1.3 and 1.4, the impedances Zaa, Zab, Zac, etc., can be

measured by the circuit connection shown in Figure 1.2(a).

The conductors of the three-phases are grounded to earth at point n, and the phase b and c

conductors are opened at point m. Accordingly, the boundary conditions nVa ¼ nVb ¼ nVc ¼ 0, Ib ¼
Ic ¼ 0 can be adopted for Equation 1.3:

mVa

mVb

mVc

�
0

0

0

¼
Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

�
Ia

0

0

r

; mVa=Ia ¼ Zaa; mVb=Ia ¼ Zba; mVc=Ia ¼ Zca s

9>>>=
>>>; (1.7)

A mVa mVb mVc

Ia

Ib = 0

Ig = –Ia

Ib = –Ia

Ia

Ic = 0 Ic = 0

Ig = 0

A

V

(a) (b)

Figure 1.2 Measuring circuit of line impedance
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Therefore the impedances Zaa, Zab, Zac can be calculated from the measurement results of mVa,

mVb, mVc and Ia.

All the impedance elements in the impedance matrix Zabc of Equation 1.7 can be measured in the

same way.

1.1.1.3 Working inductance (Laa � Lab)

Figure 1.2(b) shows the case where the current I flows along the phase a conductor from point m to n

and comes back from n to m only through the phase b conductor as the return pass. The equation is

with boundary conditions Ia ¼ �Ib ¼ I; Ic ¼ 0; nVa ¼ nVb :

mVa

mVb

mVc

�
nVa

nVa

nVc

¼
Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

�
I

�I

0

Therefore

mVa � nVa ¼ ðZaa � ZabÞI : voltage drop of the phase a conductor between points m and n

mVb � nVb ¼ �ðZbb � ZbaÞI : voltage drop of the phase b conductor between points m and n
r

V ¼ mVa � mVb ¼ fðZaa � ZabÞ þ ðZbb � ZbaÞgI
V=I ¼ ðmVa � mVbÞ=I ¼ ðZaa � ZabÞ þ ðZbb � ZbaÞ ¼ ftwice values of working impedanceg s

9>=
>;

Equation 1.8br indicates the voltage drop of the parallel circuit wires a, b under the condition of the

‘go-and-return-current’ connection. The current I flows out at point m on the phase a conductor and

returns to m only through the phase b conductor, so any other current flowing does not exist on the

phase c conductor or earth–ground pass. In other words, Equation 1.8br is satisfied regardless of the

existence of the third wire or earth–ground pass. Therefore the impedance ðZaa � ZabÞ as well as

ðZbb � ZbaÞ should be specific values which are determined only by the relative condition of the phase

a and b conductors, and they are not affected by the existence or absence of the third wire or earth–

ground pass. ðZaa � ZabÞ is called the working impedance and the corresponding ðLaa � LabÞ is

called the working inductance of the phase a conductor with the phase b conductor.

Furthermore, as the conductors a and b are generally of the same specification (the same dimension,

same resistivity, etc.), the impedance drop between m and n of the phase a and b conductors should be

the same. Accordingly, the working inductances of both conductors are clearly the same, namely

ðLaa � LabÞ ¼ ðLbb � LbaÞ.
The value of the working inductance can be calculated from the well-known equation below, which

is derived by an electromagnetic analytical approach as a function only of the conductor radius r and

the parallel distance sab between the two conductors:

Laa � Lab ¼ Lbb � Lba ¼ 0:4605 log10

sab

r
þ 0:05 ½mH=km� (1.9)

This is the equation for the working inductance of the parallel conductors a and b, whose deriving

process is shown in the section 1.3.1 as of theory of electromagnetism. The equation shows that the

working inductance Laa � Lab for the two parallel conductors is determined only by the relative

distance between the two conductors sab and the radius r, so it is not affected by any other conditions

such as other conductors or the distance from the earth surface.

The working inductance can also be measured as the value (1/2)V/I by using Equation 1.8bs.

1.1.1.4 Self- and mutual impedances including the earth–ground
effect Laa, Lab

Now we evaluate the actual numerical values for the line inductances contained in the impedance

matrix of Equation 1.3.

9>>=
>>; (1:8a)

�
�

(1:8b)
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The currents Ia, Ib, Ic flow through each conductor from point m to n and Ia þ Ib þ Ic returns from n

to m through the ideal earth return pass. All the impedances of this circuit can be measured by the

method of Figure 1.2(a). However, these measured impedances are experimentally a little larger than

those obtained by pure analytical calculation based on the electromagnetic equations with the

assumption of an ideal, conductive, earth plane surface.

In order to compensate for these differences between the analytical result and the measured values,

we can use an imaginary ideal conductive earth plane at some deep level from the ground surface as

shown in Figure 1.3.

In this figure, the imaginary perfect conductive earth plane is shown at the depth Hg, and the three

imaginary conductors a, b, g are located at symmetrical positions to conductors a, b, c, respectively,

based on this datum plane.

The inductances can be calculated by adopting the equations of the electromagnetic analytical

approach to Figure 1.3.

1.1.1.4.1 Self-inductances Laa, Lbb, Lcc In Figure 1.3, the conductor a (radius r) and

the imaginary returning conductor a are symmetrically located on the datum plane, and the distance

between a and a is ha þ Ha. Thus the inductance of conductor a can be calculated by the following

equation which is a special case of Equation 1.9 under the condition sab ! ha þ Ha:

Laag ¼ 0:4605 log10

ha þ Ha

r
þ 0:05 ½mH=km� (1.10a)

Conversely, the inductance of the imaginary conductor a (the radius is Ha, because the actual

grounding current reaches up to the ground surface), namely the inductance of earth, is

Lg ¼ 0:4605 log10

ha þ Ha

Ha
þ 0:05 ½mH=km� ; 0:05 ½mH=km� (1.10b)

Therefore,

Laa ¼ Laag þ Lg ¼ 0:4605 log10

ha þ Ha

r
þ 0:1 ½mH=km� (1.11)

Lbb, Lcc can be derived in the same way.

radius r [m]

b
a c

+Ia

–Ia –Ic
–Ib

+Ib

Hg= 300–900 m

+Ic

earth surface

imaginary datum plane

a

b
g

Sab

ha

SabHe
Ha

Hb[m]

SbaHe

hb[m]

Figure 1.3 Earth–ground as conductor pass
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Incidentally, the depth of the imaginary datum plane can be checked experimentally and is mostly

within the range of Hg ¼ 300� 1000 m. On the whole Hg is rather shallow, say 300� 600 m in the

geological younger strata after the Quaternary period, but is generally deep, say 800� 1000 m, in the

older strata of the Tertiary period or earlier.

1.1.1.4.2 Mutual inductances Lab, Lbc, Lca The mutual inductance Lab can be derived

by subtracting Laa from Equation 1.11 and the working inductance ðLaa � LabÞ from Equation 1.9:

Lab ¼ Laa � ðLaa � LabÞ ¼ 0:4605 log10

ha þ Ha

sab
þ 0:05 ½mH=km�

; 0:4605 log10

sab

sab
þ 0:05 ½mH=km�

(1.12a)

Similarly

Lba ¼ 0:4605 log10

hb þ Hb

sab
þ 0:05 ½mH=km�

; 0:4605 log10

sba

sab
þ 0:05 ½mH=km�

(1.12b)

where ha þ Ha ¼ 2He ; 2Hg, and so on.

Incidentally, the depth of the imaginary datum plane Hg ; He ¼ ðha þ HaÞ=2 would be between

300 and 1000 m, while the height of the transmission tower ha is within the range of 10–100 m (UHV

towers of 800–1000 kV would be approximately 100 m or less). Furthermore, the phase-to-phase

distance Sab is of order 10 m, while the radius of conductor r is a few centimetres (the equivalent radius

reff of EHV/UHV multi-bundled conductor lines may be of the order of 10–50 cm).

Accordingly,

Ha ; Hb ; Hc ; 2He� ha ; hb ; hc� sab ; sbc ; sca� r; reff

sab ; sba ; ha þ Ha ¼ 2He ; hb þ Hb

�
(1.13)

Then, from Equations 1.9, 1.11 and 1.12,

Laa ; Lbb ; Lcc; Lab ; Lbc ; Lca (1.14)

1.1.1.4.3 Numerical check Let us assume conditions sab ¼ 10 m, r ¼ 0:05 m,

He ¼ ðha þ HaÞ=2 ; Hg ¼ 900 m.

Then calculating the result by Equation 1.11 and 1.12,

Laa ¼ 2:20 mH=km; Lab ¼ 1:09 mH=km

If He ¼ ðha þ HaÞ=2 ¼ 300 m, then Laa ¼ 1:98 mH=km, Lab ¼ 0:87 mH=km. As ha þ Ha is

contained in the logarithmic term of the equations, constant values Laa, Lab and so on are not

largely affected by ha þ Ha, neither is radius r nor reff as well as the phase-to-phase distance sab.

Besides, 0.1 and 0.05 in the second term on the right of Equations 1.9–1.12 do not make a lot of

sense.

Further, if transmission lines are reasonably transpositioned, Zaa ; Zbb ; Zcc, Zab ; Zbc ; Zca can

be justified so that Equation 1.3 is simplified into Equation 2.13 of Chapter 2.

1.1.1.5 Reactance of multi-bundled conductors

For most of the recent large-capacity transmission lines, multi-bundled conductor lines (n ¼ 2� 8

per phase) are utilized as shown in Figure 1.4. In the case of n conductors (the radius of
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each conductor is r), Laag of Equation 1.10a can be calculated from the following modified

equation:

Laag ¼ 0:4605 log10

ha þ Ha

r1=n � wðn�1Þ=n
þ 0:05

n
½mH=km�

� 0:4605 log10

ha þ Ha

req
þ 0:05

n
½mH=km� ð1:15aÞ

where req ¼ r1=n � wðn�1Þ=n is the equivalent radius and

w ½m� is the geometrical averaged distance of bundled conductors

Refer the Supplement 1 for the introduction of equivalent radius of a multi-bundled conductors.

Since the self-inductance Lg of the virtual conductor a given by Equation 1.10b is not affected by the

adoption of multi-bundled phase a conductors, accordingly

Laa ¼ Laag þ Lg ¼ 0:4605 log10

ha þ Ha

req
þ 0:05 1þ 1

n

� �
½mH=km�

�
(1.15b)

1.1.1.5.1 Numerical check Using TACSR = 810 mm2 (see Chapter 2), 2r ¼ 40 mm and

four bundled conductors ðn ¼ 4Þ, with the square allocation w ¼ 50 cm averaged distance

w ¼ ðw12 � w13 � w14 � w23 � w24 � w34Þ1=6

¼ ð50 � 50
ffiffiffi
2
p
� 50 � 50 � 50

ffiffiffi
2
p
� 50Þ1=6 ¼ 57:24 cm

req ¼ r1=n � wðn�1Þ=n ¼ 2:01=4 � 57:253=4 ¼ 24:7 cm

9>>=
>>; (1.16)

The equivalent radius req ¼ 24:7 cm is 12.4 times r ¼ 2:0 cm, so that the line self-inductance Laa

can also be reduced by the application of bundled conductors. The mutual inductance Lab of

Equation 1.12a is not affected by the adoption of multi-bundled conductor lines.

R T

S S

T R

OGW or OPGW

zinc-coated 
steel core

spacer

fin (low audible noise,
low wind noise type)

press-formed thermal-
withstandable aluminium alloy

suspension insulator
(pin insulators)

power conductor TACSR
multi-bundled 
conductor

formed aluminium-clad steel wire
aluminium pipe

optical fiber cable

Figure 1.4 Overhead double circuit transmission line

|fflfflfflfflfflffl
fflfflfflfflfflfflfflfflffl

{zfflfflfflffl
fflfflfflfflfflfflfflffl

fflfflffl}
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1.1.1.6 Line resistance

Earth resistance rg in Figure 1.1(a) and Equation 1.2 can be regarded as negligibly small. Accordingly,

the so-called mutual resistances rab, rbc, rca in Equation 1.4 become zero. Therefore, the specific

resistances of the conductors ra, rb, rc are actually equal to the resistances raa, rbb, rcc in the impedance

matrix of Equation 1.3.

In addition to the power loss caused by the linear resistance of conductors, non-linear

losses called the skin-effect loss and corona loss occur on the conductors. These losses would

become progressionally larger in higher frequency zones, so they must be major influential

factors for the attenuation of travelling waves in surge phenomena. However, they can usually

be neglected for power frequency phenomena because they are smaller than the linear resistive

loss and, further, very much smaller than the reactance value of the line, at least for power

frequency.

In regard to the bundled conductors, due to the result of the enlarged equivalent radius req, the

dielectric strength around the bundled conductors is somewhat relaxed, so that corona losses can

also be relatively reduced. Skin-effect losses of bundled conductors are obviously far smaller than that

of a single conductor whose aluminium cross-section is the same as the total sections of the bundled

conductors.

1.1.2 Three-phase single circuit line with OGW, OPGW

Most high-voltage transmission lines are equipped with OGW (overhead grounding wires) and/or

OPGW (OGW with optical fibres for communication use).

In the case of a single circuit line with single OGW, the circuit includes four conductors and the

fourth conductor (x in Figure 1.5) is earth grounded at all the transmission towers. Therefore, using the

figure for the circuit, Equation 1.3 has to be replaced by the following equation:

mVa

mVb

mVc

mVx ¼ 0

�
nVa

nVb

nVc

nVx ¼ 0

¼

Zaa Zab Zac Zax

Zba Zbb Zbc Zbx

Zca Zcb Zcc Zcx

Zxa Zxb Zxc Zxx

�

Ia

Ib

Ic

Ix

(1.17a)

Extracting the fourth row,

Ix ¼ �
1

Zxx
ðZxaIa þ ZxbIb þ ZxcIcÞ (1.17b)

aIa

– (Ia + Ib + Ic + Ix)

Ib
Ic
Ix

mVx
nVx

nVc

mVb nVb

mVa nVa

b
c

point m

overhead grounding wire earth grounded at every tower

point n x

a c

b

mVc

Figure 1.5 Single circuit line with OGW
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Substituting Ix into the first, second and third rows of Equation 1.17a,

mVa

mVb

mVc

�
nVa

nVb

nVc

¼
Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

�
Ia

Ib

Ic

þ
ZaxIx

ZbxIx

ZcxIx

¼

Zaa �
ZaxZxa

Zxx
Zab �

ZaxZxb

Zxx
Zac �

ZaxZxc

Zxx

Zba �
ZbxZxa

Zxx
Zbb �

ZbxZxb

Zxx
Zbc �

ZbxZxc

Zxx

Zca �
ZcxZxa

Zxx
Zcb �

ZcxZxb

Zxx
Zcc �

ZcxZxc

Zxx

�
Ia

Ib

Ic

�
Z0aa Z0ab Z0ac

Z0ba Z0bb Z0bc

Z0ca Z0cb Z0cc

�
Ia

Ib

Ic

where Zax ¼ Zxa; Zbx ¼ Zxb; Zcx ¼ Zxc

Z0aa ¼ Zaa � daa; Z0ab ¼ Zab � dab

daa ¼
ZaxZxa

Zxx
; dab ¼

ZaxZxb

Zxx

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(1.18)

This is the fundamental equation of the three-phase single circuit line with OGW in which Ix has

already been eliminated and the impedance elements of the grounding wire are slotted into the three-

phase impedance matrix. Equation 1.18 is obviously of the same form as Equation 1.3, while all the

elements of the rows and columns in the impedance matrix have been revised to smaller values with

corrective terms dax ¼ ZaxZxa=Zxx etc.

The above equations indicate that the three-phase single circuit line with OGW can be

expressed as a 3� 3 impedance matrix equation in the form of Equation 1.18 regardless of the

existence of OGW, as was the case with Equation 1.3. Also, we can comprehend that OGW has roles

not only to shield lines against lightning but also to reduce the self- and mutual reactances of

transmission lines.

1.1.3 Three-phase double circuit line with LR constants

The three-phase double circuit line can be written as in Figure 1.6 and Equation 1.19 regardless of the

existence or absence of OGW:

mVa

mVb

mVc

mVA

mVB

mVC

�

nVa

nVb

nVc

nVA

nVB

nVC

¼

Zaa Zab Zac ZaA ZaB ZaC

Zba Zbb Zbc ZbA ZbB ZbC

Zca Zcb Zcc ZcA ZcB ZcC

ZAa ZAb ZAc ZAA ZAB ZAC

ZBa ZBb ZBc ZBA ZBB ZBC

ZCa ZCb ZCc ZCA ZCB ZCC

�

Ia

Ib

Ic

IA

IB

IC

(1.19)

In addition, if the line is appropriately phase balanced, the equation can be expressed by

Equation 2.17 of Chapter 2.
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1.2 Stray Capacitance of Overhead Transmission Lines

1.2.1 Stray capacitance of three-phase single circuit line

1.2.1.1 Equation for electric charges and voltages on conductors

Figure 1.7(a) shows a single circuit line, where electric charges qa, qb, qc [C/m] are applied to phase a,

b, c conductors and cause voltages va, vb, vc [V], respectively. The equation of this circuit is given by

va

vb

vc|fflfflfflffl{zfflfflfflffl}
vabc

¼
paa pab pac

pba pbb pbc

pca pcb pcc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pabc

�
qa

qb

qc|fflfflfflffl{zfflfflfflffl}
qabc

; vabc ¼ pabc � qabc

where q ½C=m�; v ½V� are instantaneous real numbers

9>>>>>=
>>>>>;

(1.20a)

mVA mVB mVC

mVa
mVb mVc nVc nVb

nVa

nVAnVBnVC

m nIA
IB
IC

Ic

Ib

Ia

Figure 1.6 Three-phase double circuit line with LR constants
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jω Caa Va

Cbc

Va Vc

Vb
Cca

Cab

Caa Cbb Ccc

(c)

radius r

charge
a

qa

qb
qb

qa
qcqc

c c

b

a

va

va

vb

vc
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Figure 1.7 Stray capacitance of single circuit line
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The inverse matrix equation can be derived from the above equation as

qa

qb

qc|fflfflfflffl{zfflfflfflffl}
qabc

¼
kaa kab kac

kba kbb kbc

kca kcb kcc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kabc

�
va

vb

vc|fflfflfflffl{zfflfflfflffl}
vabc

; qabc ¼ kabc � vabc (1.20b)

Here, pabc and kabc are inverse 3� 3 matrices of each other, so that pabc � kabc ¼ 1 (1 is the 3� 3

unit matrix; refer to Appendix B).

Accordingly,

kaa ¼ ð pbb pcc � p2
bcÞ=D ½F=m�

kbb ¼ ð pcc paa � p2
caÞ=D ½F=m�

kcc ¼ ð paa pbb � p2
abÞ=D ½F=m�

kab ¼ kba ¼ �ð pab pcc � pac pbcÞ=D ½F=m�
kbc ¼ kcb ¼ �ð pbc paa � pba pcaÞ=D ½F=m�
kca ¼ kac ¼ �ð pca pbb � pcb pabÞ=D ½F=m�

D ¼ paa pbb pcc þ 2 pab pbc pac � ð paa p2
bc þ pbb p2

ca þ pcc p2
abÞ ½m3=F3�

9>>>>>>>>>=
>>>>>>>>>;

(1.20c)

where p ½m=F� are the coefficients of the potential and k ½F=m� are the electrostatic coefficients of
static capacity.

Modifying Equation 1.20b a little,

qa ¼ kaava þ kabvb þ kacvc

¼ ðkaa þ kab þ kacÞva þ ð�kabÞðva � vbÞ þ ð�kacÞðva � vcÞ ½C=m�
qb ¼ ðkba þ kbb þ kbcÞvb þ ð�kbcÞðvb � vcÞ þ ð�kbaÞðvb � vaÞ ½C=m�
qc ¼ ðkca þ kcb þ kccÞvc þ ð�kcaÞðvc � vaÞ þ ð�kcaÞ þ ðvc � vbÞ ½C=m�

9>>=
>>; (1.21)

then

qa ¼ Caava þ Cabðva � vbÞ þ Cacðva � vcÞ ½C=m�
qb ¼ Cbbvb þ Cbcðvb � vcÞ þ Cbaðvb � vaÞ ½C=m�
qc ¼ Cccvc þ Ccaðvc � vaÞ þ Ccbðvc � vbÞ ½C=m�

9=
; (1.22)

with qa, qb, qc [C/m], vb, vb, vc [V] and

Caa ¼ kaa þ kab þ kac ½F=m� Cab ¼ �kab ½F=m�
Cbb ¼ kba þ kbb þ kbc ½F=m� Cbc ¼ �kbc ½F=m�
Ccc ¼ kca þ kcb þ kcc ½F=m� Cca ¼ �kca ½F=m�
Cac ¼ �kac ½F=m�
Cba ¼ �kba ½F=m�
Ccb ¼ �kcb ½F=m�;

9>>>>>>=
>>>>>>;

(1.23)

Equations 1.22 and 1.23 are the fundamental equations of stray capacitances of a three-phase single

circuit overhead line. Noting the form of Equation 1.22, Figure 1.7(b) can be used for another

expression of Figure 1.7(a): Caa, Cbb, Ccc are the phase-to-ground capacitances and Cab ¼ Cba,

Cbc ¼ Ccb, Cca ¼ Cac are the phase-to-phase capacitances between two conductors.

1.2.1.2 Fundamental voltage and current equations

It is usually convenient in actual engineering to adopt current ið¼ dq=dtÞ [A] instead of charging value

q ½C�, and furthermore to adopt effective (rms: root mean square) voltage and current of complex-

number V, I instead of instantaneous value vðtÞ, iðtÞ.
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As electric charge q(t) is the integration over time of current i, the following relations can be derived:

qðtÞ ¼
ð

iðtÞdt; iðtÞ ¼ dqðtÞ
dt

r

iðtÞ ¼ Reð
ffiffiffi
2
p
� IðtÞÞ ¼ Reð

ffiffiffi
2
p
j I j � e jðotþy1ÞÞ ¼

ffiffiffi
2
p
j I j cosðot þ y1Þ s

ReðÞ shows the real part of the complex numberðReðaþ jbÞ ¼ aÞ:
vðtÞ ¼ Reð

ffiffiffi
2
p
� VðtÞÞ ¼ Reð

ffiffiffi
2
p
jV j � e jðotþy2ÞÞ

¼
ffiffiffi
2
p
jV j cosðot þ y2Þ t

;
qðtÞ ¼

ð
iðtÞdt ¼

ð
Reð

ffiffiffi
2
p
j I j � e jðotþy1ÞÞdt

¼ Reð
ffiffiffi
2
p
j I j �

ð
e jðotþy1ÞdtÞ

¼ Re
ffiffiffi
2
p
j I j � e

jðotþy1Þ

jo

 !
¼ Re

ffiffiffi
2
p

IðtÞ
jo

� �
u

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(1.24)

Equation 1.22 can be modified to the following form by adopting Equation 1.24u and by

replacement of vaðtÞ!
ffiffiffi
2
p

VaðtÞ etc.:

Re

ffiffiffi
2
p

Ia

jo

� �
¼ RefCaa �

ffiffiffi
2
p

Va þ Cab �
ffiffiffi
2
p
ðVa � VbÞ þ Cac �

ffiffiffi
2
p
ðVa � VcÞg

Re

ffiffiffi
2
p

Ib

jo

� �
¼ RefCbb �

ffiffiffi
2
p

Vb þ Cbc �
ffiffiffi
2
p
ðVb � VcÞ þ Cba �

ffiffiffi
2
p
ðVb � VaÞg

Re

ffiffiffi
2
p

Ic

jo

� �
¼ RefCcc �

ffiffiffi
2
p

Vc þ Cca �
ffiffiffi
2
p
ðVc � VaÞ þ Ccb �

ffiffiffi
2
p
ðVc � VbÞg

9>>>>>>>=
>>>>>>>;

(1.25)

Therefore
Ia ¼ joCaaVa þ joCabðVa � VbÞ þ joCacðVa � VcÞ
Ib ¼ joCbbVb þ joCbcðVb � VcÞ þ joCbaðVb � VaÞ
Ic ¼ joCccVc þ joCcaðVc � VaÞ þ joCcbðVc � VbÞ

9=
; (1.26a)

or, with a small modification,

Ia

Ib

Ic

¼ jo
Caa þ Cab þ Cac �Cab �Cac

�Cba Cba þ Cbb þ Cbc �Cbc

�Cca �Ccb Cca þ Ccb þ Ccc

�
Va

Vb

Vc

(1.26b)

This is the fundamental equation for stray capacitances of a three-phase single circuit transmission

line. Also Figure 1.7(c) is derived from one-to-one correspondence with Equation 1.26.

1.2.1.3 Coefficients of potential ( paa, pab), coefficients of static capacity
(kaa, kab) and capacitances (Caa, Cab)

The earth surface can be taken as a perfect equal-potential plane, so that we can use Figure 1.8, in which

the three imaginary conductors a, b, g are located at symmetrical positions of conductors a, b, c,

respectively, based on the earth surface plane. By assuming electric chargesþqa,þqb,þqc and�qa,

�qb,�qc per unit length on conductors a, b, c, and a, b, g respectively, the following voltage equation

can be derived:

va ¼ voltage of conductor a due to� qa of conductor a; a : 2qa loge

2ha

r
�9� 109 ½V�

� �

þ voltage of conductor a due to� qb of conductor b; b : 2qb loge

sab

sab
�9� 109 ½V�

� �

þ voltage of conductor a due to� qc of conductor c; g : 2qc loge

sag

sac
�9� 109 ½V�

� �
r

(note that, in this book,

the exponential function

will be denoted by ‘e’).
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Equations for vb, vc can be derived in the same way. Then

va

vb

vc

¼
paa pab pac

pba pbb pbc

pca pcb pcc

�
qa

qb

qc

¼ 2� 9� 109 �

loge

2ha

r
loge

sab

sab
loge

sag

sac

loge

sba

sba
loge

2hb

r
loge

sbg

sbc

loge

sca

sca
loge

scb

scb
loge

2hc

r

�
qa

qb

qc

s (1.27)

where sab ¼ sba ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fs2

ab � ðha � hbÞ2g þ ðha þ hbÞ2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ab þ 4hahb

q
.

Refer the section 1.3.2 for the deriving process as of the Equation 1.27 as of theory of electromagnetism.

The equation indicates that the coefficients of potential ( paa, pab, etc.) are calculated as a

function of the conductor’s radius r, height (ha, hb, hc) from the earth surface, and phase-to-phase

distances (sab, sac, etc.) of the conductors. paa, pab, etc., are determined only by physical allocations

of each phase conductor (in other words, by the structure of towers), and relations like pab ¼ pba are

obvious.

In conclusion, the coefficients of potential ( paa, pab, etc.), the coefficients of static capacity (kaa,

kab, etc.) and the capacitance (Caa, Cab, etc.) are calculated from Equations 1.27, 1.20 and 1.23,

respectively. Again, all these values are determined only by the physical allocation of conductors and

are not affected by the applied voltage.

radius

earth surface

b

a

c

+qb

+qa +qc

–qa

–qc

–qb

Sab
Sbc

Sab Sag

Sac

ha

hb

hb

hc

a

b

g

hcha

Sba

r [m]

Figure 1.8 Three parallel overhead conductors
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1.2.1.4 Stray capacitances of phase-balanced transmission lines

Referring to Figure 1.8, a well-phase-balanced transmission line, probably by transposition, can be

assumed. Then

h� ha ; hb ; hc; sll� sab ¼ sba ; sbc ¼ scb ; sca ¼ sac

sab ; sba ; sag ; sca ; sbg ; scb

�
(1.28)

ps� paa ; pbb ; pcc

pm� pab ¼ pba ; pac ¼ pca ; pbc ¼ pcb

�
(1.29)

Accordingly, Equation 1.20 can be simplified as follows:

D ¼ p3
s þ 2 p3

m � 3 ps p2
m

¼ ð ps � pmÞ2ð ps þ 2 pmÞ
ks � kaa ; kbb ; kcc ; ð p2

s � p2
mÞ=D ¼ ps þ pm

ð ps � pmÞð ps þ 2 pmÞ
km � kab ¼ kba ; kac ¼ kca ; kbc ¼ kcb ¼ �ð pm ps � p2

mÞ=D

¼ � pm

ð ps � pmÞð ps þ 2 pmÞ

ksþ2km ¼
1

ps þ 2 pm

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(1.30)

and from Equation 1.23

Cs �Caa ; Cbb ; Ccc ¼ ks þ 2km ¼
1

ps þ 2 pm

Cm�Cab ¼ Cba ; Cac ¼ Cca ; Cbc ¼ Ccb ¼ �km

¼ pm

ð ps � pmÞð ps þ 2 pmÞ
¼ pm

ps � pm
�Cs

9>>>>>=
>>>>>;

(1.31)

and from Equation 1.27

ps � paa ; pbb ; pcc ¼ 2� 9� 109 loge

2h

r
½m=F� r

pm � pab ; pbc ; pca ¼ 2� 9� 109 loge

sba

sll
½m=F�

; 2� 9� 109 loge

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ll þ ð2hÞ2
q

sll

¼ 2� 9� 109 loge 1þ 2h

sll

� �2
( )1=2

½m=F� s ð1:32Þ

where generally

h> sll;
2h

sll

� �2

� 1

and

; pm ; 2� 9� 109 loge

2h

sll
½m=F� s0 |fflfflfflfflfflffl

fflfflfflfflfflfflfflffl
fflfflfflfflfflfflfflffl

fflfflfflfflfflfflfflffl
fflfflfflfflfflfflfflfflffl

{zfflfflfflffl
fflfflfflfflfflfflfflffl

fflfflfflfflfflfflfflffl
fflfflfflfflfflfflfflffl

fflfflfflfflfflfflfflffl
fflfflffl}
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Substituting ps, pm from Equation 1.32 into Equation 1.31,

Cs ¼
1

ps þ 2 pm
;

1

2� 9� 109 loge

2h

r
þ 2 loge

2h

sll

� � ¼ 1

2� 9� 109 loge

8h3

rs2
ll

¼ 0:02413

log10

8h3

rs2
ll

�10�9½F=m� ¼ 0:02413

log10

8h3

rs2
ll

½mF=km� r

ðzero-sequence capacitanceÞ
while

pm

ps � pm
;

loge

2h

sll

loge

2h

r
�loge

2h

sll

¼
log10

2h

sll

log10

sll

r

;Cm ¼ Cs �
pm

ps � pm
; Cs �

log10

2h

sll

log10

sll

r

¼ 0:02413

log10

8h3

rs2
ll

�
log10

2h

sll

log10

sll

r

½mF=km� s

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(1.33)

In conclusion, a well-phase-balanced transmission line can be expressed by Figure 1.9(a) and

Equation 1.26b is simplified into Equation 1.34, where the stray capacitances Cs, Cm can be calculated

from Equation 1.33:

Ia

Ib

Ic|fflfflfflffl{zfflfflfflffl}
Iabc

¼ jo
Cs þ 2Cm �Cm �Cm

�Cm Cs þ 2Cm �Cm

�Cm �Cm Cs þ 2Cm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cabc

�
Va

Vb

Vc|fflfflfflfflffl{zfflfflfflfflffl}
V abc

; Iabc ¼ joCabc � V abc

(1.34)

Incidentally, Figure 1.9(a) can be modified to Figure 1.9(b), where the total capacitance of one phase

C�Cs þ 3Cm is called the working capacitance of single circuit transmission lines, and can be

calculated by the following equation:

C �Cs þ 3Cm ¼ ðks þ 2kmÞ þ 3ð�kmÞ ¼ ks � km ¼
1

ps � pm

¼ 1

2� 9� 109 loge

2h

r
� loge

2h

sll

� � ¼ 1

2� 9� 109 loge

sll

r

½F=m�

¼ 0:02413

log10

sll

r

½mF=km� ðpositive sequence capacitanceÞ r

In case of multi-bundled (n) conductor lines, the radius r is replaced by the

equivalent radius reff ,

req ¼ r1=n � wðn�1Þ=n ½m� s

where w is the geometrical averaged distance between bundled conductors.

Refer the Supplement 1 for the introduction of equivalent radius of a multi-bundled conductors.

|fflfflfflfflfflffl
fflfflfflfflfflfflfflffl

fflfflfflfflfflfflfflffl
fflfflfflffl{z

fflfflfflfflfflfflfflffl
fflfflfflfflfflfflfflffl

fflfflfflfflfflfflfflffl
fflffl}

(1:35)
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1.2.1.4.1 Numerical check Taking the conditions conductor radius r ¼ 0:05 m, averaged

phase-to-phase distance sll ¼ 10 m and average height h ¼ 60 m, then by Equations 1.33 and 1.35,

we have

Cs ¼ 0:00436 mF=km; Cm ¼ 0:00204 mF=km and C ¼ Cs þ 3Cm ¼ 0:01048 mF=km

1.2.2 Three-phase single circuit line with OGW

Four conductors of phase names a, b, c, x exist in this case, so the following equation can be derived as

an extended form of Equation 1.26a:

Ia ¼ joCaaVa þ joCabðVa � VbÞ þ joCacðVa � VcÞ þ joCaxðVa � VxÞ (1.36a)

where Vx ¼ 0, because OGW is earth grounded at every tower. Accordingly,

Ia

Ib

Ic

¼ jo
Caa þ Cab þ Cac þ Cax �Cab �Cac

�Cba Cba þ Cbb þ Cbc þ Cbx �Cbc

�Cca �Ccb Cca þ Ccb þ Ccc þ Ccx

�
Va

Vb

Vc

This matrix equation is again in the same form as Equation 1.26b. However, the phase-to-ground

capacitance values (diagonal elements of the matrix C ) are increased (the value of Cax is increased for

the phase a conductor, from Caa þ Cab þ Cac to Caa þ Cab þ Cac þ Cax).

1.2.3 Three-phase double circuit line

Six conductors of phase names a, b, c, A, B, C exist in this case as is shown in Figure 1.10, so the

following equation can be derived as an extended form of Equation 1.26a:

Ia ¼ jo½CaaVa þ CabðVa � VbÞ þ CacðVa � VcÞ þ CaAðVa � VAÞ þ CaBðVa � VBÞ

þ CaCðVa � VCÞ� (1.37a)

a
b
c

a

b

c
Cs Cs Cs Cs Cs Cs

Cm

3Cm

Cm

Cm

(a) single circuit line (b) single circuit line

3Cm3Cm

Figure 1.9 Stray capacitances of single circuit overhead line (well balanced)

(1:36b)
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Then

Ia

Ib

Ic

IA

IB

IC

¼ jo

Caa þ Cabþ
Cac þ CaAþ
CaB þ CaC

�Cab �Cac �CaA �CaB �CaC

�Cba

Cba þ Cbbþ
Cbc þ CbAþ
CbB þ CbC

�Cbc �CbA �CbB �CbC

�Cca �Ccb

Cca þ Ccbþ
Ccc þ CcAþ
CcB þ CcC

�CcA �CcB �CcC

�CAa �CAb �CAc

CAA þ CABþ
CAC þ CAaþ
CAb þ CAc

�CAB �CAC

�CBa �CBb �CBc �CBA

CBA þ CBBþ
CBC þ CBaþ
CBb þ CBc

�CBC

�CCa �CCb �CCc �CCA �CCB

CCA þ CCBþ
CCC þ CCaþ
CCb þ CCc

�

Va

Vb

Vc

VA

VB

VC

It is obvious that the double circuit line with OGW can be expressed in the same form.

The case of a well-transposed double circuit line is as shown in Figure 1.9(b):

Ia

Ib

Ic

IA

IB

IC

¼ jo

Cs þ 2Cm

þ3C0m
�Cm �Cm �C0m �C0m �C0m

�Cm
Cs þ 2Cm

þ3C0m
�Cm �C0m �C0m �C0m

�Cm �Cm
Cs þ 2Cm

þ3C0m
�C0m �C0m �C0m

�C0m �C0m �C0m
Cs þ 2Cm

þ3C0m
�Cm �Cm

�C0m �C0m �C0m �Cm
Cs þ 2Cm

þ3C0m
�Cm

�C0m �C0m �C0m �Cm �Cm
Cs þ 2Cm

þ3C0m

�

Va

Vb

Vc

VA

VB

VC

Cs�Caa ; Cbb ; Ccc ; CAA ; CBB ; CCC : one phase-to-ground capacitance

Cm �Cab ; Cbc ; � � � ; CAB ; CBC ; � � � : capacitance between two conductors of the same circuit

C0m �CaA ; CbC ; � � � ; CAa ; CBb ; � � � : capacitance between two conductors of a different circuit

Above, we have studied the fundamental equations and circuit models of transmission lines and the

actual calculation method for the L, C, R constants. Concrete values of the constants are investigated

in Chapter 2.

(1.37b)

Cs Cs Cs Cs Cs Cs

Cm

C´m

Cm

C´m

c C

B
b

a A

C´m

Figure 1.10 Stray capacitance of double circuit line (well balanced)

(1.38)
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1.3 Working Inductance and Working Capacitance

The Equation 1.9 for working inductance and Equation 1.35 for working capacitance as well as

Equation 1.27 for capacitive induced voltage were briefly shown in the previous sections. Now we

introduce these equations and examine what these equations mean from the physical viewpoint of

electromagnetism.

1.3.1 Introduction of working inductance

1.3.1.1 Introduction of self-inductance Laa of a straight conductor

As is shown in Figure 1.11, one conductor a (radius r) is laid out straight in an area of permeability
m ¼ ms � m0 (m0 is permeability in vacuum space and ms is relative permeability and ms ¼ 1:0 in

vacuum space). If current i flows through conductor a, concentric circular magnetic paths are

composed in a conductor section as well as in outer space, and the central point O of the conductor a

is also the central point of induced concentric magnetic paths. The concentric magnetic paths in the

outer space of the conductor a is examined first. A thin concentric magnetic ring path at point x from O

with length 2px and width dx can be imaged. The magnetic resistance R of the ring path is proportional

in the length of the ring path 2px m½ �, and is inversely proportional in the sectional area1� dx m2½ �.
Namely,

R ¼ 2px

mdx
½A � turn=Wb� where x 	 r (1.39a)

where � ¼ �s � �0 :the permeability of the ring path

�0: permeability in vacuum space (�0 ¼ 4�� 10�7 by MKS rational unit system)

�s: relative permeability (�s ¼ 1:0 in vacuum space)

The reason that m0 is 4p� 10�7 in MKS rational unit system is discussed later in section 1.3.4.

If current i½A� is flowed through the conductor (or if electromotive force i½A � turn� is charged in

the conductor), flux d’ is produced through the ring path with sectional depth dx and

d’ ¼ i

R
¼ m � i

2px
� dx Wb½ � (1.39b)

The linking flux number d is

dc ¼ 1 � d’ ¼ m � i
2px
� dx (1.39c)

Therefore the total linking flux  out of the space from the conductor surface (radius r m½ �) to point S is

cout ¼
ðS

r

dcout ¼
ðS

r

1 � d’ ¼
ðS

r

m � i
2px
� dx ¼ m � i

2p
� logex

� �s

r

¼ m � i
2p

loge

S

r
¼ ms � m0

2p
loge

S

r

� �
� i

(1.39d)

(a) (b)

dx
x

r O

y

a S b

S1

S2

Figure 1.11
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Next, linking flux number  in in the conductor section is examined. If current i A½ � is flowed through

the conductor, the current within space of diameter x m½ � is

ix ¼ i � x
2

r2
A½ � where r 	 x 	 0 (1.40a)

The intensity of magnetic field at the ring path with length 2�x and width dx which is x distant from

point O in the radial direction is:

H ¼ ix

2px
A � turn=m½ � (1.40b)

The flux density is:

B ¼ mcond � m0 � H ¼
mcond � m0 � ix

2px
¼ mcond � m0 � i � x

2pr2
Wb=m2
	 


(1.40c)

where �cond is the relative permeability of the conductor

The flux at the x distant ring path with dx width is:

d’ ¼ B � ð1� dxÞ ¼ Bdx ¼ mcond � m0 � i � x
2pr2

� dx Wb½ � (1.40d)

The turn number of the conductor within circle of radius x can be considered x2
�

r2, then the linking

flux number is

cin ¼
ðr

0

dcin ¼
ðr

0

ix � d’ ¼
ðr

0

mcond � m0 � i � x
2pr2

� x
2

r2
� idx ¼

ðr

0

mcond � m0

2pr4
� i � x3dx

¼ mcond � m0

2pr4
� 1

4
x4

� �r

0

�i ¼ mcond � m0

2pr4
� 1

4
r4

� �
� i ¼ mcond � m0

8p
� i (1.40e)

As the result of all the above Equations (1.39d)(1.40e), total linking flux numbers which is

produced by current i of the conductor a and interlink with the current i itself between the area of

conductor a to outer space point S is:

ctotal ¼ cout þ cin ¼
ms � m0

2p
loge

S

r
þ mcond � m0

8p

� �
� i (1.41a)

As the definition of inductance is the linking flux number per 1A, or L ¼  =i, then

Laa ¼
ctotal

i
¼ ms � m0

2p
loge

S

r
þ mcond � m0

8p
(1.41b)

or Laa ¼ 0:4605�slog10

S

r
þ 0:05�cond

� �
� 10�6 H=m½ � ¼ 0:4605�slog10

S

r
þ 0:05�cond mH=km½ �

where m0: permeability of vacuum space, and m0 ¼ 4p� 10�7 by MKS rational unit system

(1.41c)

This is the self inductance of the conductor a, and the equation correspond with Equation (1.10a).

1.3.1.2 Introduction of working-inductance Laa – Lab of two conductors

In next, working inductance Laa � Lab of two conductors a and b is examined. (refer Figure 1.11(b)).

Two conductors a and b (radius r) are lay out in parallel with distance S and the current i A½ � go out

on the conductor a and come back from b, or current i A½ � flows in a and current �i A½ � flows in b.

Now, we image an arbitrary point yðS1; S2Þ, which is S1distant from a and S2 distant from b, and the

point y is far distant from both conductors a and b, namely, S1 ffi S2 � S.

1 OVERHEAD TRANSMISSION LINES AND THEIR CIRCUIT CONSTANTS 19



Current i A½ � of conductor a produces concentric flux of conductor a and all these flux interlink with

the current i, so that linking flux number is given by Equation (1.41a). That is again,

caa ¼
ms � m0

2p
loge

S1

r
þ mcond � m0

8p

� �
� i where m ¼ mcond � m0 (1.42a)

Next, current �i A½ � of conductor b produces concentric flux of conductor b. Among these flux,

linking flux to which current i of conductor a links with can be calculated by accumulating d ab

from S to S2. That is,

�cab ¼
ðS2

S

dcab ¼
ðS2

S

�ið Þd’ ¼
ðS2

S

mð�iÞ
2px

� dx ¼ mð�iÞ
2p

logex

� �S2

S

¼ m
2p

loge

S2

S

� �
� ð�iÞ

ð1:42bÞ

The total linking flux number of current i of conductor a is the sum of  aaand � ab, and reminding

S1 ffi S2 >> S

caa � cab ¼
m
2p

loge

S1

r
þ mcond � m0

8p

� �
� iþ m

2p
loge

S2

S

� �
� ð�iÞ

¼ m
2p

loge

S

r
þ mcond � m0

8p

� �
� i

ð1:42cÞ

The definition of inductance is linking flux numbers per 1Ampere, that is L ¼  =i, then

Laa � Lab ¼
caa � cab

i
¼ m

2p
loge

S1

r
þ mcond � m0

8p
¼ ms � m0

2p
loge

S

r
þ mcond � m0

8p
(1.42d)

Now, we have introduced general equation of working inductance Laa � Lab.

The Equation (1.42d) is modified a little by putting �0 ¼ 4�� 10�7 as of MKS rational unit system.

Laa � Lab ¼ 2ms loge

S

r
þ mcond

2

� �
� 10�7 H=m½ �

¼ 0:4605 log10

S

r
þ 0:05mcond

� �
� 10�6 H=m½ � ¼ 0:4605 log10

S

r
þ 0:05mcond mH=km½ �

(1.42e)

This is the working inductance of two conductors lay out through three dimensional vacuum space,

and is of course the same with Equation (1.9). In case of vacuum space or air space �s ¼ 1:0 and

�cond is the permeability of aluminum or copper and is �cond ¼ 1.

1.3.2 Introduction of working capacitance

Now referring to Figure 1.12(a), we introduce working capacitance of two parallel conductors a and b

(radius r) with the same lay out of that in the previous section. Supposing the case in that the conductor

a is charged byþq C=m½ � and b is charged by�q C=m½ �, and the condition of point y is examined which

is S1; S2 distant from the conductors a and b. Because the conductor radius r is quite small

(S1; S2 >> r ), it can be presumed that the charges þq and �q are allocated at the center pin points

of the conductors a and b. The intensity of electric field Uya V=m½ � at point y caused by þq C=m½ � of

conductor a and Uyb V=m½ � caused by �q C=m½ � of conductor b are:

Uya ¼
q

2p" � S1
V=m½ � ; Uyb ¼

�q

2p" � S2
V=m½ � (1.43)

where " ¼ "s � "0: permittivity of the circuit field

"0: permittivity of vacuum space and
1

4p"0

¼ 9� 109 by MKS rational unit system

"s: relative permittivity (1.44)
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The electric potential at the mid-point which is the same distance from the two conductors (the point of

S1 ¼ S2 ¼ S=2) should be obviously zero, then,

vy¼
ðS=2

S1

UadS1 þ
ðS=2

S2

UbdS2 ¼
ðS=2

S1

1

2p"S1
� qdS1 þ

ðS=2

S2

1

2p"S2
� ð�qÞdS2

¼ 1

2p"
� logeS1

� �S=2

S1

� 1

2p"
� logeS2

� �S=2

S2

 !
� q ¼ 1

2p"
� loge

S2

S1

� �
� q

; vy ¼
1

2p"s � "0
� loge

S2

S1

� �
� q where " ¼ "s � "0 (1.45a)

then

vy ¼
2q

"s
loge

S2

S1
� 9� 109 V½ � (1.45b)

where

1

4p"0
¼ 9� 109 by MKS rational unit system (1.46)

The Equation of surface potential v of the conductor a is given by S1!r S2!S as a special case

of (1.45a).

va ¼
1

2p"s � "0
� loge

S

r

� �
� q (1.47a)

va ¼
2q

"s
loge

S

r
� 9� 109 V½ � by MKS rational unit system (1.47b)

The capacitance Ca from conductor a (or b) to the zero potential plane (neutral plane) at the mid-

point of conductors a and b is given by:

Ca ¼
q

va
¼ 1

1

2p"s � "0
� loge

S

r

(1.48a)

vx

vx′

v

v =

s1

y

conductor x

(a)
conductor x ′
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s s2

+q

–q

2q
4pe0

·loge
s2
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0v
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–q

+q

(imaginary
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Applying MKS rational unit system by Equation (1.46) and decimal logarithm,

Ca ¼
"s

2� 9� 109 loge

S

r

¼ 0:02413"s

log10

S

r

� 10�9 F=m½ � ¼ 0:02413"s

log10

S

r

mF=km½ � (1.48b)

The Equations (1.45a)(1.47a)(1.48a) explain natural physics whose forms are not affected by

selection of any measuring unit system, and Equations (1.45b)(1.47b)(1.48b) are the expression by

MKS rational unit system based on Equation (1.46).

Now , let us compare the Figure 1.12(a) and (b). The potential of neutral plane g is zero, so that the

plane can be equated with earth ground, and therefore Figure 1.12(a) and (b) are equivalent of each

other. In other words, theory of transmission line can be treated by a set of real conductor a with

chargeþq and imaginary conductor a with charge�q. Needless to say Equation (1.48b) corresponds

to Equation (1.35).

Furthermore, if we change space distance S1; S2 from the conductors a and a but by keeping S2=S1

as of constant value, vy of Equation (1.45a,b) should be kept unchanged. So Equation (1.45) gives

equipotential lines as is shown in Figure 1.12(b).

1.3.3 Special properties of working inductance
and working capacitance

The equation of working inductance and working capacitance were introduced in the previous section.

These are again:

Laa � Lab ¼
ms � m0

2p
loge

S

r
þ mcond � m0

8p
(1.42d)

Ca ¼
q

va
¼ 1

1

2p"s � "0
� loge

S

r

(1.48a)

Also permeability and permittivity were explained through the deriving process, and these are

again, by our MKS rational unit system:

m0: permeability of vacuum space, and m0 ¼ 4p� 10�7

"0: permittivity of vacuum space, and
1

4p"0

¼ 9� 109 (1.49)

Now, let us examine furthermore about the above equations. The right side second term

mcond � m0=8p of Equation (1.42d) is of linking flux number in narrow conductor section, so that it

can be ignored when phenomena of wide space is examined. Then, working inductance Laa � Lab and

working capacitance Ca relate of each other as follows:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLaa � LabÞ � ðCaÞ

p ¼ 1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms � m0

2p
loge

S

r

� � 1

1

2p"s � "0
loge

S

r

0
@

1
A

vuuut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms � m0 � "s � "0
p

In case of vacuum space �s ¼ 1:0 and "s ¼ 1:0, then

;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðLaa � LabÞ � ðCaÞ
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

m0 � "0
p � c0 (the constant value) (1.50)

By MKS unit system

c0 �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

m0 � "0
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p� 10�7ð Þ � 1= 4p� 9� 109ð Þð Þ
p ¼ 3� 108 m=sec½ �

¼ 300;000 km=sec

ð1:51Þ
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Now it was found that 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLaa � LabÞ � ðCaÞ

p
always comes to 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 � "0
p

which takes constant

value c0 unconditionally. From the physical viewpoint, if current flow through a straight conductor

lay out in three dimensional vacuum space, it would be accompanied by magnetic line with

permeability m0 and electric line of force with permittivity "0. Furthermore, 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

m0 � "0
p

takes constant

value c0 unconditionally.

In fact, Equation (1.50)(1.51) are the climax of the conclusion which was presented by James C

Maxwell in 1873 in his famous paper (refer Coffee break 5). The constant c0 is of a value with

dimension of ‘distance/time’ or ‘velocity’. With these conclusive equations, Maxwell presumed as

follows

i) electromagnetic wave would exist and it can propagate through ‘vacuum space without

‘ether’,

ii) The propagating velocity of the wave is always constant value 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

m0 � "0
p ¼ c0, and it would

be 300,000km/sec if it is measured by MKS rational unit system. This was the time that

electromagnetic wave was discovered theoretically by Maxwell. He also presumed by

analogy that light from the sun must be also a kind of wave having the same velocity

300,000km/sec.

1.3.4 MKS rational unit system and the various MKS practical
units in electrical engineering field

1.3.4.1 MKS rational unit system

We discuss about fundamentals of MKS rational unit system as the last subject of this chapter.

The velocity of electromagnetic wave c0 is an universal unchanged constant, and the value is

c0 � 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

m0 � "0
p ¼ 3� 108 m= sec½ � if measured by MKS unit system. In next, c0 is the unchanged

value 300,000km/sec, so that m0 � "0 is also unchanged value. In other words, we can freely determine

either one of m0 or "0 as methods of unit system selection although m0 � "0 ¼ 1
�

c2
0 is unchanged value.

Namely, if one value is given to one of m0 and "0 as its definition, the another should be defined

dependently to satisfy the above equation.

Therefore, m0 and "0 are defined as follows by MKS rational unit system.

m0 ¼ 4p� 10�7 H=m½ � (1.52a)

"0 ¼
1

4p� 10�7ð Þ � c2
0

¼ 1

4p� 9� 109
(1.52b)

c0 �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

m0 � "0
p ¼ 3� 108 m= sec½ � (1.52c)

Now, we go back to the historical story of MKS rational unit system.

Famous Coulomb’s laws for force by electric charge and for force by magnetic pole can be

described by Gaussian unit system and by MKS rational unit system as follows:

Coulomb’s law by electric charge q1; q2 Coulomb’s law by magnetic pole m1; m2

Gaussian unit system F ¼ q1 � q2

r2
F ¼ m1 � m2

r2

MKS rational unit system F ¼ 1

4p"0
� q1 � q2

r2
F ¼ 1

4pm0

� m1 � m2

r2
V
�

m2
	 
 (1.53)

where "0 and �0 are defined by Equation (1.52a,b) by MKS rational unit system.
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In order to compare both unit systems, we imagine a hollow sphere as shown in Figure 1.13. If the

radius is r, the surface area is 4pr2 regardless of unit system. If electric chargeþq ¼ 1.0 is placed at

the center point of the sphere, the electric line of force would be radiated uniformly towards the sphere

surface. Now, we are free to count the total numbers of the radiated line of force. And then, the

number is counted as 1(one) by Gaussian unit system, 4p by CGS(cm, gr, sec) rational unit system,

4p� 10�7 by MKS rational unit system.

By Gaussian unit system, the expression of Coulomb’s law is simple; however the number of line of

force per unit area would become 1
�

4pr2. By CGS unit system, total number is 4p, and then the number

per unit area at the surface is 1
�

r2 which means we can count the line of force per unit area by the

equation without 4p. Generally by CGS rational unit system, we can escape from the inconvenience of

4p or 2
ffiffiffi
p
p

by removing them in the related equations in counting various physical quantities, while on

the other hand 4p or 2
ffiffiffi
p
p

are always included in equations based on Gaussian unit system.

MKS rational unit system has the same concept with the CGS rational unit system except that

m instead of cm and kg instead of g are adopted. In conclusion, m0 and "0 are defined by

Equation (1.52b)(1.52c) by MKS rational unit system because of the above reason.

Hereunder is an comparison of MKS rational unit system and CGS rational unit system in regard

with force F and energy,

1 Neuton ¼ 105 dyne

energy ¼ ðforceÞ � ðdistanceÞ ¼ ðkg �m=sec2Þ � ðmÞ ¼ ðg � cm=sec2Þ � ðcmÞ � 107

Neuton dyne

(1.54)

The digits number are different by105 times for force and by 107 times for energy.

1.3.4.2 Practical MKS units for electrical engineering physics

A conspectus of various electrical practical units is explained in brief as the last part of this chapter.

The meter unit system was established in 1875 and then unit system based on three fundamental

units m; kg; sec were popularized all over the world. In 1951, Ampere was added as the forth

fundamental unit, and the expanded MKSA unit system was authorized, which means various

units for electrical physics were officially combined with various units for Newton physics. After this

year, KelvinðKÞ for temperature and CandelaðcdÞ for light intensity were added, and then in 1960, the

International unit system (SI: International System of Units) was established which includes seven
fundamental units as shown in Table 1.1. This is today’s Expanded MKS unit system. All other units

Sphere

+q

radius r
surface 4πr2

Figure 1.13
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except these seven units are defined dependently as the derived units from seven fundamental units.

Further, useful derived units are defined with proper unit names. As an example, the unit for electric

charge�q is counted as time-integration of Ampere then having unit value of Ampere � sec. Therefore

new unit name Coulomb is defined for the derived unit Ampere � sec. In other words C ¼ A � sec is a

derived unit defined with proper unit name. Table1.2 shows various derived units having proper

defined unit names in electrical physics.

1.4 Supplement: Proof of Equivalent Radius
req ¼ r1=n �wn�1=n for a Multi-bundled Conductor

The equivalent radius req ¼ r1=n � wn�1=n of a multi-bundled conductor in Equations (1.15a) and

(1.35s) can be proved as follows.

1.4.1 Equivalent radius for inductance calculation

One phase n-bundled conductor is examined where (n: number of conductors, r: radius of each

conductor, w: averaged distance between two conductors, h: height above ground level. As all the

elemental conductors are well balanced, the equation bellow is derived as of analogy to Equation (1.3).

rv1

rv2

�
�

rvn

2
66664

3
77775�

sv1

sv2

�
�

svn

2
66664

3
77775 ¼ jo

Ls

Lm

�
�

Lm

Lm

Ls

� �
� �

Lm

Lm

Lm

�
�

Ls

2
6666666

3
7777777
�

i1
i2
�
�
in

2
66664

3
77775 (1)

Table 1.1 Fundamental units by International unit system (SI)

Quantity Name Symbol

Distance meter m

Weight kilogram kg

Time second sec

Current ampere A

Thermodynamic temperature Kelvin K

Molecule volume mol mol

Light intensity candela cd

Table 1.2 Definition of various derived units in electrical physics

Neuton ¼ m � kg
�

sec2

Pascal ¼ Newton
�

m2

Joule ¼ Newton �m
Watt ¼ Joule= sec ¼ Neuton �m= sec

Volt ¼Watt=Ampere

Ohm ¼ Volt=Ampere

Weber ¼ Volt � sec

Tesla ¼Weber
�

m2

Henry ¼Weber=Ampere

Coulomb ¼ Ampere � sec

Farad ¼ Coulomb=Volt
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If the voltage and current of the bundled-conductor are v and i, the voltage and current of each

elemental conductor is v and i=n, then.

rv

rv

rv

2
664

3
775�

sv

sv

sv

2
664

3
775 ¼ jo

Ls

Lm

Lm

Lm

Ls

Lm

Lm

Lm

Ls

2
66666

3
77777 �

i=n

i=n

i=n

2
664

3
775 (2)

Then we have

rv� sv ¼ jo Ls þ ðn� 1ÞLmf g � 1

n

� �
� i (3)

where Ls ¼ 0:4605 log10

hþ H

r
þ 0:05 (4a)

Lm ¼ 0:4605 log10

hþ H

w
þ 0:05 (4b)

If the above bundled-conductor is equivalent with a single conductor with radius req and arranged at

the same height h, and is charged with the same v and i,

rv� sv ¼ joLeq � i (5)

where Leq ¼ 0:4605 log10

hþ H

req
þ 0:05 (6)

As the Equation (3) and (5) should be equal, then

Leq ¼ Ls þ ðn� 1ÞLmf g 1

n

� �
(7)

therefore

0:4605 log10

hþ H

req
þ 0:05 ¼ 0:4605 log10

hþ H

r
þ 0:05

� �
þ ðn� 1Þð0:4605 log10

hþ H

w
þ 0:05Þ

� �
1

n

� �
then,

0:4605 log10

hþ H

req
þ 0:05 ¼ 0:4605 log10

hþ H

r1=n � w n�1Þ=nð þ 0:05 (8)

therefore

req ¼ r1=n � w n�1Þ=nð : (9)

This is the same with Equation (1.15a).

1.4.2 Equivalent radius of capacitance calculation

If the voltage and charge of a n-bundled conductor is v andþq, the charge of each elemental conductor

is þq=n. Then the following equation is derived in analogy with Equation (1.27).

v ¼ 2ðq=nÞ loge

2h

r
� 9� 109 þ �

n�1

1

2ðq=nÞ loge

2h

w
� 9� 109

¼ 2q loge

2h

r

� �1=n

þ loge

2h

r

� �n�1Þ=nð
( )

� 9� 109

¼ 2q � loge

2h

r1=n � w n�1Þ=nð � 9� 109

(10)
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If the above n-bundled conductor is equivalent to a single conductor with radius req and the same

height h, and is charged with the same v and þq,

v ¼ 2q loge

2h

req
� 9� 109 (11)

Comparing the both equations, the equation below is derived.

req ¼ r1=n � w n�1Þ=nð : (12)

This is the same with Equation (9), and of course with Equation (1.35s).

Now above all, inductance as well as capacitance of multi-bundled conductors can be calculated by

applying equivalent radius given by Equation (9) or (12). This is the proof of Equation (1.15a) and

(1.35s).

Coffee break 1: Electricity, its substance
and methodology

The new steam engine of James Watt (1736–1819) ushered in the great dawn of the Industrial

Revolution in the 1770s. Applications of the steam engine began to appear quickly in factories,

mines, railways, and so on, and the curtain of modern mechanical engineering was raised. The

first steam locomotive, designed by George Stephenson (1781–1848), appeared in 1830.

Conversely, electrical engineering had to wait until Volta began to provide ‘stable

electricity’ from his voltaic pile to other electrical scientists in the 1800s. Since then, scientific

investigations of the unseen electricity on one hand and practical applications for telegraphic
communication on the other hand have been conducted by scientists or electricians simulta-

neously, often the same people. In the first half of the nineteenth century, the worth of electricity

was recognized for telegraphic applications, but its commercial application was actually

realized in the 1840s. Commercial telegraphic communication through wires between New

York and Boston took place in 1846, followed at Dover through a submarine cable in 1851.

However, it took another 40 years for the realization of commercial applications of electricity as

the replacement energy for steam power or in lighting.
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